1
|
Henretta S, Lammerding J. Nuclear envelope proteins, mechanotransduction, and their contribution to breast cancer progression. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:14. [PMID: 40337116 PMCID: PMC12052594 DOI: 10.1038/s44341-025-00018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/18/2025] [Indexed: 05/09/2025]
Abstract
Breast cancer cells frequently exhibit changes in the expression of nuclear envelope (NE) proteins such as lamins and emerin that determine the physical properties of the nucleus and contribute to cellular mechanotransduction. This review explores the emerging interplay between NE proteins, the physical challenges incurred during metastatic progression, and mechanotransduction. Improved insights into the underlying mechanisms may ultimately lead to better prognostic tools and treatment strategies for metastatic breast cancer.
Collapse
Affiliation(s)
- Sarah Henretta
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY USA
| | - Jan Lammerding
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY USA
| |
Collapse
|
2
|
Faure LM, Venturini V, Roca-Cusachs P. Cell compression - relevance, mechanotransduction mechanisms and tools. J Cell Sci 2025; 138:jcs263704. [PMID: 40145202 DOI: 10.1242/jcs.263704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Abstract
From border cell migration during Drosophila embryogenesis to solid stresses inside tumors, cells are often compressed during physiological and pathological processes, triggering major cell responses. Cell compression can be observed in vivo but also controlled in vitro through tools such as micro-channels or planar confinement assays. Such tools have recently become commercially available, allowing a broad research community to tackle the role of cell compression in a variety of contexts. This has led to the discovery of conserved compression-triggered migration modes, cell fate determinants and mechanosensitive pathways, among others. In this Review, we will first address the different ways in which cells can be compressed and their biological contexts. Then, we will discuss the distinct mechanosensing and mechanotransducing pathways that cells activate in response to compression. Finally, we will describe the different in vitro systems that have been engineered to compress cells.
Collapse
Affiliation(s)
- Laura M Faure
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Valeria Venturini
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- University of Barcelona (UB), 08036 Barcelona, Spain
| |
Collapse
|
3
|
Chu CG, Lang N, Walsh E, Zheng MD, Manning G, Shalin K, Cunha LM, Faucon KE, Kam N, Folan SN, Desai AP, Naughton E, Abreu J, Carson AM, Wald ZL, Khvorova-Wolfson D, Phan L, Lee H, Pho M, Prince K, Dorfman K, Bahiru MS, Stephens AD. Lamin B loss in nuclear blebs is rupture dependent while increased DNA damage is rupture independent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639904. [PMID: 40060436 PMCID: PMC11888350 DOI: 10.1101/2025.02.24.639904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The nucleus houses genetic information and functions separate from the rest of the cell. Loss of nuclear shape results in nuclear ruptures. Nuclear blebs are deformations identified by decreased DNA density, while lamin B levels vary drastically. To determine if decreased lamin B levels are due to nuclear rupture, we used immunofluorescence to measure levels of lamin B and emerin, a nuclear envelope protein that enriches to sites of nuclear rupture. We observed that cell types that exhibit decreased levels of lamin B also show an enrichment of emerin in nuclear blebs. Oppositely, in other cell types, nuclear blebs display maintained levels of lamin B1 and showed no emerin enrichment. To determine how nuclear rupture affects DNA damage, we time lapse imaged nuclear rupture dynamics then fixed the same cells to conduct immunofluorescence of γH2AX and emerin. We find that DNA damage levels are higher in blebbed nuclei independent of nuclear rupture. Thus, we confirm that lamin B1 loss in nuclear blebs is due to nuclear rupture and blebbed nuclei have increased DNA damage that is independent of rupture.
Collapse
Affiliation(s)
- Catherine G Chu
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Nick Lang
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Erin Walsh
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Mindy D Zheng
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gianna Manning
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Kiruba Shalin
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Lyssa M Cunha
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Kate E Faucon
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Nicholas Kam
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sara N Folan
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Arav P Desai
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Emily Naughton
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jaylynn Abreu
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alexis M Carson
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Zachary L Wald
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | - Leena Phan
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Hannah Lee
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Mai Pho
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Kelsey Prince
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Katherine Dorfman
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Michael Seifu Bahiru
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, MA 01003, USA
| | - Andrew D Stephens
- Biology department, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Bunner S, Prince K, Pujadas Liwag EM, Eskndir N, Srikrishna K, Amonu McCarthy A, Kuklinski A, Jackson O, Pellegrino P, Jagtap S, Eweka I, Lawlor C, Eastin E, Yas G, Aiello J, LaPointe N, Schramm von Blucher I, Hardy J, Chen J, Figueroa S, Backman V, Janssen A, Packard M, Dorfman K, Almassalha L, Bahiru MS, Stephens AD. Decreased DNA density is a better indicator of a nuclear bleb than lamin B loss. J Cell Sci 2025; 138:jcs262082. [PMID: 39501901 PMCID: PMC11883270 DOI: 10.1242/jcs.262082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/30/2024] [Indexed: 11/13/2024] Open
Abstract
Nuclear blebs are herniations of the nucleus that occur in diseased nuclei and cause nuclear rupture leading to cellular dysfunction. Chromatin and lamins are two of the major structural components of the nucleus that maintain its shape and function, but their relative roles in nuclear blebbing remain elusive. To determine the composition of nuclear blebs, we compared the immunofluorescence intensity of DNA and lamin B in the main nucleus body to that in the nuclear bleb across cell types and perturbations. DNA density in the nuclear bleb was consistently decreased to about half that of the nuclear body whereas lamin B levels in the nuclear bleb varied widely. Partial wave spectroscopic (PWS) microscopy recapitulated the significantly decreased likelihood of high-density domains in the nuclear bleb versus body, and that it was independent of lamin B level. Time-lapse imaging into immunofluorescence revealed that decreased DNA density marked all nuclear blebs whereas decreased lamin B1 levels only occurred in blebs that had recently ruptured. Thus, decreased DNA density is a better marker of a nuclear bleb than lamin B level.
