1
|
Carsten A, Failla AV, Aepfelbacher M. MINFLUX nanoscopy: Visualising biological matter at the nanoscale level. J Microsc 2025; 298:219-231. [PMID: 38661499 PMCID: PMC11987580 DOI: 10.1111/jmi.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Since its introduction in 2017, MINFLUX nanoscopy has shown that it can visualise fluorescent molecules with an exceptional localisation precision of a few nanometres. In this overview, we provide a brief insight into technical implementations, fluorescent marker developments and biological studies that have been conducted in connection with MINFLUX imaging and tracking. We also formulate ideas on how MINFLUX nanoscopy and derived technologies could influence bioimaging in the future. This insight is intended as a general starting point for an audience looking for a brief overview of MINFLUX nanoscopy from theory to application.
Collapse
Affiliation(s)
- Alexander Carsten
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Center Hamburg EppendorfHamburgGermany
| | | | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Center Hamburg EppendorfHamburgGermany
| |
Collapse
|
2
|
Anees P, Saranya G, Sreejith S, Ajayaghosh A. Distinguishing the Bimodal Interaction of a Squaraine Dye with a Protein by a Functional Group Photodeprotection Strategy. Chem Asian J 2025; 20:e202401517. [PMID: 39780657 DOI: 10.1002/asia.202401517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
In this study, we present a protecting group photocleavage method to investigate both covalent and noncovalent interactions between a squaraine dye (PSq) and Bovine Serum Albumin (BSA). This approach allows for the photoinduced activation and deactivation of PSq fluorescence, providing valuable insights into the dual-mode interaction of the dye with the protein.
Collapse
Affiliation(s)
- Palapuravan Anees
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh, 517619, India
| | - Giridharan Saranya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Sivaramapanicker Sreejith
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
3
|
Pfister S, Le Berruyer V, Fam K, Collot M. A Photoactivatable Plasma Membrane Probe Based on a Self-Triggered Photooxidation Cascade for Live Cell Super-Resolution Microscopy. Angew Chem Int Ed Engl 2025:e202425276. [PMID: 40192285 DOI: 10.1002/anie.202425276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Super-resolution imaging based on the localization of single emitters requires a spatio-temporal control of the ON and OFF states. To this end, photoactivatable fluorophores are adapted as they can be turned on upon light irradiation. Here, we present a concept called self-triggered photooxidation cascade (STPC) based on the photooxidation of a plasma membrane-targeted leuco-rhodamine (LRhod-PM), a non-fluorescent reduced form of a rhodamine probe. Upon visible light irradiation the small number of oxidized rhodamines, Rhod-PM, acts as a photosensitizer to generate singlet oxygen capable of oxidizing the OFF state LRhod-PM thereby switching it to its ON state. We showed that this phenomenon is kinetically favored by a high local concentration and propagates quickly when the probe is embedded in membrane bilayers. In addition, we showed that the close proximity of the dyes favors the photobleaching. At the single-molecule level, the concomitant activation/bleaching phenomena allow reaching a single-molecule blinking regime enabling single-molecule localization microscopy for super-resolution of live cellular membranes and their thin processes including filopodia and tuneling nanotubes.
Collapse
Affiliation(s)
- Sonia Pfister
- Chemistry of Photoresponsive Systems Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199 CNRS, Université de Strasbourg, Illkirch, F-67400, France
| | - Valentine Le Berruyer
- Chemistry of Photoresponsive Systems Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199 CNRS, Université de Strasbourg, Illkirch, F-67400, France
| | - Kyong Fam
- Chemistry of Photoresponsive Systems Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199 CNRS, Université de Strasbourg, Illkirch, F-67400, France
| | - Mayeul Collot
- Chemistry of Photoresponsive Systems Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199 CNRS, Université de Strasbourg, Illkirch, F-67400, France
| |
Collapse
|
4
|
Wang X, Yu H, Tan F. Selenophene-containing silicon-rhodamine: A novel near-infrared fluorescent probe for Hg 2+ detection and its application in cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125480. [PMID: 39603086 DOI: 10.1016/j.saa.2024.125480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Monitoring of mercury ion (Hg2+) pollution is one of the eternal themes due to its notorious toxicity. Herein, we elaborately designed a novel fluorescent probe N'-((selenophen-2-yl)methylene)Si-rhodamine B hydrazide (Se-SiRH) by integrating 2-formylselenophene with Si-rhodamine B hydrazide. Se-SiRH exhibited an excellent near-infrared response towards Hg2+ in MeOH/PBS solution (1:1, v/v, pH = 7.0) and superior specificity towards Hg2+ than other metal ions. Meanwhile, striking sensitivity towards Hg2+ was found and the limit of detection in fluorescence measurement was calculated to be 2.1 × 10-9 mol·L-1. What's more, Hg2+-binding mechanism was confirmed with Job-plot measurement, HR-MS and theoretical calculation. Importantly, the success in detecting Hg2+ in real water samples and visualizing Hg2+ in HepG2 cells validated its eye-catching application capability in environmental and biological research.
Collapse
Affiliation(s)
- Xiaochun Wang
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan 114007, China.
| | - Haifeng Yu
- College of Chemistry, Baicheng Normal University, Baicheng 137000, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Ritz JM, Khakimzhan A, Dalluge JJ, Noireaux V, Puchner EM. Red Light Mediated Photoconversion of Silicon Rhodamines to Oxygen Rhodamines for Single-Molecule Microscopy. J Am Chem Soc 2025; 147:7588-7596. [PMID: 39985805 DOI: 10.1021/jacs.4c16907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
The rhodamine motif has been modified in myriad ways to produce probes with specific fluorescent and chemical properties optimal for a variety of fluorescence microscopy experiments. Recently, far-red (>640 nm) emitting silicon rhodamines have become popular in single-molecule localization microscopy (SMLM), since these dyes are membrane-permeable and can be used alongside red (570-640 nm) emitting fluorophores for two-color imaging. While this has expanded multicolor SMLM imaging capabilities, we demonstrate that silicon rhodamines can create previously unreported photoproducts with significantly blueshifted emissions, which appear as bright single-molecule crosstalk in the red emission channel. We show that this fluorescence is caused by the replacement of the central silicon group with oxygen after 640 nm illumination, turning far-red silicon rhodamines (JFX650, JF669, etc.) into their red oxygen rhodamine counterparts (JFX554, JF571, etc.). While this blueshifted population can cause artifacts in two-color SMLM data, we demonstrate up to 16-fold reduction in crosstalk using oxygen scavenging systems. We also leverage this far-red photoconversion to demonstrate UV-free photoactivated localization microscopy (PALM) without the need for additives, and with 5-fold higher efficiency than the Cy5 to Cy3 conversion. Finally, we demonstrate multiplexed pseudo two-color PALM in a single emission channel by separating localizations by their photoactivation wavelengths instead of their emission wavelengths.
