1
|
Yan X, Jia X, Luo Z, Ji S, Zhang MJ, Zhang H, Yu M, Orts J, Jiang K, Lin Z, Deng Z, Kong XD, Kobe B, Zhao YL, Mobli M, Qu X. An enzymatic dual-oxa Diels-Alder reaction constructs the oxygen-bridged tricyclic acetal unit of (-)-anthrabenzoxocinone. Nat Chem 2025:10.1038/s41557-025-01804-0. [PMID: 40263633 DOI: 10.1038/s41557-025-01804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
The hetero-Diels-Alder (HDA) reaction is a key method for synthesizing six-membered heterocyclic rings in natural products and bioactive compounds. Despite its importance in synthetic chemistry, naturally occurring enzymatic HDA reactions are rare and limited to a single heteroatom. Here we report Abx(-)F, a bifunctional vicinal oxygen chelate (VOC)-like protein that catalyses dehydration and dual-oxa Diels-Alder reactions to stereoselectively form the oxygen-bridged tricyclic acetal of (-)-anthrabenzoxocinone ((-)-ABX). Isotope assays and density functional theory calculations reveal a dehydration-coordinated, concerted HDA mechanism. The crystal structure of Abx(-)F and NMR complex structures of Abx(-)F with its substrate analogue and (-)-ABX define the reaction's structural basis. Mutational analysis identifies Asp17 as a general base that mediates dehydration, forming an o-quinone methide intermediate for stereoselective dual-oxa HDA. This work establishes the molecular and structural basis of a polyheteroatomic Diels-Alderase, paving the way for designing polyheteroatomic DA enzymatic tools.
Collapse
Affiliation(s)
- Xiaoli Yan
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Xinying Jia
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Zhenyao Luo
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Shunjia Ji
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Meng-Jie Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Mingjia Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Julien Orts
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Kai Jiang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu-Dong Kong
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Mehdi Mobli
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia.
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Klein OJ, Albert-Flores A, Wheeler MG, Rojales K, Bond AD, Boss SR, Barker PD. Accessing iridium Cp* as a cofactor for artificial metalloenzymes. J Inorg Biochem 2025; 265:112820. [PMID: 39799878 DOI: 10.1016/j.jinorgbio.2024.112820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
By introducing new-to-nature transformations, artificial metalloenzymes hold great potential for expanding the biosynthetic toolbox. The chemistry of an active cofactor in these enzymes is highly dependent on how the holoprotein is assembled, potentially limiting the choice of organometallic complexes amenable to incorporation and ability of the protein structure to influence the metal centre. We have previously reported a method utilising ligand exchange as a means to introduce ruthenium-arene fragments into a four-helix bundle protein. In this work we expand the scope of this method to incorporate an iridium pentamethylcyclopentadienyl fragment into a four-helix bundle, yielding an artificial metalloenzyme with improved transfer hydrogenation properties, highlighting that understanding ligand exchange reactions is important for speciation control.
Collapse
Affiliation(s)
- Oskar James Klein
- Yusuf Hamied Department of Chemistry, Lensfield Rd, Cambridge CB2 1EW, UK
| | | | - Matthew G Wheeler
- Yusuf Hamied Department of Chemistry, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Katherine Rojales
- Yusuf Hamied Department of Chemistry, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Andrew D Bond
- Yusuf Hamied Department of Chemistry, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Sally R Boss
- Yusuf Hamied Department of Chemistry, Lensfield Rd, Cambridge CB2 1EW, UK.
| | - Paul D Barker
- Yusuf Hamied Department of Chemistry, Lensfield Rd, Cambridge CB2 1EW, UK
| |
Collapse
|
3
|
Yin Z, Wei W, Song W, Wen J, Hu G, Li X, Gao C, Liu J, Wu J. Reshaping Interface Interactions of P. litoralis Acyltransferase for Efficient Chemoenzymatic Epoxidation in Aqueous Phase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7364-7375. [PMID: 40099799 DOI: 10.1021/acs.jafc.4c12046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Epoxides, a class of ethers with a three-membered ring structure, are widely used in the textile, pharmaceutical, and packaging industries. Chemoenzymatic epoxidation presents a promising method for synthesizing epoxides. However, its epoxidation efficiency is hindered by low chemoselective perhydrolysis, which is caused by the hydrolysis side reaction in the aqueous phase. In this study, a chemoenzymatic epoxidation process in the aqueous phase was developed by utilizing an acyltransferase from P. litoralis (PlAcT) for its chemoselective perhydrolysis. Crystal structure analysis, molecular dynamics simulations, and quantum mechanics calculations, along with site-specific mutagenesis, revealed that the selectivity of perhydrolysis is due to a lower energy barrier in the acyl transfer step compared to that in hydrolysis. Furthermore, the mutant PlAcTM3-2 exhibited a 7.6-fold improvement in solvent stability and a 1.3-fold increase in perhydrolysis activity compared to the wild type, achieved by reshaping interface interactions. As a result, the engineered strain Y07, harboring PlAcTM3-2, successfully synthesized compounds 3a-3n with conversions ranging from 11-99%, and the titers of compounds α-pinene oxide(3i), β-pinene oxide(3j), 3-carene oxide(3k), and limonene dioxide(3l-3) reached 55.8, 16.7, 75.2, and 21.4 g/L, respectively. These results demonstrate a sustainable method for chemoenzymatic epoxidation in the aqueous phase.
Collapse
Affiliation(s)
- Zihao Yin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
La Gatta S, Pecoraro VL. Recent advances in de novo designed metallopeptides as tailored enzyme mimics. Curr Opin Chem Biol 2025; 86:102586. [PMID: 40117715 DOI: 10.1016/j.cbpa.2025.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/25/2025] [Accepted: 02/22/2025] [Indexed: 03/23/2025]
Abstract
Advances in de novo design of metallopeptides have paved the way for customized metalloenzyme mimics with impressive catalytic capabilities. Over the last few years, incorporation of transition metals into simplified peptide scaffolds has allowed for catalytic efficiencies similar to or greater than those found in natural metalloenzymes. Artificial de novo peptide scaffolds highlight how precise modifications to metal coordination environments can improve scaffold stability and catalytic efficiency for a wide range of applications towards redox, non redox, synthetic, and energy conversion chemistry. These insights deepen our understanding of enzyme evolution and set a solid foundation for new directions in biocatalysis.
Collapse
Affiliation(s)
- Salvatore La Gatta
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Rasor BJ, Erb TJ. Cell-Free Systems to Mimic and Expand Metabolism. ACS Synth Biol 2025; 14:316-322. [PMID: 39878226 PMCID: PMC11852204 DOI: 10.1021/acssynbio.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Cell-free synthetic biology incorporates purified components and/or crude cell extracts to carry out metabolic and genetic programs. While protein synthesis has historically been the primary focus, more metabolism researchers are now turning toward cell-free systems either to prototype pathways for cellular implementation or to design new-to-nature reaction networks that incorporate environmentally relevant substrates or new energy sources. The ability to design, build, and test enzyme combinations in vitro has accelerated efforts to understand metabolic bottlenecks and engineer high-yielding pathways. However, only a small fraction of metabolic possibilities has been explored in cell-free systems, and extracts from model organisms remain the most common starting points. Expanding the scope of cell-free metabolism to include extracts from new organisms, alternative metabolic pathways, and non-natural chemistries will enhance our ability to understand and engineer bio-based chemical conversions.