Collapse
Affiliation(s)
- Samantha Bunner
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Kelsey Prince
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Emily M. Pujadas Liwag
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Nebiyat Eskndir
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Karan Srikrishna
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | - Anna Kuklinski
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Olivia Jackson
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Pedro Pellegrino
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shrushti Jagtap
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Imuetiyan Eweka
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Colman Lawlor
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Emma Eastin
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Griffin Yas
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Julianna Aiello
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Nathan LaPointe
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | - Jillian Hardy
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jason Chen
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Schuyler Figueroa
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Anne Janssen
- School of Biological Sciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Mary Packard
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Katherine Dorfman
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Luay Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Michael Seifu Bahiru
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, MA 01003, USA
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Pujadas Liwag EM, Acosta N, Almassalha LM, Su Y(P, Gong R, Kanemaki MT, Stephens AD, Backman V. Nuclear blebs are associated with destabilized chromatin-packing domains. J Cell Sci 2025; 138:jcs262161. [PMID: 39878045 PMCID: PMC11883274 DOI: 10.1242/jcs.262161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements and DNA damage. Nuclear blebs (i.e. herniations of the nuclear envelope) can be induced by (1) nuclear compression, (2) nuclear migration (e.g. cancer metastasis), (3) actin contraction, (4) lamin mutation or depletion, and (5) heterochromatin enzyme inhibition. Recent work has shown that chromatin transformation is a hallmark of bleb formation, but the transformation of higher-order structures in blebs is not well understood. As higher-order chromatin has been shown to assemble into nanoscopic packing domains, we investigated whether (1) packing domain organization is altered within nuclear blebs and (2) whether alteration in packing domain structure contributed to bleb formation. Using dual-partial wave spectroscopic microscopy, we show that chromatin-packing domains within blebs are transformed both by B-type lamin depletion and the inhibition of heterochromatin enzymes compared to what is seen in the nuclear body. Pairing these results with single-molecule localization microscopy of constitutive heterochromatin, we show fragmentation of nanoscopic heterochromatin domains within bleb domains. Overall, these findings indicate that chromatin within blebs is associated with a fragmented higher-order chromatin structure.
Collapse
Affiliation(s)
- Emily M. Pujadas Liwag
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nicolas Acosta
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Luay Matthew Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Yuanzhe (Patrick) Su
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ruyi Gong
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Masato T. Kanemaki
- Department of Chromosome Science, National Institute of Genetics, ROIS, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
- Department of Biological Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
6
|
Amiri S, Bos I, Reyssat E, Sykes C. The nuclear lamin network passively responds to both active or passive cell movement through confinements. SOFT MATTER 2025; 21:893-902. [PMID: 39801443 DOI: 10.1039/d4sm01137f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Physical models of cell motility rely mostly on cytoskeletal dynamical assembly. However, when cells move through the complex 3D environment of living tissues, they have to squeeze their nucleus that is stiffer than the rest of the cell. The lamin network, organised as a shell right underneath the nuclear membrane, contributes to the nuclear integrity and stiffness. Yet, its response during squeezed cell motility has never been fully characterised. As a result, up to now, the interpretations on the lamin response mechanism are mainly speculative. Here, we quantitatively map the lamin A/C distribution in both a microfluidic migration device and a microfluidic aspiration device. In the first case, the cell is actively involved in translocating the nucleus through the constriction, while in the second case, the cell behaves as a passive object that is pushed through the constriction by an external pressure. Using a quantitative description of the lamin shell response based on mass conservation arguments applied on the fluorescence signal of lamin, we show that in both cases of migration and aspiration, the response of the lamin network is passive. In this way, our results not only further elucidate the lamin response mechanism, but also allow to characterise that this deformation is passive even when the cell is actively migrating, thus paving the way to further investigate which active nuclear responses may occur when cells migrate in confinement.
Collapse
Affiliation(s)
- Sirine Amiri
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France.
| | - Inge Bos
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France.
| | - Etienne Reyssat
- CNRS, ESPCI-Paris, Université PSL, Sorbonne Université and Université Paris Cité, Paris, France
| | - Cécile Sykes
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France.
