1
|
Xu L, Kun E, Pandey D, Wang JY, Brasil MF, Singh T, Narasimhan VM. The genetic architecture of and evolutionary constraints on the human pelvic form. Science 2025; 388:eadq1521. [PMID: 40208988 DOI: 10.1126/science.adq1521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/09/2025] [Indexed: 04/12/2025]
Abstract
Human pelvic evolution following the human-chimpanzee divergence is thought to result in an obstetrical dilemma, a mismatch between large infant brains and narrowed female birth canals, but empirical evidence has been equivocal. By using deep learning on 31,115 dual-energy x-ray absorptiometry scans from UK Biobank, we identified 180 loci associated with seven highly heritable pelvic phenotypes. Birth canal phenotypes showed sex-specific genetic architecture, aligning with reproductive function. Larger birth canals were linked to slower walking pace and reduced back pain but increased hip osteoarthritis risk, whereas narrower birth canals were associated with reduced pelvic floor disorder risk but increased obstructed labor risk. Lastly, genetic correlation between birth canal and head widths provides evidence of coevolution between the human pelvis and brain, partially mitigating the dilemma.
Collapse
Affiliation(s)
- Liaoyi Xu
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Eucharist Kun
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Devansh Pandey
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Joyce Y Wang
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Marianne F Brasil
- Department of Anthropology, Western Washington University, Bellingham, WA, USA
| | - Tarjinder Singh
- The Department of Psychiatry at Columbia University Irving Medical Center, New York, NY, USA
- The New York Genome Center, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute at Columbia University, New York, NY, USA
| | - Vagheesh M Narasimhan
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Statistics and Data Science, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Chang LY, Plikus MV, Jablonski NG, Lin SJ. Evolution of long scalp hair in humans. Br J Dermatol 2025; 192:574-584. [PMID: 39841178 PMCID: PMC11918595 DOI: 10.1093/bjd/ljae456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 01/23/2025]
Abstract
The ability to grow long scalp hair is a distinct human characteristic. It probably originally evolved to aid in cooling the sun-exposed head, although the genetic determinants of long hair are largely unknown. Despite ancestral variations in hair growth, long scalp hair is common to all extant human populations, which suggests its emergence before or concurrently with the emergence of anatomically modern humans (AMHs), approximately 300 000 years ago. Long scalp hair in AMHs was also a trait that was selected because it conveyed essential signals related to an individual's age, sexual maturity, health and social status. Biologically, hair length is primarily determined by the amount of time that a hair follicle spends in the active growth phase (anagen). While anagen duration is typically tightly regulated in most mammals, the inherent ability of a hair follicle to continuously recruit new dividing progenitors to its base, where hair fibre is generated, theoretically removes limits on maximal anagen duration. We propose a model wherein hair cycle progression into and out of anagen is regulated by evolutionary malleable molecular checkpoints. Several animal species and domesticated animal breeds display long body hair, which suggests that extremely long scalp hair in humans emerged via attenuation of an existing out-of-anagen checkpoint mechanism rather than via a newly evolved molecular programme. Studying congenital and somatic mosaicism conditions featuring altered hair length could potentially unveil the currently unknown molecular basis underlying this human trait.
Collapse
Affiliation(s)
- Lo-Yu Chang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of CaliforniaIrvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of CaliforniaIrvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of CaliforniaIrvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of CaliforniaIrvine, Irvine, CA, USA
| | - Nina G Jablonski
- Department of Anthropology, The Pennsylvania State University, PA, USA
| | - Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Medical Research and Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Dermatology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Fernandez R, Braga J. The morphology of the oval window in Paranthropus robustus compared to humans and other modern primates. Anat Rec (Hoboken) 2025. [PMID: 39976196 DOI: 10.1002/ar.25644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
The oval window (OW) is an opening connecting the inner and middle ear. Its area has been shown to consistently scale with body mass (BM) in primates, and has been used alongside semi-circular canal (SCC) size to differentiate Homo sapiens and fossil hominins, including Paranthropus robustus. However, while the morphology of other inner ear elements, such as cochlea and SCCs, has been extensively studied in primates, OW shape has received little attention. In this study, we assess OW morphological variability in extant primates, and compare P. robustus to extant hominids. The potential of OW size to predict BM is also assessed. For this, measurements were performed on 3D scans from extant primate species and of P. robustus from the sites of Kromdraai, Swartkrans, and Drimolen. Size was assessed using perimeter (OWP), area (OWA), and centroid size (OWCS). Shape was assessed using geometric morphometric methods. The OW has no sexual dimorphism; there is no size difference between juveniles and adults, but there is a slight shape difference between human juveniles and adults, with a seemingly opposite ontogenetic trajectory compared to other primates. P. robustus has an intermediary OW shape between apes and humans, with more ape-like specimens from Kromdraai and more human-like ones from Drimolen. Overall, OW morphology discriminates primate species well enough, especially H. sapiens. BM is well explained by OWA, but OWA is not reliable as a BM proxy due to high prediction errors. Nonetheless, the OWA of P. robustus suggests a BM close to that of a chimpanzee.
