1
|
Alfaro-Lucas JM, Chapman ASA, Tunnicliffe V, Bates AE. High functional vulnerability across the world's deep-sea hydrothermal vent communities. Proc Natl Acad Sci U S A 2024; 121:e2403899121. [PMID: 39467128 PMCID: PMC11551373 DOI: 10.1073/pnas.2403899121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/05/2024] [Indexed: 10/30/2024] Open
Abstract
At the nearly pristine hydrothermal vents of the deep sea, highly endemic animals depend upon bacteria nourished by hydrothermal fluids that emerge as outflows from the seafloor. These animals are remarkable in tolerating extreme conditions, including high heat, toxic reduced sulfide, and low oxygen. Here, we test whether the extreme vent environment has selected for functionally similar species across the world's deep ocean, despite well-established global geographic patterns of high phylogenetic distinctness. High functional redundancy in species pools within regions suggests that the extreme environments select for species with specific traits. Yet, some regions emerge as functional hotspots where species pools with distinct functional trait compositions may represent geological idiosyncrasies of the habitats. Moreover, many species are functionally unique, an outcome of low species richness in a system where the species pool is small at all scales. Given the high proportion of functionally unique species, simulated species extinctions indicate that species losses would rapidly translate to the elimination of functionally irreplaceable species and could tip vent systems to functional collapse. Ocean changes and human-induced threats are expected to significantly impact many vent species as human activities expand in the remote deep sea. The opportunity exists now to take precautionary actions to limit the rates of extinction now ubiquitous in more accessible areas of Earth.
Collapse
Affiliation(s)
| | - Abbie S. A. Chapman
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, LondonWC1H 0NN, United Kingdom
| | - Verena Tunnicliffe
- Department of Biology, University of Victoria, Victoria, BCV8P 5C2, Canada
- School of Earth & Ocean Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Amanda E. Bates
- Department of Biology, University of Victoria, Victoria, BCV8P 5C2, Canada
| |
Collapse
|
2
|
Nakajima Y, Nakamura M, Watanabe HK, Ishibashi J, Yamamoto H, Mitarai S. Ocean circulation contributes to genetic connectivity of limpet populations at deep-sea hydrothermal vents in a back-arc basin. Evol Appl 2024; 17:e13727. [PMID: 38894981 PMCID: PMC11183178 DOI: 10.1111/eva.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
For endemic benthos inhabiting hydrothermal vent fields, larval recruitment is critical for population maintenance and colonization via migration among separated sites. The vent-endemic limpet, Lepetodrilus nux, is abundant at deep-sea hydrothermal vents in the Okinawa Trough, a back-arc basin in the northwestern Pacific; nonetheless, it is endangered due to deep-sea mining. This species is associated with many other vent species and is an important successor in these vent ecosystems. However, limpet genetic diversity and connectivity among local populations have not yet been examined. We conducted a population genetics study of L. nux at five hydrothermal vent fields (maximum geographic distance, ~545 km; depths ~700 m to ~1650 m) using 14 polymorphic microsatellite loci previously developed. Genetic diversity has been maintained among these populations. Meanwhile, fine population genetic structure was detected between distant populations, even within this back-arc basin, reflecting geographic distances between vent fields. There was a significant, positive correlation between genetic differentiation and geographic distance, but no correlation with depth. Contrary to dispersal patterns predicted by an ocean circulation model, genetic migration is not necessarily unidirectional, based on relative migration rates. While ocean circulation contributes to dispersal of L. nux among vent fields in the Okinawa Trough, genetic connectivity may be maintained by complex, bidirectional dispersal processes over multiple generations.
