1
|
Hoffman PF. Ecosystem relocation on Snowball Earth: Polar-alpine ancestry of the extant surface biosphere? Proc Natl Acad Sci U S A 2025; 122:e2414059122. [PMID: 40324073 DOI: 10.1073/pnas.2414059122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Geological observations informed by climate dynamics imply that the oceans were 99.9% covered by light-blocking ice shelves during two discrete, self-reversing Snowball Earth epochs spanning a combined 60 to 70 Myr of the Cryogenian Period (720 to 635 Ma). The timescale for initial ice advances across the tropical oceans is ~300 y in an ice-atmosphere-ocean general circulation model in Cryogenian paleogeography. Areas of optically thin oceanic ice are usually invoked to account for fossil marine phototrophs, including macroscopic multicellular eukaryotes, before and after each Snowball, but different taxa. Ecosystem relocation is a scenario that does not require thin marine ice. Assume that long before Cryogenian Snowballs, diverse supra- and periglacial biomes were established in polar-alpine regions. When the Snowball onsets occurred, those biomes migrated in step with their ice margins to the equatorial zone of net sublimation. There, they prospered and evolved, their habitat areas expanded, and the cruelty of winter reduced. Nutrients were supplied by dust (loess) derived from cozonal ablative lands where surface winds were strong. When each Snowball finally ended, those biomes were mostly inundated by the meltwater-dominated and rapidly warming lid of a nutrient-rich but depauperate ocean. Some taxa returned to the mountaintops while others restocked the oceans. This ecosystem relocation scenario makes testable predictions. The lineages required for post-Cryogenian biotic radiations should be present in modern polar-alpine biomes. Legacies of polar-alpine ancestry should be found in the genomes of living organisms. Examples of such tests are highlighted herein.
Collapse
Affiliation(s)
- Paul F Hoffman
- School of Earth and Ocean Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
2
|
Mills DB, Vuillemin A, Muschler K, Coskun ÖK, Orsi WD. The Rise of Algae promoted eukaryote predation in the Neoproterozoic benthos. SCIENCE ADVANCES 2025; 11:eadt2147. [PMID: 39970204 PMCID: PMC11838005 DOI: 10.1126/sciadv.adt2147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
The proliferation of marine algae in the Neoproterozoic Era is thought to have stimulated the ecology of predatory microbial eukaryotes. To test this proposal, we introduced algal particulate matter (APM) to marine sediments underlying a modern marine oxygen minimum zone with bottom-water oxygen concentrations approximating those of the late Neoproterozoic water column. We found that under anoxia, APM significantly stimulated microbial eukaryote gene expression, particularly genes involved in anaerobic energy metabolism and phagocytosis, and increased the relative abundance of 18S rRNA from known predatory clades. We additionally confirmed that APM promoted the reproduction of benthic foraminifera under anoxia with higher-than-expected net growth efficiencies. Overall, our findings suggest that algal biomass exported to the Neoproterozoic benthos stimulated the ecology of benthic predatory protists under anoxia, thereby creating more modern food webs by enhancing the transfer of fixed carbon and energy to eukaryotes occupying higher trophic levels, including the earliest benthic metazoans.
Collapse
Affiliation(s)
- Daniel B. Mills
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- The Penn State Extraterrestrial Intelligence Center, Penn State, University Park, PA 16802, USA
| | - Aurèle Vuillemin
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Katharina Muschler
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Ömer K. Coskun
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - William D. Orsi
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| |
Collapse
|
3
|
Carlisle E, Yin Z, Pisani D, Donoghue PCJ. Ediacaran origin and Ediacaran-Cambrian diversification of Metazoa. SCIENCE ADVANCES 2024; 10:eadp7161. [PMID: 39536100 PMCID: PMC11559618 DOI: 10.1126/sciadv.adp7161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
The timescale of animal diversification has been a focus of debate over how evolutionary history should be calibrated to geologic time. Molecular clock analyses have invariably estimated a Cryogenian or Tonian origin of animals while unequivocal animal fossils first occur in the Ediacaran. However, redating of key Ediacaran biotas and the discovery of several Ediacaran crown-Metazoa prompt recalibration of molecular clock analyses. We present revised fossil calibrations and use them in molecular clock analyses estimating the timescale of metazoan evolutionary history. Integrating across uncertainties including phylogenetic relationships, clock model, and calibration strategy, we estimate Metazoa to have originated in the early Ediacaran, Eumetazoa in the middle Ediacaran, and Bilateria in the upper Ediacaran, with many crown-phyla originating across the Ediacaran-Cambrian interval or elsewise fully within the Cambrian. These results are in much closer accord with the fossil record, coinciding with marine oxygenation, but they reject a literal reading of the fossil record.