- Institut Curie, Paris, France
| |
Collapse
|
7
|
Caruso AP, Logue JS. The biophysics of cell motility through mechanochemically challenging environments. Curr Opin Cell Biol 2024; 90:102404. [PMID: 39053178 PMCID: PMC11392632 DOI: 10.1016/j.ceb.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Challenging mechanochemical environments (i.e., with varied mechanical and adhesive properties) are now known to induce a wide range of adaptive phenomena in motile cells. For instance, confinement and low adhesion may trigger a phenotypic transition to fast amoeboid (leader bleb-based) migration. The molecular mechanisms that underly these phenomena are beginning to be understood. Due to its size, the mechanical properties of the nucleus have been shown to limit and facilitate cell migration. Additionally, the activity of various transient receptor potential (TRP) channels is now known to be integral to cell migration in response to a multitude of biophysical stimuli. How cells integrate signals from the nucleus and plasma membrane, however, is unclear. The development of therapeutics that suppress cancer or enhance immune cell migration for immuno-oncology applications, etc., will require additional work to completely understand the molecular mechanisms that enable cells to navigate mechanochemically challenging environments.
Collapse
Affiliation(s)
- Alexa P Caruso
- Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Jeremy S Logue
- Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA.
| |
Collapse
|
8
|
Mistriotis P, Wisniewski EO, Si BR, Kalab P, Konstantopoulos K. Coordinated in confined migration: crosstalk between the nucleus and ion channel-mediated mechanosensation. Trends Cell Biol 2024; 34:809-825. [PMID: 38290913 PMCID: PMC11284253 DOI: 10.1016/j.tcb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Cell surface and intracellular mechanosensors enable cells to perceive different geometric, topographical, and physical cues. Mechanosensitive ion channels (MICs) localized at the cell surface and on the nuclear envelope (NE) are among the first to sense and transduce these signals. Beyond compartmentalizing the genome of the cell and its transcription, the nucleus also serves as a mechanical gauge of different physical and topographical features of the tissue microenvironment. In this review, we delve into the intricate mechanisms by which the nucleus and different ion channels regulate cell migration in confinement. We review evidence suggesting an interplay between macromolecular nuclear-cytoplasmic transport (NCT) and ionic transport across the cell membrane during confined migration. We also discuss the roles of the nucleus and ion channel-mediated mechanosensation, whether acting independently or in tandem, in orchestrating migratory mechanoresponses. Understanding nuclear and ion channel sensing, and their crosstalk, is critical to advancing our knowledge of cell migration in health and disease.
Collapse
Affiliation(s)
| | - Emily O Wisniewski
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bishwa R Si
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Pereira CD, Espadas G, Martins F, Bertrand AT, Servais L, Sabidó E, Chevalier P, da Cruz e Silva OA, Rebelo S. Quantitative proteome analysis of LAP1-deficient human fibroblasts: A pilot approach for predicting the signaling pathways deregulated in LAP1-associated diseases. Biochem Biophys Rep 2024; 39:101757. [PMID: 39035020 PMCID: PMC11260385 DOI: 10.1016/j.bbrep.2024.101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024] Open
Abstract
Lamina-associated polypeptide 1 (LAP1), a ubiquitously expressed nuclear envelope protein, appears to be essential for the maintenance of cell homeostasis. Although rare, mutations in the human LAP1-encoding TOR1AIP1 gene cause severe diseases and can culminate in the premature death of affected individuals. Despite there is increasing evidence of the pathogenicity of TOR1AIP1 mutations, the current knowledge on LAP1's physiological roles in humans is limited; hence, investigation is required to elucidate the critical functions of this protein, which can be achieved by uncovering the molecular consequences of LAP1 depletion, a topic that remains largely unexplored. In this work, the proteome of patient-derived LAP1-deficient fibroblasts carrying a pathological TOR1AIP1 mutation (LAP1 E482A) was quantitatively analyzed to identify global changes in protein abundance levels relatively to control fibroblasts. An in silico functional enrichment analysis of the mass spectrometry-identified differentially expressed proteins was also performed, along with additional in vitro functional assays, to unveil the biological processes that are potentially dysfunctional in LAP1 E482A fibroblasts. Collectively, our findings suggest that LAP1 deficiency may induce significant alterations in various cellular activities, including DNA repair, messenger RNA degradation/translation, proteostasis and glutathione metabolism/antioxidant response. This study sheds light on possible new functions of human LAP1 and could set the basis for subsequent in-depth mechanistic investigations. Moreover, by identifying deregulated signaling pathways in LAP1-deficient cells, our work may offer valuable molecular targets for future disease-modifying therapies for TOR1AIP1-associated nuclear envelopathies.
Collapse
Affiliation(s)
- Cátia D. Pereira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Guadalupe Espadas
- Center for Genomics Regulation, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Filipa Martins
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Anne T. Bertrand
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Laurent Servais
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford and NIHR Oxford Biomedical Research Center, Oxford, OX3 9DU, United Kingdom
- Neuromuscular Center, Division of Paediatrics, University Hospital of Liège and University of Liège, 4000, Liège, Belgium
| | - Eduard Sabidó
- Center for Genomics Regulation, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Philippe Chevalier
- Université Claude Bernard Lyon 1, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Odete A.B. da Cruz e Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
10
|
Du H, Wang F, Zhang R, Yan X, Zheng J, Zhou T, Wang X, Zhang G, Zhang Z. Rolling Circle Amplification-Based Self-Assembly to Form a "GPS-Nanoconveyor" for In Vitro Targeted Imaging and Enhanced Gene/Chemo (CRISPR/DOX) Synergistic Therapy. Biomacromolecules 2024; 25:4991-5007. [PMID: 39087761 DOI: 10.1021/acs.biomac.4c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The GPS-Nanoconveyor (MA-NV@DOX-Cas13a) is a targeted nanoplatform designed for the imaging and gene/chemotherapy synergistic treatment of melanoma. It utilizes rolling circle amplification (RCA) products as a scaffold to construct a DNA "Nanoconveyor" (NV), which incorporates a multivalent aptamer (MA) as a "GPS", encapsulates doxorubicin (DOX) in the transporter, and equips it with CRISPR/Cas13a ribonucleoproteins (Cas13a RNP). Carrying MA enhances the ability to recognize the overexpressed receptor nucleolin on B16 cells, enabling targeted imaging and precise delivery of MA-NV@DOX-Cas13a through receptor-mediated endocytosis. The activation of signal transducer and activator of transcription 3 (STAT3) in cancer cells triggers cis-cleavage of CRISPR/Cas13a, initiating its trans-cleavage function. Additionally, deoxyribonuclease I (DNase I) degrades MA-NV, releasing DOX for intracellular imaging and as a chemotherapeutic agent. Experiments demonstrate the superior capabilities of this versatile nanoplatform for cellular imaging and co-treatment while highlighting the advantages of these nanodrug delivery systems in mitigating DOX side effects.