Collapse
Affiliation(s)
- Jacob M Ritz
- School of Physics and Astronomy, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Joseph J Dalluge
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Elias M Puchner
- School of Physics and Astronomy, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Nonomura T, Minoshima M, Kikuchi K. Light-Activated Gene Expression System Using a Caging-Group-Free Photoactivatable Dye. Angew Chem Int Ed Engl 2025; 64:e202416420. [PMID: 39444190 PMCID: PMC11753602 DOI: 10.1002/anie.202416420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Optical regulation of transcription using chemical compounds is an effective strategy to manipulate gene expression spatiotemporally. Conventional caging approaches with photoremovable protecting groups may require intense UV-light exposure and release potentially toxic byproducts. To address these problems, here we developed a light-mediated transcriptional regulation system by combining a caging-group-free photoactivatable dye PaX560 and a multidrug-binding transcriptional regulator QacR. The cationic dye generated from PaX560 through traceless photoconversion bound QacR and reduced its repressor function, resulting in transcriptional activation. Importantly, this system allowed transcriptional activation with a large dynamic range under mild visible light exposure and simultaneous detection of the state of the photoactivated effector. This module was integrated into the T7 RNA polymerase expression system to demonstrate light-activated transcription in vitro and in living cells.
Collapse
Affiliation(s)
- Tatsuki Nonomura
- Department of Applied ChemistryGraduate School of EngineeringOsaka University2-1, YamadaokaSuitaOsaka5650871Japan
- Present address: Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M University2121W Holcombe BlvdHoustonTX-77030USA
| | - Masafumi Minoshima
- Department of Applied ChemistryGraduate School of EngineeringOsaka University2-1, YamadaokaSuitaOsaka5650871Japan
- JST, PRESTO2-1, YamadaokaSuitaOsaka5650871Japan
| | - Kazuya Kikuchi
- Department of Applied ChemistryGraduate School of EngineeringOsaka University2-1, YamadaokaSuitaOsaka5650871Japan
- Immunology Frontier Research Center (IFReC)Osaka University2-1, YamadaokaSuitaOsaka5650871Japan
| |
Collapse
|
7
|
Saladin L, Le Berruyer V, Bonnevial M, Didier P, Collot M. Targeted Photoactivatable Green-Emitting BODIPY Based on Directed Photooxidation-Induced Activation and its Application to Live Dynamic Super-Resolution Microscopy. Chemistry 2024; 30:e202403409. [PMID: 39363737 DOI: 10.1002/chem.202403409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Photoactivatable fluorescent probes are valuable tools in bioimaging for tracking cells down to single molecules and for single molecule localization microscopy. For the latter application, green emitting dyes are in demand. We herein developed an efficient green-emitting photoactivatable furanyl-BODIPY (PFB) and we established a new mechanism of photoactivation called Directed Photooxidation Induced Activation (DPIA) where the furan is photo-oxidized in a directed manner by the singlet oxygen produced by the probe. The efficient photoconverter (93-fold fluorescence enhancement at 510 nm, 49 % yield conversion) is functionalizable and allowed targeting of several subcellular structures and organelles, which were photoactivated in live cells. Finally, we demonstrated the potential of PFB in super-resolution imaging by performing PhotoActivated Localization Microscopy (PALM) in live cells.
Collapse
Affiliation(s)
- Lazare Saladin
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400, Illkirch, France
| | - Valentine Le Berruyer
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400, Illkirch, France
| | - Maxence Bonnevial
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Mayeul Collot
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400, Illkirch, France
| |
Collapse
|
8
|
Han F, Zhou X, Wang Z, Cai L, Zhang H, Shi T, Zhang Z, Lu Y, Wu K, Long S, Sun W, Du J, Fan J, Peng X. Red-Light Triggered H-Abstraction Photoinitiators for the Efficient Oxygen-Independent Therapy of Hypoxic Tumors. Angew Chem Int Ed Engl 2024; 63:e202408769. [PMID: 38960984 DOI: 10.1002/anie.202408769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The clinical application of photodynamic therapy (PDT) is limited by oxygen-dependence and side effects caused by photosensitizer residues. Photoinitiators based on the H-abstraction reaction can address these challenges because they can generate alkyl radical-killing cells independently of oxygen and undergo rapid bleaching following H-abstraction. Nonetheless, the development of photoinitiators for PDT has been impeded by the absence of effective design strategies. Herein, we have developed aryl-ketone substituted cyanine (ACy-R), the first red-light triggered H-abstraction photoinitiators for hypoxic cancer therapy. These ACy-R molecules inherited the near-infrared absorption of cyanine dye, and aryl-ketone modification imparted H-abstraction capability. Experimental and quantum calculations revealed that modifying the electron-withdrawing groups of the aryl (e.g., ACy-5F) improved the contribution of the O atom to the photon excitation process promoting intersystem crossing and H-abstraction ability. Particularly, ACy-5F rapidly penetrated cells and enriched in the endoplasmic reticulum. Even under severe hypoxia, ACy-5F initiated red-light induced H-abstraction with intracellular biomolecules, inducing necroptosis and ferroptosis. Moreover, ACy-5F was degraded after H-abstraction, thus avoiding the side effects of long-term phototoxicity after therapy. This study not only provides a crucial molecular tool for hypoxic tumors therapy, but also presents a promising strategy for the development of multifunctional photosensitizers and photoinitiators.