Collapse
Affiliation(s)
- Emily Carlisle
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- CAS Center for Excellence in Life and Paleoenvironment, Nanjing 210008, China
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip C. J. Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
4
|
Anderson RP, Mughal S, Wedlake GO. Proterozoic microfossils continue to provide new insights into the rise of complex eukaryotic life. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240154. [PMID: 39170929 PMCID: PMC11336685 DOI: 10.1098/rsos.240154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Eukaryotes have evolved to dominate the biosphere today, accounting for most documented living species and the vast majority of the Earth's biomass. Consequently, understanding how these biologically complex organisms initially diversified in the Proterozoic Eon over 539 million years ago is a foundational question in evolutionary biology. Over the last 70 years, palaeontologists have sought to document the rise of eukaryotes with fossil evidence. However, the delicate and microscopic nature of their sub-cellular features affords early eukaryotes diminished preservation potential. Chemical biomarker signatures of eukaryotes and the genetics of living eukaryotes have emerged as complementary tools for reconstructing eukaryote ancestry. In this review, we argue that exceptionally preserved Proterozoic microfossils are critical to interpreting these complementary tools, providing crucial calibrations to molecular clocks and testing hypotheses of palaeoecology. We highlight recent research on their preservation and biomolecular composition that offers new ways to enhance their utility.
Collapse
Affiliation(s)
- Ross P. Anderson
- Museum of Natural History, University of Oxford, OxfordOX1 3PW, UK
- All Souls College, University of Oxford, OxfordOX1 4AL, UK
| | - Sanaa Mughal
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AlbertaT6G 2E3, Canada
| | - George O. Wedlake
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| |
Collapse
|
5
|
Morais L, Freitas BT, Fairchild TR, Clavijo Arcos RE, Guillong M, Vance D, de Campos MDR, Babinski M, Pereira LG, Leme JM, Boggiani PC, Osés GL, Rudnitzki ID, Galante D, Rodrigues F, Trindade RIF. Dawn of diverse shelled and carbonaceous animal microfossils at ~ 571 Ma. Sci Rep 2024; 14:14916. [PMID: 38942912 PMCID: PMC11213954 DOI: 10.1038/s41598-024-65671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/23/2024] [Indexed: 06/30/2024] Open
Abstract
The Ediacaran-Cambrian transition documents a critical stage in the diversification of animals. The global fossil record documents the appearance of cloudinomorphs and other shelled tubular organisms followed by non-biomineralized small carbonaceous fossils and by the highly diversified small shelly fossils between ~ 550 and 530 Ma. Here, we report diverse microfossils in thin sections and hand samples from the Ediacaran Bocaina Formation, Brazil, separated into five descriptive categories: elongate solid structures (ES); elongate filled structures (EF); two types of equidimensional structures (EQ 1 and 2) and elongate hollow structures with coiled ends (CE). These specimens, interpreted as diversified candidate metazoans, predate the latest Ediacaran biomineralized index macrofossils of the Cloudina-Corumbella-Namacalathus biozone in the overlying Tamengo Formation. Our new carbonate U-Pb ages for the Bocaina Formation, position this novel fossil record at 571 ± 9 Ma (weighted mean age). Thus, our data point to diversification of metazoans, including biomineralized specimens reminiscent of sections of cloudinids, protoconodonts, anabaritids, and hyolithids, in addition to organo-phosphatic surficial coverings of animals, demonstrably earlier than the record of the earliest known skeletonized metazoan fossils.