Collapse
Affiliation(s)
- Yuichi Nakajima
- Marine Biophysics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
- Center for Climate Change AdaptationNational Institute for Environmental StudiesTsukubaIbarakiJapan
| | - Masako Nakamura
- School of Marine Science and TechnologyTokai UniversityShizuokaJapan
| | - Hiromi Kayama Watanabe
- Institute for Extra‐Cutting‐Edge Science and Technology Avant‐Garde Research (X‐Star)Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaKanagawaJapan
| | | | - Hiroyuki Yamamoto
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC)Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaKanagawaJapan
| | - Satoshi Mitarai
- Marine Biophysics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
3
|
Betters MJ, Cordes EE. New records of Provanna (Gastropoda, Provannidae) from the Costa Rica Margin and an identification key for the genus. Zookeys 2024; 1189:1-32. [PMID: 38314107 PMCID: PMC10836654 DOI: 10.3897/zookeys.1189.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/20/2023] [Indexed: 02/06/2024] Open
Abstract
Consistent species identification is foundational to biological research and requires coordination among a diversity of researchers and institutions. However, such consistency may be hindered for rare organisms where specimens, identification resources, and taxonomic experts are few. This is often the case for deep-sea taxonomic groups. For example, the deep-sea gastropod genus Provanna Dall, 1918 is common at chemosynthetic sites throughout the world's oceans, yet no formal guide to these species has yet been produced. Recent exploration has recovered new specimens of Provanna from hydrocarbon seeps off the Pacific Costa Rica Margin. The current work assesses the species identity of these specimens using shell morphology, radular morphology, and genetic barcoding (mitochondrial CO1 and nuclear H3). Records of occurrence for P.laevis Warén & Ponder, 1991, P.ios Warén & Bouchet, 1986, and P.pacifica Warén & Bouchet, 1986 are herein presented from the Costa Rica Margin. A critical taxonomic review of the 29 extant species within this genus was conducted and their genetic, morphological, and biogeographical distinction assessed. In this review, genetic and morphological support was found for nearly all current species delineations except for P.glabraOkutani et al., 1992, syn. nov. and P.laevis, syn. nov., which are herein synonymized to P.laevis, and for P.ios, syn. nov. and P.goniata Warén & Bouchet, 1986, syn. nov., which are synonymized to P.ios. Finally, the first species identification key for the extant species in this genus is presented. This work clarifies the taxonomy and systematics of this deep-sea gastropod genus and contributes a novel polytomous key for use in future research.
Collapse
Affiliation(s)
- Melissa J Betters
- Department of Biology, Temple University, Philadelphia, PA, USA Temple University Philadelphia United States of America
| | - Erik E Cordes
- Department of Biology, Temple University, Philadelphia, PA, USA Temple University Philadelphia United States of America
| |
Collapse
|
4
|
Chen C, Sigwart JD. The lost vent gastropod species of Lothar A. Beck. Zootaxa 2023; 5270:401-436. [PMID: 37518156 DOI: 10.11646/zootaxa.5270.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 08/01/2023]
Abstract
Deep-sea hydrothermal vents host many endemic species adapted to these chemosynthesis-based ecosystems. The exploration of vent fields including those in the tropical Pacific is currently accelerating, due to the development of deep-sea mining for valuable minerals. Molecular evidence has shown that many vent endemic gastropod lineages include sibling species pairs in adjacent oceanic basins. While the fauna of the Manus Basin is relatively well described, many lineages in adjacent regions in North Fiji or Lau Basins are recognised as separate species, but unnamed. Valuable material from this fauna was studied by Lothar A. Beck in the 1990s, who fully drafted descriptions for these species, but did not publish them. Beck's manuscript names, prior to the present study, represented real species but nomina nuda without taxonomic validity. Here we present the descriptions of seven new species and one new genus, extracted from Beck's unpublished manuscript that was rediscovered after his death in 2020. The publication of these descriptions makes them taxonomically available and respects the scientific contributions of Beck. Providing valid descriptions of these species is critically important now to enable the recognition of species that may require conservation in the face of future environmental destruction. Symmetriapelta Beck, gen. nov. is described as new genus. Bathyacmaea nadinae Beck, sp. nov., Pyropelta ovalis Beck, sp. nov., Pseudorimula leisei Beck, sp. nov., Lepetodrilus fijiensis Beck, sp. nov., Shinkailepas conspira Beck, sp. nov., Symmetromphalus mcleani Beck, sp. nov. and Symmetriapelta wareni Beck, sp. nov. are introduced as new species.
