1
|
Xu Y, Fu T, You G, Yang S, Liu S, Huang W, Peng D, Ji J, Zhang J, Zhang J, Hou J. Niche differentiation shaped the evolution of rhizobacterial antibiotic resistance in paddy fields: Evidences from spatial-temporal and chemical-biological scaling. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137924. [PMID: 40086243 DOI: 10.1016/j.jhazmat.2025.137924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The rhizosphere serves as both a hotspot and an entry point for the proliferation and transformation of antibiotic resistance genes (ARGs). However, the ecological mechanisms governing the evolution of ARGs in rhizosphere soils remain poorly understood. This study showed that ARGs associated with efflux pumps were found to be significantly enriched in the rice rhizosphere, compared to bulk soils, with a deterministic assembly process. Notably, soil habitat specialization, dominated by turnover processes and the accelerated succession of microbial evolution in rhizosphere soils, profoundly influenced the spatial-temporal composition and expression of ARGs. Furthermore, ARGs involved in carbohydrate and proton transport showed higher activity in the rhizosphere, conductive to the adaptation of chemical niche differentiation. The genetic-level impacts stemming from biological niche warfare significantly shaped the evolutionary trajectory of ARG. Overall, rhizosphere effects led to 20.2-41.3 % of ARGs been enriched or depleted across various rice growth and under different irrigation conditions. These findings offer a comprehensive understanding of the essential ecological roles of ARGs evolution in rhizosphere soils, which is critical for ARGs risks analysis in the context of plant recruitment and growth promotion.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Tinghong Fu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Shihong Yang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Wanyong Huang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China; Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning and Design), Zhejiang 310000, PR China
| | - Dengyun Peng
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Jiahao Ji
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Jianwei Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Jie Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
2
|
He H, Huo L, Oosthuizen-Vosloo S, Pieper KJ, Stubbins A, Yoon B, Pinto AJ. Building plumbing influences the microdiversity and community assembly of the drinking water microbiome. WATER RESEARCH 2025; 276:123244. [PMID: 39933292 DOI: 10.1016/j.watres.2025.123244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Building plumbing microbial communities can significantly influence water quality at the point of use, particularly during periods of stagnation. Thus, a fine-scale understanding of factors governing community membership and structure, as well as environmental and ecological factors shaping building plumbing microbial communities is critical. In this study, we utilized full-length 16S ribosomal RNA (rRNA) gene sequencing to investigate the microdiversity and spatial-temporal dynamics of microbial communities in institutional and residential building plumbing systems. Bacterial operational taxonomic units (OTUs) within institutional buildings exhibited much lower microdiversity relative to the same OTUs in residential buildings. Higher microdiversity was associated with higher persistence and relative abundance of OTUs. Interestingly, amplicon sequencing variants within the same OTUs exhibited habitat preferences based on the building type while also demonstrating varying temporal turnover patterns. Dispersal limitation disproportionately governed community assembly in institutional buildings, whereas heterogeneous selection was the dominant ecological mechanism shaping the microbial community in residential buildings. Dispersal limitation in institutional buildings is consistent with larger building sizes and greater periods of water stagnation. Interestingly, the inability to explain the extent of heterogeneous selection-driven community assembly in residential locations using measured water chemistry may suggest a disproportionately large effect of fine-scale variation in plumbing characteristics on community assembly in residential locations.
Collapse
Affiliation(s)
- Huanqi He
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Linxuan Huo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Solize Oosthuizen-Vosloo
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Kelsey J Pieper
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Aron Stubbins
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Byungman Yoon
- School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA
| | - Ameet J Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
3
|
Zhu C, Wu L, Ning D, Tian R, Gao S, Zhang B, Zhao J, Zhang Y, Xiao N, Wang Y, Brown MR, Tu Q, Ju F, Wells GF, Guo J, He Z, Nielsen PH, Wang A, Zhang Y, Chen T, He Q, Criddle CS, Wagner M, Tiedje JM, Curtis TP, Wen X, Yang Y, Alvarez-Cohen L, Stahl DA, Alvarez PJJ, Rittmann BE, Zhou J. Global diversity and distribution of antibiotic resistance genes in human wastewater treatment systems. Nat Commun 2025; 16:4006. [PMID: 40301344 PMCID: PMC12041579 DOI: 10.1038/s41467-025-59019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/03/2025] [Indexed: 05/01/2025] Open
Abstract
Antibiotic resistance poses a significant threat to human health, and wastewater treatment plants (WWTPs) are important reservoirs of antibiotic resistance genes (ARGs). Here, we analyze the antibiotic resistomes of 226 activated sludge samples from 142 WWTPs across six continents, using a consistent pipeline for sample collection, DNA sequencing and analysis. We find that ARGs are diverse and similarly abundant, with a core set of 20 ARGs present in all WWTPs. ARG composition differs across continents and is distinct from that of the human gut and the oceans. ARG composition strongly correlates with bacterial taxonomic composition, with Chloroflexi, Acidobacteria and Deltaproteobacteria being the major carriers. ARG abundance positively correlates with the presence of mobile genetic elements, and 57% of the 1112 recovered high-quality genomes possess putatively mobile ARGs. Resistome variations appear to be driven by a complex combination of stochastic processes and deterministic abiotic factors.
Collapse
Affiliation(s)
- Congmin Zhu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Linwei Wu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA.
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| | - Daliang Ning
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Renmao Tian
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Shuhong Gao
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Bing Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jianshu Zhao
- Center for Bioinformatics and Computational Biology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ya Zhang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Naijia Xiao
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Yajiao Wang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Mathew R Brown
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Qichao Tu
- Institute for Marine Science and Technology, Shandong University, Qingdao, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Per H Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Aijie Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ting Chen
- Institute for Artificial Intelligence and Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA
- Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN, USA
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network 'Chemistry meets Microbiology', University of Vienna, Vienna, Austria
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Thomas P Curtis
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Xianghua Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, CA, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA.
- School of Computer Sciences, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
4
|
Wu Q, Ni X, Sun X, Chen Z, Hong S, Berg B, Zheng M, Chen J, Zhu J, Ai L, Zhang Y, Wu F. Substrate and climate determine terrestrial litter decomposition. Proc Natl Acad Sci U S A 2025; 122:e2420664122. [PMID: 39932997 PMCID: PMC11848321 DOI: 10.1073/pnas.2420664122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Litter decomposition is a fundamental biogeochemical process for carbon flux and nutrient cycling in terrestrial ecosystems, yet the global variation in decomposition rates and their covariations with climate and substrate are not fully understood. Here, we synthesized a global dataset of 6,733 independent observations across six continents to illustrate the climatic and substrate controls over litter decomposition. The average decomposition rates of various litter types ranged from 0.74 to 4.01 y-1 across polar to tropics, showing a large geographical span. Litter substrate and climate directly explained 36 and 30% of the variations in decomposition rates, with the carbon-to-nitrogen ratio identified as the best predictor. In the absence of climate variables, litter substrate can effectively explain the variation, while the model's predictive capacity decreased significantly after litter substrate was excluded. Our synthesis highlights that a fundamental constraint on litter substrate leads to predictable global-scale patterns of terrestrial litter decomposition rates. Integrating litter chemistry parameters should be prioritized for parameter optimization in Earth system models.
Collapse
Affiliation(s)
- Qiuxia Wu
- Key Laboratory of Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming365002, China
| | - Xiangyin Ni
- Key Laboratory of Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming365002, China
| | - Xinyao Sun
- Key Laboratory of Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming365002, China
| | - Zihao Chen
- Key Laboratory of Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming365002, China
| | - Songbai Hong
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen518055, China
- Key Laboratory of Earth Surface System and Human-Earth Relations, Ministry of Natural Resources of China, Shenzhen Graduate School, Peking University, Shenzhen518055, China
| | - Björn Berg
- Department of Forest Sciences, University of Helsinki, Helsinki00014, Finland
| | - Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou510650, China
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
| | - Jingjing Zhu
- Key Laboratory of Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming365002, China
| | - Ling Ai
- Key Laboratory of Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming365002, China
| | - Yichen Zhang
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing100871, China
| | - Fuzhong Wu
- Key Laboratory of Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming365002, China
| |
Collapse
|
5
|
Shen Z, Yu B, Chen X, Wang C, Li X, Gao G, Shao K, Tang X. Warming reduces bacterial diversity and stability in Lake Bosten. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124352. [PMID: 39904234 DOI: 10.1016/j.jenvman.2025.124352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/19/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Understanding the effects of warming on bacterial communities is essential for predicting microbial responses to climate change in aquatic ecosystems. However, the mechanisms through which warming influences bacterial diversity and stability in lake ecosystems remain poorly understood. To address this gap, we conducted a mesocosm experiment in Lake Bosten, a climate change hotspot, with three temperature scenarios (26 °C, 29 °C, and 32 °C), and investigated bacterial diversity, community composition, potential functions, and stability. Our findings revealed that temperature, time, and their interactions significantly reduced bacterial α-diversity (two-way ANOVA: P < 0.05). Warming altered bacterial potential metabolic functions, with decreases in methanotrophy and methylotrophy and increases in phototrophy and photoheterotrophy. Warming also increased species replacement within bacterial communities, indicating a dynamic shift in community composition. Network analysis indicated heightened complexity under higher temperatures but also a decrease in bacterial stability, evidenced by higher average variation degree (AVD), increased vulnerability, and reduced robustness. Overall, our study highlights the profound effects of warming on the ecological dynamics of lake bacterial communities, underscoring the need for further research to understand and mitigate the impacts of global climate change on aquatic ecosystems.
Collapse
Affiliation(s)
- Zhen Shen
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bobing Yu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Chen
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Wang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xingchen Li
- School of Earth and Environment, Anhui University of Science & Technology, Huainan, 232000, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Li G, Wu Y, Chen W, Zhao Z, Li Y, Qiao L, Liu G, Xue S. Litter Removal Counteracts the Effects of Warming on Soil Bacterial Communities in the Qinghai-Tibet Plateau. Microorganisms 2024; 12:2274. [PMID: 39597663 PMCID: PMC11596962 DOI: 10.3390/microorganisms12112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Climate warming and high-intensity human activities threaten the stability of alpine meadow ecosystems. The stability of the soil microbial community is crucial for maintaining ecological service function. However, the effects of warming and litter removal on microbial interactions, community-building processes, and species coexistence strategies remain unclear. In this study, we used a fiberglass open-top chamber to simulate global change, and moderate grazing in winter was simulated by removing above-ground litter from all plants in the Qinghai-Tibet Plateau, China, to investigate the effects of warming, litter removal, and interactions on soil microbial communities. The treatments included (1) warming treatment (W); (2) litter removal treatment (L); (3) the combined treatment (WL); and (4) control (CK). The results show that compared with the control treatment, warming, litter removal, and the combined treatments increased bacterial Shannon diversity but reduced fungal Shannon diversity, and warming treatment significantly changed the bacterial community composition. Warming, litter removal, and the combined treatments reduced the colinear network connectivity among microorganisms but increased the modularity of the network, and the average path distance and average clustering coefficient were higher than those in the control group. Stochastic processes played a more important role in shaping the microbial community composition, and soil-available phosphorus and soil ammonium contributed more to the βNTI of the bacterial community, while total phosphorus and NAG enzyme in the soil contributed more to the βNTI of the fungal community. Notably, litter removal counteracts the effects of warming on bacterial communities. These results suggest that litter removal may enhance bacterial community stability under warming conditions, providing insights for managing alpine meadow ecosystems in the context of climate change.
