1
|
Ramalhosa P, Monteiro JG, Rech S, Gestoso I, Álvarez S, Gizzi F, Parretti P, Castro N, Almeida S, Jiménez JL, Ros M, Cardoso C, Lima MJ, Caldeira R, Robalo JI, Carlton JT, Canning-Clode J. The role of marine debris as a vector, dispersal agent, and substrate for non-indigenous species on Oceanic Islands (Northeast Atlantic). MARINE POLLUTION BULLETIN 2025; 214:117732. [PMID: 40020396 DOI: 10.1016/j.marpolbul.2025.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Marine debris (MD) can be a transport vector for diverse marine communities, including non-indigenous species (NIS). This study assessed MD potential role as a substrate for colonization and dispersal vector for NIS in the Madeira Archipelago (NE Atlantic) by examining three MD categories: floating (FMD), seafloor (SMD), and beached (BMD). Opportunistic sampling, conducted in collaboration with local maritime stakeholders, documented MD sightings with photographs and GPS coordinates. A total of 92 MD items were inspected, revealing 108 fouling species across 11 phyla, with 13 % identified as NIS. SMD exhibited the highest proportion of NIS (9.6 %), followed by BMD (4.4 %) and FMD (3.9 %). Notably, the study provides evidence that FMD functions as both a substrate and a dispersal vector for NIS in Madeira waters. Combining biogeographic analyses, oceanographic modelling, and MD identification marks, this study highlighted the North Atlantic Subtropical Gyre's currents as key pathways, transporting MD items from the Wider Caribbean, the North American east coast, and the Iberian Peninsula to Madeira within 2-3 years. These findings emphasize Madeira's dual role as both a recipient and exporter of MD, with implications for NIS introductions and secondary spread. This study underscores the urgent need for standardized monitoring, stakeholder engagement, and proactive MD management strategies to mitigate NIS introductions and protect sensitive marine ecosystems like Macaronesia from the ecological risks of biological invasions.
Collapse
Affiliation(s)
- Patrício Ramalhosa
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal; OOM- Oceanic Observatory of Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Funchal, Portugal.
| | - João G Monteiro
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal
| | - Sabine Rech
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal; Center for Ecology and Sustainable Management of Oceanic Islands ESMOI, Universidad Catolica del Norte, Coquimbo, Chile
| | - Ignacio Gestoso
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Department of Biology, Faculty of Marine and Environmental Sciences of University of Cádiz, Puerto Real, Spain
| | - Soledad Álvarez
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal
| | - Francesca Gizzi
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal
| | - Paola Parretti
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal
| | - Nuno Castro
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; AQUALOGUS, Engineering and Environment Lda, Lisbon, Portugal
| | - Silvia Almeida
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal
| | - Jesús Lopez Jiménez
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal
| | - Macarena Ros
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Cláudio Cardoso
- OOM- Oceanic Observatory of Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Funchal, Portugal
| | - Maria João Lima
- OOM- Oceanic Observatory of Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Funchal, Portugal
| | - Rui Caldeira
- OOM- Oceanic Observatory of Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Funchal, Portugal
| | - Joana I Robalo
- MARE - Marine and Environmental Sciences Centre / ARNET-Aquatic Research Network, ISPA Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal
| | | | - João Canning-Clode
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal; Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| |
Collapse
|
2
|
Guo W, Li MH, Qi L. The contrasting roles of fungal and bacterial diversity and composition in shaping the multifunctionality of rhizosphere and bulk soils across large-scale bamboo forests. BMC Microbiol 2025; 25:252. [PMID: 40289120 PMCID: PMC12034210 DOI: 10.1186/s12866-025-03962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Soil microbes regulate nutrient cycling, organic matter decomposition, and other processes, thereby maintaining soil multifunctionality (SMF). However, the relationship between microbial characteristics and soil multifunctionality has primarily been studied in bulk soils, with less attention to rhizosphere soils. Moreover, this relationship remains unclear within a single forest type across large scales. In this study, we selected six sites across the distribution range of moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) in China to quantify the relationship between microbial communities and soil multifunctionality in both rhizosphere and bulk soil, and to evaluate how abiotic factors influence this relationship. Our results showed that microbial diversity was negatively correlated with SMF, while the key microbial drivers (bacteria or fungi) of SMF varied between soil compartments (i.e., rhizosphere and bulk soil). Soil variables influenced SMF in bulk soils by affecting bacterial diversity and fungal composition, whereas in rhizosphere soils, soil variables influenced SMF primarily by affecting fungal diversity and composition, suggesting that different characteristics of bacterial and fungal communities drive SMF. Climatic factors exert a more significant influence on the multifunctionality of rhizosphere soils compared to bulk soils. Considering the intricate interplay between plants and soil microbes, our study highlights the importance of integrating SMF and microbial community structure within distinct soil compartments.
Collapse
Affiliation(s)
- Wen Guo
- Institute of Ecology, College of Urban and Environmental Science, Peking University, 100871, Beijing, China
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration, Beijing Bamboo & Rattan Science and Technology, 100102, Beijing, China
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland.
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, School of Geographical Sciences, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
- School of Life Science, Hebei University, Baoding, 071000, China.
| | - Lianghua Qi
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration, Beijing Bamboo & Rattan Science and Technology, 100102, Beijing, China.
| |
Collapse
|
3
|
Liu Y, Kou M, Hu R, Zhao F, Wang J. Relationships between soil health and dynamics of soil potential pathogenic microbiota in functional domains of Xi'an urban greenspaces, China. ENVIRONMENTAL RESEARCH 2025; 277:121604. [PMID: 40246266 DOI: 10.1016/j.envres.2025.121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Soil potential pathogenic microbiota exacerbate the environment and human health through invading normal tissues of the human body, but their distributions and interactions across functional domains in urban greenspaces are poorly understood. Herein, we collected soil samples from parkland and residential land to explore the relationships between soil health and the dynamics of soil potential pathogenic microbiota. Soil organic matter-associated properties, soil multifunctionality and health were significantly about 30 % higher in parkland, but soil stoichiometry including C/N, C/P, and C/N/P were lower in parkland. Alpha diversity of soil pathogenic bacterial communities was higher than for fungal communities in residential land. The relative abundances of the dominant genera Mycobacterium, Metarhizium, and Cladosporium that may cause chronic lung and gastrointestinal diseases in humans were greater for residential land. Potential connected networks including soil pathogenic bacterial and fungal phylotypes were more complicated and stable in residential land, based on higher total and positive connections and higher robustness. Meanwhile, bacterial phylotypes belonging to the genus Shigella were identified as keystone species in parkland network, all of which were chronic pathogens. Soil total nitrogen and phosphorus as dominant properties had greater total effects on soil health in parkland and residential land, respectively. In general, soil health was mostly affected by soil multifunctionality in parkland, but was subject to higher explanation in residential land. These findings underscore intimate relationships between soil health and the dynamics of soil potential pathogenic microbiota in urban greenspaces, which has implications for human daily outdoor routines and urban habitability.
Collapse
Affiliation(s)
- Yang Liu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China; Shaanxi Xi'an Urban Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an, 710127, China
| | - Mengya Kou
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Rong Hu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Fazhu Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an, 710127, China
| | - Jun Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China; Shaanxi Xi'an Urban Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
4
|
Fan H, Hong X, Wang H, Gao F, Su Z, Yao H. Biodegradable microplastics affect tomato (Solanum lycopersicum L.) growth by interfering rhizosphere key phylotypes. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137208. [PMID: 39842126 DOI: 10.1016/j.jhazmat.2025.137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/03/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Biodegradable microplastics (BMPs), which form as biodegradable plastics degrade in agricultural settings, may influence plant growth and soil health. This study investigates the effects of BMPs on tomato growth and the microbial mechanisms involved. A greenhouse experiment applied BMPs-polyhydroxyalkanoate (PHA), polylactic acid (PLA), poly(butylene succinate-co-butylene adipate) (PBSA), and poly(butylene-adipate-co-terephthalate) (PBAT)-to tomato plants. The study analyzed their effects on plant growth, soil properties, and rhizosphere microbial communities. BMP treatments significantly reduced tomato biomass, height, and chlorophyll content compared to the control. PLA0.1 decreased the chlorophyll a/b ratio, while PLA1 increased it. Elemental analysis showed PLA1 increased phosphorus, calcium, and potassium in leaves, whereas all BMPs reduced nitrogen levels. BMPs also altered soil nitrogen and DOC levels, significantly shifting rhizosphere microbial communities, with a notable increase in Betaproteobacteria abundance. Ecological network analysis revealed that BMPs disrupted key microbial modules linked to plant growth. Beneficial modules positively associated with biomass and nutrient uptake were reduced under BMP treatments, whereas harmful microbial taxa in module 3, associated to poor plant health, were promoted. These shifts suggest that BMPs disrupt microbial ecological relationships critical for optimal plant growth. The findings highlight the potential negative impacts of BMPs on tomato growth through changes in microbial dynamics and soil properties.
Collapse
Affiliation(s)
- Haoxin Fan
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xincheng Hong
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hehua Wang
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Feng Gao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ziqi Su
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
5
|
Wu J, Li W, Du H, Wan Y, Yang S, Xiao Y. Nonlinear responses of coupled socioecological systems to land use and climate changes in the Yangtze river basin. Sci Rep 2025; 15:6940. [PMID: 40011567 DOI: 10.1038/s41598-025-92084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/25/2025] [Indexed: 02/28/2025] Open
Abstract
The intensification of land use and climate change threatens watershed sustainability. These external disturbances drive complex interactions among components within watershed socio-ecological systems (SESs). Understanding how SESs respond to these changes is crucial for developing effective integrated watershed management strategies. Nevertheless, the nonlinear responses of these systems to such changes remain poorly understood. To fill this gap, this study proposes a network analysis method focusing on the Yangtze River Basin to construct an SES network comprising six dimensions, revealing the response of coupled relationships among network elements to climate and land-use change. The results showed that changes in land-use dynamics (LUD) and the standardized precipitation evapotranspiration index (SPEI) altered the link count and importance of network nodes, with notable shifts in vegetation and landscape nodes. Importantly, a strong nonlinear response of the LUD and SPEI to the coupled relationship between SES elements was observed, and critical thresholds were identified for all network attributes. Furthermore, compared to the SPEI threshold, the LUD threshold was stable at 0.24, demonstrating stronger robustness. This study provides a new perspective for understanding watershed SESs, and has important implications for sustainable ecosystem management and planning.
Collapse
Affiliation(s)
- Jianping Wu
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Wenjie Li
- National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.
| | - Hongbo Du
- National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Yu Wan
- National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Shengfa Yang
- National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Yi Xiao
- National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| |
Collapse
|
6
|
Chen C, Xiao W, Chen HYH. Meta-analysis reveals global variations in plant diversity effects on productivity. Nature 2025; 638:435-440. [PMID: 39779865 DOI: 10.1038/s41586-024-08407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Positive effects of plant diversity on productivity have been globally demonstrated and explained by two main effects: complementarity effects and selection effects1-4. However, plant diversity experiments have shown substantial variation in these effects, with driving factors poorly understood4-6. On the basis of a meta-analysis of 452 experiments across the globe, we show that productivity increases on average by 15.2% from monocultures to species mixtures with an average species richness of 2.6; net biodiversity effects are stronger in grassland and forest experiments and weaker in container, cropland and aquatic ecosystems. Of the net biodiversity effects, complementarity effects and selection effects contribute 65.6% and 34.4%, respectively. Complementarity effects increase with phylogenetic diversity, the mixing of nitrogen-fixing and non-nitrogen-fixing species and the functional diversity of leaf nitrogen contents, which indicate the key roles of niche partitioning, biotic feedback and abiotic facilitation in complementarity effects. More positive selection effects occur with higher species biomass inequality in their monocultures. Complementarity effects increase over time, whereas selection effects decrease over time, and they remain consistent across global variations in climates. Our results provide key insights into understanding global variations in plant diversity effects on productivity and underscore the importance of integrating both complementarity and selection effects into strategies for biodiversity conservation and ecological restoration.
Collapse
Affiliation(s)
- Chen Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada.
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Wenya Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada.
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Kang Y, Wu H, Guan Q, Zhang Z, Wang W. Microbial mechanisms of mesofauna pattern changes affecting soil greenhouse gas emissions and ecosystem multifunctionality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123881. [PMID: 39733686 DOI: 10.1016/j.jenvman.2024.123881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
In mountainous regions, global warming has changed the biological diversity and community structure of both aboveground and belowground organisms, and it may cause biota to move from lower altitudes to higher altitudes. However, our understanding of such migrations of soil mesofauna caused by global warming on soil processes and functions remains limited. We carried out a 79-day experiment comprising treatments without mesofauna (WM), native mesofauna (NM), migratory mesofauna (MM), and both native and migratory mesofauna together (TM) to reveal the effects of soil mesofauna migration on greenhouse gas emissions, ecosystem multifunctionality, and the underlying mechanisms. We found that soil mesofauna enhanced CO2 emissions (46.59% for NM, 75.72% for MM, and 107.21% for TM) and N2O emissions (82.57% for NM, 121.47% for MM, and 204.69% for TM) when compared to WM. Soil multifunctionality was reduced by 207.64% under TM compared to NM. Partial least squares path modeling indicated that soil properties and microbial diversity have positive effects on soil multifunctionality. The diversity of soil mesofauna had a positive direct effect on soil CO2 and N2O emissions. Random forest analysis showed that mite Shannon diversity, springtail Shannon diversity, and springtail beta diversity emerged as the most critical biotic factors for predicting soil CO2 emissions, soil N2O emissions, and multifunctionality. These findings provide deeper insights into the responses of soil processes and functions to soil mesofauna migrations, as well as the management of mountain ecosystems.