Collapse
Affiliation(s)
- Huan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ruyan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoyan Yan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jinfeng Zheng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ting Zhou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiufeng Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhiqing Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
11
|
Yang S, Li Z, Yi J, Pan M, Cao W, Ma J, Zhang P. Nebivolol, an antihypertensive agent, has new application in inhibiting melanoma. Anticancer Drugs 2024; 35:512-524. [PMID: 38602174 PMCID: PMC11078289 DOI: 10.1097/cad.0000000000001597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Indexed: 04/12/2024]
Abstract
Repurposing existing drugs for cancer therapy has become an important strategy because of its advantages, such as cost reduction, effect and safety. The present study was designed to investigate the antimelanoma effect and possible mechanisms of action of nebivolol, which is an approved and widely prescribed antihypertensive agent. In this study, we explored the effect of nebivolol on cell proliferation and cell activity in melanoma in vitro and the potential antimelanoma mechanism of nebivolol through a series of experiments, including the analysis of the effects with regard to cell apoptosis and metastasis. Furthermore, we evaluated the antimelanoma effect on xenograft tumor models and inspected the antimelanoma mechanism of nebivolol in vivo using immunohistochemical and immunofluorescence staining assays. As results in this work, in vitro , nebivolol possessed a strong activity for suppression proliferation and cell cycle arrest on melanoma. Moreover, nebivolol significantly induced cell apoptosis in melanoma through a mitochondrial-mediated endogenous apoptosis pathway. Additionally, nebivolol inhibited melanoma cell metastasis. More importantly, nebivolol exhibited significantly effective melanoma xenograft models in vivo , which related to the mechanism of apoptosis induction, proliferation inhibition, metastasis blocking and angiogenesis arrest. Overall, the data of the present study recommend that nebivolol holds great potential in application as a novel agent for the treatment of melanoma.
Collapse
Affiliation(s)
- Shuping Yang
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Zhi Li
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Jiamei Yi
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Mingyue Pan
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Jing Ma
- Department of Pharmacy, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| |
Collapse
|
12
|
Graziani V, Crosas-Molist E, George SL, Sanz-Moreno V. Organelle adaptations in response to mechanical forces during tumour dissemination. Curr Opin Cell Biol 2024; 88:102345. [PMID: 38479111 DOI: 10.1016/j.ceb.2024.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 06/16/2024]
Abstract
Cell migration plays a pivotal role in various biological processes including cancer dissemination and successful metastasis, where the role of mechanical signals is increasingly acknowledged. This review focuses on the intricate mechanisms through which cancer cells modulate their migratory strategies via organelle adaptations in response to the extracellular matrix (ECM). Specifically, the nucleus and mitochondria emerge as pivotal mediators in this process. These organelles serve as sensors, translating mechanical stimuli into rapid metabolic alterations that sustain cell migration. Importantly, prolonged exposure to such stimuli can induce transcriptional or epigenetic changes, ultimately enhancing metastatic traits. Deciphering the intricate interplay between ECM properties and organelle adaptations not only advances our understanding of cytoskeletal dynamics but also holds promise for the development of innovative anti-metastatic therapeutic strategies.
Collapse
Affiliation(s)
- Vittoria Graziani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London EC1M 6BQ, UK
| | - Eva Crosas-Molist
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London EC1M 6BQ, UK
| | - Samantha L George
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London EC1M 6BQ, UK
| | - Victoria Sanz-Moreno
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
13
|
Chatzilakou E, Hu Y, Jiang N, Yetisen AK. Biosensors for melanoma skin cancer diagnostics. Biosens Bioelectron 2024; 250:116045. [PMID: 38301546 DOI: 10.1016/j.bios.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Skin cancer is a critical global public health concern, with melanoma being the deadliest variant, correlated to 80% of skin cancer-related deaths and a remarkable propensity to metastasize. Despite notable progress in skin cancer prevention and diagnosis, the limitations of existing methods accentuate the demand for precise diagnostic tools. Biosensors have emerged as valuable clinical tools, enabling rapid and reliable point-of-care (POC) testing of skin cancer. This review offers insights into skin cancer development, highlights essential cutaneous melanoma biomarkers, and assesses the current landscape of biosensing technologies for diagnosis. The comprehensive analysis in this review underscores the transformative potential of biosensors in revolutionizing melanoma skin cancer diagnosis, emphasizing their critical role in advancing patient outcomes and healthcare efficiency. The increasing availability of these approaches supports direct diagnosis and aims to reduce the reliance on biopsies, enhancing POC diagnosis. Recent advancements in biosensors for skin cancer diagnosis hold great promise, with their integration into healthcare expected to enhance early detection accuracy and reliability, thereby mitigating socioeconomic disparities.