Collapse
Affiliation(s)
- Chong Chen
- X-STAR; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); 2-15 Natsushima-cho; Yokosuka; Kanagawa; 237- 0061; Japan.
| | - Julia D Sigwart
- Department of Marine Zoology; Senckenberg Research Institute and Museum; Frankfurt; Germany.
| |
Collapse
|
5
|
Sonter LJ, Lloyd TJ, Kearney SG, Di Marco M, O'Bryan CJ, Valenta RK, Watson JEM. Conservation implications and opportunities of mining activities for terrestrial mammal habitat. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Laura J. Sonter
- School of Earth and Environmental Sciences The University of Queensland St Lucia Australia
- Centre for Biodiversity & Conservation Science The University of Queensland St Lucia Australia
| | - Thomas J. Lloyd
- School of Earth and Environmental Sciences The University of Queensland St Lucia Australia
- Centre for Biodiversity & Conservation Science The University of Queensland St Lucia Australia
| | - Stephen G. Kearney
- School of Earth and Environmental Sciences The University of Queensland St Lucia Australia
- Centre for Biodiversity & Conservation Science The University of Queensland St Lucia Australia
| | - Moreno Di Marco
- Department of Biology and Biotechnologies Sapienza Università di Roma Rome Italy
| | - Christopher J. O'Bryan
- School of Earth and Environmental Sciences The University of Queensland St Lucia Australia
- Centre for Biodiversity & Conservation Science The University of Queensland St Lucia Australia
| | - Richard K. Valenta
- Sustainable Minerals Institute The University of Queensland St Lucia Australia
| | - James E. M. Watson
- School of Earth and Environmental Sciences The University of Queensland St Lucia Australia
- Centre for Biodiversity & Conservation Science The University of Queensland St Lucia Australia
| |
Collapse
|
6
|
Blasiak R, Jouffray JB, Amon DJ, Moberg F, Claudet J, Søgaard Jørgensen P, Pranindita A, Wabnitz CCC, Österblom H. A forgotten element of the blue economy: marine biomimetics and inspiration from the deep sea. PNAS NEXUS 2022; 1:pgac196. [PMID: 36714844 PMCID: PMC9802412 DOI: 10.1093/pnasnexus/pgac196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The morphology, physiology, and behavior of marine organisms have been a valuable source of inspiration for solving conceptual and design problems. Here, we introduce this rich and rapidly expanding field of marine biomimetics, and identify it as a poorly articulated and often overlooked element of the ocean economy associated with substantial monetary benefits. We showcase innovations across seven broad categories of marine biomimetic design (adhesion, antifouling, armor, buoyancy, movement, sensory, stealth), and use this framing as context for a closer consideration of the increasingly frequent focus on deep-sea life as an inspiration for biomimetic design. We contend that marine biomimetics is not only a "forgotten" sector of the ocean economy, but has the potential to drive appreciation of nonmonetary values, conservation, and stewardship, making it well-aligned with notions of a sustainable blue economy. We note, however, that the highest ambitions for a blue economy are that it not only drives sustainability, but also greater equity and inclusivity, and conclude by articulating challenges and considerations for bringing marine biomimetics onto this trajectory.