Collapse
Affiliation(s)
- Guanwen Li
- College of Forestry, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Yang Wu
- College of Forestry, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Wenjing Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
- Moutai Institute, Renhuai 564500, China
| | - Ziwen Zhao
- College of Forestry, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Yuanze Li
- College of Forestry, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Leilei Qiao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Sha Xue
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| |
Collapse
|
7
|
Wang X, Li Y, Hao Y, Kang E, Han J, Zhang X, Li M, Zhang K, Yan L, Yang A, Niu Y, Kang X, Yan Z. Soil temperature and fungal diversity jointly modulate soil heterotrophic respiration under short-term warming in the Zoige alpine peatland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122778. [PMID: 39393334 DOI: 10.1016/j.jenvman.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/26/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024]
Abstract
Global warming has changed carbon cycling in terrestrial ecosystems, but it remains unclear how climate warming affects soil heterotrophic respiration (Rh). We conducted a field experiment in the Zoige alpine peatland to investigate the mechanism of how short-term warming affects Rh by examining the relationships between plant biomass, soil properties, soil microbial diversity, and functional groups and Rh. Our results showed that warming increased Rh after one growing season of warming. However, warming barely changed the bacterial functional groups involved in the carbon cycle predicted by the functional annotation analysis. According to the Mantel test, NO3- was found to be the primary determinant for bacterial and fungal communities. The results of the Structural Equation Model (SEM) indicate that soil temperature and fungal diversity jointly modulate Rh, suggesting that short-term warming may not affect Rh by altering the structural and functional composition of microorganisms, which provides new insight into the mechanisms of the effects of warming on Rh in terrestrial ecosystems.
Collapse
Affiliation(s)
- Xiaodong Wang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Yong Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Yanbin Hao
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Enze Kang
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinfeng Han
- The Management Bureau of Zoige Wetland National Nature Reserve, Zoige, 624500, China
| | - Xiaodong Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Meng Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Kerou Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Liang Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Ao Yang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Yuechuan Niu
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Kang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China.
| | - Zhongqing Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China.
| |
Collapse
|
8
|
Li L, Xu Q, Jiang S, Jing X, Shen Q, He JS, Yang Y, Ling N. Asymmetric winter warming reduces microbial carbon use efficiency and growth more than symmetric year-round warming in alpine soils. Proc Natl Acad Sci U S A 2024; 121:e2401523121. [PMID: 39401358 PMCID: PMC11513915 DOI: 10.1073/pnas.2401523121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/29/2024] [Indexed: 10/30/2024] Open
Abstract
Asymmetric seasonal warming trends are evident across terrestrial ecosystems, with winter temperatures rising more than summer ones. Yet, the impact of such asymmetric seasonal warming on soil microbial carbon metabolism and growth remains poorly understood. Using 18O isotope labeling, we examined the effects of a decade-long experimental seasonal warming on microbial carbon use efficiency (CUE) and growth in alpine grassland ecosystems. Moreover, the quantitative stable isotope probing with 18O-H2O was employed to evaluate taxon-specific bacterial growth in these ecosystems. Results show that symmetric year-round warming decreased microbial growth rate by 31% and CUE by 22%. Asymmetric winter warming resulted in a further decrease in microbial growth rate of 27% and microbial CUE of 59% compared to symmetric year-round warming. Long-term warming increased microbial carbon limitations, especially under asymmetric winter warming. Long-term warming suppressed the growth rates of most bacterial genera, with asymmetric winter warming having a stronger inhibition on the growth rates of specific genera (e.g., Gp10, Actinomarinicola, Bosea, Acidibacter, and Gemmata) compared to symmetric year-round warming. Bacterial growth was phylogenetically conserved, but this conservation diminished under warming conditions, primarily due to shifts in bacterial physiological states rather than the number of bacterial species and community composition. Overall, long-term warming escalated microbial carbon limitations, decreased microbial growth and CUE, with asymmetric winter warming having a more pronounced effect. Understanding these impacts is crucial for predicting soil carbon cycling as global warming progresses.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu730020, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing210095, China
| | - Qicheng Xu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing210095, China
| | - Shengjing Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu730020, China
| | - Xin Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu730020, China
| | - Qirong Shen
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing210095, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu730020, China
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing100871, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100871, China
| | - Ning Ling
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu730020, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
9
|
Wang N, Ding D, Zhang H, Ding X, Zhang D, Yao C, Fan X, Ding R, Wang H, Jiang T. Anthropogenic activity shapes the assemble and co-occurrence pattern of microbial communities in fishing harbors around the Bohai economic circle. ENVIRONMENTAL RESEARCH 2024; 259:119563. [PMID: 38971358 DOI: 10.1016/j.envres.2024.119563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
This study aimed to elucidate the effects of coastal environmental stress on the composition of sediment bacterial communities and their cooccurrence patterns in fishing harbors around the Bohai Economic Circle, China. Compared with the natural sea area, fishing harbors contained higher levels of organic pollution (organic pollution index = 0.12 ± 0.026) and considerably reduced bacterial richness and evenness. The distributions of sediment microbial communities clustered along the pollutant concentration gradients across fishing harbors. Betaproteobacteria dominated (76%) organically polluted fishing harbors, which were mostly disturbed by anthropogenic activities. However, the harbors also revealed the absence of numerous pathogenic (Coxiella and Legionella) and photosynthetic (Synechococcus and Leptolyngbya) bacteria. Abundant genera, including Thiobacillus and Arenimonas, exhibited a positive correlation with total phosphorus and a negative correlation with total nitrogen in sediments. Meanwhile, Sulfurovum, Psychrobacter, and Woeseia showed the opposite trend. Pollutant accumulation and anthropogenic activities caused the decrease in the sediment microbial diversity and dispersal ability and promoted convergent evolution. Severely polluted harbors with simplified cooccurrence networks revealed the presence of destabilized microbial communities. In addition, the modularity of bacterial networks decreased with organic pollution. Our results provide important insights into the adjustment mechanism of microbial communities to community organization and functions under environmental pollution stress. Overall, this study enhanced our understanding of how microbial communities in coastal sediments adapted and survived amidst anthropogenic activities like oily effluent discharges from large ships, wash water, domestic sewage, garbage, and fisheries wastes. It also examined their resilience to future contamination.
Collapse
Affiliation(s)
- Nan Wang
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Dongsheng Ding
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Huihui Zhang
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Xiaokun Ding
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Di Zhang
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Chenghao Yao
- Shandong Hongxin Environmental Protection Technology Co., Ltd, China
| | - Xiao Fan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - RenYe Ding
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Hualong Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Tao Jiang
- School of Ocean, Yantai University, Yantai, 264005, China.
| |
Collapse
|
10
|
Qiao J, Zheng J, Li S, Zhang F, Zhang B, Zhao M. Impact of climate warming on soil microbial communities during the restoration of the inner Mongolian desert steppe. Front Microbiol 2024; 15:1458777. [PMID: 39309524 PMCID: PMC11412859 DOI: 10.3389/fmicb.2024.1458777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Grazer exclosure is widely regarded as an effective measure for restoring degraded grasslands, having positive effects on soil microbial diversity. The Intergovernmental Panel on Climate Change (IPCC) predicts that global surface temperatures will increase by 1.5-4.5°C by the end of the 21st century, which may affect restoration practices for degraded grasslands. This inevitability highlights the urgent need to study the effect of temperature on grassland soil microbial communities, given their critical ecological functions. Methods Here, we assessed the effects of heavy grazing (control), grazer exclosure, and grazer exclosure plus warming by 1.5°C on soil microbial community diversity and network properties as well as their relationships to soil physicochemical properties. Results and discussion Our results showed that grazer closure increased soil microbial richness relative to heavy grazing controls. Specifically, bacterial richness increased by 7.9%, fungal richness increased by 20.2%, and the number of fungal network nodes and edges increased without altering network complexity and stability. By contrast, grazer exclosure plus warming decreased bacterial richness by 9.2% and network complexity by 12.4% compared to heavy grazing controls, while increasing fungal network complexity by 25.8%. Grazer exclosure without warming increased soil ammonium nitrogen content, while warming increased soil nitrate nitrogen content. Soil pH and organic carbon were not affected by either exclosure strategy, but nitrate nitrogen was the dominant soil factor explaining changes in bacterial communities. Conclusion Our findings show that grazer exclosure increases soil microbial diversity which are effective soil restoration measures for degraded desert steppe, but this effect is weakened under warming conditions. Thus, global climate change should be considered when formulating restoration measures for degraded grasslands.
Collapse
Affiliation(s)
| | | | | | | | | | - Mengli Zhao
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
11
|
Li Y, Wang B, Wang Z, He W, Wang Y, Liu L, Yang H. The Response of Rhizosphere Microbial C and N-Cycling Gene Abundance of Sand-Fixing Shrub to Stand Age Following Desert Restoration. Microorganisms 2024; 12:1752. [PMID: 39338427 PMCID: PMC11434391 DOI: 10.3390/microorganisms12091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Rhizosphere microorganisms play a pivotal role in biogeochemical cycles, particularly in relation to carbon (C) and nitrogen (N) cycles. However, the impact of stand age on the composition of rhizosphere microbial communities and the abundance involved in C and N cycling remains largely unexplored in restoration ecosystems dominated by shrubs of temperate deserts. This study focuses on revealing changes in microbial composition and functional genes in the rhizosphere soil of Caragana korshinskii after revegetation, as well as their response mechanisms to changes in environmental factors. The alpha diversity of bacteria tended to increase with stand age, whereas that of fungi decreased. The abundance of denitrification; dissimilatory nitrate reduction to ammonium, nitrification, and ammonium assimilation; and C fixation-related gene levels increased with stand age, whereas those related to the degradation of starch, pectin, hemicellulose, cellulose, and aromatics decreased. The parameters MBC, MBN, and TC were the key factors affecting the bacterial community, whereas the fungal community was regulated by TN, EC, pH, and MBC. Stand age indirectly regulated C and N cycling functions of genes through altered soil properties and microbial community structures. This study presents a novel approach to accurately evaluate the C and N cycling dynamics within ecosystems at various stages of restoration.
Collapse
Affiliation(s)
- Yunfei Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.L.); (B.W.); (W.H.); (L.L.)
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bingyao Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.L.); (B.W.); (W.H.); (L.L.)
| | - Zhanjun Wang
- Institute of Desertification Control, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China;
| | - Wenqiang He
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.L.); (B.W.); (W.H.); (L.L.)
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yanli Wang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China;
| | - Lichao Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.L.); (B.W.); (W.H.); (L.L.)
| | - Haotian Yang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.L.); (B.W.); (W.H.); (L.L.)
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
12
|
Santos MA, Carromeu-Santos A, Quina AS, Antunes MA, Kristensen TN, Santos M, Matos M, Fragata I, Simões P. Experimental Evolution in a Warming World: The Omics Era. Mol Biol Evol 2024; 41:msae148. [PMID: 39034684 PMCID: PMC11331425 DOI: 10.1093/molbev/msae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
A comprehensive understanding of the genetic mechanisms that shape species responses to thermal variation is essential for more accurate predictions of the impacts of climate change on biodiversity. Experimental evolution with high-throughput resequencing approaches (evolve and resequence) is a highly effective tool that has been increasingly employed to elucidate the genetic basis of adaptation. The number of thermal evolve and resequence studies is rising, yet there is a dearth of efforts to integrate this new wealth of knowledge. Here, we review this literature showing how these studies have contributed to increase our understanding on the genetic basis of thermal adaptation. We identify two major trends: highly polygenic basis of thermal adaptation and general lack of consistency in candidate targets of selection between studies. These findings indicate that the adaptive responses to specific environments are rather independent. A review of the literature reveals several gaps in the existing research. Firstly, there is a paucity of studies done with organisms of diverse taxa. Secondly, there is a need to apply more dynamic and ecologically relevant thermal environments. Thirdly, there is a lack of studies that integrate genomic changes with changes in life history and behavioral traits. Addressing these issues would allow a more in-depth understanding of the relationship between genotype and phenotype. We highlight key methodological aspects that can address some of the limitations and omissions identified. These include the need for greater standardization of methodologies and the utilization of new technologies focusing on the integration of genomic and phenotypic variation in the context of thermal adaptation.