Collapse
Affiliation(s)
- Eleni Chatzilakou
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; JinFeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
14
|
Diazzi S, Ablain J. Nonepithelial cancer dissemination: specificities and challenges. Trends Cancer 2024; 10:356-368. [PMID: 38135572 DOI: 10.1016/j.trecan.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
Epithelial cancers have served as a paradigm to study tumor dissemination but recent data have highlighted significant differences with nonepithelial cancers. Here, we review the current knowledge on nonepithelial tumor dissemination, drawing examples from the latest developments in melanoma, glioma, and sarcoma research. We underscore the importance of the reactivation of developmental processes during cancer progression and describe the nongenetic mechanisms driving nonepithelial tumor spread. We also outline therapeutic opportunities and ongoing clinical approaches to fight disseminating cancers. Finally, we discuss remaining challenges and emerging questions in the field. Defining the core principles underlying nonepithelial cancer dissemination may uncover actionable vulnerabilities of metastatic tumors and help improve the prognosis of patients with cancer.
Collapse
Affiliation(s)
- Serena Diazzi
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Julien Ablain
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
15
|
Pujadas Liwag EM, Acosta N, Almassalha LM, Su YP, Gong R, Kanemaki MT, Stephens AD, Backman V. Nuclear blebs are associated with destabilized chromatin packing domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587095. [PMID: 38585954 PMCID: PMC10996693 DOI: 10.1101/2024.03.28.587095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e., herniations of the nuclear envelope) have been induced by (1) nuclear compression, (2) nuclear migration (e.g., cancer metastasis), (3) actin contraction, (4) lamin mutation or depletion, and (5) heterochromatin enzyme inhibition. Recent work has shown that chromatin transformation is a hallmark of bleb formation, but the transformation of higher-order structures in blebs is not well understood. As higher-order chromatin has been shown to assemble into nanoscopic packing domains, we investigated if (1) packing domain organization is altered within nuclear blebs and (2) if alteration in packing domain structure contributed to bleb formation. Using Dual-Partial Wave Spectroscopic microscopy, we show that chromatin packing domains within blebs are transformed both by B-type lamin depletion and the inhibition of heterochromatin enzymes compared to the nuclear body. Pairing these results with single-molecule localization microscopy of constitutive heterochromatin, we show fragmentation of nanoscopic heterochromatin domains within bleb domains. Overall, these findings indicate that translocation into blebs results in a fragmented higher-order chromatin structure. SUMMARY STATEMENT Nuclear blebs are linked to various pathologies, including cancer and premature aging disorders. We investigate alterations in higher-order chromatin structure within blebs, revealing fragmentation of nanoscopic heterochromatin domains.
Collapse
|
16
|
Bunner S, Prince K, Srikrishna K, Pujadas EM, McCarthy AA, Kuklinski A, Jackson O, Pellegrino P, Jagtap S, Eweka I, Lawlor C, Eastin E, Yas G, Aiello J, LaPointe N, von Blucher IS, Hardy J, Chen J, Backman V, Janssen A, Packard M, Dorfman K, Almassalha L, Bahiru MS, Stephens AD. DNA density is a better indicator of a nuclear bleb than lamin B loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579152. [PMID: 38370828 PMCID: PMC10871186 DOI: 10.1101/2024.02.06.579152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Nuclear blebs are herniations of the nucleus that occur in diseased nuclei that cause nuclear rupture leading to cellular dysfunction. Chromatin and lamins are two of the major structural components of the nucleus that maintain its shape and function, but their relative roles in nuclear blebbing remain elusive. Lamin B is reported to be lost in blebs by qualitative data while quantitative studies reveal a spectrum of lamin B levels in nuclear blebs dependent on perturbation and cell type. Chromatin has been reported to be decreased or de-compacted in nuclear blebs, but again the data are not conclusive. To determine the composition of nuclear blebs, we compared the immunofluorescence intensity of lamin B and DNA in the main nucleus body and nuclear bleb across cell types and perturbations. Lamin B nuclear bleb levels varied drastically across MEF wild type and chromatin or lamins perturbations, HCT116 lamin B1-GFP imaging, and human disease model cells of progeria and prostate cancer. However, DNA concentration was consistently decreased to about half that of the main nucleus body across all measured conditions. Using Partial Wave Spectroscopic (PWS) microscopy to measure chromatin density in the nuclear bleb vs body we find similar results that DNA is consistently less dense in nuclear blebs. Thus, our data spanning many different cell types and perturbations supports that decreased DNA is a better marker of a nuclear bleb than lamin B levels that vary widely.