Collapse
Affiliation(s)
- Fuping Han
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Zhaolong Wang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihan Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Han Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Tiancong Shi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Zhenyu Zhang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, China
| | - Yang Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Dalian University of Technology, Ningbo, 315016, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Dalian University of Technology, Ningbo, 315016, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Dalian University of Technology, Ningbo, 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
9
|
Remmel M, Matthias J, Lincoln R, Keller-Findeisen J, Butkevich AN, Bossi ML, Hell SW. Photoactivatable Xanthone (PaX) Dyes Enable Quantitative, Dual Color, and Live-Cell MINFLUX Nanoscopy. SMALL METHODS 2024; 8:e2301497. [PMID: 38497095 DOI: 10.1002/smtd.202301497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/06/2024] [Indexed: 03/19/2024]
Abstract
The single-molecule localization concept MINFLUX has triggered a reevaluation of the features of fluorophores for attaining nanometer-scale resolution. MINFLUX nanoscopy benefits from temporally controlled fluorescence ("on"/"off") photoswitching. Combined with an irreversible switching behavior, the localization process is expected to turn highly efficient and quantitative data analysis simple. The potential in the recently reported photoactivable xanthone (PaX) dyes is recognized to extend the list of molecular switches used for MINFLUX with 561 nm excitation beyond the fluorescent protein mMaple. The MINFLUX localization success rates of PaX560, PaX+560, and mMaple are quantitatively compared by analyzing the effective labeling efficiency of endogenously tagged nuclear pore complexes. The PaX dyes prove to be superior to mMaple and on par with the best reversible molecular switches routinely used in single-molecule localization microscopy. Moreover, the rationally designed PaX595 is introduced for complementing PaX560 in dual color 561 nm MINFLUX imaging based on spectral classification and the deterministic, irreversible, and additive-independent nature of PaX photoactivation is showcased in fast live-cell MINFLUX imaging. The PaX dyes meet the demands of MINFLUX for a robust readout of each label position and fill the void of reliable fluorophores dedicated to 561 nm MINFLUX imaging.
Collapse
Affiliation(s)
- Michael Remmel
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Jessica Matthias
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Richard Lincoln
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Alexey N Butkevich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Mariano L Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| |
Collapse
|
10
|
Wang Y, Qian D, Wang X, Zhang X, Li Z, Meng X, Yu L, Yan X, He Z. Biomimetic Trypsin-Responsive Structure-Bridged Mesoporous Organosilica Nanomedicine for Precise Treatment of Acute Pancreatitis. ACS NANO 2024; 18:19283-19302. [PMID: 38990194 DOI: 10.1021/acsnano.4c05369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Developing strategies to target injured pancreatic acinar cells (PACs) in conjunction with primary pathophysiology-specific pharmacological therapy presents a challenge in the management of acute pancreatitis (AP). We designed and synthesized a trypsin-cleavable organosilica precursor bridged by arginine-based amide bonds, leveraging trypsin's ability to selectively identify guanidino groups on arginine via Asp189 at the active S1 pocket and cleave the carboxy-terminal (C-terminal) amide bond via catalytic triads. The precursors were incorporated into the framework of mesoporous silica nanoparticles (MSNs) for encapsulating the membrane-permeable Ca2+ chelator BAPTA-AM with a high loading content (∼43.9%). Mesenchymal stem cell membrane coating and surface modification with PAC-targeting ligands endow MSNs with inflammation recruitment and precise PAC-targeting abilities, resulting in the highest distribution at 3 h in the pancreas with 4.7-fold more accumulation than that of naked MSNs. The outcomes transpired as follows: After bioinspired MSNs' skeleton biodegradation by prematurely and massively activated trypsin, BAPTA-AM was on-demand released in injured PACs, thereby effectively eliminating intracellular calcium overload (reduced Ca2+ level by 81.3%), restoring cellular redox status, blocking inflammatory cascades, and inhibiting cell necrosis by impeding the IκBα/NF-κB/TNF-α/IL-6 and CaMK-II/p-RIP3/p-MLKL/caspase-8,9 signaling pathways. In AP mice, a single dose of the formulation significantly restored pancreatic function (lipase and amylase reduced more by 60%) and improved the survival rate from 50 to 91.6%. The formulation offers a potentially effective strategy for clinical translation in AP treatment.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xue Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zerui Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xinlei Meng
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xuefeng Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| |
Collapse
|
11
|
Zheng Y, Ye Z, Zhang X, Xiao Y. Photo-uncaging Triggers on Self-Blinking to Control Single-Molecule Fluorescence Kinetics for Super-resolution Imaging. ACS NANO 2024; 18:18477-18484. [PMID: 38941491 DOI: 10.1021/acsnano.4c03809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Super-resolution imaging, especially a single-molecule localization approach, has raised a fluorophore engineering revolution chasing sparse single-molecule dark-bright blinking transforms. Yet, it is a challenge to structurally devise fluorophores manipulating the single-molecule blinking kinetics. In this pursuit, we have developed a triggering strategy by innovatively integrating the photoactivatable nitroso-caging strategy into self-blinking sulfonamide to form a nitroso-caged sulfonamide rhodamine (NOSR). Our fluorophore demonstrated controllable self-blinking events upon phototriggered caging unit release. This exceptional blink kinetics improved the super-resolution imaging integrity on microtubules compared to self-blinking analogues. With the aid of paramount single-molecule fluorescence kinetics, we successfully reconstructed the ring structure of nuclear pores and the axial morphology of mitochondrial outer membranes. We foresee that our synthetic approach of photoactivation and self-blinking would facilitate rhodamine devising for super-resolution imaging.
Collapse
Affiliation(s)
- Ying Zheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Zhiwei Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
12
|
Saladin L, Breton V, Le Berruyer V, Nazac P, Lequeu T, Didier P, Danglot L, Collot M. Targeted Photoconvertible BODIPYs Based on Directed Photooxidation-Induced Conversion for Applications in Photoconversion and Live Super-Resolution Imaging. J Am Chem Soc 2024; 146:17456-17473. [PMID: 38861358 DOI: 10.1021/jacs.4c05231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Photomodulable fluorescent probes are drawing increasing attention due to their applications in advanced bioimaging. Whereas photoconvertible probes can be advantageously used in tracking, photoswitchable probes constitute key tools for single-molecule localization microscopy to perform super-resolution imaging. Herein, we shed light on a red and far-red BODIPY, namely, BDP-576 and BDP-650, which possess both properties of conversion and switching. Our study demonstrates that these pyrrolyl-BODIPYs convert into typical green- and red-emitting BODIPYs that are perfectly adapted to microscopy. We also showed that this pyrrolyl-BODIPYs undergo Directed Photooxidation Induced Conversion, a photoconversion mechanism that we recently introduced, where the pyrrole moiety plays a central role. These unique features were used to develop targeted photoconvertible probes toward different organelles or subcellular units (plasma membrane, mitochondria, nucleus, actin, Golgi apparatus, etc.) using chemical targeting moieties and a Halo tag. We notably showed that BDP-650 could be used to track intracellular vesicles over more than 20 min in two-color imagings with laser scanning confocal microscopy, demonstrating its robustness. The switching properties of these photoconverters were studied at the single-molecule level and were then successfully used in live single-molecule localization microscopy in epithelial cells and neurons. Both membrane- and mitochondria- targeted probes could be used to decipher membrane 3D architecture and mitochondrial dynamics at the nanoscale. This study builds a bridge between the photoconversion and photoswitching properties of probes undergoing directed photooxidation and shows the versatility and efficacy of this mechanism in advanced live imaging.