Collapse
Affiliation(s)
- Marta A Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Marta A Antunes
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | - Mauro Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autonòma de Barcelona, Bellaterra, Spain
| | - Margarida Matos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fragata
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Wang M, Li D, Frey B, Gao D, Liu X, Chen C, Sui X, Li M. Land use modified impacts of global change factors on soil microbial structure and function: A global hierarchical meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173286. [PMID: 38772492 DOI: 10.1016/j.scitotenv.2024.173286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Nitrogen cycling in terrestrial ecosystems is critical for biodiversity, vegetation productivity and biogeochemical cycling. However, little is known about the response of functional nitrogen cycle genes to global change factors in soils under different land uses. Here, we conducted a multiple hierarchical mixed effects meta-analyses of global change factors (GCFs) including warming (W+), mean altered precipitation (MAP+/-), elevated carbon dioxide concentrations (eCO2), and nitrogen addition (N+), using 2706 observations extracted from 200 peer-reviewed publications. The results showed that GCFs had significant and different effects on soil microbial communities under different types of land use. Under different land use types, such as Wetland, Tundra, Grassland, Forest, Desert and Agriculture, the richness and diversity of soil microbial communities will change accordingly due to differences in vegetation cover, soil management practices and environmental conditions. Notably, soil bacterial diversity is positively correlated with richness, but soil fungal diversity is negatively correlated with richness, when differences are driven by GCFs. For functional genes involved in nitrification, eCO2 in agricultural soils and the interaction of N+ with other GCFs in grassland soils stimulate an increase in the abundance of the AOA-amoA gene. In agricultural soil, MAP+ increases the abundance of nifH. W+ in agricultural soils and N+ in grassland soils decreased the abundance of nifH. The abundance of the genes nirS and nirK, involved in denitrification, was mainly negatively affected by W+ and positively affected by eCO2 in agricultural soil, but negatively affected by N+ in grassland soil. This meta-analysis was important for subsequent research related to global climate change. Considering data limitations, it is recommended to conduct multiple long-term integrated observational experiments to establish a scientific basis for addressing global changes in this context.
Collapse
Affiliation(s)
- Mingyu Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Detian Li
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Beat Frey
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Decai Gao
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, PR China
| | - Xiangyu Liu
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Chengrong Chen
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Maihe Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland; Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, PR China; School of Life Science, Hebei University, Baoding, China.
| |
Collapse
|
14
|
Shen Z, Yu B, Gong Y, Shao K, Gao G, Tang X. Unraveling the impact of climatic warming and wetting on eukaryotic microbial diversity and assembly mechanisms: A 10-year case study in Lake Bosten, NW China. WATER RESEARCH 2024; 256:121559. [PMID: 38579508 DOI: 10.1016/j.watres.2024.121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Over the last six decades, northwest China has undergone a significant climatic shift from "warm-dry" to "warm-wet", profoundly impacting the structures and functions of lake ecosystem across the region. However, the influences of this climatic transition on the diversity patterns, co-occurrence network, and assembly processes of eukaryotic microbial communities in lake ecosystem, along with the underlying mechanisms, remain largely unexplored. To bridge this knowledge gap, our study focused on Lake Bosten, the largest inland freshwater body in China, conducting a comprehensive analysis. Firstly, we examined the dynamics of key water quality parameters in the lake based on long-term monitoring data (1992-2022). Subsequently, we collected 93 water samples spanning two distinctive periods: low water level (WL) and high total dissolved solids (TDS) (PerWLTDS; 2010-2011; attributed to "warm-dry" climate), and high WL and low TDS (PerTDSWL; 2021-2022; associated with "warm-wet" climate). Eukaryotic microorganisms were further investigated using 18S rRNA gene sequencing and various statistical methods. Our findings revealed that climatic warming and wetting significantly increased eukaryotic microbial α-diversity (all Wilcox. test: P<0.05), while simultaneously reducing β-diversity (all Wilcox. test: P<0.001) and network complexity. Through the two sampling periods, assembly mechanisms of eukaryotic microorganisms were predominantly influenced by dispersal limitation (DL) and drift (DR) within stochastic processes, alongside homogeneous selection (HoS) within deterministic processes. WL played a mediating role in eukaryotic microbial DL and HoS processes in the PerTDSWL, whereas water quality and α-diversity influenced the DL process in the PerWLTDS. Collectively, these results underscore the direct and indirect impacts of "warm-wet" conditions on the eukaryotic microorganisms within Lake Bosten. This study provides valuable insights into the evolutionary dynamics of lake ecosystems under such climatic conditions and aids in predicting the ecological ramifications of global climatic changes.
Collapse
Affiliation(s)
- Zhen Shen
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bobing Yu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yi Gong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
15
|
Yang W, Zhang S, Li A, Yang J, Pang S, Hu Z, Wang Z, Han X, Zhang X. Nitrogen deposition mediates more stochastic processes in structuring plant community than soil microbial community in the Eurasian steppe. SCIENCE CHINA. LIFE SCIENCES 2024; 67:778-788. [PMID: 38212459 DOI: 10.1007/s11427-023-2416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/08/2023] [Indexed: 01/13/2024]
Abstract
Anthropogenic environmental changes may affect community assembly through mediating both deterministic (e.g., competitive exclusion and environmental filtering) and stochastic processes (e.g., birth/death and dispersal/colonization). It is traditionally thought that environmental changes have a larger mediation effect on stochastic processes in structuring soil microbial community than aboveground plant community; however, this hypothesis remains largely untested. Here we report an unexpected pattern that nitrogen (N) deposition has a larger mediation effect on stochastic processes in structuring plant community than soil microbial community (those <2 mm in diameter, including archaea, bacteria, fungi, and protists) in the Eurasian steppe. We performed a ten-year nitrogen deposition experiment in a semiarid grassland ecosystem in Inner Mongolia, manipulating nine rates (0-50 g N m-2 per year) at two frequencies (nitrogen added twice or 12 times per year) under two grassland management strategies (fencing or mowing). We separated the compositional variation of plant and soil microbial communities caused by each treatment into the deterministic and stochastic components with a recently-developed method. As nitrogen addition rate increased, the relative importance of stochastic component of plant community first increased and then decreased, while that of soil microbial community first decreased and then increased. On the whole, the relative importance of stochastic component was significantly larger in plant community (0.552±0.035; mean±standard error) than in microbial community (0.427±0.035). Consistently, the proportion of compositional variation explained by the deterministic soil and community indices was smaller for plant community (0.172-0.186) than microbial community (0.240-0.767). Meanwhile, as nitrogen addition rate increased, the linkage between plant and microbial community composition first became weaker and then became stronger. The larger stochasticity in plant community relative to microbial community assembly suggested that more stochastic strategies (e.g., seeds addition) should be adopted to maintain above- than below-ground biodiversity under the pressure of nitrogen deposition.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuhan Zhang
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ang Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuang Pang
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zonghao Hu
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiping Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Ximei Zhang
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
16
|
Pei L, Ye S, Xie L, Zhou P, He L, Yang S, Ding X, Yuan H, Dai T, Laws EA. Differential effects of warming on the complexity and stability of the microbial network in Phragmites australis and Spartina alterniflora wetlands in Yancheng, Jiangsu Province, China. Front Microbiol 2024; 15:1347821. [PMID: 38601935 PMCID: PMC11004437 DOI: 10.3389/fmicb.2024.1347821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
The impact of climate warming on soil microbial communities can significantly influence the global carbon cycle. Coastal wetlands, in particular, are susceptible to changes in soil microbial community structure due to climate warming and the presence of invasive plant species. However, there is limited knowledge about how native and invasive plant wetland soil microbes differ in their response to warming. In this study, we investigated the temporal dynamics of soil microbes (prokaryotes and fungi) under experimental warming in two coastal wetlands dominated by native Phragmites australis (P. australis) and invasive Spartina alterniflora (S. alterniflora). Our research indicated that short-term warming had minimal effects on microbial abundance, diversity, and composition. However, it did accelerate the succession of soil microbial communities, with potentially greater impacts on fungi than prokaryotes. Furthermore, in the S. alterniflora wetland, experimental warming notably increased the complexity and connectivity of the microbial networks. While in the P. australis wetland, it decreased these factors. Analysis of robustness showed that experimental warming stabilized the co-occurrence network of the microbial community in the P. australis wetland, but destabilized it in the S. alterniflora wetland. Additionally, the functional prediction analysis using the Faprotax and FunGuild databases revealed that the S. alterniflora wetland had a higher proportion of saprotrophic fungi and prokaryotic OTUs involved in carbon degradation (p < 0.05). With warming treatments, there was an increasing trend in the proportion of prokaryotic OTUs involved in carbon degradation, particularly in the S. alterniflora wetland. Therefore, it is crucial to protect native P. australis wetlands from S. alterniflora invasion to mitigate carbon emissions and preserve the health of coastal wetland ecosystems under future climate warming in China.
Collapse
Affiliation(s)
- Lixin Pei
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Siyuan Ye
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Liujuan Xie
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Pan Zhou
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Lei He
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Shixiong Yang
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xigui Ding
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Hongming Yuan
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Edward A. Laws
- Department of Environmental Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
17
|
Li H, Song A, Qiu L, Liang S, Chi Z. Deep groundwater irrigation altered microbial community and increased anammox and methane oxidation in paddy wetlands of Sanjiang Plain, China. Front Microbiol 2024; 15:1354279. [PMID: 38450168 PMCID: PMC10915080 DOI: 10.3389/fmicb.2024.1354279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
The over-utilizing of nitrogen fertilizers in paddy wetlands potentially threatens to the surrounding waterbody, and a deep understanding of the community and function of microorganisms is crucial for paddy non-point source pollution control. In this study, top soil samples (0-15 cm) of paddy wetlands under groundwater's irrigation at different depths (H1: 6.8 m, H2: 13.7 m, H3: 14.8 m, H4: 15.6 m, H5: 17.0 m, and H6: 17.8 m) were collected to investigate microbial community and function differences and their interrelation with soil properties. Results suggested some soil factor differences for groundwater's irrigation at different depths. Deep-groundwater's irrigation (H2-H6) was beneficial to the accumulation of various electron acceptors. Nitrifying-bacteria Ellin6067 had high abundance under deep groundwater irrigation, which was consistent with its diverse metabolic capacity. Meanwhile, denitrifying bacteria had diverse distribution patterns. Iron-reducing bacteria Geobacter was abundant in H1, and Anaeromyxobacter was abundant under deep groundwater irrigation; both species could participate in Fe-anammox. Furthermore, Geobacter could perform dissimilatory nitrate reduction to ammonia using divalent iron and provide substrate supply for anammox. Intrasporangium and norank_f_Gemmatimonadacea had good chromium- and vanadium-reducting potentials and could promote the occurrence of anammox. Low abundances of methanotrophs Methylocystis and norank_f_Methyloligellaceae were associated with the relatively anoxic environment of paddy wetlands, and the presence of aerobic methane oxidation was favorable for in-situ methane abatement. Moisture, pH, and TP had crucial effects on microbial community under phylum- and genus-levels. Microorganisms under shallow groundwater irrigation were highly sensitive to environmental changes, and Fe-anammox, nitrification, and methane oxidation were favorable under deep groundwater irrigation. This study highlights the importance of comprehensively revealing the microbial community and function of paddy wetlands under groundwater's irrigation and reveals the underlying function of indigenous microorganisms in agricultural non-point pollution control and greenhouse gas abatement.
Collapse
Affiliation(s)
- Huai Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Aiwen Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Qiu
- Second Hospital of Jilin University, Changchun, China
| | - Shen Liang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
18
|
Yang K, Liu W, Lin HM, Chen T, Yang T, Zhang B, Wen X. Ecological and functional differences of abundant and rare sub-communities in wastewater treatment plants across China. ENVIRONMENTAL RESEARCH 2024; 243:117749. [PMID: 38061589 DOI: 10.1016/j.envres.2023.117749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
The microbial community in activated sludge is composed of a small number of abundant sub-community with high abundance and a large number of rare sub-community with limited abundance. Our knowledge regarding the ecological properties of both abundant and rare sub-communities in activated sludge is limited. This article presented an analysis of functional prediction, assembly mechanisms, and biogeographic distribution characteristics of abundant and rare sub-communities in 211 activated sludge samples from 60 wastewater treatment plants across China. Moreover, this study investigated the dominant factors influencing the community structure of these two microbial groups. The results showed that the functions associated with carbon and nitrogen cycling were primarily detected in abundant sub-community, while rare sub-community were primarily involved in sulfur cycling. Both microbial groups were mainly influenced by dispersal limitation, which, to some extent, resulted in a distance-decay relationship in their biogeographic distribution. Moreover, a higher spatial turnover rate of rare sub-communities (0.0887) suggested that spatial differences in microbial community structure among different WWTPs may mainly result from rare sub-community. Moreover, SEM showed that geographic locations affected rare sub-communities greatly, which agreed with their higher dispersal limitation and turnover rate. In contrast, influent characteristics showed stronger correlations with abundant sub-communities, suggesting that abundant sub-community may contribute more to the removal of pollutants. This study enhanced our understanding of abundant and rare microorganisms in activated sludge especially the role of rare species and provided scientific evidence for precise regulation and control of wastewater treatment plants.