Collapse
Affiliation(s)
- Samantha Bunner
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Kelsey Prince
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Karan Srikrishna
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Emily Marie Pujadas
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | | | - Anna Kuklinski
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Olivia Jackson
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Pedro Pellegrino
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Shrushti Jagtap
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Imuetiyan Eweka
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Colman Lawlor
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Emma Eastin
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Griffin Yas
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Julianna Aiello
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Nathan LaPointe
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | | | - Jillian Hardy
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Jason Chen
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Anne Janssen
- School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Mary Packard
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Katherine Dorfman
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
| | - Luay Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Michael Seifu Bahiru
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, MA 01003, USA
| | - A. D. Stephens
- Biology department, University of Massachusetts Amherst, Amherst, MA. 01003, USA
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
17
|
Pho M, Berrada Y, Gunda A, Lavallee A, Chiu K, Padam A, Currey ML, Stephens AD. Actin contraction controls nuclear blebbing and rupture independent of actin confinement. Mol Biol Cell 2024; 35:ar19. [PMID: 38088876 PMCID: PMC10881147 DOI: 10.1091/mbc.e23-07-0292] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024] Open
Abstract
The nucleus is a mechanically stable compartment of the cell that contains the genome and performs many essential functions. Nuclear mechanical components chromatin and lamins maintain nuclear shape, compartmentalization, and function by resisting antagonistic actin contraction and confinement. Studies have yet to compare chromatin and lamins perturbations side-by-side as well as modulated actin contraction while holding confinement constant. To accomplish this, we used nuclear localization signal green fluorescent protein to measure nuclear shape and rupture in live cells with chromatin and lamin perturbations. We then modulated actin contraction while maintaining actin confinement measured by nuclear height. Wild type, chromatin decompaction, and lamin B1 null present bleb-based nuclear deformations and ruptures dependent on actin contraction and independent of actin confinement. Actin contraction inhibition by Y27632 decreased nuclear blebbing and ruptures while activation by CN03 increased rupture frequency. Lamin A/C null results in overall abnormal shape also reliant on actin contraction, but similar blebs and ruptures as wild type. Increased DNA damage is caused by nuclear blebbing or abnormal shape which can be relieved by inhibition of actin contraction which rescues nuclear shape and decreases DNA damage levels in all perturbations. Thus, actin contraction drives nuclear blebbing, bleb-based ruptures, and abnormal shape independent of changes in actin confinement.
Collapse
Affiliation(s)
- Mai Pho
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Yasmin Berrada
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Aachal Gunda
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Anya Lavallee
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Katherine Chiu
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Arimita Padam
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Marilena L. Currey
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
18
|
Sobo JM, Alagna NS, Sun SX, Wilson KL, Reddy KL. Lamins: The backbone of the nucleocytoskeleton interface. Curr Opin Cell Biol 2024; 86:102313. [PMID: 38262116 DOI: 10.1016/j.ceb.2023.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
The nuclear lamina (NL) is a crucial component of the inner nuclear membrane (INM) and consists of lamin filaments and associated proteins. Lamins are type V intermediate filament proteins essential for maintaining the integrity and mechanical properties of the nucleus. In human cells, 'B-type' lamins (lamin B1 and lamin B2) are ubiquitously expressed, while 'A-type' lamins (lamin A, lamin C, and minor isoforms) are expressed in a tissue- and development-specific manner. Lamins homopolymerize to form filaments that localize primarily near the INM, but A-type lamins also localize to and function in the nucleoplasm. Lamins play central roles in the assembly, structure, positioning, and mechanics of the nucleus, modulating cell signaling and influencing development, differentiation, and other activities. This review highlights recent findings on the structure and regulation of lamin filaments, providing insights into their multifaceted functions, including their role as "mechanosensors", delving into the emerging significance of lamin filaments as vital links between cytoskeletal and nuclear structures, chromatin organization, and the genome.
Collapse
Affiliation(s)
- Joan M Sobo
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nicholas S Alagna
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katherine L Wilson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Karen L Reddy
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Abasi M, Ranjbari J, Ghanbarian H. 7SK small nuclear RNA (Rn7SK) induces apoptosis through intrinsic and extrinsic pathways in human embryonic kidney cell line. Mol Biol Rep 2024; 51:96. [PMID: 38193993 DOI: 10.1007/s11033-023-08934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Rn7SK, a highly conserved small nuclear non-coding RNA, controls Polymerase II transcription machinery by activating of the Positive Transcriptional Elongation Factor b (P-TEFb). Apart from its role in transcriptional regulation, the potential functions of Rn7SK in cell apoptosis are poorly understood. In a previous study, we demonstrated that overexpression of 7SK induces apoptosis in HEK cells. However, it remains unclear whether 7SK-mediated apoptosis induction is exerted through the intrinsic or extrinsic pathways. METHODS AND RESULTS Rn7SK was overexpressed in HEK 293T cell line using Lipofectamine 2000 reagent to investigate its potential apoptotic functions. The overexpression of Rn7SK resulted in reduced cell viability through the induction of apoptosis, as evidenced by MTT assay and Annexin V/PI staining. Concurrently, alterations in the expression levels of key apoptosis-related genes were observed, as determined by quantitative RT-PCR. Furthermore, Rn7SK overexpression led to a decrease in cell proliferation, as assessed by colony formation assay and growth curve analysis. This reduction was associated with downregulated expression of key proliferative-related genes. Additionally, the migration and invasion capabilities of cells were significantly inhibited upon upregulation of Rn7SK, as demonstrated by transwell assays. CONCLUSIONS This study suggests the apoptotic role of 7SK through both intrinsic and extrinsic pathways, necessitating further investigation into its underlying mechanisms.