Collapse
Affiliation(s)
- Blake J. Rasor
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| |
Collapse
|
6
|
Lüddecke I, Jarvis AG. Expanding the scope of copper artificial metalloenzymes: A potential fluorinase? J Inorg Biochem 2025; 263:112777. [PMID: 39615315 DOI: 10.1016/j.jinorgbio.2024.112777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024]
Abstract
Biocatalysts for fluorination are rare, and thus of great interest for artificial enzyme design. Biohybrid catalysts including Cu-based DNAzymes and dinucleotide catalysts can catalyse enantioselective electrophilic fluorination of β-ketoesters. Here we report the investigation of Cu-based artificial metalloenzymes as catalysts for electrophilic fluorination reactions. A library of artificial copper proteins was prepared by bioconjugation of bidentate and tridentate nitrogen ligands to cysteine variants of the Sterol Carrier Protein 2 L (SCP-2 L) and subsequent addition of Cu(II) salts. The resulting copper proteins were screened for activity for the fluorination of β-ketoesters using Selectfluor. Under aqueous acidic conditions it was observed that the designed catalysts did not outcompete the uncatalysed background reaction. This work highlights that careful consideration of substrate reactivity and background reactions is needed when considering potential reactions for artificial metalloenzyme catalysis.
Collapse
Affiliation(s)
- Isabeau Lüddecke
- EaStCHEM School of Chemistry, Joseph Black Building, Kings Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Amanda G Jarvis
- EaStCHEM School of Chemistry, Joseph Black Building, Kings Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
7
|
Marchi-Delapierre C, Cavazza C, Ménage S. EcNikA, a versatile tool in the field of artificial metalloenzymes. J Inorg Biochem 2025; 262:112740. [PMID: 39426332 DOI: 10.1016/j.jinorgbio.2024.112740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/14/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024]
Abstract
This review describes the multiple advantages of using of EcNikA, a nickel transport protein, in the design of artificial metalloenzymes as alternative catalysts for synthetic biology. The rationale behind the strategy of artificial enzyme design is discussed, with particular emphasis on de novo active site reconstitution. The impact of the protein scaffold on the artificial active site and thus the final catalytic properties is detailed, highlighting the considerable aptitude of hybrid systems to catalyze selective reactions, from alkene to thioether transformations (epoxidation, hydroxychlorination, sulfoxidation). The different catalytic approaches - from in vitro to in cristallo - are compared, revealing the considerable advantages of protein crystals in terms of stabilization and acceleration of reaction kinetics. The versatility of proteins, based on metal and ligand diversity and medium/physical conditions, are thus illustrated for oxidation catalysis.
Collapse
Affiliation(s)
| | - Christine Cavazza
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, CBM, F-38000 Grenoble, France
| | - Stéphane Ménage
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, CBM, F-38000 Grenoble, France.
| |
Collapse
|
8
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
9
|
Mou SB, Chen KY, Kunthic T, Xiang Z. Design and Evolution of an Artificial Friedel-Crafts Alkylation Enzyme Featuring an Organoboronic Acid Residue. J Am Chem Soc 2024; 146:26676-26686. [PMID: 39190546 DOI: 10.1021/jacs.4c03795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Creating artificial enzymes by the genetic incorporation of noncanonical amino acids with catalytic side chains would expand the enzyme chemistries that have not been discovered in nature. Here, we report the design of an artificial enzyme that uses p-boronophenylalanine as the catalytic residue. The artificial enzyme catalyzes Michael-type Friedel-Crafts alkylation through covalent activation. The designer enzyme was further engineered to afford high yields with excellent enantioselectivities. We next developed a practical method for preparative-scale reactions by whole-cell catalysis. This enzymatic C-C bond formation reaction was combined with palladium-catalyzed dearomative arylation to achieve the efficient synthesis of spiroindolenine compounds.
Collapse
Affiliation(s)
- Shu-Bin Mou
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Kai-Yue Chen
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Thittaya Kunthic
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518132, P. R. China
| |
Collapse
|
10
|
Klein A, Leiss-Maier F, Mühlhofer R, Boesen B, Mustafa G, Kugler H, Zeymer C. A De Novo Metalloenzyme for Cerium Photoredox Catalysis. J Am Chem Soc 2024; 146:25976-25985. [PMID: 39115259 PMCID: PMC11440500 DOI: 10.1021/jacs.4c04618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/26/2024]
Abstract
Cerium photoredox catalysis has emerged as a powerful strategy to activate molecules under mild conditions. Radical intermediates are formed using visible light and simple complexes of the earth-abundant lanthanide. Here, we report an artificial photoenzyme enabling this chemistry inside a protein. We utilize a de novo designed protein scaffold that tightly binds lanthanide ions in its central cavity. Upon visible-light irradiation, the cerium-dependent enzyme catalyzes the radical C-C bond cleavage of 1,2-diols in aqueous solution. Protein engineering led to variants with improved photostability and metal binding behavior. The photoenzyme cleaves a range of aromatic and aliphatic substrates, including lignin surrogates. Surface display of the protein scaffold on Escherichia coli facilitates whole-cell photobiocatalysis. Furthermore, we show that also natural lanthanide-binding proteins are suitable for this approach. Our study thus demonstrates a new-to-nature enzymatic photoredox activity with broad catalytic potential.
Collapse
Affiliation(s)
- Andreas
Sebastian Klein
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Florian Leiss-Maier
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Rahel Mühlhofer
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Benedikt Boesen
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Ghulam Mustafa
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Hannah Kugler
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Cathleen Zeymer
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
- TUM
Catalysis Research Center, Technical University
of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
11
|
Hilvert D. Spiers Memorial Lecture: Engineering biocatalysts. Faraday Discuss 2024; 252:9-28. [PMID: 39046423 PMCID: PMC11389855 DOI: 10.1039/d4fd00139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Enzymes are being engineered to catalyze chemical reactions for many practical applications in chemistry and biotechnology. The approaches used are surveyed in this short review, emphasizing methods for accessing reactivities not expressed by native protein scaffolds. The successful generation of completely de novo enzymes that rival the rates and selectivities of their natural counterparts highlights the potential role that designer enzymes may play in the coming years in research, industry, and medicine. Some challenges that need to be addressed to realize this ambitious dream are considered together with possible solutions.
Collapse
Affiliation(s)
- Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
12
|
Bornscheuer UT. Concluding remarks: biocatalysis. Faraday Discuss 2024; 252:507-515. [PMID: 38958033 DOI: 10.1039/d4fd00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Biocatalysis is a rapidly evolving field with increasing impact in organic synthesis, chemical manufacturing and medicine. The Faraday Discussion reflected the current state of biocatalysis, covering the design of de novo enzymatic activities, but especially methods for the improvement of enzymes targeting a broad range of applications (i.e., hydroxylations by P450 monooxygenases, enzymatic deprotection of organic compounds under mild conditions, synthesis of chiral intermediates, plastic degradation, silicone polymer synthesis, and peptide synthesis). Central themes have been how to improve an enzyme using methods of rational design and directed evolution, informed by computer modelling and machine learning, and the incorporation of new catalytic functionalities to create hybrid and artificial enzymes.
Collapse
Affiliation(s)
- Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany.
| |
Collapse
|
13
|
Zheng Y, Sakai K, Watanabe K, Takagi H, Sato-Shiozaki Y, Misumi Y, Miyanoiri Y, Kurisu G, Nogawa T, Takita R, Takahashi S. Iron-sulphur protein catalysed [4+2] cycloadditions in natural product biosynthesis. Nat Commun 2024; 15:5779. [PMID: 38987535 PMCID: PMC11236979 DOI: 10.1038/s41467-024-50142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
To the best of our knowledge, enzymes that catalyse intramolecular Diels-Alder ([4+2] cycloaddition) reactions are frequently reported in natural product biosynthesis; however, no native enzymes utilising Lewis acid catalysis have been reported. Verticilactam is a representative member of polycyclic macrolactams, presumably produced by spontaneous cycloaddition. We report that the intramolecular [4+2] cycloadditions can be significantly accelerated by ferredoxins (Fds), a class of small iron-sulphur (Fe-S) proteins. Through iron atom substitution by Lewis acidic gallium (Ga) iron and computational calculations, we confirm that the ubiquitous Fe-S cluster efficiently functions as Lewis acid to accelerate the tandem [4+2] cycloaddition and Michael addition reactions by lowering free energy barriers. Our work highlights Nature's ingenious strategy to generate complex molecule structures using the ubiquitous Fe-S protein. Furthermore, our study sheds light on the future design of Fd as a versatile Lewis acid catalyst for [4+2] cycloaddition reactions.