Collapse
Affiliation(s)
- Luana Morais
- Department of Geophysics, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
- Department of Geology, São Paulo State University (UNESP), Rio Claro, 13506-900, Brazil.
| | | | | | - Rolando Esteban Clavijo Arcos
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Clausiusstrasse 25, 8092, Zurich, Switzerland
| | - Marcel Guillong
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Clausiusstrasse 25, 8092, Zurich, Switzerland
| | - Derek Vance
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Clausiusstrasse 25, 8092, Zurich, Switzerland
| | | | - Marly Babinski
- Institute of Geosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Juliana M Leme
- Institute of Geosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Paulo C Boggiani
- Institute of Geosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Gabriel L Osés
- Programa de Pós-Doutorado, Instituto de Física, Universidade de São Paulo (USP), Rua do Matão, 1371, São Paulo, 05508090, Brazil
- Laboratório de Arqueometria e Ciências Aplicadas ao Patrimônio Cultural, Instituto de Física, Universidade de São Paulo (USP), Rua do Matão, 1371, São Paulo, 05508090, Brazil
| | - Isaac D Rudnitzki
- Departament of Geology, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Douglas Galante
- Institute of Geosciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratório Nacional de Luz Síncrotron, Campinas, SP, Brazil
| | - Fabio Rodrigues
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Ricardo I F Trindade
- Department of Geophysics, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
6
|
Ostrander CM, Bjerrum CJ, Ahm ASC, Stenger SR, Bergmann KD, El-Ghali MAK, Harthi AR, Aisri Z, Nielsen SG. Widespread seafloor anoxia during generation of the Ediacaran Shuram carbon isotope excursion. GEOBIOLOGY 2023; 21:556-570. [PMID: 37157927 DOI: 10.1111/gbi.12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Reconstructing the oxygenation history of Earth's oceans during the Ediacaran period (635 to 539 million years ago) has been challenging, and this has led to a polarizing debate about the environmental conditions that played host to the rise of animals. One focal point of this debate is the largest negative inorganic C-isotope excursion recognized in the geologic record, the Shuram excursion, and whether this relic tracks the global-scale oxygenation of Earth's deep oceans. To help inform this debate, we conducted a detailed geochemical investigation of two siliciclastic-dominated successions from Oman deposited through the Shuram Formation. Iron speciation data from both successions indicate formation beneath an intermittently anoxic local water column. Authigenic thallium (Tl) isotopic compositions leached from both successions are indistinguishable from bulk upper continental crust (ε205 TlA ≈ -2) and, by analogy with modern equivalents, likely representative of the ancient seawater ε205 Tl value. A crustal seawater ε205 Tl value requires limited manganese (Mn) oxide burial on the ancient seafloor, and by extension widely distributed anoxic sediment porewaters. This inference is supported by muted redox-sensitive element enrichments (V, Mo, and U) and consistent with some combination of widespread (a) bottom water anoxia and (b) high sedimentary organic matter loading. Contrary to a classical hypothesis, our interpretations place the Shuram excursion, and any coeval animal evolutionary events, in a predominantly anoxic global ocean.
Collapse
Affiliation(s)
- Chadlin M Ostrander
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, USA
| | - Christian J Bjerrum
- Department of Geoscience and Natural Resource Management, Nordic Center for Earth Evolution, University of Copenhagen, Copenhagen K, Denmark
| | - Anne-Sofie C Ahm
- Department of Geoscience and Natural Resource Management, Nordic Center for Earth Evolution, University of Copenhagen, Copenhagen K, Denmark
- School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Simon R Stenger
- Department of Geoscience and Natural Resource Management, Nordic Center for Earth Evolution, University of Copenhagen, Copenhagen K, Denmark
- Norwegian Geotechnical Institute, Trondheim, Norway
| | - Kristin D Bergmann
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mohamed A K El-Ghali
- Department of Earth Sciences and Earth Sciences Research Centre, Sultan Qaboos University, Muscat, Oman
| | | | | | - Sune G Nielsen
- NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
7
|
Bowyer FT, Krause AJ, Song Y, Huang KJ, Fu Y, Shen B, Li J, Zhu XK, Kipp MA, van Maldegem LM, Brocks JJ, Shields GA, Le Hir G, Mills BJW, Poulton SW. Biological diversification linked to environmental stabilization following the Sturtian Snowball glaciation. SCIENCE ADVANCES 2023; 9:eadf9999. [PMID: 37624887 PMCID: PMC10456883 DOI: 10.1126/sciadv.adf9999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
The body fossil and biomarker records hint at an increase in biotic complexity between the two Cryogenian Snowball Earth episodes (ca. 661 million to ≤650 million years ago). Oxygen and nutrient availability can promote biotic complexity, but nutrient (particularly phosphorus) and redox dynamics across this interval remain poorly understood. Here, we present high-resolution paleoredox and phosphorus phase association data from multiple globally distributed drill core records through the non-glacial interval. These data are first correlated regionally by litho- and chemostratigraphy, and then calibrated within a series of global chronostratigraphic frameworks. The combined data show that regional differences in postglacial redox stabilization were partly controlled by the intensity of phosphorus recycling from marine sediments. The apparent increase in biotic complexity followed a global transition to more stable and less reducing conditions in shallow to mid-depth marine environments and occurred within a tolerable climatic window during progressive cooling after post-Snowball super-greenhouse conditions.