Collapse
Affiliation(s)
- Yujuan Kang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Haitao Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Qiang Guan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Zhongsheng Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Wenfeng Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
8
|
Gong J, Yang G, Zhang S, Zhang W, Dong X, Zhang S, Wang R, Yan C, Wang T. Human activities weaken the positive effects of soil abiotic factors and biodiversity on ecosystem multifunctionality more than drought: A case study in China's West Liao River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177564. [PMID: 39566633 DOI: 10.1016/j.scitotenv.2024.177564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Watershed-scale ecosystem biodiversity has been adversely affected by human disturbances and climate change for many years, leading to degradation of ecological functions (i.e., decreased ecosystem multifunctionality, EMF). However, the driving factors and their mechanisms are unclear. Here, we analyzed the effects of human activities, climate, biodiversity, and soil abiotic factors on EMF in China's West Liao River Basin along a natural drought intensity gradient. The beneficial effects of biodiversity on EMF were influenced by the drought intensity; biodiversity increased plant density in humid zones, plant diversity in semi-arid zones, and soil microbial diversity in arid zones, thereby improving watershed EMF and indicating that drought determines the direction and strength of the effects of biodiversity on EMF. The relative abundances of soil microbial keystone taxa such as Actinomycetes and Gemmatimonadetes were the most important predictors of EMF. These results indicate that any loss of plant community diversity or plant density, soil microbial diversity, and the abundance of keystone microbial taxa could reduce EMF. Human activities and drought directly decreased EMF, but also indirectly reduced EMF by reducing soil pH and soil water content (SWC), plant diversity. As human activity increases, EMF's sensitivity to drought increases, and this implies that in regions with high levels of human activity, the effects of climate warming on EMF may be greater than expected. Overall, human activities (including direct, indirect, and total effects) are primary drivers of changes of biodiversity and soil abiotic factors in watershed ecosystems, and regulate the watershed's EMF. The results provide new insights to improve predictions of the direction, magnitude, and regulation mechanisms of EMF and its responses to global climate change.
Collapse
Affiliation(s)
- Jirui Gong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Guisen Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Siqi Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Weiyuan Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Xuede Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Shangpeng Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Ruijing Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Chenyi Yan
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Tong Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| |
Collapse
|
9
|
Mipam TD, Jing L, Jiang A, Zhang S, Yi W, Zhao C, Ai Y, Tian L. Belowground diversity drives multifunctionality in grazing pastures on the eastern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176913. [PMID: 39414031 DOI: 10.1016/j.scitotenv.2024.176913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Livestock grazing can alter ecosystem structure, functions, and services across diverse biomes, with grazing intensity being a key factor affecting grassland function. Although the effects of grazing on plant and soil properties have been extensively studied, the effects of grazing intensity on biodiversity and ecosystem multifunctionality (EMF) remain largely unexplored. Therefore, this study addresses this gap using 28 indicator variables from a well-controlled yak grazing intensity experiment in alpine meadows on the eastern Tibetan Plateau. The results showed that aboveground diversity (calculated using plant species richness and insect diversity) exhibited a hump-shaped and significant response to increasing grazing intensity, multidiversity (whole-ecosystem biodiversity) and belowground diversity (calculated using nematode richness and microbial diversity) showed no significant response, and EMF significantly declined. Grazing decreased carbon and nitrogen cycling indices (calculated by carbon and nitrogen in plants and soils), but did not affect phosphorus cycling. Structural equation modelling indicated that EMF was directly affected by grazing intensity and belowground diversity (i.e., nematode and fungal diversity), rather than by multidiversity, aboveground diversity, and plant pathogens. Grazing-induced decreases in plant pathogens showed no direct or indirect effects on EMF but increased multidiversity and aboveground diversity. Overall, our results highlight the critical role of conserving belowground diversity in promoting and maintaining multifunctionality in grazing pastures on the Tibetan Plateau.
Collapse
Affiliation(s)
- Tserang Donko Mipam
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Luhuai Jing
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ao Jiang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Sihu Zhang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Wei Yi
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Chen Zhao
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Yi Ai
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Liming Tian
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
10
|
Liu Y, Wen M, Hu R, Zhao F, Wang J. Regulation of wheat yield by soil multifunctionality and metagenomic-based microbial degradation potentials under crop rotations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122897. [PMID: 39405850 DOI: 10.1016/j.jenvman.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Crop rotation benefits soil fertility and crop yield by providing organic components including cellulose, lignin, chitin, and glucans that are mainly degraded by soil microbial carbohydrate-active enzymes (CAZymes). However, the impacts of crop rotation on soil microbial CAZyme genes are not well understood. Hence, CAZyme genes and families involved in the degradation of differentially originated organic components were investigated using metagenomics among distinct crop rotations. Crop rotation had a more significant effect on soil nitrogen than on carbon fractions with higher content in the complex rotation referring to alfalfa (Medicago sativa L.; 4 year)-potato (Solanum tuberosum L.; 1 year)-winter wheat (3 year; A4PoW3). The composition of soil microbial CAZyme genes related to the degradation of fungi-derived components was more affected by crop rotation compared with the degradation of plant- and bacteria-derived components. The total abundance of CAZyme genes and families was significantly higher in the complex rotation. Notably, CAZyme genes belonging to glycoside hydrolase and glycosyl transferase families had more connections in their network. Moreover, key genes including CE4, GH20, and GH23 assembled toward the middle of the network, and were significantly regulated by dominant soil nitrogen fractions including soil potential nitrogen mineralization and microbial biomass nitrogen. Soil multifunctionality was mostly explained by the composition and total abundance of CAZyme genes, but wheat grain yield was profoundly regulated by fungi-derived components degradation genes under effects of dominant nitrogen fractions. Overall, the findings provide deep insight into the degradation potentials of soil microbial CAZyme genes for developing sustainable crop rotational agroecosystems.
Collapse
Affiliation(s)
- Yang Liu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an, 710127, China
| | - Mengmeng Wen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Rong Hu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Fazhu Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an, 710127, China
| | - Jun Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
11
|
Cruz TMP, Buchmann SL, Prudic KL. Buzzing towards Resilience: Investigating the Spatial Alignment of the Desert Pallid Bee, Centris pallida, and Its Host Plants in Response to Climate Change. INSECTS 2024; 15:793. [PMID: 39452369 PMCID: PMC11508805 DOI: 10.3390/insects15100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Wild bees are vital for the pollination of native plants and crops, providing essential ecosystem services. Climate change is known to impact biodiversity and species distributions, but insects adapted to desert ecosystems may exhibit unique physiological, behavioral, and evolutionary responses. The desert pallid bee (C. pallida), a solitary bee native to the arid southwestern United States and northern Mexico, primarily forages on yellow palo verde (P. microphylla), blue palo verde (P. florida), and desert ironwood (O. tesota). This study used MaxEnt to estimate the current and projected geographical overlap of suitable habitats for C. pallida and its host plants. Here, we used MaxEnt to estimate the current and forecasted overlapping geographically suitable habitat of C. pallida with all three host plants. We forecasted potential environmentally suitable areas for each species to the year 2040 using the current distribution model and climate projections with moderate CO2 levels. We found a continued spatial alignment in the suitable area of the bee and its host plants with a 70% increase in the range overlap area, though shifted to higher average altitudes and a slight northern expansion. These findings may provide insight to stakeholders on the conservation needs of desert-dwelling pollinators.
Collapse
Affiliation(s)
- Terese Maxine P. Cruz
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen L. Buchmann
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA;
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Kathleen L. Prudic
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA
- Arizona Institute for Resilience, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Wang H, Ren W, Xu Y, Wang X, Ma J, Sun Y, Hu W, Chen S, Dai S, Song J, Jia J, Teng Y. Long-term herbicide residues affect soil multifunctionality and the soil microbial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116783. [PMID: 39067076 DOI: 10.1016/j.ecoenv.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Residues of herbicides with the extensive applications may impact the soil ecosystem and ultimately threaten agricultural sustainability. However, the effects of long-term herbicide residues on soil multifunctionality and the soil microbial community remain poorly understood. Here, we evaluated relationships between soil multifunctionality and soil microbial communities with residual herbicide concentrations by surveying and analyzing 62 black soil samples collected from an agricultural area in northeastern China. Total residual herbicide concentrations varied from 35 to 568 μg/kg in the soil samples. The response of soil multifunctionality to increasing residual herbicide concentrations exhibited an inverted U-shaped relationship with a peak at approximately 310 μg/kg, with net mineralized organic nitrogen (Nm) and total nitrogen (TN) exhibiting the same trend. Microbial community richness was significantly lower in soil samples with high residual herbicide concentrations (> 310 μg/kg, HG) compared to low residual herbicide concentrations (< 310 μg/kg, LG). In addition, the relative abundances of specific keystone microbial genera differed significantly between LG and HG: norank_f_Acetobacteraceae, norank_f_Caldilineaceae, Candidatus_Alysiosphaera, and Gonytrichum. The relative abundances of these genera were also significantly correlated with soil multifunctionality. Structural equation models (SEMs) further showed that herbicide residues influenced soil multifunctionality by affecting these specific keystone genera. Our study demonstrates that long-term herbicide residues significantly impact the multifunctionality of agricultural black soil, where low concentrations stimulate while high concentrations inhibit, underscoring the need for reasonable application of herbicides to maintain soil ecosystem health.
Collapse
Affiliation(s)
- Hongzhe Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Ren
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xia Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yi Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sensen Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shixiang Dai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiayin Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junfeng Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Arias-Real R, Delgado-Baquerizo M, Sabater S, Gutiérrez-Cánovas C, Valencia E, Aragón G, Cantón Y, Datry T, Giordani P, Medina NG, de Los Ríos A, Romaní AM, Weber B, Hurtado P. Unfolding the dynamics of ecosystems undergoing alternating wet-dry transitional states. Ecol Lett 2024; 27:e14488. [PMID: 39092560 DOI: 10.1111/ele.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
A significant fraction of Earth's ecosystems undergoes periodic wet-dry alternating transitional states. These globally distributed water-driven transitional ecosystems, such as intermittent rivers and coastal shorelines, have traditionally been studied as two distinct entities, whereas they constitute a single, interconnected meta-ecosystem. This has resulted in a poor conceptual and empirical understanding of water-driven transitional ecosystems. Here, we develop a conceptual framework that places the temporal availability of water as the core driver of biodiversity and functional patterns of transitional ecosystems at the global scale. Biological covers (e.g., aquatic biofilms and biocrusts) serve as an excellent model system thriving in both aquatic and terrestrial states, where their succession underscores the intricate interplay between these two states. The duration, frequency, and rate of change of wet-dry cycles impose distinct plausible scenarios where different types of biological covers can occur depending on their desiccation/hydration resistance traits. This implies that the distinct eco-evolutionary potential of biological covers, represented by their trait profiles, would support different functions while maintaining similar multifunctionality levels. By embracing multiple alternating transitional states as interconnected entities, our approach can help to better understand and manage global change impacts on biodiversity and multifunctionality in water-driven transitional ecosystems, while providing new avenues for interdisciplinary studies.