Collapse
Affiliation(s)
- Yu Zheng
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Katsuyuki Sakai
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Kohei Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroshi Takagi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Yumi Sato-Shiozaki
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Yuko Misumi
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Toshihiko Nogawa
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.
| |
Collapse
|
14
|
Wang L, Wu Y, Hu J, Yin D, Wei W, Wen J, Chen X, Gao C, Zhou Y, Liu J, Hu G, Li X, Wu J, Zhou Z, Liu L, Song W. Unlocking the function promiscuity of old yellow enzyme to catalyze asymmetric Morita-Baylis-Hillman reaction. Nat Commun 2024; 15:5737. [PMID: 38982157 PMCID: PMC11233575 DOI: 10.1038/s41467-024-50141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
Exploring the promiscuity of native enzymes presents a promising strategy for expanding their synthetic applications, particularly for catalyzing challenging reactions in non-native contexts. In this study, we explore the promiscuous potential of old yellow enzymes (OYEs) to facilitate the Morita-Baylis-Hillman reaction (MBH reaction), leveraging substrate similarities between MBH reaction and reduction reaction. Using mass spectrometry and spectroscopic techniques, we confirm promiscuity of GkOYE in both MBH and reduction reactions. By blocking H- and H+ transfer pathways, we engineer GkOYE.8, which loses its reduction ability but enhances its MBH activity. The structural basis of MBH reaction catalyzed by GkOYE.8 is obtained through mutation studies and kinetic simulations. Furthermore, enantiocomplementary mutants GkOYE.11 and GkOYE.13 are obtained by directed evolution, exhibiting the ability to accept various aromatic aldehydes and alkenes as substrates. This study demonstrates the potential of leveraging substrate similarities to unlock enzyme functionalities, enabling the catalysis of new-to-nature reactions.
Collapse
Affiliation(s)
- Lei Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yaoyun Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jun Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dejing Yin
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yiwen Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomin Li
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhi Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
15
|
Saharkhiz S, Mostafavi M, Birashk A, Karimian S, Khalilollah S, Jaferian S, Yazdani Y, Alipourfard I, Huh YS, Farani MR, Akhavan-Sigari R. The State-of-the-Art Overview to Application of Deep Learning in Accurate Protein Design and Structure Prediction. Top Curr Chem (Cham) 2024; 382:23. [PMID: 38965117 PMCID: PMC11224075 DOI: 10.1007/s41061-024-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
In recent years, there has been a notable increase in the scientific community's interest in rational protein design. The prospect of designing an amino acid sequence that can reliably fold into a desired three-dimensional structure and exhibit the intended function is captivating. However, a major challenge in this endeavor lies in accurately predicting the resulting protein structure. The exponential growth of protein databases has fueled the advancement of the field, while newly developed algorithms have pushed the boundaries of what was previously achievable in structure prediction. In particular, using deep learning methods instead of brute force approaches has emerged as a faster and more accurate strategy. These deep-learning techniques leverage the vast amount of data available in protein databases to extract meaningful patterns and predict protein structures with improved precision. In this article, we explore the recent developments in the field of protein structure prediction. We delve into the newly developed methods that leverage deep learning approaches, highlighting their significance and potential for advancing our understanding of protein design.
Collapse
Affiliation(s)
- Saber Saharkhiz
- Division of Neuroscience, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Birashk
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Shiva Karimian
- Electrical and Computer Research Center, Sanandaj Azad University, Sanandaj, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sohrab Jaferian
- Goergen Institute for Data Science, University of Rochester, Rochester, NY, USA
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | | | | |
Collapse
|
16
|
Wardman JF, Withers SG. Carbohydrate-active enzyme (CAZyme) discovery and engineering via (Ultra)high-throughput screening. RSC Chem Biol 2024; 5:595-616. [PMID: 38966674 PMCID: PMC11221537 DOI: 10.1039/d4cb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
Carbohydrate-active enzymes (CAZymes) constitute a diverse set of enzymes that catalyze the assembly, degradation, and modification of carbohydrates. These enzymes have been fashioned into potent, selective catalysts by millennia of evolution, and yet are also highly adaptable and readily evolved in the laboratory. To identify and engineer CAZymes for different purposes, (ultra)high-throughput screening campaigns have been frequently utilized with great success. This review provides an overview of the different approaches taken in screening for CAZymes and how mechanistic understandings of CAZymes can enable new approaches to screening. Within, we also cover how cutting-edge techniques such as microfluidics, advances in computational approaches and synthetic biology, as well as novel assay designs are leading the field towards more informative and effective screening approaches.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
17
|
Zhou L, Tao C, Shen X, Sun X, Wang J, Yuan Q. Unlocking the potential of enzyme engineering via rational computational design strategies. Biotechnol Adv 2024; 73:108376. [PMID: 38740355 DOI: 10.1016/j.biotechadv.2024.108376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Enzymes play a pivotal role in various industries by enabling efficient, eco-friendly, and sustainable chemical processes. However, the low turnover rates and poor substrate selectivity of enzymes limit their large-scale applications. Rational computational enzyme design, facilitated by computational algorithms, offers a more targeted and less labor-intensive approach. There has been notable advancement in employing rational computational protein engineering strategies to overcome these issues, it has not been comprehensively reviewed so far. This article reviews recent developments in rational computational enzyme design, categorizing them into three types: structure-based, sequence-based, and data-driven machine learning computational design. Case studies are presented to demonstrate successful enhancements in catalytic activity, stability, and substrate selectivity. Lastly, the article provides a thorough analysis of these approaches, highlights existing challenges and potential solutions, and offers insights into future development directions.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chunmeng Tao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
18
|
Schnettler JD, Wang MS, Gantz M, Bunzel HA, Karas C, Hollfelder F, Hecht MH. Selection of a promiscuous minimalist cAMP phosphodiesterase from a library of de novo designed proteins. Nat Chem 2024; 16:1200-1208. [PMID: 38702405 PMCID: PMC11230910 DOI: 10.1038/s41557-024-01490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/27/2024] [Indexed: 05/06/2024]
Abstract
The ability of unevolved amino acid sequences to become biological catalysts was key to the emergence of life on Earth. However, billions of years of evolution separate complex modern enzymes from their simpler early ancestors. To probe how unevolved sequences can develop new functions, we use ultrahigh-throughput droplet microfluidics to screen for phosphoesterase activity amidst a library of more than one million sequences based on a de novo designed 4-helix bundle. Characterization of hits revealed that acquisition of function involved a large jump in sequence space enriching for truncations that removed >40% of the protein chain. Biophysical characterization of a catalytically active truncated protein revealed that it dimerizes into an α-helical structure, with the gain of function accompanied by increased structural dynamics. The identified phosphodiesterase is a manganese-dependent metalloenzyme that hydrolyses a range of phosphodiesters. It is most active towards cyclic AMP, with a rate acceleration of ~109 and a catalytic proficiency of >1014 M-1, comparable to larger enzymes shaped by billions of years of evolution.