Collapse
Affiliation(s)
- Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Ranjbari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Yang S, Li Z, Pan M, Ma J, Pan Z, Zhang P, Cao W. Repurposing of Antidiarrheal Loperamide for Treating Melanoma by Inducing Cell Apoptosis and Cell Metastasis Suppression In vitro and In vivo. Curr Cancer Drug Targets 2024; 24:1015-1030. [PMID: 38303527 DOI: 10.2174/0115680096283086240116093400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Melanoma is the most common skin tumor worldwide and still lacks effective therapeutic agents in clinical practice. Repurposing of existing drugs for clinical tumor treatment is an attractive and effective strategy. Loperamide is a commonly used anti-diarrheal drug with excellent safety profiles. However, the affection and mechanism of loperamide in melanoma remain unknown. Herein, the potential anti-melanoma effects and mechanism of loperamide were investigated in vitro and in vivo. METHODS In the present study, we demonstrated that loperamide possessed a strong inhibition in cell viability and proliferation in melanoma using MTT, colony formation and EUD incorporation assays. Meanwhile, xenograft tumor models were established to investigate the anti-melanoma activity of loperamide in vivo. Moreover, the effects of loperamide on apoptosis in melanoma cells and potential mechanisms were explored by Annexin V-FITC apoptosis detection, cell cycle, mitochondrial membrane potential assay, reactive oxygen species level detection, and apoptosis-correlation proteins analysis. Furthermore, loperamide-suppressed melanoma metastasis was studied by migration and invasion assays. What's more, immunohistochemical and immunofluorescence staining assays were applied to demonstrate the mechanism of loperamide against melanoma in vivo. Finally, we performed the analysis of routine blood and blood biochemical, as well as hematoxylin- eosin (H&E) staining, in order to investigate the safety properties of loperamide. RESULTS Loperamide could observably inhibit melanoma cell proliferation in vitro and in vivo. Meanwhile, loperamide induced melanoma cell apoptosis by accumulation of the sub-G1 cells population, enhancement of reactive oxygen species level, depletion of mitochondrial membrane potential, and apoptosis-related protein activation in vitro. Of note, apoptosis-inducing effects were also observed in vivo. Subsequently, loperamide markedly restrained melanoma cell migration and invasion in vitro and in vivo. Ultimately, loperamide was witnessed to have an amicable safety profile. CONCLUSION These findings suggested that repurposing of loperamide might have great potential as a novel and safe alternative strategy to cure melanoma via inhibiting proliferation, inducing apoptosis and cell cycle arrest, and suppressing migration and invasion.
Collapse
Affiliation(s)
- Shuping Yang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Zhi Li
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Mingyue Pan
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Jing Ma
- Department of Pharmacy, South China Hospital, Medical School, Shenzhen University, Shenzhen, P.R. China
| | - Zeyu Pan
- Shantou University Medical College, Shantou, Guangdong, China
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Turkmen AM, Saik NO, Ullman KS. The dynamic nuclear envelope: resilience in health and dysfunction in disease. Curr Opin Cell Biol 2023; 85:102230. [PMID: 37660480 PMCID: PMC10843620 DOI: 10.1016/j.ceb.2023.102230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
The canonical appearance of the nucleus depends on constant adaptation and remodeling of the nuclear envelope in response to changing biomechanical forces and metabolic demands. Dynamic events at the nuclear envelope play a vital role in supporting key nuclear functions as well as conferring plasticity to this organelle. Moreover, imbalance of these dynamic processes is emerging as a central feature of disease etiology. This review focuses on recent advances that shed light on the myriad events at the nuclear envelope that contribute to resilience and flexibility in nuclear architecture.
Collapse
Affiliation(s)
- Ayse M Turkmen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Natasha O Saik
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
22
|
Kofler M, Kapus A. Nuclear Import and Export of YAP and TAZ. Cancers (Basel) 2023; 15:4956. [PMID: 37894323 PMCID: PMC10605228 DOI: 10.3390/cancers15204956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Yes-associated Protein (YAP) and its paralog Transcriptional Coactivator with PDZ-binding Motif (TAZ) are major regulators of gene transcription/expression, primarily controlled by the Hippo pathway and the cytoskeleton. Integrating an array of chemical and mechanical signals, they impact growth, differentiation, and regeneration. Accordingly, they also play key roles in tumorigenesis and metastasis formation. Their activity is primarily regulated by their localization, that is, Hippo pathway- and/or cytoskeleton-controlled cytosolic or nuclear sequestration. While many details of such prevailing retention models have been elucidated, much less is known about their actual nuclear traffic: import and export. Although their size is not far from the cutoff for passive diffusion through the nuclear pore complex (NPC), and they do not contain any classic nuclear localization (NLS) or nuclear export signal (NES), evidence has been accumulating that their shuttling involves mediated and thus regulatable/targetable processes. The aim of this review is to summarize emerging information/concepts about their nucleocytoplasmic shuttling, encompassing the relevant structural requirements (NLS, NES), nuclear transport receptors (NTRs, karyophererins), and NPC components, along with the potential transport mechanisms and their regulation. While dissecting retention vs. transport is often challenging, the emerging picture suggests that YAP/TAZ shuttles across the NPC via multiple, non-exclusive, mediated mechanisms, constituting a novel and intriguing facet of YAP/TAZ biology.