Collapse
Affiliation(s)
- Rebeca Arias-Real
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Sergi Sabater
- Catalan Institute of Water Research (ICRA), Girona, Spain
- Institute of Aquatic Ecology, University of Girona-Montilivi Campus, Girona, Spain
| | - Cayetano Gutiérrez-Cánovas
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Spain
- Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos, Móstoles, Spain
| | - Enrique Valencia
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Gregorio Aragón
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Spain
- Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos, Móstoles, Spain
| | - Yolanda Cantón
- Agronomy Department, University of Almería, Almería, Spain
- Research Centre for Scientific Collections from the University of Almería (CECOUAL), Almería, Spain
| | - Thibault Datry
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | | | - Nagore G Medina
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Asunción de Los Ríos
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Anna M Romaní
- GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Bettina Weber
- Division of Plant Sciences, Institute for Biology, University of Graz, Graz, Austria
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Pilar Hurtado
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Spain
- DIFAR, University of Genoa, Genoa, Italy
| |
Collapse
|
14
|
Li K, Chen A, Sheng R, Hou H, Zhu B, Wei W, Zhang W. Long-term chemical and organic fertilization induces distinct variations of microbial associations but unanimous elevation of soil multifunctionality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172862. [PMID: 38705286 DOI: 10.1016/j.scitotenv.2024.172862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Intricate microbial associations contribute greatly to the multiple functions (multifunctionality) of natural ecosystems. However, the relationship between microbial associations and soil multifunctionality (SMF) in artificial ecosystems, particularly in agricultural ecosystem with frequent fertilization, remains unclear. In this study, based on a 28-year paddy field experiment, high-throughput sequencing and networks analysis was performed to investigate changes in soil microbial (archaea, bacteria, fungi, and protists) associations and how these changes correlate with SMF under long-term fertilization. Compared to no fertilization (CK), both chemical fertilization with N, P, and K (CF) and chemical fertilization plus rice straw retention (CFR) treatments showed significantly higher soil nutrient content, grain yield, microbial abundance, and SMF. With the exception of archaeal diversity, the CF treatment exhibited the lowest bacterial, fungal, and protist diversity, and the simplest microbial co-occurrence network. In contrast, the CFR treatment had the lowest archaeal diversity, but the highest bacterial, fungal, and protist diversity. Moreover, the CFR treatment exhibited the most complex microbial co-occurrence network with the highest number of nodes, edges, and interkingdom edges. These results highlight that both chemical fertilization with and without straw retention caused high ecosystem multifunctionality while changing microbial association oppositely. Furthermore, these results indicate that rice straw retention contributes to the development of the soil microbiome and ensures the sustainability of high-level ecosystem multifunctionality.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anlei Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Rong Sheng
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Haijun Hou
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Baoli Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenxue Wei
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenzhao Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
15
|
Hu Y, Zhang H, Sun X, Zhang B, Wang Y, Rafiq A, Jia H, Liang C, An S. Impact of grassland degradation on soil multifunctionality: Linking to protozoan network complexity and stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172724. [PMID: 38663601 DOI: 10.1016/j.scitotenv.2024.172724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Soil protozoa, as predators of microbial communities, profoundly influence multifunctionality of soils. Understanding the relationship between soil protozoa and soil multifunctionality (SMF) is crucial to unraveling the driving mechanisms of SMF. However, this relationship remains unclear, particularly in grassland ecosystems that are experiencing degradation. By employing 18S rRNA gene sequencing and network analysis, we examined the diversity, composition, and network patterns of the soil protozoan community along a well-characterized gradient of grassland degradation at four alpine sites, including two alpine meadows (Cuona and Jiuzhi) and two alpine steppes (Shuanghu and Gonghe) on the Qinghai-Tibetan Plateau. Our findings showed that grassland degradation decreased SMF for 1-2 times in all four sites but increased soil protozoan diversity (Shannon index) for 13.82-298.01 % in alpine steppes. Grassland degradation-induced changes in soil protozoan composition, particularly to the Intramacronucleata with a large body size, were consistently observed across all four sites. The enhancing network complexity (average degree), stability (robustness), and cooperative relationships (positive correlation) are the responses of protozoa to grassland degradation. Further analyses revealed that the increased network complexity and stability led to a decrease in SMF by affecting microbial biomass. Overall, protozoa increase their diversity and strengthen their cooperative relationships to resist grassland degradation, and emphasize the critical role of protozoan network complexity and stability in regulating SMF. Therefore, not only protozoan diversity and composition but also their interactions should be considered in evaluating SMF responses to grassland degradation, which has important implications for predicting changes in soil function under future scenarios of anthropogenic change.
Collapse
Affiliation(s)
- Yang Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Haolin Zhang
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Xinya Sun
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Bicheng Zhang
- Institute of Soil and Water Conservation, CAS & MWR, Yangling, Shannxi 712100, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yubin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Anum Rafiq
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
16
|
Zheng J, Arif M, Li L, He X, Wu Y, Cao W, Yan P, Li C. Dam inundation reduces ecosystem multifunctionality following riparian afforestation in the Three Gorges Reservoir Region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121188. [PMID: 38759556 DOI: 10.1016/j.jenvman.2024.121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Afforestation is an acknowledged method for rehabilitating deteriorated riparian ecosystems, presenting multiple functions to alleviate the repercussions of river damming and climate change. However, how ecosystem multifunctionality (EMF) responds to inundation in riparian afforestation ecosystems remains relatively unexplored. Thus, this article aimed to disclose how EMF alters with varying inundation intensities and to elucidate the key drivers of this variation based on riparian reforestation experiments in the Three Gorges Reservoir Region in China. Our EMF analysis encompassed wood production, carbon storage, nutrient cycling, decomposition, and water regulation under different inundation intensities. We examined their correlation with soil properties and microbial diversity. The results indicated a substantial reduction in EMF with heightened inundation intensity, which was primarily due to the decline in most individual functions. Notably, soil bacterial diversity (23.02%), soil properties such as oxidation-reduction potential (ORP, 11.75%), and temperature (5.85%) emerged as pivotal variables elucidating EMF changes under varying inundation intensities. Soil bacterial diversity and ORP declined as inundation intensified but were positively associated with EMF. In contrast, soil temperature rose with increased inundation intensity and exhibited a negative correlation with EMF. Further insights gleaned from structural equation modeling revealed that inundation reduced EMF directly and indirectly by reducing soil ORP and bacterial diversity and increasing soil temperature. This work underscores the adverse effects of dam inundation on riparian EMF and the crucial role soil characteristics and microbial diversity play in mediating EMF in response to inundation. These insights are pivotal for the conservation of biodiversity and functioning following afforestation in dam-induced riparian habitats.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China.
| | - Muhammad Arif
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China.
| | - Lijuan Li
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xinrui He
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Yuanyuan Wu
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Wenqiu Cao
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Peixuan Yan
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Changxiao Li
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
17
|
Zhou G, Long F, Zu L, Jarvie S, Peng Y, Zang L, Chen D, Zhang G, Sui M, He Y, Liu Q. Stand spatial structure and microbial diversity are key drivers of soil multifunctionality during secondary succession in degraded karst forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173504. [PMID: 38797411 DOI: 10.1016/j.scitotenv.2024.173504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Studying the relationship between biodiversity and ecosystem multifunctionality (the ability of ecosystems to provide multiple ecosystem functions) (BEMF) is a current hotspot in ecology research. Previous studies on BEMF emphasized the role of plant and microbial diversity but rarely mention stand spatial structure. To investigate the effect of stand spatial structure on BEMF, this study established 30 forest dynamic plots in three natural restoration stages (shrubbery, secondary growth forest, and old-growth forest) in Maolan National Nature Reserve, Guizhou province, China. A positive response in soil multifunctionality (SMF), plant species diversity, stand spatial structure, and fungal β diversity (p < 0.05) followed natural restoration. However, bacterial β diversity showed a negative response (p < 0.05), while microbial α diversity remained unchanged (p > 0.05). These results based on a structural equation model showed that plant species diversity had no direct or indirect effect on SMF, soil microbial diversity was the only direct driver of SMF, and stand spatial structure indirectly affected SMF through soil microbial diversity. The random forest model showed that soil microbial β diversity and the Shannon-Wiener index of the diameter at breast height for woody plant species were the optimal variables to characterize SMF and soil microbial diversity, respectively. These results suggested that natural restoration promoted SMF, and microbial diversity had a direct positive effect on SMF. In the meantime, stand spatial structure had a significant indirect effect on SMF, while plant species diversity did not. Future work on degraded karst forest restoration should direct more attention to the role of the stand spatial structure and emphasize the importance of biodiversity.
Collapse
Affiliation(s)
- Guanghui Zhou
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Fayu Long
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Lei Zu
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Scott Jarvie
- Otago Regional Council, Dunedin 9016, New Zealand
| | - Yan Peng
- Key Laboratory for Subtropical Mountain Ecology, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Lipeng Zang
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, Libo 558400, China
| | - Danmei Chen
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, Libo 558400, China
| | - Guangqi Zhang
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, Libo 558400, China
| | - Mingzhen Sui
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, Libo 558400, China
| | - Yuejun He
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Qingfu Liu
- Research Center of Forest Ecology, College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Libo Karst Forest Ecosystem National Observation and Research Station, Libo 558400, China.
| |
Collapse
|
18
|
Feng J, Liu YR, Eldridge D, Huang Q, Tan W, Delgado-Baquerizo M. Geologically younger ecosystems are more dependent on soil biodiversity for supporting function. Nat Commun 2024; 15:4141. [PMID: 38755127 PMCID: PMC11099028 DOI: 10.1038/s41467-024-48289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Soil biodiversity contains the metabolic toolbox supporting organic matter decomposition and nutrient cycling in the soil. However, as soil develops over millions of years, the buildup of plant cover, soil carbon and microbial biomass may relax the dependence of soil functions on soil biodiversity. To test this hypothesis, we evaluate the within-site soil biodiversity and function relationships across 87 globally distributed ecosystems ranging in soil age from centuries to millennia. We found that within-site soil biodiversity and function relationship is negatively correlated with soil age, suggesting a stronger dependence of ecosystem functioning on soil biodiversity in geologically younger than older ecosystems. We further show that increases in plant cover, soil carbon and microbial biomass as ecosystems develop, particularly in wetter conditions, lessen the critical need of soil biodiversity to sustain function. Our work highlights the importance of soil biodiversity for supporting function in drier and geologically younger ecosystems with low microbial biomass.
Collapse
Affiliation(s)
- Jiao Feng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| | - David Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng Tan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain.
| |
Collapse
|
19
|
Feng Y, Chen H, Fu L, Yin M, Wang Z, Li Y, Cao W. Green Manuring Enhances Soil Multifunctionality in Tobacco Field in Southwest China. Microorganisms 2024; 12:949. [PMID: 38792779 PMCID: PMC11124463 DOI: 10.3390/microorganisms12050949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The use of green manure can substantially increase the microbial diversity and multifunctionality of soil. Green manuring practices are becoming popular for tobacco production in China. However, the influence of different green manures in tobacco fields has not yet been clarified. Here, smooth vetch (SV), hairy vetch (HV), broad bean (BB), common vetch (CV), rapeseed (RS), and radish (RD) were selected as green manures to investigate their impact on soil multifunctionality and evaluate their effects on enhancing soil quality for tobacco cultivation in southwest China. The biomass of tobacco was highest in the SV treatment. Soil pH declined, and soil organic matter (SOM), total nitrogen (TN), and dissolved organic carbon (DOC) content in CV and BB and activity of extracellular enzymes in SV and CV treatments were higher than those in other treatments. Fungal diversity declined in SV and CV but did not affect soil multifunctionality, indicating that bacterial communities contributed more to soil multifunctionality than fungal communities. The abundance of Firmicutes, Rhizobiales, and Micrococcales in SV and CV treatments increased and was negatively correlated with soil pH but positively correlated with soil multifunctionality, suggesting that the decrease in soil pH contributed to increases in the abundance of functional bacteria. In the bacteria-fungi co-occurrence network, the relative abundance of key ecological modules negatively correlated with soil multifunctionality and was low in SV, CV, BB, and RS treatments, and this was associated with reductions in soil pH and increases in the content of SOM and nitrate nitrogen (NO3--N). Overall, we found that SV and CV are more beneficial for soil multifunctionality, and this was driven by the decrease in soil pH and the increase in SOM, TN, NO3--N, and C- and N-cycling functional bacteria.
Collapse
Affiliation(s)
- Yu Feng
- College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China;
| | - Hua Chen
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.C.); (L.F.); (M.Y.); (Z.W.)
| | - Libo Fu
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.C.); (L.F.); (M.Y.); (Z.W.)
| | - Mei Yin
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.C.); (L.F.); (M.Y.); (Z.W.)
| | - Zhiyuan Wang
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.C.); (L.F.); (M.Y.); (Z.W.)
| | - Yongmei Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650500, China
| | - Weidong Cao
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
20
|
Dong X, Chen M, Chen Q, Liu K, Long J, Li Y, Ren Y, Yang T, Zhou J, Herath S, Peng X. Rare microbial taxa as the major drivers of nutrient acquisition under moss biocrusts in karst area. Front Microbiol 2024; 15:1384367. [PMID: 38751717 PMCID: PMC11094542 DOI: 10.3389/fmicb.2024.1384367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Karst rocky desertification refers to the process of land degradation caused by various factors such as climate change and human activities including deforestation and agriculture on a fragile karst substrate. Nutrient limitation is common in karst areas. Moss crust grows widely in karst areas. The microorganisms associated with bryophytes are vital to maintaining ecological functions, including climate regulation and nutrient circulation. The synergistic effect of moss crusts and microorganisms may hold great potential for restoring degraded karst ecosystems. However, our understanding of the responses of microbial communities, especially abundant and rare taxa, to nutrient limitations and acquisition in the presence of moss crusts is limited. Different moss habitats exhibit varying patterns of nutrient availability, which also affect microbial diversity and composition. Therefore, in this study, we investigated three habitats of mosses: autochthonal bryophytes under forest, lithophytic bryophytes under forest and on cliff rock. We measured soil physicochemical properties and enzymatic activities. We conducted high-throughput sequencing and analysis of soil microorganisms. Our finding revealed that autochthonal moss crusts under forest had higher nutrient availability and a higher proportion of copiotrophic microbial communities compared to lithophytic moss crusts under forest or on cliff rock. However, enzyme activities were lower in autochthonal moss crusts under forest. Additionally, rare taxa exhibited distinct structures in all three habitats. Analysis of co-occurrence network showed that rare taxa had a relatively high proportion in the main modules. Furthermore, we found that both abundant and rare taxa were primarily assembled by stochastic processes. Soil properties significantly affected the community assembly of the rare taxa, indirectly affecting microbial diversity and complexity and finally nutrient acquisition. These findings highlight the importance of rare taxa under moss crusts for nutrient acquisition. Addressing this knowledge gap is essential for guiding ongoing ecological restoration projects in karst rocky desertification regions.