Collapse
Affiliation(s)
| | - Michael S Wang
- Department of Chemistry, Princeton University, Princeton, USA
| | - Maximilian Gantz
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - H Adrian Bunzel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christina Karas
- Department of Molecular Biology, Princeton University, Princeton, USA
| | | | - Michael H Hecht
- Department of Chemistry, Princeton University, Princeton, USA.
| |
Collapse
|
19
|
Jain S, Ospina F, Hammer SC. A New Age of Biocatalysis Enabled by Generic Activation Modes. JACS AU 2024; 4:2068-2080. [PMID: 38938808 PMCID: PMC11200230 DOI: 10.1021/jacsau.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Biocatalysis is currently undergoing a profound transformation. The field moves from relying on nature's chemical logic to a discipline that exploits generic activation modes, allowing for novel biocatalytic reactions and, in many instances, entirely new chemistry. Generic activation modes enable a wide range of reaction types and played a pivotal role in advancing the fields of organo- and photocatalysis. This perspective aims to summarize the principal activation modes harnessed in enzymes to develop new biocatalysts. Although extensively researched in the past, the highlighted activation modes, when applied within enzyme active sites, facilitate chemical transformations that have largely eluded efficient and selective catalysis. This advance is attributed to multiple tunable interactions in the substrate binding pocket that precisely control competing reaction pathways and transition states. We will highlight cases of new synthetic methodologies achieved by engineered enzymes and will provide insights into potential future developments in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | - Stephan C. Hammer
- Research Group for Organic Chemistry
and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
20
|
Syrén PO. Ancestral terpene cyclases: From fundamental science to applications in biosynthesis. Methods Enzymol 2024; 699:311-341. [PMID: 38942509 DOI: 10.1016/bs.mie.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpenes constitute one of the largest family of natural products with potent applications as renewable platform chemicals and medicines. The low activity, selectivity and stability displayed by terpene biosynthetic machineries can constitute an obstacle towards achieving expedient biosynthesis of terpenoids in processes that adhere to the 12 principles of green chemistry. Accordingly, engineering of terpene synthase enzymes is a prerequisite for industrial biotechnology applications, but obstructed by their complex catalysis that depend on reactive carbocationic intermediates that are prone to undergo bifurcation mechanisms. Rational redesign of terpene synthases can be tedious and requires high-resolution structural information, which is not always available. Furthermore, it has proven difficult to link sequence space of terpene synthase enzymes to specific product profiles. Herein, the author shows how ancestral sequence reconstruction (ASR) can favorably be used as a protein engineering tool in the redesign of terpene synthases without the need of a structure, and without excessive screening. A detailed workflow of ASR is presented along with associated limitations, with a focus on applying this methodology on terpene synthases. From selected examples of both class I and II enzymes, the author advocates that ancestral terpene cyclases constitute valuable assets to shed light on terpene-synthase catalysis and in enabling accelerated biosynthesis.
Collapse
Affiliation(s)
- Per-Olof Syrén
- School of Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
21
|
Bell EL, Hutton AE, Burke AJ, O'Connell A, Barry A, O'Reilly E, Green AP. Strategies for designing biocatalysts with new functions. Chem Soc Rev 2024; 53:2851-2862. [PMID: 38353665 PMCID: PMC10946311 DOI: 10.1039/d3cs00972f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 03/19/2024]
Abstract
The engineering of natural enzymes has led to the availability of a broad range of biocatalysts that can be used for the sustainable manufacturing of a variety of chemicals and pharmaceuticals. However, for many important chemical transformations there are no known enzymes that can serve as starting templates for biocatalyst development. These limitations have fuelled efforts to build entirely new catalytic sites into proteins in order to generate enzymes with functions beyond those found in Nature. This bottom-up approach to enzyme development can also reveal new fundamental insights into the molecular origins of efficient protein catalysis. In this tutorial review, we will survey the different strategies that have been explored for designing new protein catalysts. These methods will be illustrated through key selected examples, which demonstrate how highly proficient and selective biocatalysts can be developed through experimental protein engineering and/or computational design. Given the rapid pace of development in the field, we are optimistic that designer enzymes will begin to play an increasingly prominent role as industrial biocatalysts in the coming years.
Collapse
Affiliation(s)
- Elizabeth L Bell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Amy E Hutton
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Ashleigh J Burke
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Adam O'Connell
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Amber Barry
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Elaine O'Reilly
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
22
|
Xu SY, Zhou L, Xu Y, Hong HY, Dai C, Wang YJ, Zheng YG. Recent advances in structure-based enzyme engineering for functional reconstruction. Biotechnol Bioeng 2023; 120:3427-3445. [PMID: 37638646 DOI: 10.1002/bit.28540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Structural information can help engineer enzymes. Usually, specific amino acids in particular regions are targeted for functional reconstruction to enhance the catalytic performance, including activity, stereoselectivity, and thermostability. Appropriate selection of target sites is the key to structure-based design, which requires elucidation of the structure-function relationships. Here, we summarize the mutations of residues in different specific regions, including active center, access tunnels, and flexible loops, on fine-tuning the catalytic performance of enzymes, and discuss the effects of altering the local structural environment on the functions. In addition, we keep up with the recent progress of structure-based approaches for enzyme engineering, aiming to provide some guidance on how to take advantage of the structural information.
Collapse
Affiliation(s)
- Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Han-Yue Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Chen Dai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
23
|
Wohlgemuth R. Synthesis of Metabolites and Metabolite-like Compounds Using Biocatalytic Systems. Metabolites 2023; 13:1097. [PMID: 37887422 PMCID: PMC10608848 DOI: 10.3390/metabo13101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland;
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
24
|
Hutchins GH, Noble CEM, Bunzel HA, Williams C, Dubiel P, Yadav SKN, Molinaro PM, Barringer R, Blackburn H, Hardy BJ, Parnell AE, Landau C, Race PR, Oliver TAA, Koder RL, Crump MP, Schaffitzel C, Oliveira ASF, Mulholland AJ, Anderson JLR. An expandable, modular de novo protein platform for precision redox engineering. Proc Natl Acad Sci U S A 2023; 120:e2306046120. [PMID: 37487099 PMCID: PMC10400981 DOI: 10.1073/pnas.2306046120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
The electron-conducting circuitry of life represents an as-yet untapped resource of exquisite, nanoscale biomolecular engineering. Here, we report the characterization and structure of a de novo diheme "maquette" protein, 4D2, which we subsequently use to create an expanded, modular platform for heme protein design. A well-folded monoheme variant was created by computational redesign, which was then utilized for the experimental validation of continuum electrostatic redox potential calculations. This demonstrates how fundamental biophysical properties can be predicted and fine-tuned. 4D2 was then extended into a tetraheme helical bundle, representing a 7 nm molecular wire. Despite a molecular weight of only 24 kDa, electron cryomicroscopy illustrated a remarkable level of detail, indicating the positioning of the secondary structure and the heme cofactors. This robust, expressible, highly thermostable and readily designable modular platform presents a valuable resource for redox protein design and the future construction of artificial electron-conducting circuitry.