Collapse
Affiliation(s)
- Kuo Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Wei Liu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui-Min Lin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Research Center of Food Environment and Public Health Engineering, Minzu University of China, Beijing 100081, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Research Center of Food Environment and Public Health Engineering, Minzu University of China, Beijing 100081, China
| | - Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Research Center of Food Environment and Public Health Engineering, Minzu University of China, Beijing 100081, China.
| | - Xianghua Wen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Zhao J, Xie X, Jiang Y, Li J, Fu Q, Qiu Y, Fu X, Yao Z, Dai Z, Qiu Y, Chen H. Effects of simulated warming on soil microbial community diversity and composition across diverse ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168793. [PMID: 37996030 DOI: 10.1016/j.scitotenv.2023.168793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Soil warming can directly affect the microbial community, or indirectly affect the microbial community by affecting soil moisture, nutrient availability, vegetation growth, etc. However, the response of microorganisms to soil warming is complex, and there is no uniform conclusion on the impact and mechanism of warming on microbial diversity. As the global climate gradually warms, a comprehensive assessment of warming on soil microbial community changes is essential to understand and predict the response of microbial geochemical processes to soil warming. Here, we perform a meta-analysis of studies to investigate changes in soil microbial communities along soil warming gradients and the response of soil microbes to elevated temperature in different ecosystems. We found that the α diversity index of soil microorganisms decreased significantly with the increase in temperature, and the β diversity altered with the increase in soil temperature and the shifts in ecosystem. Most bacteria only alter when the temperature rises higher. Compared to the non-warming condition, the relative abundance of Acidobacteria, Proteobacteria, Bacteroidetes, Planctomycetes and Verrucomicrobia decreased by 19 %, 11 %, 19 %, 8 % and 6 %, respectively, and the relative abundance of Firmicutes increased by 34 %. Compared to farmland, forest, grassland and tundra ecosystems, soil microorganisms in wetland ecosystems were more sensitive to temperature increase, and the changes in bacteria were consistent with the overall alterations. This meta-analysis revealed significant changes in the composition of microbial communities on soil warming. With the decrease in biodiversity under increasing temperature conditions, these dominant microbiomes, which can grow well under high-temperature conditions, will play a stronger role in regulating nutrient and energy flow. Our analysis adds a global perspective to the temperature response of soil microbes, which is critical to improving our understanding of the mechanisms of how soil microbes change in response to climate warming.
Collapse
Affiliation(s)
- Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xuan Xie
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yuying Jiang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
20
|
Tao X, Yang Z, Feng J, Jian S, Yang Y, Bates CT, Wang G, Guo X, Ning D, Kempher ML, Liu XJA, Ouyang Y, Han S, Wu L, Zeng Y, Kuang J, Zhang Y, Zhou X, Shi Z, Qin W, Wang J, Firestone MK, Tiedje JM, Zhou J. Experimental warming accelerates positive soil priming in a temperate grassland ecosystem. Nat Commun 2024; 15:1178. [PMID: 38331994 PMCID: PMC10853207 DOI: 10.1038/s41467-024-45277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Unravelling biosphere feedback mechanisms is crucial for predicting the impacts of global warming. Soil priming, an effect of fresh plant-derived carbon (C) on native soil organic carbon (SOC) decomposition, is a key feedback mechanism that could release large amounts of soil C into the atmosphere. However, the impacts of climate warming on soil priming remain elusive. Here, we show that experimental warming accelerates soil priming by 12.7% in a temperate grassland. Warming alters bacterial communities, with 38% of unique active phylotypes detected under warming. The functional genes essential for soil C decomposition are also stimulated, which could be linked to priming effects. We incorporate lab-derived information into an ecosystem model showing that model parameter uncertainty can be reduced by 32-37%. Model simulations from 2010 to 2016 indicate an increase in soil C decomposition under warming, with a 9.1% rise in priming-induced CO2 emissions. If our findings can be generalized to other ecosystems over an extended period of time, soil priming could play an important role in terrestrial C cycle feedbacks and climate change.
Collapse
Affiliation(s)
- Xuanyu Tao
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Zhifeng Yang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Jiajie Feng
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Siyang Jian
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China.
| | - Colin T Bates
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Gangsheng Wang
- Institute for Water-Carbon Cycles and Carbon Neutrality, and State Key Laboratory of Water Resources Engineering and Management, Wuhan University, 430072, Wuhan, China
| | - Xue Guo
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Daliang Ning
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Megan L Kempher
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Xiao Jun A Liu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Yang Ouyang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Shun Han
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Linwei Wu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Jialiang Kuang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Ya Zhang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Xishu Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Zheng Shi
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Wei Qin
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, 210008, Nanjing, China
| | - Mary K Firestone
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, CA, 94720, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA.
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA.
- School of Computer Sciences, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
21
|
Chen B, Lu Q, Wei L, Fu W, Wei Z, Tian S. Global predictions of topsoil organic carbon stocks under changing climate in the 21st century. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168448. [PMID: 37963520 DOI: 10.1016/j.scitotenv.2023.168448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
The organic carbon (OC) stored in global topsoil (0-30 cm) will be the most active participant in the carbon cycle under future climate change. Due to differences in focus regions or research methods, the spatio-temporal changes of future global topsoil OC stocks and how they will be affected by climate change are not systematically understood, which needs to be further explored. In this study, we developed data-driven models to predict the spatio-temporal dynamics of global topsoil OC stocks by combining 32,579 soil profiles with environmental variables and comprehensively explored the impact of future climate change on topsoil OC. It was found that the topsoil OC stocks were 1249.29 Pg in the baseline period (1971-1990). By 2100, under the normal and high representative concentration paths, it is predicted that the global topsoil OC stocks will decrease by 113.67 ± 25.93 Pg and 193.71 ± 39.76 Pg, respectively. In the future, the largest global topsoil carbon loss will occur in boreal forest areas, which are expected to lose 17.03-27.90 % (66.01-108.13Pg) of their carbon stocks. The influence of climate on topsoil OC stocks is mainly manifested in temperature, which has a negative influence on the global topsoil OC stock, and the contribution rate of temperature to the effect on the global topsoil OC stock is about 26.96 %. Overall, our results provide a high spatio-temporal resolution assessment of global topsoil OC stocks and their relationship to environmental factors, and highlight the spatial heterogeneity, which has been generally ignored in many experimental frameworks and prediction models. These results will help governments to make appropriate management decisions to mitigate climate change.
Collapse
Affiliation(s)
- Bo Chen
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Qikai Lu
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Lifei Wei
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region, Ministry of Natural Resources, Changsha 410118, China; Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China.
| | - Wenqiang Fu
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Zeyang Wei
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Shuang Tian
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
22
|
Lei J, Su Y, Jian S, Guo X, Yuan M, Bates CT, Shi ZJ, Li J, Su Y, Ning D, Wu L, Zhou J, Yang Y. Warming effects on grassland soil microbial communities are amplified in cool months. THE ISME JOURNAL 2024; 18:wrae088. [PMID: 38747385 PMCID: PMC11170927 DOI: 10.1093/ismejo/wrae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Global warming modulates soil respiration (RS) via microbial decomposition, which is seasonally dependent. Yet, the magnitude and direction of this modulation remain unclear, partly owing to the lack of knowledge on how microorganisms respond to seasonal changes. Here, we investigated the temporal dynamics of soil microbial communities over 12 consecutive months under experimental warming in a tallgrass prairie ecosystem. The interplay between warming and time altered (P < 0.05) the taxonomic and functional compositions of microbial communities. During the cool months (January to February and October to December), warming induced a soil microbiome with a higher genomic potential for carbon decomposition, community-level ribosomal RNA operon (rrn) copy numbers, and microbial metabolic quotients, suggesting that warming stimulated fast-growing microorganisms that enhanced carbon decomposition. Modeling analyses further showed that warming reduced the temperature sensitivity of microbial carbon use efficiency (CUE) by 28.7% when monthly average temperature was low, resulting in lower microbial CUE and higher heterotrophic respiration (Rh) potentials. Structural equation modeling showed that warming modulated both Rh and RS directly by altering soil temperature and indirectly by influencing microbial community traits, soil moisture, nitrate content, soil pH, and gross primary productivity. The modulation of Rh by warming was more pronounced in cooler months compared to warmer ones. Together, our findings reveal distinct warming-induced effects on microbial functional traits in cool months, challenging the norm of soil sampling only in the peak growing season, and advancing our mechanistic understanding of the seasonal pattern of RS and Rh sensitivity to warming.
Collapse
Affiliation(s)
- Jiesi Lei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuanlong Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Siyang Jian
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mengting Yuan
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94704, United States
| | - Colin T Bates
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Zhou Jason Shi
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences and Environmental Microbiology & Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Yifan Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Daliang Ning
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Liyou Wu
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019, United States
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
23
|
Zhai C, Han L, Xiong C, Ge A, Yue X, Li Y, Zhou Z, Feng J, Ru J, Song J, Jiang L, Yang Y, Zhang L, Wan S. Soil microbial diversity and network complexity drive the ecosystem multifunctionality of temperate grasslands under changing precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167217. [PMID: 37751844 DOI: 10.1016/j.scitotenv.2023.167217] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Soil microbiomes play a critical role in regulating ecosystem multifunctionality. However, whether and how soil protists and microbiome interactions affect ecosystem multifunctionality under climate change is unclear. Here, we transplanted 54 soil monoliths from three typical temperate grasslands (i.e., desert, typical, and meadow steppes) along a precipitation gradient in the Mongolian Plateau and examined their response to nighttime warming, decreased, and increased precipitation. Across the three steppes, nighttime warming only stimulated protistan diversity by 15.61 (absolute change, phylogenetic diversity) but had no effect on ecosystem multifunctionality. Decreased precipitation reduced bacterial (8.78) and fungal (22.28) diversity, but significantly enhanced soil microbiome network complexity by 1.40. Ecosystem multifunctionality was reduced by 0.23 under decreased precipitation, which could be largely attributed to the reduced soil moisture that negatively impacted bacterial and fungal communities. In contrast, increased precipitation had little impact on soil microbial communities. Overall, both bacterial and fungal diversity and network complexity play a fundamental role in maintaining ecosystem multifunctionality in response to drought stress. Protists alter ecosystem multifunctionality by indirectly affecting microbial network complexity. Therefore, not only microbial diversity but also their interactions (regulated by soil protists) should be considered in evaluating the responses of ecosystem multifunctionality, which has important implications for predicting changes in ecosystem functioning under future climate change scenarios.
Collapse
Affiliation(s)
- Changchun Zhai
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lili Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chao Xiong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Anhui Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaojing Yue
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Ying Li
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhenxing Zhou
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayin Feng
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jingyi Ru
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jian Song
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Limei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shiqiang Wan
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
24
|
Shen Z, Yu B, Shao K, Gao G, Tang X. Warming reduces microeukaryotic diversity, network complexity and stability. ENVIRONMENTAL RESEARCH 2023; 238:117235. [PMID: 37775010 DOI: 10.1016/j.envres.2023.117235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Unraveling how climate warming affects microorganisms and the underlying mechanisms has been a hot topic in climate change and microbial ecology. To date, many studies have reported microbial responses to climate warming, especially in soil ecosystems, however, knowledge of how warming influences microeukaryotic diversity, network complexity and stability in lake ecosystems, in particular the possible underlying mechanisms, is largely unknown. To address this gap, we conducted 20 mesocosms spanning five temperature scenarios (26 °C, 27.5 °C, 29 °C, 30.5 °C, and 32 °C) in Lake Bosten, a hotspot for studying climate change, and investigated microeukaryotic communities using 18S rRNA gene sequencing. Our results demonstrated that warming, time, and their interactions significantly reduced microeukaryotic α-diversity (two-way ANOVA: P<0.01). Although warming did not significantly affect microeukaryotic community structure (ANOSIM: P>0.05), it enhanced species turnover. Microeukaryotic networks exhibited distinct co-occurrence patterns and topological properties across temperature scenarios. Warming reduced network complexity and stability, as well as altered species interactions. Collectively, these findings are likely to have implications for ecological management of lake ecosystems, in particular semi-arid and arid regions, and for predicting ecological consequences of climate change.