Collapse
Affiliation(s)
- Xintong Dong
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Man Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qi Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kangfei Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Long
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yunzhou Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yinuo Ren
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Tao Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jinxing Zhou
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Saman Herath
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| | - Xiawei Peng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| |
Collapse
|
21
|
Liu Y, Liu R, Feng Z, Hu R, Zhao F, Wang J. Regulation of wheat growth by soil multifunctionality and metagenomic-based microbial functional profiles under mulching treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170881. [PMID: 38360319 DOI: 10.1016/j.scitotenv.2024.170881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/07/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Soil microbial functional genes play key roles in biogeochemical processes that are closely related to crop development. However, the regulation of crop growth by the composition and potential interactions of metagenomic-based functional genes is poorly understood. Therefore, in a long-term mulching experiment, the regulation of wheat growth by soil multifunctionality, microbial functional profiles driven by soil properties and microbial activity was studied. Soil properties and microbial activity were significantly separated into distinct mulching treatments, and were significantly declined by plastic film mulching treatment, similar to soil multifunctionality. Only carbon (C) and phosphorus (P) cycling gene compositions were divided significantly into distinct mulching treatments to varying degrees. Similarly, intra- and inter-connected sub-networks associated with C and P cycling genes were more complex and stable than the sub-networks containing nitrogen cycling genes. Despite core functional genes being located in the middle of each network, they were rarely observed in the metagenomic assembly genomes. Subsequently, the dominant soil properties and microbial activity had greater effects on C cycling gene composition and network, which played essential roles in wheat growth regulation. Overall, wheat yield and biomass were affected differently by straw and plastic film mulching treatments, and were mainly regulated by C cycling gene network and soil multifunctionality, respectively. The results of the present study provide novel insights into wheat growth regulation by soil microbial functional profiles, with potential implications for sustainable crop production in mulching conservation agroecosystems.
Collapse
Affiliation(s)
- Yang Liu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China
| | - Rui Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Zhen Feng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Rong Hu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Fazhu Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China
| | - Jun Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China.
| |
Collapse
|
22
|
Hu Z, Delgado-Baquerizo M, Fanin N, Chen X, Zhou Y, Du G, Hu F, Jiang L, Hu S, Liu M. Nutrient-induced acidification modulates soil biodiversity-function relationships. Nat Commun 2024; 15:2858. [PMID: 38570522 PMCID: PMC10991381 DOI: 10.1038/s41467-024-47323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Nutrient enrichment is a major global change component that often disrupts the relationship between aboveground biodiversity and ecosystem functions by promoting species dominance, altering trophic interactions, and reducing ecosystem stability. Emerging evidence indicates that nutrient enrichment also reduces soil biodiversity and weakens the relationship between belowground biodiversity and ecosystem functions, but the underlying mechanisms remain largely unclear. Here, we explore the effects of nutrient enrichment on soil properties, soil biodiversity, and multiple ecosystem functions through a 13-year field experiment. We show that soil acidification induced by nutrient enrichment, rather than changes in mineral nutrient and carbon (C) availability, is the primary factor negatively affecting the relationship between soil diversity and ecosystem multifunctionality. Nitrogen and phosphorus additions significantly reduce soil pH, diversity of bacteria, fungi and nematodes, as well as an array of ecosystem functions related to C and nutrient cycling. Effects of nutrient enrichment on microbial diversity also have negative consequences at higher trophic levels on the diversity of microbivorous nematodes. These results indicate that nutrient-induced acidification can cascade up its impacts along the soil food webs and influence ecosystem functioning, providing novel insight into the mechanisms through which nutrient enrichment influences soil community and ecosystem properties.
Collapse
Affiliation(s)
- Zhengkun Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro‑Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain
| | - Nicolas Fanin
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, Villenave-d'Ornon, France
| | - Xiaoyun Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guozhen Du
- College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Manqiang Liu
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro‑Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
23
|
Zhou G, Fan K, Gao S, Chang D, Li G, Liang T, Liang H, Li S, Zhang J, Che Z, Cao W. Green manuring relocates microbiomes in driving the soil functionality of nitrogen cycling to obtain preferable grain yields in thirty years. SCIENCE CHINA. LIFE SCIENCES 2024; 67:596-610. [PMID: 38057623 DOI: 10.1007/s11427-023-2432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/05/2023] [Indexed: 12/08/2023]
Abstract
Fertilizers are widely used to produce more food, inevitably altering the diversity and composition of soil organisms. The role of soil biodiversity in controlling multiple ecosystem services remains unclear, especially after decades of fertilization. Here, we assess the contribution of the soil functionalities of carbon (C), nitrogen (N), and phosphorus (P) cycling to crop production and explore how soil organisms control these functionalities in a 33-year field fertilization experiment. The long-term application of green manure or cow manure produced wheat yields equivalent to those obtained with chemical N, with the former providing higher soil functions and allowing the functionality of N cycling (especially soil N mineralization and biological N fixation) to control wheat production. The keystone phylotypes within the global network rather than the overall microbial community dominated the soil multifunctionality and functionality of C, N, and P cycling across the soil profile (0-100 cm). We further confirmed that these keystone phylotypes consisted of many metabolic pathways of nutrient cycling and essential microbes involved in organic C mineralization, N2O release, and biological N fixation. The chemical N, green manure, and cow manure resulted in the highest abundances of amoB, nifH, and GH48 genes and Nitrosomonadaceae, Azospirillaceae, and Sphingomonadaceae within the keystone phylotypes, and these microbes were significantly and positively correlated with N2O release, N fixation, and organic C mineralization, respectively. Moreover, our results demonstrated that organic fertilization increased the effects of the network size and keystone phylotypes on the subsoil functions by facilitating the migration of soil microorganisms across the soil profiles and green manure with the highest migration rates. This study highlights the importance of the functionality of N cycling in controlling crop production and keystone phylotypes in regulating soil functions, and provides selectable fertilization strategies for maintaining crop production and soil functions across soil profiles in agricultural ecosystems.
Collapse
Affiliation(s)
- Guopeng Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Songjuan Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danna Chang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guilong Li
- Institute of Soil & Fertilizer and Resource & Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Ting Liang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hai Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shun Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiudong Zhang
- Institute of Soil and Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Zongxian Che
- Institute of Soil and Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China.
| | - Weidong Cao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
24
|
Sun L, Li G, Zhao J, Zhang T, Liu J, Zhang J. Core microbiota drive multi-functionality of the soil microbiome in the Cinnamomum camphora coppice planting. BMC Microbiol 2024; 24:18. [PMID: 38200417 PMCID: PMC10777636 DOI: 10.1186/s12866-023-03170-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Cinnamomum camphora (L.) Presl (C. camphora) is an evergreen broad-leaved tree cultivated in subtropical China. The use of C. camphora as clonal cuttings for coppice management has become popular recently. However, little is known about the relationship between soil core microbiota and ecosystem multi-functionality under tree planting. Particularly, the effects of soil core microbiota on maintaining ecosystem multi-functionality under C. camphora coppice planting remained unclear. MATERIALS AND METHODS In this study, we collected soil samples from three points (i.e., the abandoned land, the root zone, and the transition zone) in the C. camphora coppice planting to investigate whether core microbiota influences ecosystem multi-functions. RESULTS The result showed a significant difference in soil core microbiota community between the abandoned land (AL), root zone (RZ), and transition zone (TZ), and soil ecosystem multi-functionality of core microbiota in RZ had increased significantly (by 230.8%) compared to the AL. Soil core microbiota played a more significant influence on ecosystem multi-functionality than the non-core microbiota. Moreover, the co-occurrence network demonstrated that the soil ecosystem network consisted of five major ecological clusters. Soil core microbiota within cluster 1 were significantly higher than in cluster 4, and there is also a higher Copiotrophs/Oligotrophs ratio in cluster 1. Our results corroborated that soil core microbiota is crucial for maintaining ecosystem multi-functionality. Especially, the core taxa within the clusters of networks under tree planting, with the same ecological preferences, had a significant contribution to ecosystem multi-functionality. CONCLUSION Overall, our results provide further insight into the linkage between core taxa and ecosystem multi-functionality. This enables us to predict how ecosystem functions respond to the environmental changes in areas under the C. camphora coppice planting. Thus, conserving the soil microbiota, especially the core taxa, is essential to maintaining the multiple ecosystem functions under the C. camphora coppice planting.
Collapse
Affiliation(s)
- Luyuan Sun
- Jiangxi Provincial Engineering Research Center for Seed- breeding and Utilization of Camphor Trees, Nanchang Institute of Technology, Nanchang, 330099, China
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Guilong Li
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Jiao Zhao
- Jiangxi Provincial Engineering Research Center for Seed- breeding and Utilization of Camphor Trees, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Ting Zhang
- Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Jie Zhang
- Jiangxi Provincial Engineering Research Center for Seed- breeding and Utilization of Camphor Trees, Nanchang Institute of Technology, Nanchang, 330099, China.
| |
Collapse
|
25
|
Ranheim Sveen T, Hannula SE, Bahram M. Microbial regulation of feedbacks to ecosystem change. Trends Microbiol 2024; 32:68-78. [PMID: 37500365 DOI: 10.1016/j.tim.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023]
Abstract
Microbes are key biodiversity components of all ecosystems and control vital ecosystem functions. Although we have just begun to unravel the scales and factors that regulate microbial communities, their role in mediating ecosystem stability in response to disturbances remains underexplored. Here, we review evidence of how, when, and where microbes regulate or drive disturbance feedbacks. Negative feedbacks dampen the impacts of disturbance, which maintain ecosystem stability, whereas positive feedbacks instead erode stability by amplifying the disturbance. Here we describe the processes underlying the responses to disturbance using a hierarchy of functional traits, and we exemplify how these may drive biogeochemical feedbacks. We suggest that the feedback potential of functional traits at different hierarchical levels is contingent on the complexity and heterogeneity of the environment.
Collapse
Affiliation(s)
- T Ranheim Sveen
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51 Uppsala, Sweden.
| | - S E Hannula
- Institute of Environmental Sciences, Leiden University, Leiden 2333, The Netherlands
| | - M Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51 Uppsala, Sweden; Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
26
|
Zhai C, Han L, Xiong C, Ge A, Yue X, Li Y, Zhou Z, Feng J, Ru J, Song J, Jiang L, Yang Y, Zhang L, Wan S. Soil microbial diversity and network complexity drive the ecosystem multifunctionality of temperate grasslands under changing precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167217. [PMID: 37751844 DOI: 10.1016/j.scitotenv.2023.167217] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Soil microbiomes play a critical role in regulating ecosystem multifunctionality. However, whether and how soil protists and microbiome interactions affect ecosystem multifunctionality under climate change is unclear. Here, we transplanted 54 soil monoliths from three typical temperate grasslands (i.e., desert, typical, and meadow steppes) along a precipitation gradient in the Mongolian Plateau and examined their response to nighttime warming, decreased, and increased precipitation. Across the three steppes, nighttime warming only stimulated protistan diversity by 15.61 (absolute change, phylogenetic diversity) but had no effect on ecosystem multifunctionality. Decreased precipitation reduced bacterial (8.78) and fungal (22.28) diversity, but significantly enhanced soil microbiome network complexity by 1.40. Ecosystem multifunctionality was reduced by 0.23 under decreased precipitation, which could be largely attributed to the reduced soil moisture that negatively impacted bacterial and fungal communities. In contrast, increased precipitation had little impact on soil microbial communities. Overall, both bacterial and fungal diversity and network complexity play a fundamental role in maintaining ecosystem multifunctionality in response to drought stress. Protists alter ecosystem multifunctionality by indirectly affecting microbial network complexity. Therefore, not only microbial diversity but also their interactions (regulated by soil protists) should be considered in evaluating the responses of ecosystem multifunctionality, which has important implications for predicting changes in ecosystem functioning under future climate change scenarios.
Collapse
Affiliation(s)
- Changchun Zhai
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lili Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chao Xiong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Anhui Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaojing Yue
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Ying Li
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhenxing Zhou
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayin Feng
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jingyi Ru
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jian Song
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Limei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shiqiang Wan
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
27
|
Liu W, Yang Z, Ye Q, Peng Z, Zhu S, Chen H, Liu D, Li Y, Deng L, Shu X, Huang H. Positive Effects of Organic Amendments on Soil Microbes and Their Functionality in Agro-Ecosystems. PLANTS (BASEL, SWITZERLAND) 2023; 12:3790. [PMID: 38005687 PMCID: PMC10674390 DOI: 10.3390/plants12223790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/26/2023]
Abstract
Soil microbial characteristics are considered to be an index for soil quality evaluation. It is generally believed that organic amendments replacing chemical fertilizers have positive effects on changing microbial activity and community structure. However, their effects on different agro-ecosystems on a global scale and their differences in different environmental conditions and experimental durations are unclear. This study performed a meta-analysis based on 94 studies with 204 observations to evaluate the overall effects and their differences in different experimental conditions and duration. The results indicated that compared to chemical fertilizer, organic amendments significantly increased total microbial biomass, bacterial biomass, fungal biomass, Gram-positive bacterial biomass and Gram-negative bacterial biomass, and had no effect on the ratio of fungi to bacteria and ratio of Gram-positive bacteria to Gram-negative bacteria. Meanwhile, land use type, mean annual precipitation and soil initial pH are essential factors affecting microbial activity response. Organic-amendment-induced shifts in microbial biomass can be predominantly explained by soil C and nutrient availability changes. Additionally, we observed positive relationships between microbial functionality and microbial biomass, suggesting that organic-amendment-induced changes in microbial activities improved soil microbial functionality.