Collapse
Affiliation(s)
- Lazare Saladin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Victor Breton
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain team; NeurImag core facility scientific director, 75014 Paris, France
| | - Valentine Le Berruyer
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France
| | - Paul Nazac
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain team; NeurImag core facility scientific director, 75014 Paris, France
| | - Thiebault Lequeu
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in healthy and Diseased brain team; NeurImag core facility scientific director, 75014 Paris, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France
| |
Collapse
|
13
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
14
|
Ohno H, Sasaki E, Yamada S, Hanaoka K. Recent advances in Si-rhodamine-based fluorescent probes for live-cell imaging. Org Biomol Chem 2024; 22:3099-3108. [PMID: 38444309 DOI: 10.1039/d4ob00130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Fluorescence imaging is a powerful technique for visualizing biological events in living samples with high temporal and spatial resolution. Fluorescent probes emitting far-red to near infrared (NIR) fluorescence are particularly advantageous for in vivo imaging due to their high tissue permeability and low autofluorescence, as well as their suitability for multicolor imaging. Among the far-red to NIR fluorophores, Si-rhodamine is one of the most practical fluorophores for the development of tailor-made NIR fluorescent probes because of the relative ease of synthesis of various derivatives, the unique intramolecular spirocyclization behavior, and the relatively high water solubility and high photostability of the probes. This review summarizes these features of Si-rhodamines and presents recent advances in the synthesis and applications of far-red to NIR fluorescent probes based on Si-rhodamines, focusing on live-cell imaging applications such as fluorogenic probes, super-resolution imaging and dye-protein hybrid-based indicators.
Collapse
Affiliation(s)
- Hisashi Ohno
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan.
| | - Eita Sasaki
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan.
- Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Sota Yamada
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan.
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan.
- Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|
15
|
Zhang W, Lv Y, Huo F, Yun Y, Yin C. Photoactivation Inducing Multifunctional Coupling of Fluorophore for Efficient Tumor Therapy In Situ. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314021. [PMID: 38359076 DOI: 10.1002/adma.202314021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Photoactivatable molecules, with high-precision spatialtemporal control, have largely promoted bioimaging and phototherapy applications of fluorescent dyes. Here, the first photoactivatable sensor (BI) is described that can be triggered by broad excitation light (405-660 nm), which further undergoes intersystem crossing and H-atom transfer processes to forming superoxide anion radicals (O2 -• ) and carbon radicals. Particularly, the photoinduced gain of carbon-centered radicals (BI•) allows for radical-radical coupling to afford the combined crosslink product (BI─BI), which would be oxidized in the presence of O2 -• to produce an extended conjugate system with near infrared emission (820 nm). Besides, the photochemically generated product (Cy─BI) possesses ultra-high photothermal conversion efficiency up to 90.9%, which optimized phototherapy potential. What's more, Western Blot assay reveals that both BI and the photoproduct Cy─BI can efficiently inhibit the expression of CHK1, and the irradiation of BI and Cy─BI further induces apoptosis and ultimately enhances the phototherapeutic effects. Thus, the combination of cell cycle block inducing apoptosis, photodynamic therapy and photothermal therapy treatments significantly suppress solid tumor in vivo antitumor efficacy explorations. This is a novel finding in developing photoactivatable molecules, as well as the broad applicability of photoimaging and phototherapy in tumor-related areas.
Collapse
Affiliation(s)
- Weijie Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Yunxia Lv
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, P. R. China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| |
Collapse
|
16
|
Liang ZQ, Song DD, Li ZC, Xu SH, Dai GL, Ye CQ, Wang XM, Tao XT. Bright photoactivatable probes based on triphenylethylene for Cu 2+ detection in tap water and tea samples. Food Chem 2024; 434:137439. [PMID: 37729781 DOI: 10.1016/j.foodchem.2023.137439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Photoactivatable probes can switch fluorescence on from a weak or nonemission state to improve the sensitivity of the sensing system. In this work, we successfully constructed three highly emissive photoactivatable probes, 2-DP, 1-2-DP and 2-2-DP, for Cu2+ detection. Under UV irradiation, the photoluminescence quantum yields of 2-DP, 1-2-DP and 2-2-DP display approximately 52.4-, 11.5- and 49.2-fold enhancement, respectively. Cu2+ selectively quenches the bright photoactivated fluorescence, resulting in an approximately 38-fold fluorescence reduction. The highly selective fluorescence response to Cu2+ yields an excellent low detection limit of 5.8 nM. Moreover, the photoactivatable probes were successfully applied for Cu2+ determination in tap water and tea samples with recovery ranges of 95%-105% and 97%-106%, respectively. This work provides a more sensitive and efficient methodology for Cu2+ detection in heavy metal pollution and food safety.
Collapse
Affiliation(s)
- Zuo-Qin Liang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Dong-Dong Song
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhuo-Cheng Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Su-Hang Xu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guo-Liang Dai
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chang-Qing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao-Mei Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xu-Tang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
17
|
Wei H, Xie M, Chen M, Jiang Q, Wang T, Xing P. Shedding light on cellular dynamics: the progress in developing photoactivated fluorophores. Analyst 2024; 149:689-699. [PMID: 38180167 DOI: 10.1039/d3an01994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Photoactivated fluorophores (PAFs) are highly effective imaging tools that exhibit a removal of caging groups upon light excitation, resulting in the restoration of their bright fluorescence. This unique property allows for precise control over the spatiotemporal aspects of small molecule substances, making them indispensable for studying protein labeling and small molecule signaling within live cells. In this comprehensive review, we explore the historical background of this field and emphasize recent advancements based on various reaction mechanisms. Additionally, we discuss the structures and applications of the PAFs. We firmly believe that the development of more novel PAFs will provide powerful tools to dynamically investigate cells and expand the applications of these techniques into new domains.