Collapse
Affiliation(s)
- Robert Blasiak
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Diva J Amon
- SpeSeas, D'Abadie, Trinidad and Tobago
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Fredrik Moberg
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan, 195 rue Saint-Jacques, 75005 Paris, France
| | - Peter Søgaard Jørgensen
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- The Global Economic Dynamics and the Biosphere Academy Program, Royal Swedish Academy of Science, 104 05 Stockholm, Sweden
| | - Agnes Pranindita
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
| | - Colette C C Wabnitz
- Stanford Center for Ocean Solutions, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA
- Institute for the Oceans and Fisheries, The University of British Columbia, 2202 Main Mall, Vancouver, BC V6T1Z4, Canada
| | - Henrik Österblom
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- South American Institute for Resilience and Sustainability Studies, CP 20200 Maldonado, Uruguay
| |
Collapse
|
7
|
Thomas EA, Böhm M, Pollock C, Chen C, Seddon M, Sigwart JD. Assessing the extinction risk of insular, understudied marine species. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13854. [PMID: 34669223 PMCID: PMC9299203 DOI: 10.1111/cobi.13854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 05/09/2023]
Abstract
Hydrothermal vents are rare deep-sea oases that house faunal assemblages with a similar density of life as coral reefs. Only approximately 600 of these hotspots are known worldwide, most only one-third of a football field in size. With advancing development of the deep-sea mining industry, there is an urgent need to protect these unique, insular ecosystems and their specialist endemic faunas. We applied the IUCN (International Union for the Conservation of Nature) Red List criteria to assess the extinction risk of vent-endemic molluscs with varying exposure to potential deep-sea mining. We assessed 31 species from three key areas under different regulatory frameworks in the Indian, West Pacific, and Southern Oceans. Three vent mollusc species were also examined as case studies of different threat contexts (protected or not from potential mining) to explore the interaction of local regulatory frameworks and IUCN Red List category assignment. We found that these assessments were robust even when there was some uncertainty in the total range of individual species, allowing assessment of species that have only recently been named and described. For vent-endemic species, regulatory changes to area-based management can have a greater impact on IUCN Red List assessment outcomes than incorporating additional data about species distributions. Our approach revealed the most useful IUCN Red List criteria for vent-endemic species: criteria B and D2. This approach, combining regulatory framework and distribution, has the potential to rapidly gauge assessment outcomes for species in insular systems worldwide.
Collapse
Affiliation(s)
- Elin A. Thomas
- Queen's University Marine LaboratoryQueen's University BelfastPortaferryUK
| | - Monika Böhm
- Institute of ZoologyZoological Society of LondonLondonUK
- Global Center for Species SurvivalIndianapolis Zoological SocietyIndianapolisIndianaUSA
| | - Caroline Pollock
- Global Species Programme, Red List UnitInternational Union for Conservation of Nature (IUCN)CambridgeUK
| | - Chong Chen
- X‐STARJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)Yokosuka‐cityKanagawaJapan
| | - Mary Seddon
- IUCN SSC Mollusc Specialist Group, ExbourneOkehamptonUK
| | - Julia D. Sigwart
- Queen's University Marine LaboratoryQueen's University BelfastPortaferryUK
- Senckenberg Research Institute and MuseumFrankfurt am MainGermany
| |
Collapse
|
8
|
Gerdes K, Kihara TC, Martínez Arbizu P, Kuhn T, Schwarz-Schampera U, Mah CL, Norenburg JL, Linley TD, Shalaeva K, Macpherson E, Gordon D, Stöhr S, Messing CG, Bober S, Guggolz T, Christodoulou M, Gebruk A, Kremenetskaia A, Kroh A, Sanamyan K, Bolstad K, Hoffman L, Gooday AJ, Molodtsova T. Megafauna of the German exploration licence area for seafloor massive sulphides along the Central and South East Indian Ridge (Indian Ocean). Biodivers Data J 2021; 9:e69955. [PMID: 34720635 PMCID: PMC8516849 DOI: 10.3897/bdj.9.e69955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
Background The growing interest in mineral resources of the deep sea, such as seafloor massive sulphide deposits, has led to an increasing number of exploration licences issued by the International Seabed Authority. In the Indian Ocean, four licence areas exist, resulting in an increasing number of new hydrothermal vent fields and the discovery of new species. Most studies focus on active venting areas including their ecology, but the non-vent megafauna of the Central Indian Ridge and South East Indian Ridge remains poorly known. In the framework of the Indian Ocean Exploration project in the German license area for seafloor massive sulphides, baseline imagery and sampling surveys were conducted yearly during research expeditions from 2013 to 2018, using video sledges and Remotely Operated Vehicles. New information This is the first report of an imagery collection of megafauna from the southern Central Indian- and South East Indian Ridge, reporting the taxonomic richness and their distribution. A total of 218 taxa were recorded and identified, based on imagery, with additional morphological and molecular confirmed identifications of 20 taxa from 89 sampled specimens. The compiled fauna catalogue is a synthesis of megafauna occurrences aiming at a consistent morphological identification of taxa and showing their regional distribution. The imagery data were collected during multiple research cruises in different exploration clusters of the German licence area, located 500 km north of the Rodriguez Triple Junction along the Central Indian Ridge and 500 km southeast of it along the Southeast Indian Ridge.