Collapse
Affiliation(s)
- George H. Hutchins
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Claire E. M. Noble
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - H. Adrian Bunzel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | | | - Paulina Dubiel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Sathish K. N. Yadav
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Paul M. Molinaro
- Department of Physics, The City College of New York, New York, NY10031
- Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of The City University of New York, New York, NY10016
| | - Rob Barringer
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Hector Blackburn
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Benjamin J. Hardy
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Alice E. Parnell
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Charles Landau
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Paul R. Race
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | | | - Ronald L. Koder
- Department of Physics, The City College of New York, New York, NY10031
- Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of The City University of New York, New York, NY10016
| | - Matthew P. Crump
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - A. Sofia F. Oliveira
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - Adrian J. Mulholland
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - J. L. Ross Anderson
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| |
Collapse
|
25
|
Hadjikyprianou E, Petrides S, Kourtellaris A, Tasiopoulos AJ, Georgiades SN. Catalysis of a Diels-Alder Reaction between Azachalcones and Cyclopentadiene by a Recyclable Copper(II)-PEIP Metal-Organic Framework. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5298. [PMID: 37570002 PMCID: PMC10419979 DOI: 10.3390/ma16155298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted considerable interest as emerging heterogeneous catalysts for organic transformations of synthetic utility. Herein, a Lewis-acidic MOF, {[Cu3(PEIP)2(5-NH2-mBDC)(DMF)]·7DMF}∞, denoted as Cu(ΙΙ)-PEIP, has been synthesized via a one-pot process and deployed as an efficient heterogeneous catalyst for a Diels-Alder cycloaddition. Specifically, the [4 + 2] cycloaddition of 13 substituted azachalcone dienophiles with cyclopentadiene has been investigated. MOF-catalyzed reaction conditions were optimized, leading to the selection of water as the solvent, in the presence of 10% mol sodium dodecyl sulfate (SDS) to address substrate solubility. The Cu(II)-PEIP catalyst showed excellent activity under these green and mild conditions, exhibiting comparable or, in some cases, superior efficiency to a homogeneous catalyst often employed in Diels-Alder reactions, namely, Cu(OTf)2. The nature of the azachalcone substituent played a significant role in the reactivity of the dienophiles, with electron-withdrawing (EW) substituents enhancing conversion and electron-donating (ED) ones exhibiting the opposite effect. Coordinating substituents appeared to enhance the endo selectivity. Importantly, the Cu(II)-PEIP catalyst can be readily isolated from the reaction mixture and recycled up to four times without any significant reduction in conversion or selectivity.
Collapse
Affiliation(s)
| | | | | | | | - Savvas N. Georgiades
- Department of Chemistry, University of Cyprus, 1 Panepistimiou Avenue, Aglandjia, 2109 Nicosia, Cyprus
| |
Collapse
|
26
|
Chino M, Di Costanzo LF, Leone L, La Gatta S, Famulari A, Chiesa M, Lombardi A, Pavone V. Designed Rubredoxin miniature in a fully artificial electron chain triggered by visible light. Nat Commun 2023; 14:2368. [PMID: 37185349 PMCID: PMC10130062 DOI: 10.1038/s41467-023-37941-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Designing metal sites into de novo proteins has significantly improved, recently. However, identifying the minimal coordination spheres, able to encompass the necessary information for metal binding and activity, still represents a great challenge, today. Here, we test our understanding with a benchmark, nevertheless difficult, case. We assemble into a miniature 28-residue protein, the quintessential elements required to fold properly around a FeCys4 redox center, and to function efficiently in electron-transfer. This study addresses a challenge in de novo protein design, as it reports the crystal structure of a designed tetra-thiolate metal-binding protein in sub-Å agreement with the intended design. This allows us to well correlate structure to spectroscopic and electrochemical properties. Given its high reduction potential compared to natural and designed FeCys4-containing proteins, we exploit it as terminal electron acceptor of a fully artificial chain triggered by visible light.
Collapse
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Luigi Franklin Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Antonino Famulari
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy
- Department of Condensed Matter Physics, University of Zaragoza, Calle Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Mario Chiesa
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy.
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy.
| |
Collapse
|
27
|
Hanreich S, Bonandi E, Drienovská I. Design of Artificial Enzymes: Insights into Protein Scaffolds. Chembiochem 2023; 24:e202200566. [PMID: 36418221 DOI: 10.1002/cbic.202200566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The design of artificial enzymes has emerged as a promising tool for the generation of potent biocatalysts able to promote new-to-nature reactions with improved catalytic performances, providing a powerful platform for wide-ranging applications and a better understanding of protein functions and structures. The selection of an appropriate protein scaffold plays a key role in the design process. This review aims to give a general overview of the most common protein scaffolds that can be exploited for the generation of artificial enzymes. Several examples are discussed and categorized according to the strategy used for the design of the artificial biocatalyst, namely the functionalization of natural enzymes, the creation of a new catalytic site in a protein scaffold bearing a wide hydrophobic pocket and de novo protein design. The review is concluded by a comparison of these different methods and by our perspective on the topic.
Collapse
Affiliation(s)
- Stefanie Hanreich
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Elisa Bonandi
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Ivana Drienovská
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| |
Collapse
|
28
|
Kato S, Onoda A, Schwaneberg U, Hayashi T. Evolutionary Engineering of a Cp*Rh(III) Complex-Linked Artificial Metalloenzyme with a Chimeric β-Barrel Protein Scaffold. J Am Chem Soc 2023; 145. [PMID: 36892401 PMCID: PMC10119979 DOI: 10.1021/jacs.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 03/10/2023]
Abstract
Evolutionary engineering of our previously reported Cp*Rh(III)-linked artificial metalloenzyme was performed based on a DNA recombination strategy to improve its catalytic activity toward C(sp2)-H bond functionalization. Improved scaffold design was achieved with α-helical cap domains of fatty acid binding protein (FABP) embedded within the β-barrel structure of nitrobindin (NB) as a chimeric protein scaffold for the artificial metalloenzyme. After optimization of the amino acid sequence by directed evolution methodology, an engineered variant, designated NBHLH1(Y119A/G149P) with enhanced performance and enhanced stability was obtained. Additional rounds of metalloenzyme evolution provided a Cp*Rh(III)-linked NBHLH1(Y119A/G149P) variant with a >35-fold increase in catalytic efficiency (kcat/KM) for cycloaddition of oxime and alkyne. Kinetic studies and MD simulations revealed that aromatic amino acid residues in the confined active-site form a hydrophobic core which binds to aromatic substrates adjacent to the Cp*Rh(III) complex. The metalloenzyme engineering process based on this DNA recombination strategy will serve as a powerful method for extensive optimization of the active-sites of artificial metalloenzymes.
Collapse
Affiliation(s)
- Shunsuke Kato
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Akira Onoda
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Ulrich Schwaneberg
- Institute
of Biotechnology, RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany
| | - Takashi Hayashi
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
29
|
Wang P, Zhang J, Zhang S, Lu D, Zhu Y. Using High-Throughput Molecular Dynamics Simulation to Enhance the Computational Design of Kemp Elimination Enzymes. J Chem Inf Model 2023; 63:1323-1337. [PMID: 36782360 DOI: 10.1021/acs.jcim.3c00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Computational enzyme design has been successfully applied to identify new alternatives to natural enzymes for the biosynthesis of important compounds. However, the moderate catalytic activities of de novo designed enzymes indicate that the modeling accuracy of current computational enzyme design methods should be improved. Here, high-throughput molecular dynamics simulations were used to enhance computational enzyme design, thus allowing the identification of variants with higher activities in silico. Different time schemes of high-throughput molecular dynamics simulations were tested to identify the catalytic features of evolved Kemp eliminases. The 20 × 1 ns molecular dynamics simulation scheme was sufficiently accurate and computationally viable to screen the computationally designed massive variants of Kemp elimination enzymes. The developed hybrid computational strategy was used to redesign the most active Kemp eliminase, HG3.17, and five variants were generated and experimentally confirmed to afford higher catalytic efficiencies than that of HG3.17, with one double variant (D52Q/A53S) exhibiting a 55% increase. The hybrid computational enzyme design strategy is general and computationally economical, with which we anticipate the efficient creation of practical enzymes for industrial biocatalysis.