Collapse
Affiliation(s)
- Zhen Shen
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bobing Yu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Yu Q, Han Q, Li T, Kou Y, Zhang X, Wang Y, Li G, Zhou H, Qu J, Li H. Metagenomics reveals the self-recovery and risk of antibiotic resistomes during carcass decomposition of wild mammals. ENVIRONMENTAL RESEARCH 2023; 238:117222. [PMID: 37778601 DOI: 10.1016/j.envres.2023.117222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Animal carcass decomposition may bring serious harm to the environment, including pathogenic viruses, toxic gases and metabolites, and antibiotic resistance genes (ARGs). However, how wild mammal corpses decomposition influence and change ARGs in the environment has less explored. Through metagenomics, 16S rRNA gene sequencing, and physicochemical analysis, this study explored the succession patterns, influencing factors, and assembly process of ARGs and mobile genetic elements (MGEs) in gravesoil during long-term corpse decomposition of wild mammals. Our results indicate that the ARG and MGE communities related to wildlife corpses exhibited a pattern of differentiation first and then convergence. Different from the farmed animals, the decomposition of wild animals first reduced the diversity of ARGs and MGEs, and then recovered to a level similar to that of the control group (untreated soil). ARGs and MGEs of the gravesoil are mainly affected by deterministic processes in different stages. MGEs and bacterial community are the two most important factors affecting ARGs in gravesoil. It is worth noting that the decomposition of wild animal carcasses enriched different high-risk ARGs at different stages (bacA, mecA and floR), which have co-occurrence patterns with opportunistic pathogens (Comamonas and Acinetobacter), thereby posing a great threat to public health. These results are of great significance for wildlife corpse management and environmental and ecological safety.
Collapse
Affiliation(s)
- Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu, 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yongping Kou
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiao Zhang
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huakun Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
| | - Huan Li
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu, 730000, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
26
|
Lockhart SR, Chowdhary A, Gold JAW. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat Rev Microbiol 2023; 21:818-832. [PMID: 37648790 PMCID: PMC10859884 DOI: 10.1038/s41579-023-00960-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
During recent decades, the emergence of pathogenic fungi has posed an increasing public health threat, particularly given the limited number of antifungal drugs available to treat invasive infections. In this Review, we discuss the global emergence and spread of three emerging antifungal-resistant fungi: Candida auris, driven by global health-care transmission and possibly facilitated by climate change; azole-resistant Aspergillus fumigatus, driven by the selection facilitated by azole fungicide use in agricultural and other settings; and Trichophyton indotineae, driven by the under-regulated use of over-the-counter high-potency corticosteroid-containing antifungal creams. The diversity of the fungi themselves and the drivers of their emergence make it clear that we cannot predict what might emerge next. Therefore, vigilance is critical to monitoring fungal emergence, as well as the rise in overall antifungal resistance.
Collapse
Affiliation(s)
- Shawn R Lockhart
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jeremy A W Gold
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
27
|
Luo H, Wang C, Zhang K, Ming L, Chu H, Wang H. Elevational changes in soil properties shaping fungal community assemblages in terrestrial forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165840. [PMID: 37516167 DOI: 10.1016/j.scitotenv.2023.165840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Environmental variables shifted by climate change act as driving factors in determining plant-associated microbial communities in terrestrial ecosystems. However, how elevation-induced changes in soil properties shape the microbial community in forest ecosystems remains less understood. Thus, the Pinus tabuliformis forests at elevations of 1500 m, 1900 m, and 2300 m above sea level were investigated to explore the effect of environmental factors on microbial assemblage. Significant changes in the soil physicochemical properties were found across the investigated elevations, such as soil moisture, temperature, pH, nitrogen (N), and phosphorus (P). Soil enzymatic activities, including soil sucrase, phosphatase, and dehydrogenase, were significantly affected by elevation, and sucrase showed a linear correlation with soil organic matter. Furthermore, the richness of fungal communities in the rhizosphere was decreased as elevation increased, while a humpback pattern was found for roots. Certain core microbiota members, such as Agaricomycetes, Leotiomycetes, and Pezizomycetes, were crucial in maintaining a stable ecological niche in both the root and rhizosphere. We also found that shifting of fungal communities in the rhizosphere were more related to physical properties (e.g., pH, soil moisture, and soil temperature), while changes in root fungal communities along elevation gradient were related mostly to soil nutrients (e.g., soil N and P). Overall, this study demonstrates that the assemblage of the root and rhizosphere fungal communities in P. tabuliformis forest primarily depends on elevation-induced changes in environmental variables and highlights the importance of predicting fungal responses to future climate change.
Collapse
Affiliation(s)
- Huan Luo
- College of Forestry, Northwest A&F University, Yangling, China; Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Chunyan Wang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Kaile Zhang
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, USA
| | - Li Ming
- College of Forestry, Northwest A&F University, Yangling, China; China University of Mining and Technology, School of Mechanics and Civil Engineering, China
| | - Honglong Chu
- College of Forestry, Northwest A&F University, Yangling, China; College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, China
| | - Haihua Wang
- College of Forestry, Northwest A&F University, Yangling, China; North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, USA.
| |
Collapse
|
28
|
Bei Q, Reitz T, Schnabel B, Eisenhauer N, Schädler M, Buscot F, Heintz-Buschart A. Extreme summers impact cropland and grassland soil microbiomes. THE ISME JOURNAL 2023; 17:1589-1600. [PMID: 37419993 PMCID: PMC10504347 DOI: 10.1038/s41396-023-01470-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
The increasing frequency of extreme weather events highlights the need to understand how soil microbiomes respond to such disturbances. Here, metagenomics was used to investigate the effects of future climate scenarios (+0.6 °C warming and altered precipitation) on soil microbiomes during the summers of 2014-2019. Unexpectedly, Central Europe experienced extreme heatwaves and droughts during 2018-2019, causing significant impacts on the structure, assembly, and function of soil microbiomes. Specifically, the relative abundance of Actinobacteria (bacteria), Eurotiales (fungi), and Vilmaviridae (viruses) was significantly increased in both cropland and grassland. The contribution of homogeneous selection to bacterial community assembly increased significantly from 40.0% in normal summers to 51.9% in extreme summers. Moreover, genes associated with microbial antioxidant (Ni-SOD), cell wall biosynthesis (glmSMU, murABCDEF), heat shock proteins (GroES/GroEL, Hsp40), and sporulation (spoIID, spoVK) were identified as potential contributors to drought-enriched taxa, and their expressions were confirmed by metatranscriptomics in 2022. The impact of extreme summers was further evident in the taxonomic profiles of 721 recovered metagenome-assembled genomes (MAGs). Annotation of contigs and MAGs suggested that Actinobacteria may have a competitive advantage in extreme summers due to the biosynthesis of geosmin and 2-methylisoborneol. Future climate scenarios caused a similar pattern of changes in microbial communities as extreme summers, but to a much lesser extent. Soil microbiomes in grassland showed greater resilience to climate change than those in cropland. Overall, this study provides a comprehensive framework for understanding the response of soil microbiomes to extreme summers.
Collapse
Affiliation(s)
- Qicheng Bei
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany.
| | - Thomas Reitz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Beatrix Schnabel
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Anna Heintz-Buschart
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Qiqige B, Wei B, Wei Y, Liu M, Bi Y, Xu R, Liu N, Yang G, Zhang Y. Climate, not grazing, influences soil microbial diversity through changes in vegetation and abiotic factors on geographical patterns in the Eurasian steppe. FRONTIERS IN PLANT SCIENCE 2023; 14:1238077. [PMID: 37745991 PMCID: PMC10511900 DOI: 10.3389/fpls.2023.1238077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/26/2023] [Indexed: 09/26/2023]
Abstract
Livestock grazing has a significant impact on the biodiversity of nature grassland ecosystems, which is mainly regulated by climate factors. Soil microbes are essential components of biogeochemical cycles. However, the coupling effects of grazing with MAT (mean annual temperature) and MAP (mean annual precipitation) on soil microbial communities remain inconsistent. Our study considered the various climates in four grasslands as natural temperature and precipitation gradients combined with grazing intensity (GI). We collected and analyzed vegetation and soil physiochemical properties from four grasslands. Our results showed that climate factors (CF) changed β diversity of soil bacteria and fungi while grazing intensity and their interaction merely affected fungi β diversity. Furthermore, climate factors and grazing intensity impacted changes in vegetation and soil physiochemical properties, with their interaction leading to changes in EC and MBC. Our analysis revealed that climate factors contributed 13.1% to bacteria community variation while grazing intensity contributed 3.01% to fungi community variation. Piecewise SEM analysis demonstrated that MAT and MAP were essential predictors of bacteria β diversity, which was significantly affected by vegetation and soil carbon and nitrogen. At the same time, MAP was an essential factor of fungi β diversity and was mainly affected by soil nitrogen. Our study indicated that bacteria and fungi β diversity was affected by different environmental processes and can adapt to specific grazing intensities over time.
Collapse
Affiliation(s)
- Bademu Qiqige
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bin Wei
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuqi Wei
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mohan Liu
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yixian Bi
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruixuan Xu
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Nan Liu
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Gaowen Yang
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yingjun Zhang
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
30
|
Wang M, Sun X, Cao B, Chiariello NR, Docherty KM, Field CB, Gao Q, Gutknecht JLM, Guo X, He G, Hungate BA, Lei J, Niboyet A, Le Roux X, Shi Z, Shu W, Yuan M, Zhou J, Yang Y. Long-term elevated precipitation induces grassland soil carbon loss via microbe-plant-soil interplay. GLOBAL CHANGE BIOLOGY 2023; 29:5429-5444. [PMID: 37317051 DOI: 10.1111/gcb.16811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
Global climate models predict that the frequency and intensity of precipitation events will increase in many regions across the world. However, the biosphere-climate feedback to elevated precipitation (eP) remains elusive. Here, we report a study on one of the longest field experiments assessing the effects of eP, alone or in combination with other climate change drivers such as elevated CO2 (eCO2 ), warming and nitrogen deposition. Soil total carbon (C) decreased after a decade of eP treatment, while plant root production decreased after 2 years. To explain this asynchrony, we found that the relative abundances of fungal genes associated with chitin and protein degradation increased and were positively correlated with bacteriophage genes, suggesting a potential viral shunt in C degradation. In addition, eP increased the relative abundances of microbial stress tolerance genes, which are essential for coping with environmental stressors. Microbial responses to eP were phylogenetically conserved. The effects of eP on soil total C, root production, and microbes were interactively affected by eCO2 . Collectively, we demonstrate that long-term eP induces soil C loss, owing to changes in microbial community composition, functional traits, root production, and soil moisture. Our study unveils an important, previously unknown biosphere-climate feedback in Mediterranean-type water-limited ecosystems, namely how eP induces soil C loss via microbe-plant-soil interplay.