Collapse
Affiliation(s)
- Fred T. Bowyer
- School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Alexander J. Krause
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
- Department of Earth Sciences, University College London, London WC1E 6BT, UK
| | - Yafang Song
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Kang-Jun Huang
- Department of Geology, Northwest University, 229 North Taibai Road, Xi’an 710069, Shaanxi Province, China
| | - Yong Fu
- College of Resource and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Bing Shen
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Jin Li
- MNR Key Laboratory of Isotope Geology, MNR Key Laboratory of Deep-Earth Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Xiang-Kun Zhu
- MNR Key Laboratory of Isotope Geology, MNR Key Laboratory of Deep-Earth Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Michael A. Kipp
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Lennart M. van Maldegem
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | - Jochen J. Brocks
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | - Graham A. Shields
- Department of Earth Sciences, University College London, London WC1E 6BT, UK
| | - Guillaume Le Hir
- Université Paris, Institut de Physique du Globe de Paris, CNRS, 1 rue Jussieu, 75005 Paris, France
| | | | - Simon W. Poulton
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Brown MO, Olagunju BO, Giner JL, Welander PV. Sterol methyltransferases in uncultured bacteria complicate eukaryotic biomarker interpretations. Nat Commun 2023; 14:1859. [PMID: 37012227 PMCID: PMC10070321 DOI: 10.1038/s41467-023-37552-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Sterane molecular fossils are broadly interpreted as eukaryotic biomarkers, although diverse bacteria also produce sterols. Steranes with side-chain methylations can act as more specific biomarkers if their sterol precursors are limited to particular eukaryotes and are absent in bacteria. One such sterane, 24-isopropylcholestane, has been attributed to demosponges and potentially represents the earliest evidence for animals on Earth, but enzymes that methylate sterols to give the 24-isopropyl side-chain remain undiscovered. Here, we show that sterol methyltransferases from both sponges and yet-uncultured bacteria function in vitro and identify three methyltransferases from symbiotic bacteria each capable of sequential methylations resulting in the 24-isopropyl sterol side-chain. We demonstrate that bacteria have the genomic capacity to synthesize side-chain alkylated sterols, and that bacterial symbionts may contribute to 24-isopropyl sterol biosynthesis in demosponges. Together, our results suggest bacteria should not be dismissed as potential contributing sources of side-chain alkylated sterane biomarkers in the rock record.
Collapse
Affiliation(s)
- Malory O Brown
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Babatunde O Olagunju
- Department of Chemistry, State University of New York-Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - José-Luis Giner
- Department of Chemistry, State University of New York-Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Manzuk RA, Maloof AC, Kaandorp JA, Webster M. Branching archaeocyaths as ecosystem engineers during the Cambrian radiation. GEOBIOLOGY 2023; 21:66-85. [PMID: 36017532 DOI: 10.1111/gbi.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The rapid origination and diversification of major animal body plans during the early Cambrian coincide with the rise of Earth's first animal-built framework reefs. Given the importance of scleractinian coral reefs as ecological facilitators in modern oceans, we investigate the impact of archaeocyathan (Class Archaeocyatha) reefs as engineered ecosystems during the Cambrian radiation. In this study, we present the first high-resolution, three-dimensional (3D) reconstructions of branching archaeocyathide (Order Archaeocyathida) individuals from three localities on the Laurentian paleocontinent. Because branched forms in sponges and corals display phenotypic plasticity that preserve the characteristics of the surrounding growth environment, we compare morphological measurements from our fossil specimens to those of modern corals to infer the surface conditions of Earth's first reefs. These data demonstrate that archaeocyaths could withstand and influence the flow of water, accommodate photosymbionts, and build topographically complex and stable structures much like corals today. We also recognize a stepwise increase in the roughness of reef environments in the lower Cambrian, which would have laid a foundation for more abundant and diverse coevolving fauna.