Collapse
Affiliation(s)
- Weijia Liu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (W.L.); (Q.Y.)
| | - Zepeng Yang
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Z.Y.); (H.C.); (D.L.)
| | - Qinxin Ye
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (W.L.); (Q.Y.)
| | - Zhaohui Peng
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (W.L.); (Q.Y.)
| | - Shunxi Zhu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (W.L.); (Q.Y.)
| | - Honglin Chen
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Z.Y.); (H.C.); (D.L.)
| | - Dinghui Liu
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Z.Y.); (H.C.); (D.L.)
| | - Yiding Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (L.D.)
| | - Liangji Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (L.D.)
| | - Xiangyang Shu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (W.L.); (Q.Y.)
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Z.Y.); (H.C.); (D.L.)
- Key Lab of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China
| | - Han Huang
- College of Economics and Management, Xinjiang Agricultural University, Urumqi 830052, China;
| |
Collapse
|
28
|
Bazzi G, Galimberti A, Foglini C, Bani L, Bazzi L, Bonvicini P, Brembilla R, Brigo M, Cavenaghi A, Colombo G, Della Pietà C, Galliani C, Guarnaroli E, Larroux N, Monti A, Orioli V, Ornaghi F, Pilon N, Pirotta G, Radaelli G, Tessa G, Assandri G. Odonate diversity of a highly urbanised region: An annotated checklist of the damselflies and dragonflies (Insecta, Odonata) of Lario and Brianza (Lombardy, N Italy). Biodivers Data J 2023; 11:e111358. [PMID: 38028237 PMCID: PMC10646535 DOI: 10.3897/bdj.11.e111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Given their sensitivity to environmental alterations, odonates act as reliable bioindicators to assess the effects of changes in freshwater ecosystems and associated terrestrial habitats. The region comprised between Lario and Brianza (Provinces of Como, Lecco and Monza and Brianza - Lombardy, N Italy) is one of the most urbanised of the Italian peninsula and large parts of its territory have been heavily altered, especially at low elevation. Despite this pervasive anthropogenisation, the area is still characterised by a considerable variety of freshwater habitats, possibly harbouring rich odonate communities, which, however, have been never thoroughly investigated. This study aimed to produce the first commented checklist of the Odonata of this region, accompanied by distribution maps. New information The work is based on 12,093 records spanning from 1981 and 2022, derived from literature (289), revision of collections (42), citizen-science projects (1249) and unpublished data from the authors and their collaborators (10,513). Overall, fifty-five species occur - or occurred in the past - in the study area (20 Zygoptera and 35 Anisoptera). One species, Erythrommanajas, was confirmed exclusively before 1978, while seven species (Lestesbarbarus, Coenagrionscitulum, Aeshnaaffinis, Anaxephippiger, Somatochloraarctica, Sympetrummeridionale and Trithemisannulata) have been recorded only after 2000. Records referring to Chalcolestesparvidens and Sympetrumflaveolum were considered questionable and excluded from the checklist. A list of species for each protected site is additionally provided. This work highlighted the importance for odonates of Lario and Brianza Regions from a national perspective, in particular for species of conservation priority/interest, such as Sympecmapaedisca, Oxygastracurtisii and Sympetrumdepressiusculum.
Collapse
Affiliation(s)
- Gaia Bazzi
- Area per l’Avifauna Migratrice (BIO-AVM), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano Emilia, ItalyArea per l’Avifauna Migratrice (BIO-AVM), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)Ozzano EmiliaItaly
| | - Andrea Galimberti
- Università degli Studi di Milano-Bicocca, Dipartimento di Biotecnologie e Bioscienze, Milano, ItalyUniversità degli Studi di Milano-Bicocca, Dipartimento di Biotecnologie e BioscienzeMilanoItaly
- National Biodiversity Future Center, Palermo, ItalyNational Biodiversity Future CenterPalermoItaly
| | - Claudio Foglini
- Via L. B. Alberti 8/A, Cinisello Balsamo (MI), ItalyVia L. B. Alberti 8/ACinisello Balsamo (MI)Italy
| | - Luciano Bani
- Università degli Studi di Milano-Bicocca, Dipartimento di Scienze dell'Ambiente e della Terra, Milano, ItalyUniversità degli Studi di Milano-Bicocca, Dipartimento di Scienze dell'Ambiente e della TerraMilanoItaly
- World Biodiversity Association onlus c/o NAT LAB Forte Inglese, Portoferraio (LV), ItalyWorld Biodiversity Association onlus c/o NAT LAB Forte InglesePortoferraio (LV)Italy
| | - Lionello Bazzi
- Centro Ricerche Ornitologiche Scanagatta, Varenna (LC), ItalyCentro Ricerche Ornitologiche ScanagattaVarenna (LC)Italy
| | - Piero Bonvicini
- Centro Ricerche Ornitologiche Scanagatta, Varenna (LC), ItalyCentro Ricerche Ornitologiche ScanagattaVarenna (LC)Italy
| | - Roberto Brembilla
- Centro Ricerche Ornitologiche Scanagatta, Varenna (LC), ItalyCentro Ricerche Ornitologiche ScanagattaVarenna (LC)Italy
| | - Massimo Brigo
- Centro Ricerche Ornitologiche Scanagatta, Varenna (LC), ItalyCentro Ricerche Ornitologiche ScanagattaVarenna (LC)Italy
| | - Alberto Cavenaghi
- Odonata.it - Società Italiana per lo Studio e la Conservazione delle Libellula (ODV), Perugia, ItalyOdonata.it - Società Italiana per lo Studio e la Conservazione delle Libellula (ODV)PerugiaItaly
| | - Giuseppe Colombo
- Centro Ricerche Ornitologiche Scanagatta, Varenna (LC), ItalyCentro Ricerche Ornitologiche ScanagattaVarenna (LC)Italy
| | | | - Carlo Galliani
- Via Cherubini 7, Paderno Dugnano (MI), ItalyVia Cherubini 7Paderno Dugnano (MI)Italy
| | - Ettore Guarnaroli
- Centro Ricerche Ornitologiche Scanagatta, Varenna (LC), ItalyCentro Ricerche Ornitologiche ScanagattaVarenna (LC)Italy
| | - Nicola Larroux
- Odonata.it - Società Italiana per lo Studio e la Conservazione delle Libellule (ODV), Perugia, ItalyOdonata.it - Società Italiana per lo Studio e la Conservazione delle Libellule (ODV)PerugiaItaly
- Gruppo Insubrico di Ornitologia, Clivio (VA), ItalyGruppo Insubrico di OrnitologiaClivio (VA)Italy
| | - Alessandro Monti
- Studio Tu.G.A (Tutela e Gestione Ambientale), Rovello Porro (CO), ItalyStudio Tu.G.A (Tutela e Gestione Ambientale)Rovello Porro (CO)Italy
| | - Valerio Orioli
- Università degli Studi di Milano-Bicocca, Dipartimento di Scienze dell'Ambiente e della Terra, Milano, ItalyUniversità degli Studi di Milano-Bicocca, Dipartimento di Scienze dell'Ambiente e della TerraMilanoItaly
| | - Francesco Ornaghi
- Centro Ricerche Ornitologiche Scanagatta, Varenna (LC), ItalyCentro Ricerche Ornitologiche ScanagattaVarenna (LC)Italy
| | | | - Giuliana Pirotta
- Centro Ricerche Ornitologiche Scanagatta, Varenna (LC), ItalyCentro Ricerche Ornitologiche ScanagattaVarenna (LC)Italy
| | | | - Giulia Tessa
- Museo Civico di Storia Naturale di Morbegno, Morbegno (SO), ItalyMuseo Civico di Storia Naturale di MorbegnoMorbegno (SO)Italy
| | - Giacomo Assandri
- National Biodiversity Future Center, Palermo, ItalyNational Biodiversity Future CenterPalermoItaly
- Università di Torino, Dipartimento di Scienze della Vita e Biologia dei Sistemi, Torino, ItalyUniversità di Torino, Dipartimento di Scienze della Vita e Biologia dei SistemiTorinoItaly
| |
Collapse
|
29
|
Wu Z, Zhang F, Ding W, Wang K, Peng J, Cao N, He C. Native forests transformed into cash crops reduced soil multi-functionality by modifying the microbial community composition and keystone species' abundance in the Jianghuai Hilly Region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113747-113757. [PMID: 37851254 DOI: 10.1007/s11356-023-30196-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Conversion of native forest to cash crops is the predominant form of land use change in the Jianghuai Hilly Region. However, how plantations with different cash crops affect the soil multi-functionality is not well documented. In this study, we collected three kinds of cash crops soils (vegetable, orchard, and tea) and forest soil, to systematically review the relationship between soil microbial communities and soil multi-functionality. Soil multi-functionality had decreased in vegetable and orchard as compared to native forest, whereas tea plantation had no significant effects on soil multi-functionality. The results also showed that cash crop plantations decreased soil multi-functionality by shifting keystone species' abundance, for forest, vegetable, and orchard, the keystone species that were classified as module hubs in the bacterial co-occurrence network significantly negatively contributed to soil multi-functionality, but the keystone species categorized as module hubs in fungal co-occurrence network positively affected soil multi-functionality. Multiple soil properties were the drivers of the soil microbial community; thus, indicating that the altered soil properties under cash crop plantations were vital in determining microbial composition and biological processes. These results identified that sustainable management strategy in cash crop plantation needed to be developed for improving soil multi-functionality.
Collapse
Affiliation(s)
- Zhen Wu
- School of Geographic Information and Tourism, Chuzhou University, Chuzhou, 239000, China
| | - Futian Zhang
- School of Geographic Information and Tourism, Chuzhou University, Chuzhou, 239000, China
| | - Wen Ding
- School of Geographic Information and Tourism, Chuzhou University, Chuzhou, 239000, China
| | - Kai Wang
- School of Geographic Information and Tourism, Chuzhou University, Chuzhou, 239000, China
| | - Jun Peng
- School of Geographic Information and Tourism, Chuzhou University, Chuzhou, 239000, China
| | - Ni Cao
- Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Chenggang He
- College of Tobacco Science, Yunnan Agricultural University, Kunming, 650000, China.
| |
Collapse
|
30
|
Li C, Nie H, Zhang S, Jia Z, Ma S, Li T, Zhai L, Zhang B, Liu X, Zhang J, Müller C. Mineral-solubilizing microbial inoculant positively affects the multifunctionality of anthropogenic soils in abandoned mining areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118553. [PMID: 37399621 DOI: 10.1016/j.jenvman.2023.118553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
The mining industry has a significant negative impact on ecosystems, and the remediation of abandoned mining sites requires effective strategies. One promising approach is the incorporation of mineral-solubilizing microorganisms into current external soil spray seeding technologies. These microorganisms possess the ability to decrease mineral particle sizes, promote plant growth, and enhance the release of vital soil nutrients. However, most previous studies on mineral-solubilizing microorganisms have been conducted in controlled greenhouse environments, and their practical application in field settings remains uncertain. To address this knowledge gap, we conducted a four-year field experiment at an abandoned mining site to investigate the efficacy of mineral-solubilizing microbial inoculants in restoring derelict mine ecosystems. We assessed soil nutrients, enzyme activities, functional genes, and soil multifunctionality. We also examined microbial compositions, co-occurrence networks, and community assembly processes. Our results demonstrated that the application of mineral-solubilizing microbial inoculants significantly enhanced soil multifunctionality. Interestingly, certain bacterial phyla or class taxa with low relative abundances were found to be key drivers of multifunctionality. Surprisingly, we observed no significant correlation between microbial alpha diversity and soil multifunctionality, but we did identify positive associations between the relative abundance and biodiversity of keystone ecological clusters (Module #1 and #2) and soil multifunctionality. Co-occurrence network analysis revealed that microbial inoculants reduced network complexity while increasing stability. Additionally, we found that stochastic processes played a predominant role in shaping bacterial and fungal communities, and the inoculants increased the stochastic ratio of microbial communities, particularly bacteria. Moreover, microbial inoculants significantly decreased the relative importance of dispersal limitations and increased the relative importance of drift. High relative abundances of certain bacterial and fungal phyla were identified as major drivers of the microbial community assembly process. In conclusion, our findings highlight the crucial role of mineral-solubilizing microorganisms in soil restoration at abandoned mining sites, shedding light on their significance in future research endeavors focused on optimizing the effectiveness of external soil spray seeding techniques.
Collapse
Affiliation(s)
- Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China; Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Hui Nie
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Shuifeng Zhang
- Faculty of Information Technology, Nanjing Forest Police College, Nanjing, 210000, China
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Shilin Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Tao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Lu Zhai
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 74078, USA; Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Bo Zhang
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China.