Collapse
Affiliation(s)
- Mengmeng Wang
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Xin Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
| | - Baichuan Cao
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Nona R Chiariello
- Jasper Ridge Biological Preserve, Stanford University, Stanford, California, USA
| | - Kathryn M Docherty
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | - Christopher B Field
- Stanford Woods Institute for the Environment, Stanford University, Stanford, California, USA
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jessica L M Gutknecht
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, Minnesota, USA
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Genhe He
- School of Life Sciences, Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, Jinggangshan University, Ji'an, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jiesi Lei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Audrey Niboyet
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, CNRS, INRAE, IRD, Sorbonne Université, Université Paris Cité, UPEC, Paris, France
- AgroParisTech, Palaiseau, France
| | - Xavier Le Roux
- Laboratoire d'Ecologie Microbienne, INRAE, CNRS, VetAgroSup, UMR INRAE 1418, UMR CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Zhou Shi
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Wensheng Shu
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Mengting Yuan
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA
- School of Computer Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
31
|
Jiang M, Tian Y, Guo R, Li S, Guo J, Zhang T. Effects of warming and nitrogen addition on soil fungal and bacterial community structures in a temperate meadow. Front Microbiol 2023; 14:1231442. [PMID: 37502394 PMCID: PMC10369075 DOI: 10.3389/fmicb.2023.1231442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Soil microbial communities have been influenced by global changes, which might negatively regulate aboveground communities and affect nutrient resource cycling. However, the influence of warming and nitrogen (N) addition and their combined effects on soil microbial community composition and structure are still not well understood. To explore the effect of warming and N addition on the composition and structure of soil microbial communities, a five-year field experiment was conducted in a temperate meadow. We examined the responses of soil fungal and bacterial community compositions and structures to warming and N addition using ITS gene and 16S rRNA gene MiSeq sequencing methods, respectively. Warming and N addition not only increased the diversity of soil fungal species but also affected the soil fungal community structure. Warming and N addition caused significant declines in soil bacterial richness but had few impacts on bacterial community structure. The changes in plant species richness affected the soil fungal community structure, while the changes in plant cover also affected the bacterial community structure. The response of the soil bacterial community structure to warming and N addition was lower than that of the fungal community structure. Our results highlight that the influence of global changes on soil fungal and bacterial community structures might be different, and which also might be determined, to some extent, by plant community, soil physicochemical properties, and climate characteristics at the regional scale.
Collapse
Affiliation(s)
- Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Yibo Tian
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Rui Guo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, China
| | - Shuying Li
- Forestry and Grassland Bureau of Aohan Banner, Chifeng, China
| | - Jixun Guo
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Tao Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| |
Collapse
|
32
|
Ye C, Wang S, Wang Y, Zhou T, Li R. Impacts of human pressure and climate on biodiversity-multifunctionality relationships on the Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2023; 14:1106035. [PMID: 37332689 PMCID: PMC10270690 DOI: 10.3389/fpls.2023.1106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/28/2023] [Indexed: 06/20/2023]
Abstract
Many studies have investigated the effects of environmental context on biodiversity or multifunctionality in alpine regions, but it is uncertain how human pressure and climate may affect their relationships. Here, we combined the comparative map profile method with multivariate datasets to assess the spatial pattern of ecosystem multifunctionality and further identify the effects of human pressure and climate on the spatial distribution of biodiversity-multifunctionality relationships in alpine ecosystems of the Qinghai-Tibetan Plateau (QTP). Our results indicate that at least 93% of the areas in the study region show a positive correlation between biodiversity and ecosystem multifunctionality across the QTP. Biodiversity-multifunctionality relationships with increasing human pressure show a decreasing trend in the forest, alpine meadow, and alpine steppe ecosystems, while an opposite pattern was found in the alpine desert steppe ecosystem. More importantly, aridity significantly strengthened the synergistic relationship between biodiversity and ecosystem multifunctionality in forest and alpine meadow ecosystems. Taken together, our results provide insights into the importance of protecting and maintaining biodiversity and ecosystem multifunctionality in response to climate change and human pressure in the alpine region.
Collapse
Affiliation(s)
- Chongchong Ye
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Shuai Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yi Wang
- School of Life Sciences and State Key Lab of Biological Control, Sun Yat-sen University, Guangzhou, China
| | - Tiancai Zhou
- Synthesis Research Centre of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Ruowei Li
- College of Grassland, Resource and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
33
|
Leal Filho W, Nagy GJ, Setti AFF, Sharifi A, Donkor FK, Batista K, Djekic I. Handling the impacts of climate change on soil biodiversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161671. [PMID: 36657677 DOI: 10.1016/j.scitotenv.2023.161671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Land as a whole, and soil, in particular, plays a critical function in the climate system. The various types of land use, especially agriculture and forestry, account for nearly a quarter of the greenhouse gas emissions. On the other hand, the world's soil is under pressure from many factors, including climate change and land use change. Increases in temperature, prolonged drought and floods put pressure on the soil. In order to contribute to a better understanding of these interactions, we conducted a review combining a narrative-focused approach, selecting examples worldwide, and a bibliometric analysis (VosViewer software). This review reports on a study that analyses how climate change and land use change may negatively influence soil biodiversity and related services. It also outlines some of the actions needed to increase the resilience of soil biodiversity in the context of a changing climate. Some key findings are: 1) Well-managed soils are critical for resilient production systems. 2) Integrated agricultural production systems have gained prominence as climate-resilient production systems. 3) Agricultural zoning may be a valuable tool in integrated systems to minimise the effects of climate change. However, it is vital to continuously monitor environmental variations so producers can be more prepared for climate change and extreme events. Finally, adequate water management is essential for soil functioning under climate change aggravating water scarcity. An intersectoral approach between critical sectors facilitates comprehensive water management.
Collapse
Affiliation(s)
- Walter Leal Filho
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; European School of Sustainability Science and Research, Hamburg University of Applied Sciences, Germany.
| | - Gustavo J Nagy
- Instituto de Ecología y Ciencias Ambientales (IECA), Universidad de la República (UdelaR), Montevideo 11400, Uruguay.
| | - Andréia Faraoni Freitas Setti
- Department of Biology & CESAM Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ayyoob Sharifi
- Graduate School of Humanities and Social Sciences and Network for Education and Research on Peace and Sustainability, Hiroshima University, Higashi, Hiroshima 739-8530, Japan.
| | - Felix Kwabena Donkor
- College of Agriculture & Environmental Sciences (CAES), University of South Africa (UNISA), 28 Pioneer Ave, Florida Park, Roodepoort 1709, South Africa
| | - Karina Batista
- Instituto de Zootecnia, Agência Paulista de Tecnologia dos Agronegócios, Secretaria de Agricultura e Abastecimento do Estado de São Paulo, 56 Heitor Penteado St. Centro, Zip Code: 13.460-000 Nova Odessa, SP, Brazil
| | - Ilija Djekic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia.
| |
Collapse
|
34
|
Wu L, Chen H, Chen D, Wang S, Wu Y, Wang B, Liu S, Yue L, Yu J, Bai Y. Soil biota diversity and plant diversity both contributed to ecosystem stability in grasslands. Ecol Lett 2023; 26:858-868. [PMID: 36922741 DOI: 10.1111/ele.14202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/17/2023]
Abstract
Understanding the effects of diversity on ecosystem stability in the context of global change has become an important goal of recent ecological research. However, the effects of diversity at multiple scales and trophic levels on ecosystem stability across environmental gradients remain unclear. Here, we conducted a field survey of α-, β-, and γ-diversity of plants and soil biota (bacteria, fungi, and nematodes) and estimated the temporal ecosystem stability of normalized difference vegetation index (NDVI) in 132 plots on the Mongolian Plateau. After climate and soil environmental variables were controlled for, both the α- and β-diversity of plants and soil biota (mainly via nematodes) together with precipitation explained most variation in ecosystem stability. These findings evidence that the diversity of both soil biota and plants contributes to ecosystem stability. Model predictions of the future effects of global changes on terrestrial ecosystem stability will require field observations of diversity of both plants and soil biota.
Collapse
Affiliation(s)
- Liji Wu
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, China.,Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China.,College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Huasong Chen
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Dima Chen
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, China.,Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China.,College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Ying Wu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Bing Wang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Shengen Liu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Linyan Yue
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Jie Yu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Ouyang X, Fan Q, Chen A, Huang J. Effects of trunk injection with emamectin benzoate on arthropod diversity. PEST MANAGEMENT SCIENCE 2023; 79:935-946. [PMID: 36309931 DOI: 10.1002/ps.7264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pine wood nematode is a major plant quarantine object in the world. Trunk injection is an effective method for controlling pests that cause disease. To evaluate the ecological safety of trunk injection with emamectin benzoates in forests of Pinus massoniana, the community diversity and community composition of soil arthropods and flying insects (Hymenoptera) were studied at different stages of trunk injection. RESULTS The dominant taxonomic groups of soil arthropods were Collembola (30.80%), Insecta (26.42%), and Arachnida (23.84%). The taxonomic groups of flying insects (Hymenoptera) were Ichneumonidae (48.94%), Formicidae (14.10%), and Braconidae (8.44%). Trunk injection with emamectin benzoate has no significant effect on the community diversity indices of total soil arthropods and flying insects (Hymenoptera). However, it has a significant effect on the community diversity indices of detritivores for soil arthropods. It changed the community composition of soil arthropods but did not impact the community composition of flying insects (Hymenoptera). Redundancy analysis of arthropod community structure and environmental variables showed that total potassium, residual of green leaf, and residual of litter leaf have a significant impact on the community structure of soil arthropods, and total phosphorus, total nitrogen, water content, organic matter, and total potassium have a significant impact on the community structure of flying insects (Hymenoptera). CONCLUSION Trunk injection with emamectin benzoate is safe for the ecological environment. This study provides a new insight into the field for the prevention and control of pine wood nematode disease, which is of great significance to forest management and pest control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianheng Ouyang
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Qingbin Fan
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Anliang Chen
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Junhao Huang
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
36
|
Shi W, Tang S, Zhang S. Microbiome of High-Rank Coal Reservoirs in the High-Production Areas of the Southern Qinshui Basin. Microorganisms 2023; 11:microorganisms11020497. [PMID: 36838462 PMCID: PMC9963281 DOI: 10.3390/microorganisms11020497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
To study the distribution features of microorganisms in distinct hydrological areas of the southern Qinshui Basin, C-N-S microorganisms were studied using 16S RNA sequencing, metagenome sequencing and geochemical technologies, showing the high sensitivity of microorganisms to the hydrodynamic dynamics of coal. The hydrodynamic intensity of the #3 coal gradually decreased from the runoff areas to the stagnant areas. The stagnant zones have higher reservoir pressure, methane content, δ13CDIC and TDS and lower SO42-, Fe3+ and NO3- concentrations than the runoff areas. C-N-S-cycling microorganisms, including those engaged in methanogenesis, nitrate respiration, fermentation, nitrate reduction, dark oxidation of sulfur compounds, sulfate respiration, iron respiration, chlorate reduction, aromatic compound degradation, denitrification, ammonification and nitrogen fixation, were more abundant in the stagnant areas. The relative abundance of C-N-S functional genes, including genes related to C metabolism (e.g., mcr, mer, mtr, fwd and mtd), N metabolism (e.g., nifDKH, nirK, narGHI, nosZ, amoB, norC and napAB) and sulfur metabolism (e.g., dsrAB and PAPSS), increased in the stagnant zones, indicating that there was active microbiological C-N-S cycling in the stagnant areas. The degradation and fermentation of terrestrial plant organic carbon and coal seam organic matter could provide substrates for methanogens, while nitrogen fixation and nitrification can provide nitrogen for methanogens, which are all favorable factors for stronger methanogenesis in stagnant areas. The coal in the study area is currently in the secondary biogenic gas generation stage because of the rising of the strata, which recharges atmospheric precipitation. The random forest model shows that the abundance of C-N-S microorganisms and genes could be used to distinguish different hydrological zones in coal reservoirs. Since stagnant zones are usually high-gas-bearing zones and high-production areas of CBM exploration, these microbiological indicators can be used as effective parameters to identify high-production-potential zones. In addition, nitrate respiration and sulfate respiration microorganisms consumed NO3- and SO42-, causing a decrease in the content of these two ions in the stagnant areas.