Collapse
Affiliation(s)
- Ryan A Manzuk
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
| | - Adam C Maloof
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
| | - Jaap A Kaandorp
- Computational Science Lab, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Webster
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Chamizo-Ampudia A, Getino L, Luengo JM, Olivera ER. Isolation of Environmental Bacteria Able to Degrade Sterols and/or Bile Acids: Determination of Cholesterol Oxidase and Several Hydroxysteroid Dehydrogenase Activities in Rhodococcus, Gordonia, and Pseudomonas putida. Methods Mol Biol 2023; 2704:25-42. [PMID: 37642836 DOI: 10.1007/978-1-0716-3385-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Interest about the isolation and characterization of steroid-catabolizing bacteria has increased over time due to the massive release of these recalcitrant compounds and their deleterious effects or their biotransformation derivatives as endocrine disruptors for wildlife, as well as their potential use in biotechnological approaches for the synthesis of pharmacological compounds. Thus, in this chapter, an isolation protocol to select environmental bacteria able to degrade sterols, bile acids, and androgens is shown. Moreover, procedures for the determination of cholesterol oxidase or different hydroxysteroid dehydrogenase activities in Pseudomonas putida DOC21, Rhodococcus sp. HE24.12, Gordonia sp. HE24.4J and Gordonia sp. HE24.3 are also detailed.
Collapse
Affiliation(s)
- Alejandro Chamizo-Ampudia
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, Spain.
| | - Luis Getino
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, Spain
| | - José M Luengo
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Elias R Olivera
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
11
|
Yun H, Luo C, Chang C, Li L, Reitner J, Zhang X. Adaptive specialization of a unique sponge body from the Cambrian Qingjiang biota. Proc Biol Sci 2022; 289:20220804. [PMID: 35703053 PMCID: PMC9198775 DOI: 10.1098/rspb.2022.0804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sponge fossils from the Cambrian black shales have attracted attention from both palaeontologists and geochemists for many years in terms of their high diversity, beautiful preservation and perplexing adaptation to inhospitable living environments. However, the body shape of these sponges, which contributes to deciphering adaptive evolution, has not been scrutinized. New complete specimens of the hexactinellid sponge Sanshapentella tentoriformis sp. nov. from the Qingjiang biota (black shale of the Cambrian Stage 3 Shuijingtuo Formation, ca 518 Ma) allow recognition of a unique dendriform body characterized by a columnar trunk with multiple conical high peaks and distinctive quadripod-shaped dermal spicules that frame each high peak. The body shape of this new sponge along with other early Cambrian hexactinellids, is classified into three morpho-groups that reflect different levels of adaptivity to the environment. The cylindrical and ovoid bodies generally adapted to a large spectrum of environments; however, the dendriform body of S. tentoriformis was restricted to the relatively deep-water, oxygen-deficient environment. From a hindsight view, the unique body shape represents a consequence of adaptation that helps maintain an effective use of oxygen and a low energy cost in hypoxic conditions.
Collapse
Affiliation(s)
- Hao Yun
- State Key Laboratory of Continental Dynamics and Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Cui Luo
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Chao Chang
- State Key Laboratory of Continental Dynamics and Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Luoyang Li
- Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ministry of Education, and College of Marine Geosciences, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Joachim Reitner
- Department of Geobiology, Centre of Geosciences of the University of Göttingen, Goldschmidtstraße 3, Göttingen 37077, Germany
| | - Xingliang Zhang
- State Key Laboratory of Continental Dynamics and Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China,State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| |
Collapse
|
12
|
Maria Costa-Paiva E, Mello B, Santos Bezerra B, Coates CJ, Halanych KM, Brown F, de Moraes Leme J, Trindade RIF. Molecular dating of the blood pigment hemocyanin provides new insight into the origin of animals. GEOBIOLOGY 2022; 20:333-345. [PMID: 34766436 DOI: 10.1111/gbi.12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The Neoproterozoic included changes in oceanic redox conditions, the configuration of continents and climate, extreme ice ages (Sturtian and Marinoan), and the rise of complex life forms. A much-debated topic in geobiology concerns the influence of atmospheric oxygenation on Earth and the origin and diversification of animal lineages, with the most widely popularized hypotheses relying on causal links between oxygen levels and the rise of animals. The vast majority of extant animals use aerobic metabolism for growth and homeostasis; hence, the binding and transportation of oxygen represent a vital physiological task. Considering the blood pigment hemocyanin (Hc) is present in sponges and ctenophores, and likely to be present in the common ancestor of animals, we investigated the evolution and date of Hc emergence using bioinformatics approaches on both transcriptomic and genomic data. Bayesian molecular dating suggested that the ancestral animal Hc gene arose approximately 881 Ma during the Tonian Period (1000-720 Ma), prior to the extreme glaciation events of the Cryogenian Period (720-635 Ma). This result is corroborated by a recently discovered fossil of a putative sponge ~890 Ma and modern molecular dating for the origin of metazoans of ~1,000-650 Ma (but does contradict previous inferences regarding the origin of Hc ~700-600 Ma). Our data reveal that crown-group animals already possessed hemocyanin-like blood pigments, which may have enhanced the oxygen-carrying capacity of these animals in hypoxic environments at that time or acted in the transport of hormones, detoxification of heavy metals, and immunity pathways.