Collapse
Affiliation(s)
- Klaas Gerdes
- INES - Integrated Environmental Solutions, Wilhelmshaven, Germany INES - Integrated Environmental Solutions Wilhelmshaven Germany
| | - Terue Cristina Kihara
- INES - Integrated Environmental Solutions, Wilhelmshaven, Germany INES - Integrated Environmental Solutions Wilhelmshaven Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research, Wilhelmshaven, Germany Senckenberg am Meer, German Centre for Marine Biodiversity Research Wilhelmshaven Germany
| | - Thomas Kuhn
- Federal Institute for Geosciences and Natural Resources, Hannover, Germany Federal Institute for Geosciences and Natural Resources Hannover Germany
| | - Ulrich Schwarz-Schampera
- International Seabed Authority, Kingston, Jamaica International Seabed Authority Kingston Jamaica
| | - Christopher L Mah
- Smithsonian Institution National Museum of Natural History, Washington, DC, United States of America Smithsonian Institution National Museum of Natural History Washington, DC United States of America
| | - Jon L Norenburg
- Smithsonian Institution National Museum of Natural History, Washington, DC, United States of America Smithsonian Institution National Museum of Natural History Washington, DC United States of America
| | - Thomas D Linley
- Newcastle University, School of Natural and Environmental Sciences, Newcastle, United Kingdom Newcastle University, School of Natural and Environmental Sciences Newcastle United Kingdom
| | - Kate Shalaeva
- Natural History Museum London, London, United Kingdom Natural History Museum London London United Kingdom
| | - Enrique Macpherson
- Centro de Estudios Avanzados de Blanes (CEAB), Blanes, Girona, Spain Centro de Estudios Avanzados de Blanes (CEAB) Blanes, Girona Spain
| | - Dennis Gordon
- NIWA, Newmarket, Auckland, New Zealand NIWA Newmarket, Auckland New Zealand
| | - Sabine Stöhr
- Swedish Museum of Natural History, Stockholm, Sweden Swedish Museum of Natural History Stockholm Sweden
| | - Charles G Messing
- Department of Marine and Environmental Sciences, Nova Southeastern University, Dania Beach, United States of America Department of Marine and Environmental Sciences, Nova Southeastern University Dania Beach United States of America
| | - Simon Bober
- University of Hamburg, Hamburg, Germany University of Hamburg Hamburg Germany
| | - Theresa Guggolz
- University of Hamburg, Hamburg, Germany University of Hamburg Hamburg Germany
| | - Magdalini Christodoulou
- Senckenberg am Meer, German Centre for Marine Biodiversity Research, Wilhelmshaven, Germany Senckenberg am Meer, German Centre for Marine Biodiversity Research Wilhelmshaven Germany
| | - Andrey Gebruk
- P.P. Shirshov Institute of Oceanology, Moscow, Russia P.P. Shirshov Institute of Oceanology Moscow Russia
| | - Antonina Kremenetskaia
- P.P. Shirshov Institute of Oceanology, Moscow, Russia P.P. Shirshov Institute of Oceanology Moscow Russia
| | - Andreas Kroh
- Naturhistorisches Museum, Vienna, Austria Naturhistorisches Museum Vienna Austria
| | - Karen Sanamyan
- Far-Eastern Branch of the Russian Academy of Sciences, Petropavlovsk-Kamchatsky, Russia Far-Eastern Branch of the Russian Academy of Sciences Petropavlovsk-Kamchatsky Russia
| | - Kathrin Bolstad
- Auckland University of Technology, Auckland, New Zealand Auckland University of Technology Auckland New Zealand
| | - Leon Hoffman
- Senckenberg am Meer, German Centre for Marine Biodiversity Research, Wilhelmshaven, Germany Senckenberg am Meer, German Centre for Marine Biodiversity Research Wilhelmshaven Germany
| | - Andrew J Gooday
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, United Kingdom National Oceanography Centre, University of Southampton Waterfront Campus Southampton United Kingdom
| | - Tina Molodtsova
- P.P. Shirshov Institute of Oceanology, Moscow, Russia P.P. Shirshov Institute of Oceanology Moscow Russia
| |
Collapse
|
9
|