Collapse
Affiliation(s)
- Wei Shi
- MOE Key Lab of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism, Beijing 100083, China
- MOLR Key Lab of Shale Gas Resources Survey and Strategic Evaluation, Beijing 100083, China
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Shuheng Tang
- MOE Key Lab of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism, Beijing 100083, China
- MOLR Key Lab of Shale Gas Resources Survey and Strategic Evaluation, Beijing 100083, China
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
- Correspondence:
| | - Songhang Zhang
- MOE Key Lab of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism, Beijing 100083, China
- MOLR Key Lab of Shale Gas Resources Survey and Strategic Evaluation, Beijing 100083, China
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
37
|
Fungus under a Changing Climate: Modeling the Current and Future Global Distribution of Fusarium oxysporum Using Geographical Information System Data. Microorganisms 2023; 11:microorganisms11020468. [PMID: 36838433 PMCID: PMC9967672 DOI: 10.3390/microorganisms11020468] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
The impact of climate change on biodiversity has been the subject of numerous research in recent years. The multiple elements of climate change are expected to affect all levels of biodiversity, including microorganisms. The common worldwide fungus Fusarium oxysporum colonizes plant roots as well as soil and several other substrates. It causes predominant vascular wilt disease in different strategic crops such as banana, tomato, palm, and even cotton, thereby leading to severe losses. So, a robust maximum entropy algorithm was implemented in the well-known modeling program Maxent to forecast the current and future global distribution of F. oxysporum under two representative concentration pathways (RCPs 2.6 and 8.5) for 2050 and 2070. The Maxent model was calibrated using 1885 occurrence points. The resulting models were fit with AUC and TSS values equal to 0.9 (±0.001) and 0.7, respectively. Increasing temperatures due to global warming caused differences in habitat suitability between the current and future distributions of F. oxysporum, especially in Europe. The most effective parameter of this fungus distribution was the annual mean temperature (Bio 1); the two-dimensional niche analysis indicated that the fungus has a wide precipitation range because it can live in both dry and rainy habitats as well as a range of temperatures in which it can live to certain limits. The predicted shifts should act as an alarm sign for decision makers, particularly in countries that depend on such staple crops harmed by the fungus.
Collapse
|
38
|
Liao J, Dou Y, Yang X, An S. Soil microbial community and their functional genes during grassland restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116488. [PMID: 36419280 DOI: 10.1016/j.jenvman.2022.116488] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/18/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Soil microbial functional genes are linked with carbon (C) as well as nitrogen (N) cycling processes, and their relative abundances are strongly affected by ecosystem managements. Yet, soil microbial community compositions and their C, N cycling genes' abundance in temperate grasslands remain poorly studied. Here, the Illumina MiSeq sequencing (16 S rRNA gene and internal transcribed spacer [ITS]) and meta-genomic GeoChip sequencing technologies were used to explore the alterations of microbial compositions and functional genes in the topsoil (0-10 cm) following grassland restoration. Grassland restoration increased the relative abundances of the copiotrophs (such as Actinobacteria, Proteobacteria, Bacteroidetes), but reduced the oligotrophs (including Acidobacteria, Chloroflexi, Planctomycetes), suggesting that microorganisms shifted from oligotrophic to copiotrophic groups during grassland restoration. The changes in microbial eco-strategies were also supported by the meta-genomic GeoChip sequencing data. In the early restoration years, the microbial functional genes were dominant with recalcitrant C degradation (pgu, glx, lig, mnp), C fixation (accA, aclB, acsA, rbcL), N fixation (nifH), and nitrification (amoA, hao) related genes. In the later restoration years, the microbial functional genes were dominant with labile C degradation (amyA, amyX, apu, sga, abfA), and denitrification (nosZ, nirS, narG, napA) related genes. The changes in microbial functional genes were mainly related to soil biotic factors (microbial biomass C and N, as well as C- and N-acquiring enzymes). Finally, we made a framework illustrating the changes in microbial eco-strategies and soil C, N cycling processes. This is the first attempt to link microbial functional genes with microbial eco-strategies by incorporating soil microbial meta-genomic information during grassland restoration.
Collapse
Affiliation(s)
- Jiaojiao Liao
- College of Resource and Environment, Northwest A&F University, Yangling, 712100, China
| | - Yanxing Dou
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Xuan Yang
- College of Resource and Environment, Northwest A&F University, Yangling, 712100, China
| | - Shaoshan An
- College of Resource and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
39
|
Kuang J, Deng D, Han S, Bates CT, Ning D, Shu W, Zhou J. Resistance potential of soil bacterial communities along a biodiversity gradient in forest ecosystems. MLIFE 2022; 1:399-411. [PMID: 38818486 PMCID: PMC10989803 DOI: 10.1002/mlf2.12042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/01/2024]
Abstract
Higher biodiversity is often assumed to be a more desirable scenario for maintaining the functioning of ecosystems, but whether species-richer communities are also more disturbance-tolerant remains controversial. In this study, we investigated the bacterial communities based on 472 soil samples from 28 forests across China with associated edaphic and climatic properties. We developed two indexes (i.e., community mean tolerance breadth [CMTB] and community mean response asynchrony [CMRA]) to explore the relationship between diversity and community resistance potential. Moreover, we examined this resistance potential along the climatic and latitudinal gradients. We revealed that CMTB was significantly and negatively related to species richness, resulting from the changes in balance between relative abundances of putative specialists and generalists. In comparison, we found a unimodal relationship between CMRA and richness, suggesting that higher biodiversity might not always lead to higher community resistance. Moreover, our results showed differential local patterns along latitude. In particular, local patterns in the northern region mainly followed general relationships rather than those for the southern forests, which may be attributed to the differences in annual means and annual variations of climate conditions. Our findings highlight that the community resistance potential depends on the composition of diverse species with differential environmental tolerance and responses. This study provides a new, testable evaluation by considering tolerance breadth and response asynchrony at the community level, which will be helpful in assessing the influence of disturbance under rapid shifts in biodiversity and species composition as a result of global environmental change.
Collapse
Affiliation(s)
- Jialiang Kuang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of EducationSchool of Environment and Energy, South China University of TechnologyGuangzhouChina
- Institute for Environmental Genomics, and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Conservation of Guangdong Higher Education InstitutesCollege of Ecology and Evolution, Sun Yat‐sen UniversityGuangzhouChina
| | - Dongmei Deng
- Institute for Environmental Genomics, and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
- Guangxi Key Laboratory of Green Processing of Sugar ResourcesCollege of Biological and Chemical Engineering, Guangxi University of Science and TechnologyLiuzhouChina
| | - Shun Han
- Institute for Environmental Genomics, and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Colin T. Bates
- Institute for Environmental Genomics, and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Daliang Ning
- Institute for Environmental Genomics, and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Wensheng Shu
- School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Jizhong Zhou
- Institute for Environmental Genomics, and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
- School of Civil Engineering and Environmental SciencesUniversity of OklahomaNormanOklahomaUSA
- School of Computer SciencesUniversity of OklahomaNormanOklahomaUSA
- Earth and Environmental SciencesLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| |
Collapse
|
40
|
Qi Q, Zhao J, Tian R, Zeng Y, Xie C, Gao Q, Dai T, Wang H, He JS, Konstantinidis KT, Yang Y, Zhou J, Guo X. Microbially enhanced methane uptake under warming enlarges ecosystem carbon sink in a Tibetan alpine grassland. GLOBAL CHANGE BIOLOGY 2022; 28:6906-6920. [PMID: 36191158 DOI: 10.1111/gcb.16444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 05/25/2023]
Abstract
The alpine grasslands of the Tibetan Plateau store 23.2 Pg soil organic carbon, which becomes susceptible to microbial degradation with climate warming. However, accurate prediction of how the soil carbon stock changes under future climate warming is hampered by our limited understanding of belowground complex microbial communities. Here, we show that 4 years of warming strongly stimulated methane (CH4 ) uptake by 93.8% and aerobic respiration (CO2 ) by 11.3% in the soils of alpine grassland ecosystem. Due to no significant effects of warming on net ecosystem CO2 exchange (NEE), the warming-stimulated CH4 uptake enlarged the carbon sink capacity of whole ecosystem. Furthermore, precipitation alternation did not alter such warming effects, despite the significant effects of precipitation on NEE and soil CH4 fluxes were observed. Metagenomic sequencing revealed that warming led to significant shifts in the overall microbial community structure and the abundances of functional genes, which contrasted to no detectable changes after 2 years of warming. Carbohydrate utilization genes were significantly increased by warming, corresponding with significant increases in soil aerobic respiration. Increased methanotrophic genes and decreased methanogenic genes were observed under warming, which significantly (R2 = .59, p < .001) correlated with warming-enhanced CH4 uptakes. Furthermore, 212 metagenome-assembled genomes were recovered, including many populations involved in the degradation of various organic matter and a highly abundant methylotrophic population of the Methyloceanibacter genus. Collectively, our results provide compelling evidence that specific microbial functional traits for CH4 and CO2 cycling processes respond to climate warming with differential effects on soil greenhouse gas emissions. Alpine grasslands may play huge roles in mitigating climate warming through such microbially enhanced CH4 uptake.
Collapse
Affiliation(s)
- Qi Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jianshu Zhao
- School of Civil and Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Renmao Tian
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Changyi Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Tianjiao Dai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Hao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, China
| | - Jin-Sheng He
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, Peking University, Beijing, China
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
41
|
He H, Carlson AL, Nielsen PH, Zhou J, Daigger GT. Comparative analysis of floc characteristics and microbial communities in anoxic and aerobic suspended growth processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10822. [PMID: 36544219 PMCID: PMC10107865 DOI: 10.1002/wer.10822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 06/09/2023]
Abstract
A fully anoxic suspended growth process is an appealing alternative to conventional activated sludge (AS) due to considerable aeration reduction and improved carbon processing efficiency for biological nutrient removal (BNR). With development of the hybrid membrane aerated biofilm reactor (MABR) technology, implementation of a fully anoxic suspended growth community in BNR facilities became practical. To better understand potential limitations with the elimination of aeration, we carried out microscopic examination and 16S rRNA gene-based microbial community profiling to determine how an anoxic suspended growth would differ from the conventional aerobic process in floc characteristics, microbial diversity, microbial temporal dynamics, and community assembly pattern. Fewer filamentous populations were found in the anoxic mixed liquor, suggesting easily sheared flocs. The anoxic microbial community had distinct composition and structure, but its diversity and temporal dynamics were similar to the conventional aerobic community. A variety of well-studied functional guilds were also identified in the anoxic community. The anoxic microbial community assembly was more stochastic than the conventional aerobic community, but deterministic assembly was still significant with a large core microbiome adapted to the anoxic condition. PRACTITIONER POINTS: Flocs developed under the anoxic conditions had less filamentous backbones, implying reduced flocculation capacity and easily sheared flocs. Knowledge about the ecophysiology of Thauera, Thiothrix, and Trichococcus can help achieve good properties of the anoxic flocs. A diverse microbial community sustainably adapted to the fully anoxic condition, containing a variety of filaments, denitrifiers, and PAOs. The anoxic microbial community displayed a similar degree of diversity and temporal dynamics compared to the aerobic counterpart. The anoxic community's assembly was more stochastic, so it may be less subject to changes in environmental variables.
Collapse
Affiliation(s)
- Huanqi He
- Department of Civil and Environmental EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Avery L. Carlson
- Department of Civil and Environmental EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, and School of Computer ScienceUniversity of OklahomaNormanOklahomaUSA
| | - Glen T. Daigger
- Department of Civil and Environmental EngineeringUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
42
|
Dong L, Yao X, Deng Y, Zhang H, Zeng W, Li X, Tang J, Wang W. Nitrogen deficiency in soil mediates multifunctionality responses to global climatic drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156533. [PMID: 35679931 DOI: 10.1016/j.scitotenv.2022.156533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Natural and anthropogenic processes that decrease the availability of nitrogen (N) frequently occur in soil. Losses of N may limit the multiple functions linked to carbon, N and phosphorous cycling of soil (soil multifunctionality, SMF). Microbial communities and SMF are intimately linked. However, the relationship between soil microbial communities and SMF in response to global changes under N deficiency has never been examined in natural ecosystems. Here, soil samples from nine temperate arid grassland sites were used to assess the importance of microbial communities as driver of SMF to climate change and N deficiency. SMF was significantly decreased by drought and drought-wetting cycles, independent of the availability of soil N. Interestingly, temperature changes (variable temperature and warming) significantly increased SMF in N-poor conditions. However, this was at the expense of decreased SMF resistance. Deterministic assembly-driven microbial α-diversity and particularly fungal α-diversity, but not β-diversity, were generally found to play key roles in maintaining SMF in N-poor soil, irrespective of the climate. The results have two important implications. First, the absence of the stability offered by β-diversity means N-poor ecosystems will be particularly sensitive to global climate changes. Second, fungi are more important than bacteria for maintaining SMF in N-poor soil under climate changes.