Collapse
Affiliation(s)
- Elisa Maria Costa-Paiva
- Zoology Department, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
- Geophysics and Atmospheric Sciences, Institute of Astronomy, University of Sao Paulo, Sao Paulo, Brazil
| | - Beatriz Mello
- Genetics Department, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Santos Bezerra
- Zoology Department, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Christopher J Coates
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Kenneth M Halanych
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Federico Brown
- Zoology Department, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ricardo I F Trindade
- Geophysics and Atmospheric Sciences, Institute of Astronomy, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
13
|
Cooke GJ, Marsh DR, Walsh C, Black B, Lamarque JF. A revised lower estimate of ozone columns during Earth's oxygenated history. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211165. [PMID: 35070343 PMCID: PMC8728182 DOI: 10.1098/rsos.211165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/25/2021] [Indexed: 05/17/2023]
Abstract
The history of molecular oxygen (O2) in Earth's atmosphere is still debated; however, geological evidence supports at least two major episodes where O2 increased by an order of magnitude or more: the Great Oxidation Event (GOE) and the Neoproterozoic Oxidation Event. O2 concentrations have likely fluctuated (between 10-3 and 1.5 times the present atmospheric level) since the GOE ∼2.4 Gyr ago, resulting in a time-varying ozone (O3) layer. Using a three-dimensional chemistry-climate model, we simulate changes in O3 in Earth's atmosphere since the GOE and consider the implications for surface habitability, and glaciation during the Mesoproterozoic. We find lower O3 columns (reduced by up to 4.68 times for a given O2 level) compared to previous work; hence, higher fluxes of biologically harmful UV radiation would have reached the surface. Reduced O3 leads to enhanced tropospheric production of the hydroxyl radical (OH) which then substantially reduces the lifetime of methane (CH4). We show that a CH4 supported greenhouse effect during the Mesoproterozoic is highly unlikely. The reduced O3 columns we simulate have important implications for astrobiological and terrestrial habitability, demonstrating the relevance of three-dimensional chemistry-climate simulations when assessing paleoclimates and the habitability of faraway worlds.
Collapse
Affiliation(s)
- G. J. Cooke
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - D. R. Marsh
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- National Center for Atmospheric Research, Boulder, CO 80301, USA
| | - C. Walsh
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - B. Black
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA
- Department of Earth and Atmospheric Sciences, CUNY City College, New York, NY, USA
| | - J.-F. Lamarque
- National Center for Atmospheric Research, Boulder, CO 80301, USA
| |
Collapse
|
14
|
Cohen PA, Kodner RB. The earliest history of eukaryotic life: uncovering an evolutionary story through the integration of biological and geological data. Trends Ecol Evol 2021; 37:246-256. [PMID: 34949483 DOI: 10.1016/j.tree.2021.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
While there is significant data on eukaryogenesis and the early development of the eukaryotic lineage, major uncertainties regarding their origins and evolution remain, including questions of taxonomy, timing, and paleoecology. Here we examine the origin and diversification of the eukaryotes in the Proterozoic Eon as viewed through fossils, organic biomarkers, molecular clocks, phylogenies, and redox proxies. Our interpretation of the integration of these data suggest that eukaryotes were likely aerobic and established in Proterozoic ecosystems. We argue that we must closely examine and integrate both biological and geological evidence and examine points of agreement and contention to gain new insights into the true origin and early evolutionary history of this vastly important group.