Collapse
Affiliation(s)
- Huihui Wei
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Mingli Xie
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Min Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Qinhong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Tenghui Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Panfei Xing
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
18
|
Torii K, Benson S, Hori Y, Vendrell M, Kikuchi K. No-wash fluorogenic labeling of proteins for reversible photoswitching in live cells. Chem Sci 2024; 15:1393-1401. [PMID: 38274070 PMCID: PMC10806661 DOI: 10.1039/d3sc04953a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Photoswitchable fluorescent molecules (PSFMs) are positioned as valuable tools for biomolecule localization tracking and super-resolution imaging technologies due to their unique ability to reversibly control fluorescence intensity upon light irradiation. Despite the high demand for PSFMs that are suitable for live-cell imaging, no general method has been reported that enables reversible fluorescence control on proteins of interest in living cells. Herein, we have established a platform to realize reversible fluorescence switching in living cells by adapting a protein labeling system. We have developed a new PSFM, named HTL-Trp-BODIPY-FF, which exhibits strong fluorogenicity upon recognition of Halo-tag protein and reversible fluorescence photoswitching in living cells. This is the first example of a PSFM that can be applicable to a general-purpose Halo-tag protein labeling system for no-wash live-cell imaging.
Collapse
Affiliation(s)
- Kenji Torii
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Sam Benson
- Centre for Inflammation Research, The University of Edinburgh Edinburgh EH16 4UU UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh Edinburgh EH16 4UU UK
| | - Yuichiro Hori
- Faculty of Science, Kyushu University Fukuoka Fukuoka 819-0395 Japan
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh Edinburgh EH16 4UU UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh Edinburgh EH16 4UU UK
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
19
|
Li J, Wang J, Xu L, Chi H, Liang X, Yoon J, Lin W. A Class of Activatable NIR-II Photoacoustic Dyes for High-Contrast Bioimaging. Angew Chem Int Ed Engl 2024; 63:e202312632. [PMID: 37849219 DOI: 10.1002/anie.202312632] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Photoacoustic (PA) imaging is emerging as one of the important non-invasive imaging techniques in biomedical research. Small molecule- second near-infrared window (NIR-II) PA dyes combined with imaging data can provide comprehensive and in-depth in vivo physiological and pathological information. However, the NIR-II PA dyes usually exhibit "always-on" properties due to the lack of a readily optically tunable group, which hinders the further applications in vivo. Herein, a novel class of dyes GX have been designed and synthesized as an activatable NIR-II PA platform, in which the absorption/emission wavelength of GX-5 extends up to 1082/1360 nm. Importantly, the GX dyes have a strong tissue penetration depth and high-resolution for the mouse vasculature structures in NIR-II PA 3D imaging and high signal-to-noise ratio in NIR-II fluorescence (FL) imaging. Furthermore, to demonstrate the applicability of GX dyes, the first NIR-II PA probe GX-5-CO activated by carbon monoxide (CO) was engineered and employed to reveal the enhancement of the CO levels in the hypertensive mice by high-contrast NIR-II PA and FL imaging. We expect that many derivatives of GX dyes will be developed to afford versatile NIR-II PA platforms for designing a wide variety activatable NIR-II PA probes as biomedical tools.
Collapse
Affiliation(s)
- Jiangfeng Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiangyan Wang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Lizhen Xu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Hanwen Chi
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xing Liang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
20
|
Na W, An L, Wu Q, Cai K, Ou C, Zhuang W. Sulfone/Carbonyl-Based Donor-Acceptor Fluorescent Dyes: Synthesis, Structures, Photophysical Properties and Cell Imaging. Chemistry 2023; 29:e202301997. [PMID: 37658616 DOI: 10.1002/chem.202301997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023]
Abstract
Electron-accepting units play vital roles in constructing donor-acceptor (D-A) conjugated organic optoelectronic materials; the electronic structures and functions of the acceptors need to be carefully unveiled to controllably tailor the optoelectronic properties. We have synthesized two D-A conjugated organic fluorophores, TPA-SO and TPA-CO, with similar molecular skeletons based on sulfone- or carbonyl-containing polycyclic aromatic acceptors. Both TPA-SO and TPA-CO display obvious solvent polarity-dependent photophysical properties and large Stokes shift of over 100 nm for strong intramolecular charge transfer processes. Experimental evidence indicates that the sulfone group in TPA-SO merely serves as a strong electron-withdrawing unit. TPA-SO shows yellowish-green emission with a peak at 542 nm and an absolute photoluminescence quantum yield (PLQY) of 98 % in solution, whereas the carbonyl group in TPA-CO can act as both an electron-withdrawing unit and spin transition convertor, so TPA-CO displays red emission with a low absolute PLQY of 0.32 % in solution. Impressively, upon going from solution to aggregate state, TPA-SO nanoparticles keep a high PLQY of 9.5 % and moderate biocompatibility, thus they are good nano-agents for cellular fluorescence imaging. The results reveal that the inherent acceptor characteristic acts as a crucial effect in the photophysical properties and applications of the organic fluorophores.
Collapse
Affiliation(s)
- Weidan Na
- College of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221111, P. R. China
| | - Lei An
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Qiong Wu
- College of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221111, P. R. China
| | - Keying Cai
- College of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221111, P. R. China
| | - Changjin Ou
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Wenchang Zhuang
- College of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221111, P. R. China
| |
Collapse
|
21
|
Duan X, Zhang M, Zhang YH. Organic fluorescent probes for live-cell super-resolution imaging. FRONTIERS OF OPTOELECTRONICS 2023; 16:34. [PMID: 37946039 PMCID: PMC10635970 DOI: 10.1007/s12200-023-00090-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
The development of super-resolution technology has made it possible to investigate the ultrastructure of intracellular organelles by fluorescence microscopy, which has greatly facilitated the development of life sciences and biomedicine. To realize super-resolution imaging of living cells, both advanced imaging systems and excellent fluorescent probes are required. Traditional fluorescent probes have good availability, but that is not the case for probes for live-cell super-resolution imaging. In this review, we first introduce the principles of various super-resolution technologies and their probe requirements, then summarize the existing designs and delivery strategies of super-resolution probes for live-cell imaging, and finally provide a brief conclusion and overview of the future.