Collapse
Affiliation(s)
- Lizheng Dong
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Xiaodong Yao
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China; School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China; State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yanyu Deng
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China; School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hongjin Zhang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Wenjing Zeng
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China; Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyu Li
- Center for Statistical Science, School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Junjie Tang
- Center for Statistical Science, School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Wei Wang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.
| |
Collapse
|
43
|
Wang X, Li Y, Yan Z, Hao Y, Kang E, Zhang X, Li M, Zhang K, Yan L, Yang A, Niu Y, Kang X. The divergent vertical pattern and assembly of soil bacterial and fungal communities in response to short-term warming in an alpine peatland. FRONTIERS IN PLANT SCIENCE 2022; 13:986034. [PMID: 36160969 PMCID: PMC9493461 DOI: 10.3389/fpls.2022.986034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Soil microbial communities are crucial in ecosystem-level decomposition and nutrient cycling processes and are sensitive to climate change in peatlands. However, the response of the vertical distribution of microbial communities to warming remains unclear in the alpine peatland. In this study, we examined the effects of warming on the vertical pattern and assembly of soil bacterial and fungal communities across three soil layers (0-10, 10-20, and 20-30 cm) in the Zoige alpine peatland under a warming treatment. Our results showed that short-term warming had no significant effects on the alpha diversity of either the bacterial or the fungal community. Although the bacterial community in the lower layers became more similar as soil temperature increased, the difference in the vertical structure of the bacterial community among different treatments was not significant. In contrast, the vertical structure of the fungal community was significantly affected by warming. The main ecological process driving the vertical assembly of the bacterial community was the niche-based process in all treatments, while soil carbon and nutrients were the main driving factors. The vertical structure of the fungal community was driven by a dispersal-based process in control plots, while the niche and dispersal processes jointly regulated the fungal communities in the warming plots. Plant biomass was significantly related to the vertical structure of the fungal community under the warming treatments. The variation in pH was significantly correlated with the assembly of the bacterial community, while soil water content, microbial biomass carbon/microbial biomass phosphorous (MBC/MBP), and microbial biomass nitrogen/ microbial biomass phosphorous (MBN/MBP) were significantly correlated with the assembly of the fungal community. These results indicate that the vertical structure and assembly of the soil bacterial and fungal communities responded differently to warming and could provide a potential mechanism of microbial community assembly in the alpine peatland in response to warming.
Collapse
Affiliation(s)
- Xiaodong Wang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Yong Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Zhongqing Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Enze Kang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Xiaodong Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Meng Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Kerou Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Liang Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Ao Yang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| | - Yuechuan Niu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Kang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Aba, China
| |
Collapse
|
44
|
Baldrian P, Bell-Dereske L, Lepinay C, Větrovský T, Kohout P. Fungal communities in soils under global change. Stud Mycol 2022; 103:1-24. [PMID: 36760734 PMCID: PMC9886077 DOI: 10.3114/sim.2022.103.01] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Soil fungi play indispensable roles in all ecosystems including the recycling of organic matter and interactions with plants, both as symbionts and pathogens. Past observations and experimental manipulations indicate that projected global change effects, including the increase of CO2 concentration, temperature, change of precipitation and nitrogen (N) deposition, affect fungal species and communities in soils. Although the observed effects depend on the size and duration of change and reflect local conditions, increased N deposition seems to have the most profound effect on fungal communities. The plant-mutualistic fungal guilds - ectomycorrhizal fungi and arbuscular mycorrhizal fungi - appear to be especially responsive to global change factors with N deposition and warming seemingly having the strongest adverse effects. While global change effects on fungal biodiversity seem to be limited, multiple studies demonstrate increases in abundance and dispersal of plant pathogenic fungi. Additionally, ecosystems weakened by global change-induced phenomena, such as drought, are more vulnerable to pathogen outbreaks. The shift from mutualistic fungi to plant pathogens is likely the largest potential threat for the future functioning of natural and managed ecosystems. However, our ability to predict global change effects on fungi is still insufficient and requires further experimental work and long-term observations. Citation: Baldrian P, Bell-Dereske L, Lepinay C, Větrovský T, Kohout P (2022). Fungal communities in soils under global change. Studies in Mycology 103: 1-24. doi: 10.3114/sim.2022.103.01.
Collapse
Affiliation(s)
- P. Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic,*Corresponding author: Petr Baldrian,
| | - L. Bell-Dereske
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic
| | - C. Lepinay
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic
| | - T. Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic
| | - P. Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeòská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
45
|
Guo X, Yuan M, Lei J, Shi Z, Zhou X, Li J, Deng Y, Yang Y, Wu L, Luo Y, Tiedje JM, Zhou J. Climate warming restructures seasonal dynamics of grassland soil microbial communities. MLIFE 2022; 1:245-256. [PMID: 38818216 PMCID: PMC10989843 DOI: 10.1002/mlf2.12035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/07/2022] [Accepted: 07/09/2022] [Indexed: 06/01/2024]
Abstract
Soil microbial community's responses to climate warming alter the global carbon cycle. In temperate ecosystems, soil microbial communities function along seasonal cycles. However, little is known about how the responses of soil microbial communities to warming vary when the season changes. In this study, we investigated the seasonal dynamics of soil bacterial community under experimental warming in a temperate tall-grass prairie ecosystem. Our results showed that warming significantly (p = 0.001) shifted community structure, such that the differences of microbial communities between warming and control plots increased nonlinearly (R 2 = 0.578, p = 0.021) from spring to winter. Also, warming significantly (p < 0.050) increased microbial network complexity and robustness, especially during the colder seasons, despite large variations in network size and complexity in different seasons. In addition, the relative importance of stochastic processes in shaping the microbial community decreased by warming in fall and winter but not in spring and summer. Our study indicates that climate warming restructures the seasonal dynamics of soil microbial community in a temperate ecosystem. Such seasonality of microbial responses to warming may enlarge over time and could have significant impacts on the terrestrial carbon cycle.
Collapse
Affiliation(s)
- Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina
- Institute for Environmental Genomics and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Mengting Yuan
- Institute for Environmental Genomics and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Jiesi Lei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina
| | - Zhou Shi
- Institute for Environmental Genomics and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
- Gladstone Institutes and Chan‐Zuckerberg BiohubSan FranciscoCaliforniaUSA
| | - Xishu Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
- School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences and Environmental Microbiology, & Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina
| | - Liyou Wu
- Institute for Environmental Genomics and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Yiqi Luo
- Department of Biological Sciences, Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
| | - James M. Tiedje
- Center for Microbial EcologyMichigan State UniversityEast LansingMichiganUSA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
- School of Civil Engineering and Environmental SciencesUniversity of OklahomaNormanOklahomaUSA
- Earth and Environmental SciencesLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- School of Computer SciencesUniversity of OklahomaNormanOklahomaUSA
| |
Collapse
|
46
|
A Pilot Study: Favorable Effects of Clostridium butyricum on Intestinal Microbiota for Adjuvant Therapy of Lung Cancer. Cancers (Basel) 2022; 14:cancers14153599. [PMID: 35892858 PMCID: PMC9332558 DOI: 10.3390/cancers14153599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Probiotics as medications have previously been shown to change intestinal microbial characteristics, potentially influencing cancer therapy efficacy. Patients with non-squamous non-small cell lung cancer (NS-NSCLC) treated by bevacizumab plus platinum-based chemotherapy were randomized to obtain Clostridium butyricum supplement (CBS) or receive a placebo as adjuvant therapy. Clinical efficacy and safety were assessed using progression-free survival (PFS), overall survival (OS), and adverse events (AE). Intestinal microbiota was longitudinally explored between CBS and placebo groups over time. Patients who took CBS had significantly decreased bacterial richness and abundance, as well as increased the total richness of the genus Clostridium, Bifidobacterium, and Lactobacillus compared to the placebo group (p < 0.05). Beta diversity and the interactional network of intestinal microbiota were distinctly different between CBS and placebo group. However, there were no significant variations between them in terms of microbial taxonomical taxa and alpha diversity. The potential opportunistic pathogen Shewanella was still detectable after treatment in the placebo group, while no distinguishing microbial markers were found in the CBS group. In terms of clinical efficacy, the CBS group had a significantly reduced AE compare to the placebo group (p < 0.05), although no significantly longer PFS and OS. Therefore, favorable modifications in intestinal microbiota and significant improvements in drug safety make probiotics be promising adjunctive therapeutic avenues for lung cancer treatment.
Collapse
|
47
|
Shu X, He J, Zhou Z, Xia L, Hu Y, Zhang Y, Zhang Y, Luo Y, Chu H, Liu W, Yuan S, Gao X, Wang C. Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154627. [PMID: 35306065 DOI: 10.1016/j.scitotenv.2022.154627] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/22/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Fertilization plays an important role in changing soil microbial diversity, which is essential for determining crop yields. Yet, the influence of organic amendments on microbial diversity remains uncertain, and few studies have addressed the relative importance of microbial diversity versus other drivers of crop yields. Here, we synthesize 219 studies worldwide and found that organic amendments significantly increased microbial diversity components (i.e., Shannon, richness, and phylogenetic diversity) and shifted microbial community structure compared to mineral-only fertilization. The performance of microbial alpha diversity varied substantially with organic amendment types, microbial groups and changes in soil pH. Both microbial diversity and community structure exhibited significantly positive relationships with microbial functionality and crop yields. In addition, soil abiotic properties and microbial functionality had a much stronger impact on crop yields than microbial diversity and climate factors. Partial least squares path modeling showed that soil microbial diversity was an important underlying factor driving crop yields via boosting soil microbial functionality. Overall, our findings provide robust evidence for the positive diversity-functions relationships, emphasizing that substituting mineral fertilizers with organic amendments is a promising way to conserve microbial diversity and promote soil microbial functions and crop yields.
Collapse
Affiliation(s)
- Xiangyang Shu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia He
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenghu Zhou
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
| | - Longlong Xia
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
| | - Yufu Hu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yulin Zhang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 21008, China
| | - Weijia Liu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
48
|
Climate warming threatens soil microbial diversity. Nat Microbiol 2022; 7:935-936. [PMID: 35705861 DOI: 10.1038/s41564-022-01151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat Microbiol 2022; 7:1054-1062. [PMID: 35697795 DOI: 10.1038/s41564-022-01147-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022]
Abstract
Anthropogenic climate change threatens ecosystem functioning. Soil biodiversity is essential for maintaining the health of terrestrial systems, but how climate change affects the richness and abundance of soil microbial communities remains unresolved. We examined the effects of warming, altered precipitation and annual biomass removal on grassland soil bacterial, fungal and protistan communities over 7 years to determine how these representative climate changes impact microbial biodiversity and ecosystem functioning. We show that experimental warming and the concomitant reductions in soil moisture play a predominant role in shaping microbial biodiversity by decreasing the richness of bacteria (9.6%), fungi (14.5%) and protists (7.5%). Our results also show positive associations between microbial biodiversity and ecosystem functional processes, such as gross primary productivity and microbial biomass. We conclude that the detrimental effects of biodiversity loss might be more severe in a warmer world.
Collapse
|
50
|
Tiedje JM, Bruns MA, Casadevall A, Criddle CS, Eloe-Fadrosh E, Karl DM, Nguyen NK, Zhou J. Microbes and Climate Change: a Research Prospectus for the Future. mBio 2022; 13:e0080022. [PMID: 35438534 PMCID: PMC9239095 DOI: 10.1128/mbio.00800-22] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Climate change is the most serious challenge facing humanity. Microbes produce and consume three major greenhouse gases-carbon dioxide, methane, and nitrous oxide-and some microbes cause human, animal, and plant diseases that can be exacerbated by climate change. Hence, microbial research is needed to help ameliorate the warming trajectory and cascading effects resulting from heat, drought, and severe storms. We present a brief summary of what is known about microbial responses to climate change in three major ecosystems: terrestrial, ocean, and urban. We also offer suggestions for new research directions to reduce microbial greenhouse gases and mitigate the pathogenic impacts of microbes. These include performing more controlled studies on the climate impact on microbial processes, system interdependencies, and responses to human interventions, using microbes and their carbon and nitrogen transformations for useful stable products, improving microbial process data for climate models, and taking the One Health approach to study microbes and climate change.
Collapse
Affiliation(s)
- James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
| | - Mary Ann Bruns
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Craig S. Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Emiley Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - David M. Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai‘i at Mānoa, Honolulu, Hawaii, USA
| | - Nguyen K. Nguyen
- American Academy of Microbiology, American Society for Microbiology, Washington, DC, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|