Collapse
Affiliation(s)
- Phoebe A Cohen
- Williams College Department of Geosciences, Williamstown, MA, USA.
| | - Robin B Kodner
- Western Washington University Department of Environmental Sciences, Bellingham, WA, USA.
| |
Collapse
|
15
|
Burkhardt P, Jékely G. Evolution of synapses and neurotransmitter systems: The divide-and-conquer model for early neural cell-type evolution. Curr Opin Neurobiol 2021; 71:127-138. [PMID: 34826676 DOI: 10.1016/j.conb.2021.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 01/08/2023]
Abstract
Nervous systems evolved around 560 million years ago to coordinate and empower animal bodies. Ctenophores - one of the earliest-branching lineages - are thought to share a few neuronal genes with bilaterians and may have evolved neurons convergently. Here we review our current understanding of the evolution of neuronal molecules in nonbilaterians. We also reanalyse single-cell sequencing data in light of new cell-cluster identities from a ctenophore and uncover evidence supporting the homology of one ctenophore neuron-type with neurons in Bilateria. The specific coexpression of the presynaptic proteins Unc13 and RIM with voltage-gated channels, neuropeptides and homeobox genes pinpoint a spiking sensory-peptidergic cell in the ctenophore mouth. Similar Unc13-RIM neurons may have been present in the first eumetazoans to rise to dominance only in stem Bilateria. We hypothesise that the Unc13-RIM lineage ancestrally innervated the mouth and conquered other parts of the body with the rise of macrophagy and predation during the Cambrian explosion.
Collapse
Affiliation(s)
- Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway.
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK.
| |
Collapse
|
16
|
Darnet S, Blary A, Chevalier Q, Schaller H. Phytosterol Profiles, Genomes and Enzymes - An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:665206. [PMID: 34093623 PMCID: PMC8172173 DOI: 10.3389/fpls.2021.665206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/20/2021] [Indexed: 05/12/2023]
Abstract
The remarkable diversity of sterol biosynthetic capacities described in living organisms is enriched at a fast pace by a growing number of sequenced genomes. Whereas analytical chemistry has produced a wealth of sterol profiles of species in diverse taxonomic groups including seed and non-seed plants, algae, phytoplanktonic species and other unicellular eukaryotes, functional assays and validation of candidate genes unveils new enzymes and new pathways besides canonical biosynthetic schemes. An overview of the current landscape of sterol pathways in the tree of life is tentatively assembled in a series of sterolotypes that encompass major groups and provides also peculiar features of sterol profiles in bacteria, fungi, plants, and algae.
Collapse
Affiliation(s)
| | | | | | - Hubert Schaller
- Plant Isoprenoid Biology Team, Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
17
|
van Maldegem LM, Nettersheim BJ, Leider A, Brocks JJ, Adam P, Schaeffer P, Hallmann C. Geological alteration of Precambrian steroids mimics early animal signatures. Nat Ecol Evol 2020; 5:169-173. [PMID: 33230255 DOI: 10.1038/s41559-020-01336-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/23/2020] [Indexed: 11/09/2022]
Abstract
The absence of unambiguous animal body fossils in rocks older than the late Ediacaran has rendered fossil lipids the most promising tracers of early organismic complexity. Yet much debate surrounds the various potential biological sources of putative metazoan steroids found in Precambrian rocks. Here we show that 26-methylated steranes-hydrocarbon structures currently attributed to the earliest animals-can form via geological alteration of common algal sterols, which carries important implications for palaeo-ecological interpretations and inhibits the use of such unconventional 'sponge' steranes for reconstructing early animal evolution.
Collapse
Affiliation(s)
- Lennart M van Maldegem
- Max Planck Institute for Biogeochemistry, Jena, Germany. .,MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany. .,The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Benjamin J Nettersheim
- Max Planck Institute for Biogeochemistry, Jena, Germany. .,MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| | - Arne Leider
- Max Planck Institute for Biogeochemistry, Jena, Germany.,MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Jochen J Brocks
- The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Pierre Adam
- University of Strasbourg, CNRS-UMR 7177, Strasbourg, France
| | | | - Christian Hallmann
- Max Planck Institute for Biogeochemistry, Jena, Germany. .,MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| |
Collapse
|