Collapse
Affiliation(s)
- Xinxin Duan
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Meng Zhang
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yu-Hui Zhang
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
22
|
Wang H, Han G, Tang H, Zhang R, Liu Z, Sun Y, Liu B, Geng J, Zhang Z. Synchronous Photoactivation-Imaging Fluorophores Break Limitations of Photobleaching and Phototoxicity in Live-cell Microscopy. Anal Chem 2023; 95:16243-16250. [PMID: 37890170 DOI: 10.1021/acs.analchem.3c03064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Fluorescence microscopy is one of the most important tools in the studies of cell biology and many other fields, but two fundamental issues, photobleaching and phototoxicity, associated with the fluorophores have still limited its use for long-term and strong-illumination imaging of live cells. Here, we report a new concept of fluorophore engineering chemistry, synchronous photoactivation-imaging (SPI) fluorophores, activating and exciting fluorophores by a single light source to thus avoid the repeated switches between activation and excitation lights. The chemically reconstructed, nonemissive fluorophores can be photolyzed to allow continuous replenishing of "bright-state" probes detectable by standard fluorescent microscopes in the imaging process so as to bypass the photobleaching barrier to greatly extend the imaging period. Equally importantly, SPI fluorophores substantially reduce photocytotoxicity due to the scavenging of reactive oxygen species (ROS) by a photoactivable group and the slow release of "bright-state" probes to minimize ROS generation. Using SPI fluorophores, the time-lapsed confocal (>16 h) and super-resolution (>3 h) imaging of subcellular organelles under intensive illumination (50 MW/cm2) were achieved in live cells.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
| | - Guangmei Han
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
| | - Hesen Tang
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
| | - Ruilong Zhang
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
| | - Zhengjie Liu
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
| | - Yingqiang Sun
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
| | - Bianhua Liu
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Junlong Geng
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
| | - Zhongping Zhang
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
23
|
Aktalay A, Khan TA, Bossi ML, Belov VN, Hell SW. Photoactivatable Carbo- and Silicon-Rhodamines and Their Application in MINFLUX Nanoscopy. Angew Chem Int Ed Engl 2023; 62:e202302781. [PMID: 37555720 DOI: 10.1002/anie.202302781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
New photoactivatable fluorescent dyes (rhodamine, carbo- and silicon-rhodamines [SiR]) with emission ranging from green to far red have been prepared, and their photophysical properties studied. The photocleavable 2-nitrobenzyloxycarbonyl unit with an alpha-carboxyl group as a branching point and additional functionality was attached to a polycyclic and lipophilic fluorescent dye. The photoactivatable probes having the HaloTagTM amine (O2) ligand bound with a dye core were obtained and applied for live-cell staining in stable cell lines incorporating Vimentin (VIM) or Nuclear Pore Complex Protein NUP96 fused with the HaloTag. The probes were applied in 2D (VIM, NUP96) and 3D (VIM) MINFLUX nanoscopy, as well as in superresolution fluorescence microscopy with single fluorophore activation (VIM, live-cell labeling). Images of VIM and NUPs labeled with different dyes were acquired and their apparent dimensions and shapes assessed on a lower single-digit nanometer scale. Applicability and performance of the photoactivatable dye derivatives were evaluated in terms of photoactivation rate, labeling and detection efficiency, number of detected photons per molecule and other parameters related to MINFLUX nanoscopy.
Collapse
Affiliation(s)
- Ayse Aktalay
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstraße 29, 69120, Heidelberg, Germany
| | - Taukeer A Khan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
| | - Mariano L Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstraße 29, 69120, Heidelberg, Germany
| | - Vladimir N Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstraße 29, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
24
|
Aktalay A, Lincoln R, Heynck L, Lima MADBF, Butkevich AN, Bossi ML, Hell SW. Bioorthogonal Caging-Group-Free Photoactivatable Probes for Minimal-Linkage-Error Nanoscopy. ACS CENTRAL SCIENCE 2023; 9:1581-1590. [PMID: 37637742 PMCID: PMC10450876 DOI: 10.1021/acscentsci.3c00746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/29/2023]
Abstract
Here we describe highly compact, click compatible, and photoactivatable dyes for super-resolution fluorescence microscopy (nanoscopy). By combining the photoactivatable xanthone (PaX) core with a tetrazine group, we achieve minimally sized and highly sensitive molecular dyads for the selective labeling of unnatural amino acids introduced by genetic code expansion. We exploit the excited state quenching properties of the tetrazine group to attenuate the photoactivation rates of the PaX, and further reduce the overall fluorescence emission of the photogenerated fluorophore, providing two mechanisms of selectivity to reduce the off-target signal. Coupled with MINFLUX nanoscopy, we employ our dyads in the minimal-linkage-error imaging of vimentin filaments, demonstrating molecular-scale precision in fluorophore positioning.
Collapse
Affiliation(s)
- Ayse Aktalay
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Richard Lincoln
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Lukas Heynck
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | | | - Alexey N. Butkevich
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Mariano L. Bossi
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
25
|
Kikuchi K, Kaur A. Picture Perfect Precision: Biorthogonal Photoactivatable Tools Achieve Imaging with Molecular-Scale Precision. ACS CENTRAL SCIENCE 2023; 9:1518-1521. [PMID: 37637728 PMCID: PMC10450868 DOI: 10.1021/acscentsci.3c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Kai Kikuchi
- Medicinal Chemistry,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, Monash University, Melbourne 3800, Australia
| | - Amandeep Kaur
- Medicinal Chemistry,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, Monash University, Melbourne 3800, Australia
| |
Collapse
|
26
|
Uspenskaia AA, Krasnikov PA, Majouga AG, Beloglazkina EK, Machulkin AE. Fluorescent Conjugates Based on Prostate-Specific Membrane Antigen Ligands as an Effective Visualization Tool for Prostate Cancer. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:953-967. [PMID: 37751866 DOI: 10.1134/s0006297923070088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 09/28/2023]
Abstract
Fluorescent dyes are widely used in histological studies and in intraoperative imaging, including surgical treatment of prostate cancer (PC), which is one of the most common types of cancerous tumors among men today. Targeted delivery of fluorescent conjugates greatly improves diagnostic efficiency and allows for timely correct diagnosis. In the case of PC, the protein marker is a prostate-specific membrane antigen (PSMA). To date, a large number of diagnostic conjugates targeting PSMA have been created based on modified urea. The review focuses on the conjugates selectively binding to PSMA and answers the following questions: What fluorescent dyes are already in use in the field of PC diagnosis? What factors influence the structure-activity ratio of the final molecule? What features should be considered when selecting a fluorescent tag to create new diagnostic conjugates? And what could be suggested to further development in this field at the present time?