Collapse
Affiliation(s)
- Pengyu Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.,Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shengyu Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yushan Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
30
|
Yeh AHW, Norn C, Kipnis Y, Tischer D, Pellock SJ, Evans D, Ma P, Lee GR, Zhang JZ, Anishchenko I, Coventry B, Cao L, Dauparas J, Halabiya S, DeWitt M, Carter L, Houk KN, Baker D. De novo design of luciferases using deep learning. Nature 2023; 614:774-780. [PMID: 36813896 PMCID: PMC9946828 DOI: 10.1038/s41586-023-05696-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/03/2023] [Indexed: 02/24/2023]
Abstract
De novo enzyme design has sought to introduce active sites and substrate-binding pockets that are predicted to catalyse a reaction of interest into geometrically compatible native scaffolds1,2, but has been limited by a lack of suitable protein structures and the complexity of native protein sequence-structure relationships. Here we describe a deep-learning-based 'family-wide hallucination' approach that generates large numbers of idealized protein structures containing diverse pocket shapes and designed sequences that encode them. We use these scaffolds to design artificial luciferases that selectively catalyse the oxidative chemiluminescence of the synthetic luciferin substrates diphenylterazine3 and 2-deoxycoelenterazine. The designed active sites position an arginine guanidinium group adjacent to an anion that develops during the reaction in a binding pocket with high shape complementarity. For both luciferin substrates, we obtain designed luciferases with high selectivity; the most active of these is a small (13.9 kDa) and thermostable (with a melting temperature higher than 95 °C) enzyme that has a catalytic efficiency on diphenylterazine (kcat/Km = 106 M-1 s-1) comparable to that of native luciferases, but a much higher substrate specificity. The creation of highly active and specific biocatalysts from scratch with broad applications in biomedicine is a key milestone for computational enzyme design, and our approach should enable generation of a wide range of luciferases and other enzymes.
Collapse
Affiliation(s)
- Andy Hsien-Wei Yeh
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA.
| | - Christoffer Norn
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yakov Kipnis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Doug Tischer
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Samuel J Pellock
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Declan Evans
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pengchen Ma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, China
| | - Gyu Rie Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jason Z Zhang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ivan Anishchenko
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Longxing Cao
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Samer Halabiya
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Michelle DeWitt
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
31
|
Yang L, Zhang J, Wang M, Wang Y, Qi W, He Z. Probing the effect of microenvironment on the enzyme-like behavior of catalytic peptide assemblies. J Colloid Interface Sci 2023; 629:683-693. [PMID: 36183647 DOI: 10.1016/j.jcis.2022.09.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
As bridging species between short peptides and macromolecular proteins, peptide assemblies not only provide a supramolecular approach for the fabrication of controllable molecular machines with enzyme-like functions, but also a simplified model for understanding the catalytic mechanism of natural enzymes. In this study, we focused on probing the effect of microenvironment on the catalytic behavior of peptide assemblies. Upon simply replacing the X residue in Fmoc-FFXAH-CONH2, we realized the modulation of the microenvironment of the amyloid assemblies, which thus appeared esterase-like function with different catalytic abilities. The chemistry, structure and activity were analyzed to explore the principles that how the hydrophobic, charged, polar and chiral microenvironment deciding the catalytic behavior of the esterase mimic. In addition, we also presented the potential of the catalytic assemblies in the encapsulation, delivery and enzymatic metabolization of a mutual prodrug. This work sheds new insights for understanding the structure-function relationship of catalytic peptide assemblies and natural enzymes, and also provides a new avenue for the designing of artificial enzymes with better functions.
Collapse
Affiliation(s)
- Lijun Yang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jiaxing Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; School of Life Sciences. Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, PR China.
| | - Yutong Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, PR China.
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| |
Collapse
|
32
|
Yang X, Wu W, Chen X, Wu F, Fan S, Yu P, Mao L. A versatile artificial metalloenzyme scaffold enabling direct bioelectrocatalysis in solution. SCIENCE ADVANCES 2022; 8:eabo3315. [PMID: 36322668 PMCID: PMC9629707 DOI: 10.1126/sciadv.abo3315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Artificial metalloenzymes (ArMs) are commonly designed with protein scaffolds containing buried coordination pockets to achieve substrate specificity and product selectivity for homogeneous reactions. However, their reactivities toward heterogeneous transformations are limited because interfacial electron transfers are hampered by the backbone shells. Here, we introduce bacterial small laccase (SLAC) as a new protein scaffold for constructing ArMs to directly catalyze electrochemical transformations. We use molecular dynamics simulation, x-ray crystallography, spectroscopy, and computation to illustrate the scaffold-directed assembly of an oxo-bridged dicobalt motif on protein surface. The resulting ArM in aqueous phase catalyzes electrochemical water oxidation without mediators or electrode modifications. Mechanistic investigation reveals the role of SLAC scaffold in defining the four-electron transfer pathway from water to oxygen. Furthermore, we demonstrate that SLAC-based ArMs implemented with Ni2+, Mn2+, Ru3+, Pd2+, or Ir3+ also enable direct bioelectrocatalysis of water electrolysis. Our study provides a versatile and generalizable route to complement heterogeneous repertoire of ArMs for expanded applications.
Collapse
Affiliation(s)
- Xiaoti Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Wu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiling Chen
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilong Fan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
33
|
Hirschi S, Ward TR, Meier WP, Müller DJ, Fotiadis D. Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chem Rev 2022; 122:16294-16328. [PMID: 36179355 DOI: 10.1021/acs.chemrev.2c00339] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bottom-up assembly of biological and chemical components opens exciting opportunities to engineer artificial vesicular systems for applications with previously unmet requirements. The modular combination of scaffolds and functional building blocks enables the engineering of complex systems with biomimetic or new-to-nature functionalities. Inspired by the compartmentalized organization of cells and organelles, lipid or polymer vesicles are widely used as model membrane systems to investigate the translocation of solutes and the transduction of signals by membrane proteins. The bottom-up assembly and functionalization of such artificial compartments enables full control over their composition and can thus provide specifically optimized environments for synthetic biological processes. This review aims to inspire future endeavors by providing a diverse toolbox of molecular modules, engineering methodologies, and different approaches to assemble artificial vesicular systems. Important technical and practical aspects are addressed and selected applications are presented, highlighting particular achievements and limitations of the bottom-up approach. Complementing the cutting-edge technological achievements, fundamental aspects are also discussed to cater to the inherently diverse background of the target audience, which results from the interdisciplinary nature of synthetic biology. The engineering of proteins as functional modules and the use of lipids and block copolymers as scaffold modules for the assembly of functionalized vesicular systems are explored in detail. Particular emphasis is placed on ensuring the controlled assembly of these components into increasingly complex vesicular systems. Finally, all descriptions are presented in the greater context of engineering valuable synthetic biological systems for applications in biocatalysis, biosensing, bioremediation, or targeted drug delivery.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| |
Collapse
|
34
|
Total Syntheses of Chloropupukeananin and Its Related Natural Products. ORGANICS 2022. [DOI: 10.3390/org3030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chloropupukeananin is a natural product that inhibits HIV-1 replication and has antitumor activity. Its structure consists of a chlorinated tricyclo[4.3.1.03,7]decane core skeleton with an array of highly oxidized multifunctional groups. In the biosynthesis of chloropupukeananin, (+)-iso-A82775C and (−)-maldoxin are employed as biosynthetic precursors for the intermolecular Diels–Alder and carbonyl–ene reactions, followed by the migration of the p-orcellinate group. Chloropupukeanolides and chloropestolides are intermediates and isomers in biosynthesis; their unique chemical structures and biosynthetic pathways have attracted significant attention from synthetic chemists. In this review, I present the synthetic studies on chloropupukeananin and its related compounds that have been conducted thus far.