Collapse
Affiliation(s)
- Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
23
|
de Lope-Planelles A, González-Novo R, Madrazo E, Peralta-Carrero G, Cruz Rodríguez MP, Zamora-Carreras H, Torrano V, López-Menéndez H, Roda-Navarro P, Monroy F, Redondo-Muñoz J. Mechanical stress confers nuclear and functional changes in derived leukemia cells from persistent confined migration. Cell Mol Life Sci 2023; 80:316. [PMID: 37801090 PMCID: PMC10558412 DOI: 10.1007/s00018-023-04968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Nuclear deformability plays a critical role in cell migration. During this process, the remodeling of internal components of the nucleus has a direct impact on DNA damage and cell behavior; however, how persistent migration promotes nuclear changes leading to phenotypical and functional consequences remains poorly understood. Here, we described that the persistent migration through physical barriers was sufficient to promote permanent modifications in migratory-altered cells. We found that derived cells from confined migration showed changes in lamin B1 localization, cell morphology and transcription. Further analysis confirmed that migratory-altered cells showed functional differences in DNA repair, cell response to chemotherapy and cell migration in vivo homing experiments. Experimental modulation of actin polymerization affected the redistribution of lamin B1, and the basal levels of DNA damage in migratory-altered cells. Finally, since major nuclear changes were present in migratory-altered cells, we applied a multidisciplinary biochemical and biophysical approach to identify that confined conditions promoted a different biomechanical response of the nucleus in migratory-altered cells. Our observations suggest that mechanical compression during persistent cell migration has a role in stable nuclear and genomic alterations that might handle the genetic instability and cellular heterogeneity in aging diseases and cancer.
Collapse
Affiliation(s)
- Ana de Lope-Planelles
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Raquel González-Novo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Elena Madrazo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Gracia Peralta-Carrero
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - María Pilar Cruz Rodríguez
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Héctor Zamora-Carreras
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Verónica Torrano
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Horacio López-Menéndez
- Department of Physical Chemistry, Complutense University, Madrid, Spain
- Translational Biophysics, Hospital Doce de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, School of Medicine, University Complutense de Madrid and 12 de Octubre Health Research Institute (Imas12) Madrid, Madrid, Spain
| | - Francisco Monroy
- Department of Physical Chemistry, Complutense University, Madrid, Spain
- Translational Biophysics, Hospital Doce de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Javier Redondo-Muñoz
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain.
| |
Collapse
|
24
|
Kuiper EFE, Prophet SM, Schlieker C. Coordinating nucleoporin condensation and nuclear pore complex assembly. FEBS Lett 2023; 597:2534-2545. [PMID: 37620293 DOI: 10.1002/1873-3468.14725] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The nuclear pore complex (NPC) is among the most elaborate protein complexes in eukaryotes. While ribosomes and proteasomes are known to require dedicated assembly machinery, our understanding of NPC assembly is at a relatively early stage. Defects in NPC assembly or homeostasis are tied to movement disorders, including dystonia and amyotrophic lateral sclerosis (ALS), as well as aging, requiring a better understanding of these processes to enable therapeutic intervention. Here, we discuss recent progress in the understanding of NPC assembly and highlight how related defects in human disorders can shed light on NPC biogenesis. We propose that the condensation of phenylalanine-glycine repeat nucleoporins needs to be carefully controlled during NPC assembly to prevent aberrant condensation, aggregation, or amyloid formation.
Collapse
Affiliation(s)
- E F Elsiena Kuiper
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Sarah M Prophet
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Christian Schlieker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
25
|
Gunn AL, Yashchenko AI, Dubrulle J, Johnson J, Hatch EM. A high-content screen reveals new regulators of nuclear membrane stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542944. [PMID: 37398267 PMCID: PMC10312541 DOI: 10.1101/2023.05.30.542944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Nuclear membrane rupture is a physiological response to multiple in vivo processes, such as cell migration, that can cause extensive genome instability and upregulate invasive and inflammatory pathways. However, the underlying molecular mechanisms of rupture are unclear and few regulators have been identified. In this study, we developed a reporter that is size excluded from re-compartmentalization following nuclear rupture events. This allows for robust detection of factors influencing nuclear integrity in fixed cells. We combined this with an automated image analysis pipeline in a high-content siRNA screen to identify new proteins that both increase and decrease nuclear rupture frequency in cancer cells. Pathway analysis identified an enrichment of nuclear membrane and ER factors in our hits and we demonstrate that one of these, the protein phosphatase CTDNEP1, is required for nuclear stability. Further analysis of known rupture contributors, including a newly developed automated quantitative analysis of nuclear lamina gaps, strongly suggests that CTDNEP1 acts in a new pathway. Our findings provide new insights into the molecular mechanism of nuclear rupture and define a highly adaptable program for rupture analysis that removes a substantial barrier to new discoveries in the field.
Collapse
Affiliation(s)
- Amanda L. Gunn
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Artem I. Yashchenko
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Julien Dubrulle
- Cellular Imaging Shared Resource, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Jodiene Johnson
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Emily M. Hatch
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| |
Collapse
|
26
|
Brewer G. LAP1 squeezes out ahead. Nat Rev Cancer 2023; 23:114. [PMID: 36755089 DOI: 10.1038/s41568-023-00551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|