Collapse
Affiliation(s)
| | - Pavel A Krasnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander G Majouga
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology "MISiS", Moscow, 119049, Russia
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | | | - Aleksei E Machulkin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- RUDN University, Moscow, 117198, Russia
| |
Collapse
|
27
|
Wang S, Luo Z, Liu W, Hu T, Zhao Z, Rosenfeld MG, Song X. The 3D genome and its impacts on human health and disease. LIFE MEDICINE 2023; 2:lnad012. [PMID: 39872109 PMCID: PMC11749360 DOI: 10.1093/lifemedi/lnad012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/20/2023] [Indexed: 01/29/2025]
Abstract
Eukaryotic genomes are highly compacted in the cell nucleus. Two loci separated by a long linear distance can be brought into proximity in space through DNA-binding proteins and RNAs, which contributes profoundly to the regulation of gene expression. Recent technology advances have enabled the development and application of the chromosome conformation capture (3C) technique and a host of 3C-based methods that enable genome-scale investigations into changes in chromatin high-order structures during diverse physiological processes and diseases. In this review, we introduce 3C-based technologies and discuss how they can be utilized to glean insights into the impacts of three-dimensional (3D) genome organization in normal physiological and disease processes.
Collapse
Affiliation(s)
- Siqi Wang
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhengyu Luo
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Weiguang Liu
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Tengfei Hu
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Burgers TCQ, Vlijm R. Fluorescence-based super-resolution-microscopy strategies for chromatin studies. Chromosoma 2023:10.1007/s00412-023-00792-9. [PMID: 37000292 PMCID: PMC10356683 DOI: 10.1007/s00412-023-00792-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
Super-resolution microscopy (SRM) is a prime tool to study chromatin organisation at near biomolecular resolution in the native cellular environment. With fluorescent labels DNA, chromatin-associated proteins and specific epigenetic states can be identified with high molecular specificity. The aim of this review is to introduce the field of diffraction-unlimited SRM to enable an informed selection of the most suitable SRM method for a specific chromatin-related research question. We will explain both diffraction-unlimited approaches (coordinate-targeted and stochastic-localisation-based) and list their characteristic spatio-temporal resolutions, live-cell compatibility, image-processing, and ability for multi-colour imaging. As the increase in resolution, compared to, e.g. confocal microscopy, leads to a central role of the sample quality, important considerations for sample preparation and concrete examples of labelling strategies applicable to chromatin research are discussed. To illustrate how SRM-based methods can significantly improve our understanding of chromatin functioning, and to serve as an inspiring starting point for future work, we conclude with examples of recent applications of SRM in chromatin research.
Collapse
Affiliation(s)
- Thomas C Q Burgers
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Rifka Vlijm
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands.
| |
Collapse
|
29
|
Remmel M, Scheiderer L, Butkevich AN, Bossi ML, Hell SW. Accelerated MINFLUX Nanoscopy, through Spontaneously Fast-Blinking Fluorophores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206026. [PMID: 36642798 DOI: 10.1002/smll.202206026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The introduction of MINFLUX nanoscopy allows single molecules to be localized with one nanometer precision in as little as one millisecond. However, current applications have so far focused on increasing this precision by optimizing photon collection, rather than minimizing the localization time. Concurrently, commonly used fluorescent switches are specifically designed for stochastic methods (e.g., STORM), optimized for a high photon yield and rather long on-times (tens of milliseconds). Here, accelerated MINFLUX nanoscopy with up to a 30-fold gain in localization speed is presented. The improvement is attained by designing spontaneously blinking fluorescent markers with remarkably fast on-times, down to 1-3 ms, matching the iterative localization process used in a MINFLUX microscope. This design utilizes a silicon rhodamine amide core, shifting the spirocyclization equilibrium toward an uncharged closed form at physiological conditions and imparting intact live cell permeability, modified with a fused (benzo)thiophene spirolactam fragment. The best candidate for MINFLUX microscopy (also suitable for STORM imaging) is selected through detailed characterization of the blinking behavior of single fluorophores, bound to different protein tags. Finally, optimization of the localization routines, customized to the fast blinking times, renders a significant speed improvement on a commercial MINFLUX microscope.
Collapse
Affiliation(s)
- Michael Remmel
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Lukas Scheiderer
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Alexey N Butkevich
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Mariano L Bossi
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
30
|
Zheng Y, Ye Z, Xiao Y. Subtle Structural Translation Magically Modulates the Super-Resolution Imaging of Self-Blinking Rhodamines. Anal Chem 2023; 95:4172-4179. [PMID: 36787420 DOI: 10.1021/acs.analchem.2c05298] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The evolution of super-resolution imaging techniques is benefited from the ongoing competition for optimal rhodamine fluorophores. Yet, it seems blind to construct the desired rhodamine molecule matching the imaging need without the knowledge on imaging impact of even the minimum structural translation. Herein, we have designed a pair of self-blinking sulforhodamines (STMR and SRhB) with the bare distinction of methyl or ethyl substituents and engineered them with Halo protein ligands. Although the two possess similar spectral properties (λab, λfl, ϕ, etc.), they demonstrated unique single-molecule characteristics preferring to individual imaging applications. Experimentally, STMR with high emissive rates was qualified for imaging structures with rapid dynamics (endoplasmic reticulum, and mitochondria), and SRhB with prolonged on-times and photostability was suited for relatively "static" nuclei and microtubules. Using this new knowledge, the mitochondrial morphology during apoptosis and ferroptosis was first super-resolved by STMR. Our study highlights the significance of even the smallest structural modification to the modulation of super-resolution imaging performance and would provide insights for future fluorophore design.