Collapse
|
35
|
Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem Rev 2022; 122:12046-12109. [PMID: 35763791 PMCID: PMC10735231 DOI: 10.1021/acs.chemrev.1c01025] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | | - Winston C. Pitts
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | |
Collapse
|
36
|
Chatterjee A, Ghosh S, Ghosh C, Das D. Fluorescent Microswimmers Based on Cross-β Amyloid Nanotubes and Divergent Cascade Networks. Angew Chem Int Ed Engl 2022; 61:e202201547. [PMID: 35578748 DOI: 10.1002/anie.202201547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/21/2022]
Abstract
Shaped through millions of years of evolution, the spatial localization of multiple enzymes in living cells employs extensive cascade reactions to enable highly coordinated multimodal functions. Herein, by utilizing a complex divergent cascade, we exploit the catalytic potential as well as templating abilities of streamlined cross-β amyloid nanotubes to yield two orthogonal roles simultaneously. The short peptide based paracrystalline nanotube surfaces demonstrated the generation of fluorescence signals within entangled networks loaded with alcohol dehydrogenase (ADH). The nanotubular morphologies were further used to generate cascade-driven microscopic motility through surface entrapment of sarcosine oxidase (SOX) and catalase (Cat). Moreover, a divergent cascade network was initiated by upstream catalysis of the substrate molecules through the surface mutation of catalytic moieties. Notably, the resultant downstream products led to the generation of motile fluorescent microswimmers by utilizing the two sets of orthogonal properties and, thus, mimicked the complex cascade-mediated functionalities of extant biology.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Souvik Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Chandranath Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
37
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
38
|
An artificial metalloprotein with metal-adaptive coordination sites and Ni-dependent quercetinase activity. J Inorg Biochem 2022; 235:111914. [PMID: 35841720 DOI: 10.1016/j.jinorgbio.2022.111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/20/2022] [Accepted: 07/03/2022] [Indexed: 11/23/2022]
Abstract
Engineering non-native metal active sites into proteins using canonical amino acids offers many advantages but is hampered by significant challenges. The TIM barrel protein, imidazole glycerol phosphate synthase from the hyperthermophilic organism Thermotoga maritima (tHisF), is well-suited for the construction of artificial metalloenzymes by this approach. To this end, we have generated a tHisF variant (tHisFEHH) with a Glu/His/His motif for metal ion coordination. Crystal structures of ZnII:tHisFEHH and NiII:tHisFEHH reveal that both metal ions bind to the engineered histidines. However, the two metals bind at distinct sites with different geometries, demonstrating the adaptability of tHisF. Only ZnII additionally ligates the Glu residue and adopts a tetrahedral geometry. The pseudo-octahedral NiII site comprises the two His and a native Ser residue. NiII:tHisFEHH catalyzes the oxidative cleavage of the flavanols quercetin and myricetin, providing an unprecedented example of an artificial metalloprotein with quercetinase activity.
Collapse
|
39
|
Abstract
The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs.
Collapse
|
40
|
Fluorescent Microswimmers Based on Cross‐β Amyloid Nanotubes and Divergent Cascade Networks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Li B, Guan X, Yang S, Zou Y, Liu W, Houk KN. Mechanism of the Stereoselective Catalysis of Diels-Alderase PyrE3 Involved in Pyrroindomycin Biosynthesis. J Am Chem Soc 2022; 144:5099-5107. [PMID: 35258962 DOI: 10.1021/jacs.2c00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The biosynthesis of pyrroindomycins A and B features a complexity-building [4 + 2] cycloaddition cascade, which generates the spirotetramate core under the catalytic effects of monofunctional Diels-Alderases PyrE3 and PyrI4. We recently showed that the main functions of PyrI4 include acid catalysis and induced-fit/conformational selection. We now present quantum mechanical and molecular dynamics studies implicating a different mode of action by PyrE3, which prearranges an anionic polyene substrate into a high-energy reactive conformation at which an inverse-electron-demand Diels-Alder reaction can occur with a low barrier. Stereoselection is realized by strong binding interactions at the endo stereochemical relationship and a local steric constraint on the endo-1,3-diene unit. These findings, illustrating distinct mechanisms for PyrE3 and PyrI4, highlight how nature has evolved multiple ways to catalyze Diels-Alder reactions.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Xingyi Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Song Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
42
|
Martins FL, Pordea A, Jäger CM. Computationally driven design of an artificial metalloenzyme using supramolecular anchoring strategies of iridium complexes to alcohol dehydrogenase. Faraday Discuss 2022; 234:315-335. [PMID: 35156975 DOI: 10.1039/d1fd00070e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artificial metalloenzymes (ArMs) confer non-biological reactivities to biomolecules, whilst taking advantage of the biomolecular architecture in terms of their selectivity and renewable origin. In particular, the design of ArMs by the supramolecular anchoring of metal catalysts to protein hosts provides flexible and easy to optimise systems. The use of cofactor dependent enzymes as hosts gives the advantage of both a (hydrophobic) binding site for the substrate and a cofactor pocket to accommodate the catalyst. Here, we present a computationally driven design approach of ArMs for the transfer hydrogenation reaction of cyclic imines, starting from the NADP+-dependent alcohol dehydrogenase from Thermoanaerobacter brockii (TbADH). We tested and developed a molecular docking workflow to define and optimize iridium catalysts with high affinity for the cofactor binding site of TbADH. The workflow uses high throughput docking of compound libraries to identify key structural motifs for high affinity, followed by higher accuracy docking methods on smaller, focused ligand and catalyst libraries. Iridium sulfonamide catalysts were selected and synthesised, containing either a triol, a furane, or a carboxylic acid to provide the interaction with the cofactor binding pocket. IC50 values of the resulting complexes during TbADH-catalysed alcohol oxidation were determined by competition experiments and were between 4.410 mM and 0.052 mM, demonstrating the affinity of the iridium complexes for either the substrate or the cofactor binding pocket of TbADH. The catalytic activity of the free iridium complexes in solution showed a maximal turnover number (TON) of 90 for the reduction of salsolidine by the triol-functionalised iridium catalyst, whilst in the presence of TbADH, only the iridium catalyst with the triol anchoring functionality showed activity for the same reaction (TON of 36 after 24 h). The observation that the artificial metalloenzymes developed here lacked stereoselectivity demonstrates the need for the further investigation and optimisation of the ArM. Our results serve as a starting point for the design of robust artificial metalloenzymes, exploiting supramolecular anchoring to natural NAD(P)H binding pockets.
Collapse
Affiliation(s)
- Floriane L Martins
- Sustainable Process Technologies, Faculty of Engineering, University of Nottingham, Nottingham, UK.
| | - Anca Pordea
- Sustainable Process Technologies, Faculty of Engineering, University of Nottingham, Nottingham, UK.
| | - Christof M Jäger
- Sustainable Process Technologies, Faculty of Engineering, University of Nottingham, Nottingham, UK.