Chen C, Zhou Y, Watanabe HK, Zhang R, Wang C. Neolepetopsid true limpets (Gastropoda: Patellogastropoda) from Indian Ocean hot vents shed light on relationships among genera. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Neolepetopsidae is a family of true limpets restricted to deep-sea chemosynthesis-based ecosystems. It is a small and little-studied family with about a dozen species in three genera, namely Eulepetopsis, Neolepetopsis and Paralepetopsis, and all named species were from the Pacific or Atlantic Oceans. Here, we describe three new species from Indian Ocean vents, namely Eulepetopsis crystallina sp. nov. found across three ridges,ŠNeolepetopsis ardua sp. nov. from the Southwest Indian Ridge and Neolepetopsis prismatica sp. nov. from the Carlsberg Ridge. Given that Neolepetopsis appears to specialize on inactive sulfide deposits, the apparent wider distribution of E. crystallina is probably attributable to bias in sampling effort at inactive chimneys. The molecular phylogeny of Patellogastropoda, reconstructed using the COI gene, supported the monophyly of Neolepetopsidae. These are the first molecular data available for Neolepetopsis, confirming that the three genera are genetically distinct. Eulepetopsis appears to be adapted to active vents, and its derived position compared with Paralepetopsis indicates a possible ‘stepping-stone’ evolutionary pathway from seeps and organic falls to vents. Our results provide new insights into this enigmatic family and highlight the importance of surveying the vent periphery, especially given that inactive vents are being eyed as a replacement for active ones in deep-sea mining.
Collapse
Affiliation(s)
- Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Hiromi Kayama Watanabe
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Ruiyan Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Chunsheng Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Chen C, Han Y, Copley JT, Zhou Y. A new peltospirid snail (Gastropoda: Neomphalida) adds to the unique biodiversity of Longqi vent field, Southwest Indian Ridge. J NAT HIST 2021. [DOI: 10.1080/00222933.2021.1923851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yuru Han
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Jonathan T. Copley
- Ocean & Earth Science, University of Southampton, Waterfront Campus, Southampton, UK
| | - Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
11
|
Affiliation(s)
- Craig R. McClain
- Louisiana Universities Marine Consortium (LUMCON) Chauvin LA USA
| |
Collapse
|
12
|
Zeng X, Zhang Y, Meng L, Fan G, Bai J, Chen J, Song Y, Seim I, Wang C, Shao Z, Liu N, Lu H, Fu X, Wang L, Liu X, Liu S, Shao Z. Genome sequencing of deep-sea hydrothermal vent snails reveals adaptions to extreme environments. Gigascience 2020; 9:giaa139. [PMID: 33319911 PMCID: PMC7736800 DOI: 10.1093/gigascience/giaa139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/30/2020] [Accepted: 11/13/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The scaly-foot snail (Chrysomallon squamiferum) is highly adapted to deep-sea hydrothermal vents and has drawn much interest since its discovery. However, the limited information on its genome has impeded further related research and understanding of its adaptation to deep-sea hydrothermal vents. FINDINGS Here, we report the whole-genome sequencing and assembly of the scaly-foot snail and another snail (Gigantopelta aegis), which inhabits similar environments. Using Oxford Nanopore Technology, 10X Genomics, and Hi-C technologies, we obtained a chromosome-level genome of C. squamiferum with an N50 size of 20.71 Mb. By constructing a phylogenetic tree, we found that these 2 deep-sea snails evolved independently of other snails. Their divergence from each other occurred ∼66.3 million years ago. Comparative genomic analysis showed that different snails have diverse genome sizes and repeat contents. Deep-sea snails have more DNA transposons and long terminal repeats but fewer long interspersed nuclear elements than other snails. Gene family analysis revealed that deep-sea snails experienced stronger selective pressures than freshwater snails, and gene families related to the nervous system, immune system, metabolism, DNA stability, antioxidation, and biomineralization were significantly expanded in scaly-foot snails. We also found 251 H-2 Class II histocompatibility antigen, A-U α chain-like (H2-Aal) genes, which exist uniquely in the Gigantopelta aegis genome. This finding is important for investigating the evolution of major histocompatibility complex (MHC) genes. CONCLUSION Our study provides new insights into deep-sea snail genomes and valuable resources for further studies.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen 361005, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Anker Engelunds Vej 1, Lyngby 2800, Denmark
| | | | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jie Bai
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Yue Song
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Wenyuan Road 1,Nanjing 210046, China
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Woolloongabba 4102, Australia
| | - Congyan Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Zenghua Shao
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Nanxi Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Xiaoteng Fu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen 361005, China
| | - Liping Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen 361005, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen 361005, China
| |
Collapse
|
13
|
Sun J, Zhou Y, Chen C, Kwan YH, Sun Y, Wang X, Yang L, Zhang R, Wei T, Yang Y, Qu L, Sun C, Qian PY. Nearest vent, dearest friend: biodiversity of Tiancheng vent field reveals cross-ridge similarities in the Indian Ocean. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200110. [PMID: 32269824 PMCID: PMC7137978 DOI: 10.1098/rsos.200110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 05/24/2023]
Abstract
Biodiversity of hydrothermal vents in the Indian Ocean, particularly those on the Southwest Indian Ridge (SWIR), are still relatively poorly understood. The Tiancheng field on the SWIR was initially reported with only a low-temperature diffuse flow venting area, but here we report two new active areas, including a chimney emitting high-temperature vent fluids. Biological sampling in these new sites doubled the known megafauna and macrofauna richness reported from Tiancheng. Significantly, we found several iconic species, such as the scaly-foot snail and the first Alviniconcha population on the SWIR. Tiancheng shares a high proportion of taxa with vents on the Central Indian Ridge (CIR) and lacks a number of key taxa that characterize other vents investigated so far on the SWIR. Population genetics of the scaly-foot snail confirmed this, as the Tiancheng population was clustered with populations from the CIR, showing low connectivity with the Longqi field. Unlike the previously examined populations, scales of the Tiancheng scaly-foot snail were coated in zinc sulfide, although this results only from precipitation. The close connection between Tiancheng and CIR vents indicates that the dispersal barrier for vent endemic species is not the Rodriguez Triple Junction as previously suggested but the transformation faults between Tiancheng and Longqi, warranting further studies on deep currents in this area to resolve the key barrier, which has important implications for biological conservation.
Collapse
Affiliation(s)
- Jin Sun
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, People's Republic of China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Yick Hang Kwan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Yanan Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Xuyang Wang
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lei Yang
- Marine Survey Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China
| | - Ruiyan Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, People's Republic of China
| | - Tong Wei
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Yi Yang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Lingyun Qu
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China
| | - Chengjun Sun
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| |
Collapse
|
14
|
Jouffray JB, Blasiak R, Norström AV, Österblom H, Nyström M. The Blue Acceleration: The Trajectory of Human Expansion into the Ocean. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.oneear.2019.12.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|