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany; School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin, Ireland; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany
| |
Collapse
|
31
|
Chen C, Yin G, Hou L, Jiang Y, Sun D, Liang X, Han P, Zheng Y, Liu M. Reclamation of tidal flats to paddy soils reshuffles the soil microbiomes along a 53-year reclamation chronosequence: Evidence from assembly processes, co-occurrence patterns and multifunctionality. ENVIRONMENT INTERNATIONAL 2023; 179:108151. [PMID: 37603994 DOI: 10.1016/j.envint.2023.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
Coastal soil microbiomes play a key role in coastal ecosystem functioning and are intensely threatened by land reclamation. However, the impacts of coastal reclamation on soil microbial communities, particularly on their assembly processes, co-occurrence patterns, and the multiple soil functions they support, remain poorly understood. This impedes our capability to comprehensively evaluate the impacts of coastal reclamation on soil microbiomes and to restore coastal ecosystem functions degraded by reclamation. Here, we investigated the temporal dynamics of bacterial and fungal communities, community assembly processes, co-occurrence patterns, and ecosystem multifunctionality along a 53-year chronosequence of paddy soil following reclamation from tidal flats. Reclamation of tidal flats to paddy soils resulted in decreased β-diversity, increased homogeneous selection, and decreased network complexity and robustness of both bacterial and fungal communities, but caused contrasting α-diversity response patterns of them. Reclamation of tidal flats to paddy soils also decreased the multifunctionality of coastal ecosystems, which was largely associated with the fungal network complexity and α-diversity. Collectively, this work demonstrates that coastal reclamation strongly reshaped the soil microbiomes at the level of assembly mechanisms, interaction patterns, and functionality level, and highlights that soil fungal community complexity should be considered as a key factor in restoring coastal ecosystem functions deteriorated by land reclamation.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yinghui Jiang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022 Jiangxi, China
| | - Dongyao Sun
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| |
Collapse
|
32
|
Zhao S, Zhao X, Li Y, Zhang R, Zhao Y, Fang H, Li W. Impact of altered groundwater depth on soil microbial diversity, network complexity and multifunctionality. Front Microbiol 2023; 14:1214186. [PMID: 37601343 PMCID: PMC10434790 DOI: 10.3389/fmicb.2023.1214186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
Understanding the effects of groundwater depth on soil microbiota and multiple soil functions is essential for ecological restoration and the implementation of groundwater conservation. The current impact of increased groundwater levels induced by drought on soil microbiota and multifunctionality remains ambiguous, which impedes our understanding of the sustainability of water-scarce ecosystems that heavily rely on groundwater resources. This study investigated the impacts of altered groundwater depths on soil microbiota and multifunctionality in a semi-arid region. Three groundwater depth levels were studied, with different soil quality and soil moisture at each level. The deep groundwater treatment had negative impacts on diversity, network complexity of microbiota, and the relationships among microbial phylum unites. Increasing groundwater depth also changed composition of soil microbiota, reducing the relative abundance of dominant phyla including Proteobacteria and Ascomycota. Increasing groundwater depth led to changes in microbial community characteristics, which are strongly related to alterations in soil multifunctionality. Overall, our results suggest that groundwater depth had a strongly effect on soil microbiota and functionality.
Collapse
Affiliation(s)
- Siteng Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyong Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Yulin Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Rui Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Yanming Zhao
- Tongliao Hydrology and Water Resources Sub-center, Tongliao, China
| | - Hong Fang
- Tongliao Hydrology and Water Resources Sub-center, Tongliao, China
| | - Wenshuang Li
- Tongliao Hydrology and Water Resources Sub-center, Tongliao, China
| |
Collapse
|
33
|
Larkin DJ, Glasenhardt MC, Williams EW, Karimi N, Barak RS, Leavens E, Hipp AL. Evolutionary history shapes grassland productivity through opposing effects on complementarity and selection. Ecology 2023; 104:e4129. [PMID: 37342067 DOI: 10.1002/ecy.4129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
Phylogenetic diversity (PD), the evolutionary history of the organisms comprising a community, is increasingly recognized as an important driver of ecosystem function. However, biodiversity-ecosystem function experiments have rarely included PD as an a priori treatment. Thus, PD's effects in existing experiments are often confounded by covarying differences in species richness and functional trait diversity (FD). Here we report an experimental demonstration of strong PD effects on grassland primary productivity that are independent of FD, which was separately manipulated, and species richness, which was planted uniformly high to mimic diverse natural grasslands. Partitioning diversity effects demonstrated that higher PD increased complementarity (niche partitioning and/or facilitation) but lowered selection effects (probability of sampling highly productive species). Specifically, for every 5% increase in PD, complementarity increased by 26% on average (±8% SE), while selection effects decreased more modestly (8 ± 16%). PD also shaped productivity through clade-level effects on functional traits, that is, trait values associated with particular plant families. This clade effect was most pronounced in the Asteraceae (sunflower family), which, in tallgrass prairies, generally comprises tall, high-biomass species with low phylogenetic distinctiveness. FD also reduced selection effects but did not alter complementarity. Our results show that PD, independent of richness and FD, mediates ecosystem function through contrasting effects on complementarity and selection. This adds to growing evidence that consideration of phylogenetic dimensions of biodiversity can advance ecological understanding and inform conservation and restoration.
Collapse
Affiliation(s)
- Daniel J Larkin
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Evelyn W Williams
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, Illinois, USA
| | - Nisa Karimi
- Herbarium and Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
| | - Rebecca S Barak
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, Illinois, USA
| | - Emma Leavens
- Herbarium and Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
| | - Andrew L Hipp
- Herbarium and Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
| |
Collapse
|
34
|
Achieng AO, Arhonditsis GB, Mandrak N, Febria C, Opaa B, Coffey TJ, Masese FO, Irvine K, Ajode ZM, Obiero K, Barasa JE, Kaunda-Arara B. Monitoring biodiversity loss in rapidly changing Afrotropical ecosystems: an emerging imperative for governance and research. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220271. [PMID: 37246384 PMCID: PMC10225856 DOI: 10.1098/rstb.2022.0271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 05/30/2023] Open
Abstract
Africa is experiencing extensive biodiversity loss due to rapid changes in the environment, where natural resources constitute the main instrument for socioeconomic development and a mainstay source of livelihoods for an increasing population. Lack of data and information deficiency on biodiversity, but also budget constraints and insufficient financial and technical capacity, impede sound policy design and effective implementation of conservation and management measures. The problem is further exacerbated by the lack of harmonized indicators and databases to assess conservation needs and monitor biodiversity losses. We review challenges with biodiversity data (availability, quality, usability and database access) as a key limiting factor that impacts funding and governance. We also evaluate the drivers of both ecosystems change and biodiversity loss as a central piece of knowledge to develop and implement effective policies. While the continent focuses more on the latter, we argue that the two are complementary in shaping restoration and management solutions. We thus underscore the importance of establishing monitoring programmes focusing on biodiversity-ecosystem linkages in order to inform evidence-based decisions in ecosystem conservation and restoration in Africa. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- A. O. Achieng
- Department of Fisheries and Aquatic Science, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
| | - G. B. Arhonditsis
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, Canada M1C 1A4
| | - N. Mandrak
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, ON, Canada M1C 1A4
| | - C. Febria
- Department of Integrative Biology, Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada N9B 3P4
| | - B. Opaa
- Department of Natural Resources Management, National Land Commission, P.O. Box 44417-00100, Nairobi, Kenya
| | - T. J. Coffey
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, Leicestershire LE12 5RD, UK
| | - F. O. Masese
- Department of Fisheries and Aquatic Science, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
| | - K. Irvine
- IHE Delft Institute for Water Education, Department of Water Resource and Ecosystems, Westvest 7, 2611 AX Delft, The Netherlands
- Aquatic Ecology and Water Quality Management, Wageningen University, PO Box 47, 6700AA Wageningen, The Netherlands
| | - Z. M. Ajode
- African Center for Aquatic Research and Education (ACARE), 2200 Commonwealth Blvd, Suite 100, Ann Arbor, MI 48105, USA
| | - K. Obiero
- Kenya Marine and Fisheries Research Institute, Directorate of Freshwater Aquaculture, P.O. Box 136-40111 Pap Onditi, Kenya
| | - J. E. Barasa
- Department of Fisheries and Aquatic Science, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
| | - B. Kaunda-Arara
- Department of Fisheries and Aquatic Science, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
| |
Collapse
|
35
|
Xu Z, Hu Z, Jiao S, Bell SM, Xu Q, Ma L, Chen J. Depth-dependent effects of tree species identity on soil microbial community characteristics and multifunctionality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162972. [PMID: 36958562 DOI: 10.1016/j.scitotenv.2023.162972] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 05/13/2023]
Abstract
Soil microbes play key roles that support forest ecosystem functioning, while their community characteristics are strongly determined by tree species identity. However, the majority studies primarily focus on soil microorganisms in the topsoil, resulting in limited understanding of the linkages between tree species identity and the microbial communities that inhabit deep soils. Here we investigated the diversity, structure, function, and co-occurrence networks of soil bacterial and fungal communities, as well as related soil physicochemical properties, to a depth of two meters in dryland forests dominated by either Pinus tabuliformis, a native coniferous species, Robinia pseudoacacia, an exotic broadleaf and nitrogen-fixing species, or both. Tree species identity had stronger effects on soil multifunctionality and microbial community structure in the deep layers (80-200 cm) than in the top layers (0-60 cm). In addition, fungal communities were more responsive to tree species identity, whereas bacteria were more sensitive to soil depth. Tree species identity strongly influenced microbial network stability and complexity, with higher quantities in R. pseudoacacia than the other plantations, by affecting microbial composition and their associations. The increased in microbial network complexity and the relative abundance of keystone taxa enhance the soil multifunctionality of microbial productivity, sugar and chitin degradation, and nutrient availability and cycling. Meanwhile, the relative abundance of keystone taxa was more representative of soil multifunctionality than microbial diversity. Our study highlights that tree species identity significantly influences soil microbial community characteristics and multifunctionality, especially in deep soils, which will help us understand soil nutrients processed in plantation forest ecosystem and provide a reference for tree species selection in ecological restoration.
Collapse
Affiliation(s)
- Zhiyuan Xu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs of China, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenhong Hu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs of China, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Stephen M Bell
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ-Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Qian Xu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs of China, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Longlong Ma
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs of China, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele 8830, Denmark; Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele 8830, Denmark; iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde 4000, Denmark
| |
Collapse
|
36
|
Singh AK, Zhu X, Chen C, Yang B, Pandey VC, Liu W, Singh N. Investigating the recovery in ecosystem functions and multifunctionality after 10 years of natural revegetation on fly ash technosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162598. [PMID: 36882140 DOI: 10.1016/j.scitotenv.2023.162598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Technogenic soil (technosol) developed from coal fly ash (FA) landfilling has been considered a critical environmental problem worldwide. Drought-tolerant plants often naturally grow on FA technosol. However, the impact of these natural revegetations on the recovery of multiple ecosystem functions (multifunctionality) remains largely unexplored and poorly understood. Here we assessed the response of multifunctionality, including nutrient cycling (i.e., carbon, nitrogen, and phosphorus), carbon storage, glomalin-related soil protein (GRSP), plant productivity, microbial biomass carbon (MBC), microbial processes (soil enzyme activities), and soil chemical properties (pH and electrical conductivity; EC) to FA technosol ten years' natural revegetation with different multipurpose species in Indo-Gangetic plain, and identified the key factors regulating ecosystem multifunctionality during reclamation. We evaluated four dominant revegetated species: Prosopis juliflora, Saccharum spontaneum, Ipomoea carnea, and Cynodon dactylon. We found that natural revegetation initiated the recovery of ecosystem multifunctionality on technosol, with greater recovery under higher biomass-producing species (P. juliflora and S. spontaneum) than lower biomass-producing ones (I. carnea and C. dactylon). The individual functions (11 of the total 16 variables) at higher functionality (70 % threshold) also exhibited this pattern among revegetated stands. Multivariate analyses revealed that most of the variables (except EC) significantly correlated with multifunctionality, indicating the capability of multifunctionality to consider the tradeoff between individual functions. We further performed structural equation modeling (SEM) to detect the effect of vegetation, pH, nutrients, and microbial activity (MBC and microbial processes) on ecosystem multifunctionality. Our SEM model predicted 98 % of the variation in multifunctionality and confirmed that the indirect effect of vegetation mediated by microbial activity is more important for multifunctionality than their direct effect. Collectively, our results demonstrate that FA technosol revegetation with high biomass-producing multipurpose species promotes ecosystem multifunctionality and emphasizes the significance of microbial activity in the recovery and maintenance of ecosystem attributes.
Collapse
Affiliation(s)
- Ashutosh Kumar Singh
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001, India.
| | - Xiai Zhu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Chunfeng Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Vimal Chandra Pandey
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001, India; Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India.
| | - Wenjie Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| | - Nandita Singh
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001, India
| |
Collapse
|
37
|
Ye C, Wang S, Wang Y, Zhou T, Li R. Impacts of human pressure and climate on biodiversity-multifunctionality relationships on the Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2023; 14:1106035. [PMID: 37332689 PMCID: PMC10270690 DOI: 10.3389/fpls.2023.1106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/28/2023] [Indexed: 06/20/2023]
Abstract
Many studies have investigated the effects of environmental context on biodiversity or multifunctionality in alpine regions, but it is uncertain how human pressure and climate may affect their relationships. Here, we combined the comparative map profile method with multivariate datasets to assess the spatial pattern of ecosystem multifunctionality and further identify the effects of human pressure and climate on the spatial distribution of biodiversity-multifunctionality relationships in alpine ecosystems of the Qinghai-Tibetan Plateau (QTP). Our results indicate that at least 93% of the areas in the study region show a positive correlation between biodiversity and ecosystem multifunctionality across the QTP. Biodiversity-multifunctionality relationships with increasing human pressure show a decreasing trend in the forest, alpine meadow, and alpine steppe ecosystems, while an opposite pattern was found in the alpine desert steppe ecosystem. More importantly, aridity significantly strengthened the synergistic relationship between biodiversity and ecosystem multifunctionality in forest and alpine meadow ecosystems. Taken together, our results provide insights into the importance of protecting and maintaining biodiversity and ecosystem multifunctionality in response to climate change and human pressure in the alpine region.