Collapse
Affiliation(s)
- Ying Zheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiwei Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
31
|
Weiss LE, Love JF, Yoon J, Comerci CJ, Milenkovic L, Kanie T, Jackson PK, Stearns T, Gustavsson AK. Single-molecule imaging in the primary cilium. Methods Cell Biol 2023; 176:59-83. [PMID: 37164543 PMCID: PMC10509820 DOI: 10.1016/bs.mcb.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The primary cilium is an important signaling organelle critical for normal development and tissue homeostasis. Its small dimensions and complexity necessitate advanced imaging approaches to uncover the molecular mechanisms behind its function. Here, we outline how single-molecule fluorescence microscopy can be used for tracking molecular dynamics and interactions and for super-resolution imaging of nanoscale structures in the primary cilium. Specifically, we describe in detail how to capture and quantify the 2D dynamics of individual transmembrane proteins PTCH1 and SMO and how to map the 3D nanoscale distributions of the inversin compartment proteins INVS, ANKS6, and NPHP3. This protocol can, with minor modifications, be adapted for studies of other proteins and cell lines to further elucidate the structure and function of the primary cilium at the molecular level.
Collapse
Affiliation(s)
- Lucien E Weiss
- Department of Engineering Physics, Polytechnique Montréal, Montreal, QC, Canada.
| | - Julia F Love
- Department of Chemistry, Rice University, Houston, TX, United States
| | | | - Colin J Comerci
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | | | - Tomoharu Kanie
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States; Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA, United States; Rockefeller University, New York City, NY, United States
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, Houston, TX, United States; Department of BioSciences, Rice University, Houston, TX, United States; Institute of Biosciences and Bioengineering, Rice University, Houston, TX, United States; Smalley-Curl Institute, Rice University, Houston, TX, United States.
| |
Collapse
|
32
|
Likhotkin I, Lincoln R, Bossi ML, Butkevich AN, Hell SW. Photoactivatable Large Stokes Shift Fluorophores for Multicolor Nanoscopy. J Am Chem Soc 2023; 145:1530-1534. [PMID: 36626161 PMCID: PMC9880998 DOI: 10.1021/jacs.2c12567] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We designed caging-group-free photoactivatable live-cell permeant dyes with red fluorescence emission and ∼100 nm Stokes shifts based on a 1-vinyl-10-silaxanthone imine core structure. The proposed fluorophores undergo byproduct-free one- and two-photon activation, are suitable for multicolor fluorescence microscopy in fixed and living cells, and are compatible with super-resolution techniques such as STED (stimulated emission depletion) and PALM (photoactivated localization microscopy). Use of photoactivatable labels for strain-promoted tetrazine ligation and self-labeling protein tags (HaloTag, SNAP-tag), and duplexing of an imaging channel with another large Stokes shift dye have been demonstrated.
Collapse
Affiliation(s)
- Ilya Likhotkin
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Richard Lincoln
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Mariano L. Bossi
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Alexey N. Butkevich
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany,Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany,
| | - Stefan W. Hell
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany,Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany,
| |
Collapse
|
33
|
Gong Q, Zhang X, Li W, Guo X, Wu Q, Yu C, Jiao L, Xiao Y, Hao E. Long-Wavelength Photoconvertible Dimeric BODIPYs for Super-Resolution Single-Molecule Localization Imaging in Near-Infrared Emission. J Am Chem Soc 2022; 144:21992-21999. [PMID: 36414278 DOI: 10.1021/jacs.2c08947] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sulfoxide-bridged dimeric BODIPYs were developed as a new class of long-wavelength photoconvertible fluorophores. Upon visible-light irradiation, a sulfoxide moiety was released to generate the corresponding α,α-directly linked dimeric BODIPYs. The extrusion of SO from sulfoxides was mainly through an intramolecular fashion involving reactive triplet states. By this photoconversion, not only were more than 100 nm red shifts of absorption and emission maxima (up to 648/714 nm) achieved but also stable products with bright fluorescence were produced with high efficiency. The combination of photoactivation and red-shifted excitation/emission offered optimal contrast and eliminated the interference from biological autofluorescence. More importantly, the in situ products of these visible-light-induced reactions demonstrated ideal single-molecule fluorescence properties in the near-infrared region. Therefore, this new photoconversion could be a powerful photoactivation method achieving super-resolution single-molecule localization imaging in a living cell without using UV illumination and cell-toxic additives.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
34
|
Truong VX, Holloway JO, Barner-Kowollik C. Fluorescence turn-on by photoligation - bright opportunities for soft matter materials. Chem Sci 2022; 13:13280-13290. [PMID: 36507164 PMCID: PMC9682895 DOI: 10.1039/d2sc05403e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022] Open
Abstract
Photochemical ligation has become an indispensable tool for applications that require spatially addressable functionalisation, both in biology and materials science. Interestingly, a number of photochemical ligations result in fluorescent products, enabling a self-reporting function that provides almost instantaneous visual feedback of the reaction's progress and efficiency. Perhaps no other chemical reaction system allows control in space and time to the same extent, while concomitantly providing inherent feedback with regard to reaction success and location. While photoactivable fluorescent properties have been widely used in biology for imaging purposes, the expansion of the array of photochemical reactions has further enabled its utility in soft matter materials. Herein, we concisely summarise the key developments of fluorogenic-forming photoligation systems and their emerging applications in both biology and materials science. We further summarise the current challenges and future opportunities of exploiting fluorescent self-reporting reactions in a wide array of chemical disciplines.
Collapse
Affiliation(s)
- Vinh X Truong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138 634 Singapore
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
| | - Joshua O Holloway
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
35
|
Xu X, Jia S, Xi P. Raster-scanning Donut simplifies MINFLUX and provides alternative implement on other scanning-based microscopes. LIGHT, SCIENCE & APPLICATIONS 2022; 11:293. [PMID: 36216797 PMCID: PMC9550861 DOI: 10.1038/s41377-022-00983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A donut excitation moves around a single molecule with a zigzag configuration lattice by lattice. Such a method implemented in scanning fluorescence microscopy simplifies the conventional MINFLUX process. Consisting of hollow zero-intensity excitation, single-pixel detection, time-correlated single photon counting, and drift stabilization, the system achieves localization precision and resolution very close to conventional MINFLUX theoretically and experimentally. An averaged high-SNR reference, and pixel-registered intensity from a single molecule is essential to reconstruct localization in maximum likelihood estimation. With performance reaching nearly conventional MINFLUX's, the proposed raster-scanning MINFLUX can inspire researchers expertized in STED or confocal setup to quickly transform to MINFLUX and develop for further exploring on bio-specimens or optical applications.
Collapse
Affiliation(s)
- Xinzhu Xu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
- UTS-SUStech Joint Research Centre for Bio-medical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
- UTS-SUStech Joint Research Centre for Bio-medical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|