| |
Collapse
|
43
|
García‐Marquina G, Núñez‐Franco R, Peccati F, Tang Y, Jiménez‐Osés G, López‐Gallego F. Deconvoluting the Directed Evolution Pathway of Engineered Acyltransferase LovD. ChemCatChem 2022. [DOI: 10.1002/cctc.202101349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guillermo García‐Marquina
- Center for cooperative Research in Biomaterials (CIC biomaGUNE) - Basque Research and Technology Alliance (BRTA) Heterogeneous Biocatalysis laboratory Paseo de Miramón, 182 20014 Donostia-San Sebastián Spain
- Universidad de La Rioja Departamento de Química Centro de Investigación en Síntesis Química Madre de Dios, 53 E-26006 Logroño Spain
| | - Reyes Núñez‐Franco
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) Computational Chemistry Laboratory Bizkaia Technology Park Building 800 48160 Derio Spain
| | - Francesca Peccati
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) Computational Chemistry Laboratory Bizkaia Technology Park Building 800 48160 Derio Spain
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering University of California 607 Charles E. Young Drive East 90095 Los Angeles, CA USA
| | - Gonzalo Jiménez‐Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) Computational Chemistry Laboratory Bizkaia Technology Park Building 800 48160 Derio Spain
- lkerbasque Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| | - Fernando López‐Gallego
- Center for cooperative Research in Biomaterials (CIC biomaGUNE) - Basque Research and Technology Alliance (BRTA) Heterogeneous Biocatalysis laboratory Paseo de Miramón, 182 20014 Donostia-San Sebastián Spain
- lkerbasque Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| |
Collapse
|
44
|
Abstract
Natural metalloproteins perform many functions - ranging from sensing to electron transfer and catalysis - in which the position and property of each ligand and metal, is dictated by protein structure. De novo protein design aims to define an amino acid sequence that encodes a specific structure and function, providing a critical test of the hypothetical inner workings of (metallo)proteins. To date, de novo metalloproteins have used simple, symmetric tertiary structures - uncomplicated by the large size and evolutionary marks of natural proteins - to interrogate structure-function hypotheses. In this Review, we discuss de novo design applications, such as proteins that induce complex, increasingly asymmetric ligand geometries to achieve function, as well as the use of more canonical ligand geometries to achieve stability. De novo design has been used to explore how proteins fine-tune redox potentials and catalyse both oxidative and hydrolytic reactions. With an increased understanding of structure-function relationships, functional proteins including O2-dependent oxidases, fast hydrolases, and multi-proton/multi-electron reductases, have been created. In addition, proteins can now be designed using xeno-biological metals or cofactors and principles from inorganic chemistry to derive new-to-nature functions. These results and the advances in computational protein design suggest a bright future for the de novo design of diverse, functional metalloproteins.
Collapse
Affiliation(s)
- Matthew J. Chalkley
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - Samuel I. Mann
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| |
Collapse
|
45
|
Enzymatic control of endo- and exo-stereoselective Diels–Alder reactions with broad substrate scope. Nat Catal 2021. [DOI: 10.1038/s41929-021-00717-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Stein A, Chen D, Igareta NV, Cotelle Y, Rebelein JG, Ward TR. A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase. ACS CENTRAL SCIENCE 2021; 7:1874-1884. [PMID: 34849402 PMCID: PMC8620556 DOI: 10.1021/acscentsci.1c00825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Artificial metalloenzymes result from anchoring a metal cofactor within a host protein. Such hybrid catalysts combine the selectivity and specificity of enzymes with the versatility of (abiotic) transition metals to catalyze new-to-nature reactions in an evolvable scaffold. With the aim of improving the localization of an arylsulfonamide-bearing iridium-pianostool catalyst within human carbonic anhydrase II (hCAII) for the enantioselective reduction of prochiral imines, we introduced a covalent linkage between the host and the guest. Herein, we show that a judiciously positioned cysteine residue reacts with a p-nitropicolinamide ligand bound to iridium to afford an additional sulfonamide covalent linkage. Three rounds of directed evolution, performed on the dually anchored cofactor, led to improved activity and selectivity for the enantioselective reduction of harmaline (up to 97% ee (R) and >350 turnovers on a preparative scale). To evaluate the substrate scope, the best hits of each generation were tested with eight substrates. X-ray analysis, carried out at various stages of the evolutionary trajectory, was used to scrutinize (i) the nature of the covalent linkage between the cofactor and the host as well as (ii) the remodeling of the substrate-binding pocket.
Collapse
Affiliation(s)
- Alina Stein
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| | - Dongping Chen
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| | - Nico V. Igareta
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| | - Yoann Cotelle
- Aix-Marseille
Université, CNRS, Centrale Marseille, iSm2, 13284 Marseille, France
| | - Johannes G. Rebelein
- Max
Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| |
Collapse
|
47
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
48
|
Ospina F, Schülke KH, Hammer SC. Biocatalytic Alkylation Chemistry: Building Molecular Complexity with High Selectivity. Chempluschem 2021; 87:e202100454. [PMID: 34821073 DOI: 10.1002/cplu.202100454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Indexed: 12/28/2022]
Abstract
Biocatalysis has traditionally been viewed as a field that primarily enables access to chiral centers. This includes the synthesis of chiral alcohols, amines and carbonyl compounds, often through functional group interconversion via hydrolytic or oxidation-reduction reactions. This limitation is partly being overcome by the design and evolution of new enzymes. Here, we provide an overview of a recently thriving research field that we summarize as biocatalytic alkylation chemistry. In the past 3-4 years, numerous new enzymes have been developed that catalyze sp3 C-C/N/O/S bond formations. These enzymes utilize different mechanisms to generate molecular complexity by coupling simple fragments with high activity and selectivity. In many cases, the engineered enzymes perform reactions that are difficult or impossible to achieve with current small-molecule catalysts such as organocatalysts and transition-metal complexes. This review further highlights that the design of new enzyme function is particularly successful when off-the-shelf synthetic reagents are utilized to access non-natural reactive intermediates. This underscores how biocatalysis is gradually moving to a field that build molecules through selective bond forming reactions.
Collapse
Affiliation(s)
- Felipe Ospina
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Kai H Schülke
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Stephan C Hammer
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
49
|
Suzuki T, Watanabe S, Ikeda W, Kobayashi S, Tanino K. Biomimetic Total Syntheses of (+)-Chloropupukeananin, (-)-Chloropupukeanolide D, and Chloropestolides. J Org Chem 2021; 86:15597-15605. [PMID: 34672579 DOI: 10.1021/acs.joc.1c02108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloropupukeananin, chloropupukeanolides, and chloropestolides are a family of structurally complex bioactive natural products that possess highly functionalized tricyclo[4.3.1.03,7]decane or bicyclo[2.2.2]octane skeletons. Biosynthesis of the chloropupukeananin family is triggered by the intermolecular heterodimeric Diels-Alder reaction between maldoxin and iso-A82775C; however, the enzymes involved have not yet been identified. We herein report the one-pot biomimetic synthesis of chloropupukeananin and chloropupukeanolide D. Moreover, the effect of the solvent on the intermolecular Diels-Alder reaction of siccayne and maldoxin suggested that the biosynthesis of the chloropupukeananin family involves a Diels-Alderase-catalyzed heterodimeric Diels-Alder reaction.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Soichiro Watanabe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Wataru Ikeda
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Susumu Kobayashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| |
Collapse
|
50
|
Ebensperger P, Jessen-Trefzer C. Artificial metalloenzymes in a nutshell: the quartet for efficient catalysis. Biol Chem 2021; 403:403-412. [PMID: 34653321 DOI: 10.1515/hsz-2021-0329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Artificial metalloenzymes combine the inherent reactivity of transition metal catalysis with the sophisticated reaction control of natural enzymes. By providing new opportunities in bioorthogonal chemistry and biocatalysis, artificial metalloenzymes have the potential to overcome certain limitations in both drug discovery and green chemistry or related research fields. Ongoing advances in organometallic catalysis, directed evolution, and bioinformatics are enabling the design of increasingly powerful systems that outperform conventional catalysis in a growing number of cases. Therefore, this review article collects challenges and opportunities in designing artificial metalloenzymes described in recent review articles. This will provide an equitable insight for those new to and interested in the field.
Collapse
Affiliation(s)
- Paul Ebensperger
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, D-79104Freiburg i. Br., Germany
| | - Claudia Jessen-Trefzer
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, D-79104Freiburg i. Br., Germany
| |
Collapse
|