Collapse
Affiliation(s)
- Chongchong Ye
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Shuai Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yi Wang
- School of Life Sciences and State Key Lab of Biological Control, Sun Yat-sen University, Guangzhou, China
| | - Tiancai Zhou
- Synthesis Research Centre of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Ruowei Li
- College of Grassland, Resource and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
38
|
Wang P, Wang Z, Zhu M, Zhu C, Feng W, Duan G, Cernava T, Jin D. Di-n-butyl phthalate stress hampers compost multifunctionality by reducing microbial biomass, diversity and network complexity. BIORESOURCE TECHNOLOGY 2023; 376:128889. [PMID: 36931450 DOI: 10.1016/j.biortech.2023.128889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Phthalates are common pollutants in agriculture. Here, the influence of di-n-butyl phthalate (DBP) on multifunctionality of composting was assessed. Results indicated that DBP stress (100 mg/kg) hampered multifunctionality from the thermophilic phase onwards and resulted in a 6.5 % reduction of all assessed functions. DBP stress also significantly reduced microbial biomass (P < 0.05), altered microbial composition (P < 0.05), and decreased network complexity (P < 0.01). Multifunctionality was found to be strongly correlated (P < 0.001) with microbial biomass, diversity, and network complexity. In addition, keystone taxa responsive to DBP were identified as Streptomyces, Thermoactinomyces, Mycothermus, and Lutispora. These taxa were significantly (P < 0.001) affected by DBP stress, and a correlation between them and multifunctionality was shown. This study contributes to a better understanding of the negative implications of phthalates during composting processes, which is of great significance to the development of new treatment strategies for agricultural waste.
Collapse
Affiliation(s)
- Ping Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China; Zhoukou Key Laboratory of Environmental Pollution Control and Remediation, Zhoukou Normal University, Zhoukou 466001, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China; Zhoukou Key Laboratory of Environmental Pollution Control and Remediation, Zhoukou Normal University, Zhoukou 466001, China
| | - Miaomiao Zhu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Chaosheng Zhu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China; Zhoukou Key Laboratory of Environmental Pollution Control and Remediation, Zhoukou Normal University, Zhoukou 466001, China
| | - Wenli Feng
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China; Zhoukou Key Laboratory of Environmental Pollution Control and Remediation, Zhoukou Normal University, Zhoukou 466001, China
| | - Guilan Duan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria; School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1 BJ, United Kingdom
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
Kou X, Liu H, Chen H, Xu Z, Yu X, Cao X, Liu D, Wen L, Zhuo Y, Wang L. Multifunctionality and maintenance mechanism of wetland ecosystems in the littoral zone of the northern semi-arid region lake driven by environmental factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161956. [PMID: 36737024 DOI: 10.1016/j.scitotenv.2023.161956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The relationship between biodiversity and ecosystem multifunctionality (BEMF) has become an ecological research hot spot in recent years. Changes in biodiversity are non-randomly distributed in space and time in natural ecosystems, and the BEMF relationship is affected by a combination of biotic and abiotic factors. These complex, uncertain relationships are affected by research scale and quantification and measurement indicators. This paper took the Daihai littoral zone wetlands in Inner Mongolia as the research object to reveal the dynamic succession of wetland vegetation and ecosystem function change characteristics and processes during the shrinkage of the lake. The main findings were as follows: the combined effect of aboveground (species and functions) and belowground (bacteria and fungi) diversity was greater than the effect of single components on ecosystem multifunctionality (EMF) (R2 = 80.00 %). Soil salinity (EC) had a direct negative effect on EMF (λ = -0.22), and soil moisture (SM) had a direct positive effect on EMF (λ = 0.19). The results of the hierarchical partitioning analysis showed that plant species richness (Margalef index) was the ideal indicator to explain the EMF and C, N, and P cycling functions in littoral zone wetlands with explanations of 12.25 %, 7.31 %, 7.83 %, and 5.33 %, respectively. The EMF and C and P cycles were mainly affected by bacterial diversity, and the N cycle was mainly affected by fungal abundance in belowground biodiversity. Margalef index and sand content affected EMF through cascading effects of multiple nutrients (FDis, CWMRV, CWMLCC, and bacterial and fungal abundance and diversity) in littoral zone wetlands. This paper provides a reference for exploring the multifunctionality maintenance mechanisms of natural littoral zone wetland ecosystems in the context of global change, and it also provides important theoretical support and basic data for the implementation of ecological restoration in Daihai lake.
Collapse
Affiliation(s)
- Xin Kou
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huamin Liu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Han Chen
- School of Business Administration and Humanities, Mongolian University of Science & Technology, Ulaanbaatar 46/520, Mongolia
| | - Zhichao Xu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaowen Yu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaoai Cao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Dongwei Liu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lu Wen
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yi Zhuo
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lixin Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Hohhot 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Hohhot 010021, China.
| |
Collapse
|
40
|
Wang Y, Sun J, Lee TM. Altitude dependence of alpine grassland ecosystem multifunctionality across the Tibetan Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117358. [PMID: 36724595 DOI: 10.1016/j.jenvman.2023.117358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
While altitude affects climatic characteristics, terrestrial plant habitats, and species composition, few studies considered the effects of altitude on ecosystem multifunctionality (EMF). Here, we teased apart the EMF at different altitude with a linear piecewise quantile regression and explore ecosystem functions and environmental factors with EMF along the altitudinal gradient across the Tibetan Plateau. Then, we estimated the response of ecosystem functions to environmental factors, and explain the impact of environmental factors on EMF through the structural equation model. Our data revealed an EMF changepoint at an altitude of about 3900 m where the EMF could be segregated into low- and high-altitude patterns. Our results indicate that water availability drives the EMF mainly through improving soil nutrients and microbe cycling functions in low-altitude regions; conversely, water-heat and phenological conditions regulate the EMF through the role of plant productivity and soil nutrients in high-altitude regions. As such, our EMF analysis suggests that to maintain the long-term stability of the grassland ecosystem, it becomes critical to fully consider the differences in the altitudinal patterns and mechanisms, particularly under the ongoing climate change.
Collapse
Affiliation(s)
- Yi Wang
- School of Life Sciences and State Key Lab of Biological Control, Sun Yat-sen University, Guangzhou, 510275, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tien Ming Lee
- School of Life Sciences and State Key Lab of Biological Control, Sun Yat-sen University, Guangzhou, 510275, China; School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
41
|
Lin Q, De Vrieze J, Li L, Fang X, Li X. Interconnected versus unconnected microorganisms: Does it matter in anaerobic digestion functioning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117307. [PMID: 36652878 DOI: 10.1016/j.jenvman.2023.117307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Microorganisms in anaerobic digestion (AD) are essential for wastes/pollutants treatment and energy recovery. Due to microbial enormous diversity, developing effective perspectives to understand microbial roles therein is urgent. This study conducted AD of swine manure, used an ensemble-based network analysis to distinguish interconnected, unconnected, copresence (positively interconnected) and mutual-exclusion (negatively interconnected) microorganisms within microbial communities, and explored their importance towards AD performances, using amplicon sequencing of 16S rRNA and 16S rRNA gene. Our analyses revealed greater importance of interconnected than unconnected microorganisms towards CH4 production and AD multifunctionality, which was attributed to higher niche breadth, deterministic community assembly, community stability and phylogenetic conservatism. The diversity was higher in unconnected than interconnected microorganisms, but was not linked to AD performances. Compared to copresence microorganisms, mutual-exclusion microorganisms showed greater and equal importance towards CH4 production and AD multifunctionality, which was attributed to their roles in stabilizing microbial communities. The increased feedstock biodegradability, by replacing part of manure with fructose or apple waste, hardly affected the relative importance of interconnected versus unconnected microorganisms towards CH4 production or AD multifunctionality. Our findings develop a new framework to understand microbial roles, and have important implications in targeted manipulation of critical microorganisms in waste-treatment systems.
Collapse
Affiliation(s)
- Qiang Lin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Lingjuan Li
- Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Xiaoyu Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiangzhen Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
42
|
Chisholm RA, Dutta Gupta T. A critical assessment of the biodiversity-productivity relationship in forests and implications for conservation. Oecologia 2023; 201:887-900. [PMID: 36977811 DOI: 10.1007/s00442-023-05363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
The question of whether biodiversity conservation and carbon conservation can be synergistic hinges on the form of the biodiversity-productivity relationship (BPR), a fundamental ecological pattern. The stakes are particularly high when it comes to forests, which at a global level comprises a large fraction of both biodiversity and carbon. And yet, in forests, the BPR is relatively poorly understood. In this review, we critically evaluate research on forest BPRs, focussing on the experimental and observational studies of the last 2 decades. We find general support for a positive forest BPR, suggesting that biodiversity and carbon conservation are synergistic to a degree. However, we identify several major caveats: (i) although, on average, productivity may increase with biodiversity, the highest-yielding forests are often monocultures of very productive species; (ii) productivity typically saturates at fewer than ten species; (iii) positive BPRs can be driven by some third variable, in particular stem density, instead of a causal arrow from biodiversity to productivity; (iv) the BPR's sign and magnitude varies across spatial grains and extents, and it may be weak at scales relevant to conservation; and (v) most productivity estimates in forests are associated with large errors. We conclude by explaining the importance of these caveats for both conservation programmes focussed on protection of existing forests and conservation programmes focussed on restoring or replanting forests.
Collapse
Affiliation(s)
- Ryan A Chisholm
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | - Tanvi Dutta Gupta
- Department of Biology, Stanford University, Bass Biology Building, 327 Campus Drive, Stanford, CA, 94305, USA
| |
Collapse
|
43
|
Xu H, Wei X, Cheng X. Fungal diversity dominates the response of multifunctionality to the conversion of pure plantations into two-aged mixed plantations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161384. [PMID: 36621475 DOI: 10.1016/j.scitotenv.2022.161384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Plantation forests are essential in driving global biogeochemical cycling and mitigating climate change. Biodiversity and environmental factors can shape multiple forest ecosystem functions simultaneously (i.e., multifunctionality). However, their effect on multifunctionality when pure plantations are converted into two-aged plantations remains underexplored. Therefore, we assessed above- and below-ground biodiversity and environmental factors and 11 ecosystem functions in different plantation types in subtropical China. The two-aged mixed plantations exhibited higher multifunctionality than did a pure plantation, primarily due to soil fungal diversity and secondarily due to tree diversity, based on the coefficient of variation for tree diameter at breast height (CVD) and community-weighted specific leaf area (CWMSLA). Further analysis revealed saprotrophy as the key soil fungal trophic mode in maintaining multifunctionality. Moreover, structural equation modeling confirmed that soil environmental factors, namely the soil water content and pH, had no direct association with multifunctionality, but were indirectly related to multifunctionality via elevated CVD and CWMSLA, respectively. Our results indicate that the tree and soil fungal diversity, as well as soil environmental factors, resulting from the conversion of pure plantations to two-aged mixed plantations, can enhance multifunctionality, and provide a better comprehensive understanding of the driving mechanisms of multifunctionality, leading to the sustainable management of subtropical plantation forest ecosystems.
Collapse
Affiliation(s)
- Haidong Xu
- East China Coastal Forest Ecosystem Research Station, Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China; Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, Shandong 256603, China
| | - Xiaomeng Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Resource and Environment, Northwest A&F University, Yangling, China
| | - Xiangrong Cheng
- East China Coastal Forest Ecosystem Research Station, Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China.
| |
Collapse
|
44
|
Li C, Miao L, Adyel TM, Huang W, Wang J, Wu J, Hou J, Wang Z. Eukaryotes contribute more than bacteria to the recovery of freshwater ecosystem functions under different drought durations. Environ Microbiol 2023. [PMID: 36916068 DOI: 10.1111/1462-2920.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
Global climate change mostly impacts river ecosystems by affecting microbial biodiversity and ecological functions. Considering the high functional redundancy of microorganisms, the unknown relationship between biodiversity and ecosystem functions obstructs river ecological research, especially under the influence of increasing weather extremes, such as in intermittent rivers and ephemeral streams (IRES). Herein, dry-wet alternation experiments were conducted in artificial stream channels for 25 and 90 days of drought, both followed by 20 days of rewetting. The dynamic recovery of microbial biodiversity and ecosystem functions (represented by ecosystem metabolism and denitrification rate) were determined to analyse biodiversity-ecosystem-function (BEF) relationships after different drought durations. There was a significant difference between bacterial and eukaryotic biodiversity recovery after drought. Eukaryotic biodiversity was more sensitive to drought duration than bacterial, and the eukaryotic network was more stable under dry-wet alternations. Based on the establishment of partial least squares path models, we found that eukaryotic biodiversity has a stronger effect on ecosystem functions than bacteria after long-term drought. Indeed, this work represents a significant step forward for further research on the ecosystem functions of IRES, especially emphasizing the importance of eukaryotic biodiversity in the BEF relationship.
Collapse
Affiliation(s)
- Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Tanveer M Adyel
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, Victoria, Australia
- STEM, University of South Australia, Mawson Lakes Campus, 5095, Mawson, Australia
| | - Wei Huang
- China Institute of Water Resources and Hydropower Research, 100038, Beijing, People's Republic of China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Zhiyuan Wang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, National Energy Administration, Ministry of Transport, Ministry of Water Resources, 210029, Nanjing, China
| |
Collapse
|
45
|
Yang Y, Chai Y, Xie H, Zhang L, Zhang Z, Yang X, Hao S, Gai J, Chen Y. Responses of soil microbial diversity, network complexity and multifunctionality to three land-use changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160255. [PMID: 36402341 DOI: 10.1016/j.scitotenv.2022.160255] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Land-use change is one of the greatest challenges for natural ecosystem services. Soil microbiomes are essential for modulating multiple ecosystem functions. However, little is known about the impact of land-use changes on soil microbial communities and their associated soil functions. In this study, 150 alpine soil samples representing conversion of forests to shrublands or grasslands, and of shrublands to grasslands were investigated for bacterial, fungal and protistan community diversity, co-occurrence network, as well as their relationships with soil multifunctionality via a sampling strategy of space-for-time substitution. The conversion of forest to grassland increased the diversity of fungi and bacteria, and altered the microbial community structures of bacteria, fungi and protists, resulting a greater impact on soil microbiome than other land-use conversions. Cross-trophic interaction analyses demonstrated this conversion increased microbial network complexity and robustness, whereas forest to shrubland had the opposite trend. The land-use induced changes in soil multifunctionality were related with microbial network modules, but were not always associated with variations of microbial diversity. Random forest modeling further suggested the significant role of microbial modules in explaining soil multifunctionality, together with environmental factors. These findings indicate divergent responses of belowground multitrophic organisms to land-use changes, and the potential role of microbial module in forecasting soil multifunctionality.
Collapse
Affiliation(s)
- Yi Yang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yabo Chai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Hanjie Xie
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Zhang
- State Key laboratory Urban & Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiming Zhang
- School of Ecology and Environmental Sciences, Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, Yunnan, China
| | - Xue Yang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Shenglei Hao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jingping Gai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Yongliang Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
46
|
Wu Y, Wang B, Wu L, Liu S, Yue L, Wu J, Chen D. Fifty-year habitat subdivision enhances soil microbial biomass and diversity across subtropical land-bridge islands. Front Microbiol 2022; 13:1063340. [PMID: 36569066 PMCID: PMC9780280 DOI: 10.3389/fmicb.2022.1063340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Although habitat loss and subdivision are considered main causes of sharp declines in biodiversity, there is still great uncertainty concerning the response of soil microbial biomass, diversity, and assemblage to habitat subdivision at the regional scale. Here, we selected 61 subtropical land-bridge islands (with small, medium, and large land areas) with a 50-year history of habitat subdivision and 9 adjacent mainland sites to investigate how habitat subdivision-induced unequal-sized patches and isolation affects biomass, diversity, and assemblages of soil bacteria and fungi. We found that the soil bacterial and fungal biomass on all unequal-sized islands were higher than that on mainland, while soil bacterial and fungal richness on the medium-sized islands were higher than that on mainland and other-sized islands. The habitat subdivision-induced increases in microbial biomass or richness were mainly associated with the changes in subdivision-specified habitat heterogeneities, especial for soil pH and soil moisture. Habitat subdivision reduced soil bacterial dissimilarity on medium-sized islands but did not affect soil fungal dissimilarity on islands of any size. The habitat fragment-induced changes in soil microbial dissimilarity were mainly associated with microbial richness. In summary, our results based on the responses of soil microbial communities from subtropical land-bridge islands are not consistent with the island biogeographical hypotheses but are to some extent consistent with the tradeoff between competition and dispersal. These findings indicate that the response of soil microbial communities to habitat subdivision differed by degree of subdivision and strongly related to habitat heterogeneity, and the distribution of microbial diversity among islands is also affected by tradeoff between competition and dispersal.
Collapse
Affiliation(s)
- Ying Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China,Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming, China,Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China
| | - Bing Wang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China
| | - Liji Wu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China
| | - Shengen Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China
| | - Lingyan Yue
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China
| | - Jianping Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China,Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming, China,Jianping Wu,
| | - Dima Chen
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China,*Correspondence: Dima Chen,
| |
Collapse
|
47
|
Wang X, Teng Y, Wang X, Xu Y, Li R, Sun Y, Hu W, Zhao L, Ren W, Luo Y. Effects of combined pollution of organic pollutants and heavy metals on biodiversity and soil multifunctionality in e-waste contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129727. [PMID: 35963091 DOI: 10.1016/j.jhazmat.2022.129727] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Electronic waste (e-waste) is increasing globally, but the impact of this source of combined pollution on soil biodiversity and multiple soil functions (i.e., ecosystem multifunctionality) remains unclear. Here, we evaluated the effects of combined pollution on the biodiversity and soil multifunctionality using samples collected from upland and paddy soils chronically contaminated with e-waste. Overall biodiversity, as well as the relative abundance and biodiversity of key ecological clusters, as combined pollution concentrations increased in upland soil, while the opposite was true in paddy soil. Soil multifunctionality followed the same trend. Organic pollutants had significant negative effects on soil multifunctionality and were the main influencing factors in upland soil. Heavy metals had significant positive effects on soil multifunctionality in paddy soil. Moreover, driving soil multifunctionality was overall biodiversity in upland soil but key biodiversity in paddy soil. Importantly, a strong positive association between key organism biodiversity and soil multifunctionality was found in soil with low contamination. However, the relationship between key organism biodiversity and soil multifunctionality weakened or disappeared in highly contaminated soil, whereas overall biodiversity was significantly and positively correlated with multifunctionality. Our results emphasized that severe e-waste contamination would reduce soil biodiversity and soil multifunctionality and warrants high attention.
Collapse
Affiliation(s)
- Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ran Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
48
|
Fanin N, Clemmensen KE, Lindahl BD, Farrell M, Nilsson MC, Gundale MJ, Kardol P, Wardle DA. Ericoid shrubs shape fungal communities and suppress organic matter decomposition in boreal forests. THE NEW PHYTOLOGIST 2022; 236:684-697. [PMID: 35779014 DOI: 10.1111/nph.18353] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Mycorrhizal fungi associated with boreal trees and ericaceous shrubs are central actors in organic matter (OM) accumulation through their belowground carbon allocation, their potential capacity to mine organic matter for nitrogen (N) and their ability to suppress saprotrophs. Yet, interactions between co-occurring ectomycorrhizal fungi (EMF), ericoid mycorrhizal fungi (ERI), and saprotrophs are poorly understood. We used a long-term (19 yr) plant functional group manipulation experiment with removals of tree roots, ericaceous shrubs and mosses and analysed the responses of different fungal guilds (assessed by metabarcoding) and their interactions in relation to OM quality (assessed by mid-infrared spectroscopy and nuclear magnetic resonance) and decomposition (litter mesh-bags) across a 5000-yr post-fire boreal forest chronosequence. We found that the removal of ericaceous shrubs and associated ERI changed the composition of EMF communities, with larger effects occurring at earlier stages of the chronosequence. Removal of shrubs was associated with enhanced N availability, litter decomposition and enrichment of the recalcitrant OM fraction. We conclude that increasing abundance of slow-growing ericaceous shrubs and the associated fungi contributes to increasing nutrient limitation, impaired decomposition and progressive OM accumulation in boreal forests, particularly towards later successional stages. These results are indicative of the contrasting roles of EMF and ERI in regulating belowground OM storage.
Collapse
Affiliation(s)
- Nicolas Fanin
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, 71 avenue Edouard Bourlaux, CS 20032, F33882, Villenave-d'Ornon cedex, France
| | - Karina E Clemmensen
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-75007, Uppsala, Sweden
| | - Mark Farrell
- CSIRO Agriculture & Food, Kaurna Country, Locked Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Marie-Charlotte Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
| | - David A Wardle
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore City, 639798, Singapore
| |
Collapse
|
49
|
Prager CM, Classen AT, Sundqvist MK, Barrios‐Garcia M, Cameron EK, Chen L, Chisholm C, Crowther TW, Deslippe JR, Grigulis K, He J, Henning JA, Hovenden M, Høye TTT, Jing X, Lavorel S, McLaren JR, Metcalfe DB, Newman GS, Nielsen ML, Rixen C, Read QD, Rewcastle KE, Rodriguez‐Cabal M, Wardle DA, Wipf S, Sanders NJ. Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network. Ecol Evol 2022; 12:e9396. [PMID: 36262264 PMCID: PMC9575997 DOI: 10.1002/ece3.9396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities.
Collapse
Affiliation(s)
- Case M. Prager
- Ecology and Evolutionary Biology DepartmentUniversity of MichiganAnn ArborMichiganUSA
- The Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
| | - Aimee T. Classen
- Ecology and Evolutionary Biology DepartmentUniversity of MichiganAnn ArborMichiganUSA
- The Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Maja K. Sundqvist
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
| | - Maria Noelia Barrios‐Garcia
- CONICET, CENAC‐APNSan Carlos de BarilocheRio NegroArgentina
- Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVermontUSA
| | - Erin K. Cameron
- Department of Environmental ScienceSaint Mary's UniversityHalifaxNova ScotiaCanada
| | - Litong Chen
- Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area and Key Laboratory of Adaptation and Evolution of Plant BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Chelsea Chisholm
- Department of Environment Systems Science, Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Thomas W. Crowther
- Department of Environment Systems Science, Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Julie R. Deslippe
- Centre for Biodiversity and Restoration Ecology, School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Karl Grigulis
- Laboratoire d'Ecologie AlpineUniversité Grenoble Alpes – CNRS – Université Savoie Mont‐BlancGrenobleFrance
| | - Jin‐Sheng He
- Department of Ecology, College of Urban and Environmental SciencesPeking UniversityBeijingChina
| | - Jeremiah A. Henning
- The Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
- Department of BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Mark Hovenden
- Biological Sciences, School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Toke T. Thomas Høye
- Department of Ecoscience and Arctic Research CentreAarhus UniversityAarhus CDenmark
| | - Xin Jing
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
- State Key Laboratory of Grassland Agro‐Ecosystems, and College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouGansuChina
| | - Sandra Lavorel
- Laboratoire d'Ecologie AlpineUniversité Grenoble Alpes – CNRS – Université Savoie Mont‐BlancGrenobleFrance
| | - Jennie R. McLaren
- Department of Biological SciencesUniversity of Texas at El PasoEl PasoTexasUSA
| | - Daniel B. Metcalfe
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | | | - Marie Louise Nielsen
- Department of Ecoscience and Arctic Research CentreAarhus UniversityAarhus CDenmark
| | - Christian Rixen
- Mountain Ecosystems GroupWSL Institute for Snow and Avalanche Research SLFDavos DorfSwitzerland
| | - Quentin D. Read
- The Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
- National Socio‐Environmental Synthesis CenterAnnapolisMarylandUSA
| | - Kenna E. Rewcastle
- Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVermontUSA
| | - Mariano Rodriguez‐Cabal
- Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVermontUSA
- Grupo de Ecología de Invasiones, INIBIOMA, CONICETUniversidad Nacional del ComahueSan Carlos de BarilocheArgentina
| | - David A. Wardle
- Asian School of the EnvironmentNanyang Technological UniversitySingaporeSingapore
| | - Sonja Wipf
- Department of BiologyUniversity of OklahomaNormanOklahomaUSA
- Department of Research and MonitoringChastè Planta‐WildenbergZernezSwitzerland
| | - Nathan J. Sanders
- Ecology and Evolutionary Biology DepartmentUniversity of MichiganAnn ArborMichiganUSA
- The Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
50
|
Wang Y, Liu B, Zhao J, Ye C, Wei L, Sun J, Chu C, Lee TM. Global patterns and abiotic drivers of ecosystem multifunctionality in dominant natural ecosystems. ENVIRONMENT INTERNATIONAL 2022; 168:107480. [PMID: 36007300 DOI: 10.1016/j.envint.2022.107480] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The potential patterns and processes of ecosystem multifunctionality (EMF) across global ecosystems are largely unknown, which limits our understanding of how ecosystems respond to drivers. Here we compile a global dataset that consists of 973 unique sites across the forest, grassland, and shrub ecosystems. We identify a critical global pattern of hump-shaped EMF relationship with mean annual precipitation at a threshold of ∼671 mm, where low and high precipitation patterns are discriminated. We find that climatic and soil factors jointly drive the EMF in low precipitation areas, and climatic factors dominate the EMF in high precipitation regions. However, when comparing across the three dominant ecosystems and precipitation regions, the key driver in EMF differs substantially. Specifically, climatic and soil factors dominate the EMF of low and high precipitation regions across forest ecosystems, respectively. Climatic drivers dominate the EMF under different precipitation conditions across grassland and shrub ecosystems. Overall, our findings highlight the importance of climatic and soil drivers on EMF, which should be considered in ecosystem stability models in response to global climate and land-use change scenarios.
Collapse
Affiliation(s)
- Yi Wang
- School of Life Sciences and State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou 510275, China.
| | - Biying Liu
- School of Life Sciences and State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingjing Zhao
- School of Life Sciences and State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou 510275, China
| | - Chongchong Ye
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Lan Wei
- Center for Dynamic Supervision for Usage of Fangchenggang City Sea Area, Fangchenggang, 538001, China
| | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengjin Chu
- School of Ecology and State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou 510275, China
| | - Tien Ming Lee
- School of Life Sciences and State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou 510275, China; School of Ecology and State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|