Collapse
Affiliation(s)
- Ruy Fernandez
- Laboratoire de Géologie de Lyon-Terre, Planètes, Environnement, CNRS UMR 5276, ENS de Lyon, Lyon, France
- Centre for Anthropobiology & Genomics of Toulouse, CNRS UMR 5288, Université Paul Sabatier, Toulouse, France
| | - José Braga
- Centre for Anthropobiology & Genomics of Toulouse, CNRS UMR 5288, Université Paul Sabatier, Toulouse, France
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Püschel TA, Nicholson SL, Baker J, Barton RA, Venditti C. Hominin brain size increase has emerged from within-species encephalization. Proc Natl Acad Sci U S A 2024; 121:e2409542121. [PMID: 39589871 PMCID: PMC11626186 DOI: 10.1073/pnas.2409542121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/11/2024] [Indexed: 11/28/2024] Open
Abstract
The fact that rapid brain size increase was clearly a key aspect of human evolution has prompted many studies focusing on this phenomenon, and many suggestions as to the underlying evolutionary patterns and processes. No study to date has however separated out the contributions of change through time within vs. between hominin species while simultaneously incorporating effects of body size. Using a phylogenetic approach never applied before to paleoanthropological data, we show that relative brain size increase across ~7 My of hominin evolution arose from increases within individual species which account for an observed overall increase in relative brain size. Variation among species in brain size after accounting for this effect is associated with body mass differences but not time. In addition, our analysis also reveals that the within-species trend escalated in more recent lineages, implying an overall pattern of accelerating relative brain size increase through time.
Collapse
Affiliation(s)
- Thomas A. Püschel
- Institute of Human Sciences, School of Anthropology and Museum Ethnography, University of Oxford, OxfordOX2 6PE, United Kingdom
- School of Biological Sciences, University of Reading, ReadingRG6 6AS, United Kingdom
| | - Samuel L. Nicholson
- School of Biological Sciences, University of Reading, ReadingRG6 6AS, United Kingdom
- Climate Geochemistry, Max Planck Institute for Chemistry, Mainz55128, Germany
| | - Joanna Baker
- School of Biological Sciences, University of Reading, ReadingRG6 6AS, United Kingdom
| | - Robert A. Barton
- Department of Anthropology, Evolutionary Anthropology Research Group, University of Durham, DurhamDH1 3LE, United Kingdom
| | - Chris Venditti
- School of Biological Sciences, University of Reading, ReadingRG6 6AS, United Kingdom
| |
Collapse
|
5
|
López-Torres S, Bertrand OC, Fostowicz-Frelik Ł, Lang MM, Law CJ, San Martin-Flores G, Schillaci MA, Silcox MT. The allometry of brain size in Euarchontoglires: clade-specific patterns and their impact on encephalization quotients. J Mammal 2024; 105:1430-1445. [PMID: 39588191 PMCID: PMC11586101 DOI: 10.1093/jmammal/gyae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/26/2024] [Indexed: 11/27/2024] Open
Abstract
The timing and nature of evolutionary shifts in the relative brain size of Primates have been extensively studied. Less is known, however, about the scaling of the brain-to-body size in their closest living relatives, i.e., among other members of Euarchontoglires (Dermoptera, Scandentia, Lagomorpha, Rodentia). Ordinary least squares (OLS), reduced major axis (RMA), and phylogenetic generalized least squares (PGLS) regressions were fitted to the largest euarchontogliran data set of brain and body mass, comprising 715 species. Contrary to previous inferences, lagomorph brain sizes (PGLS slope = 0.465; OLS slope = 0.593) scale relative to body mass similarly to rodents (PGLS = 0.526; OLS = 0.638), and differently than primates (PGLS = 0.607; OLS = 0.794). There is a shift in the pattern of the scaling of the brain in Primates, with Strepsirrhini occupying an intermediate stage similar to Scandentia but different from Rodentia and Lagomorpha, while Haplorhini differ from all other groups in the OLS and RMA analyses. The unique brain-body scaling relationship of Primates among Euarchontoglires illustrates the need for clade-specific metrics for relative brain size (i.e., encephalization quotients; EQs) for more restricted taxonomic entities than Mammalia. We created clade-specific regular and phylogenetically adjusted EQ equations at superordinal, ordinal, and subordinal levels. When using fossils as test cases, our results show that generalized mammalian equations underestimate the encephalization of the stem lagomorph Megalagus turgidus in the context of lagomorphs, overestimate the encephalization of the stem primate Microsyops annectens and the early euprimate Necrolemur antiquus, but provide similar EQ values as our new strepsirrhine-specific EQ when applied to the early euprimate Adapis parisiensis.
Collapse
Affiliation(s)
- Sergi López-Torres
- University of Warsaw, Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024-5192, United States
| | - Ornella C Bertrand
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Spain
- School of Geosciences, The University of Edinburgh, Grant Institute, Edinburgh EH9 3FE, United Kingdom
| | - Łucja Fostowicz-Frelik
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637, United States
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-Zhi-Men-Wai Street, Beijing 100044, People’s Republic of China
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Madlen M Lang
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Chris J Law
- Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024-5192, United States
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, United States
- Department of Integrative Biology, University of Texas, 2415 Speedway #C0930, Austin, TX 78712, United States
| | - Gabriela San Martin-Flores
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Michael A Schillaci
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
6
|
van Holstein LA, Foley RA. Diversity-dependent speciation and extinction in hominins. Nat Ecol Evol 2024; 8:1180-1190. [PMID: 38632435 PMCID: PMC11166571 DOI: 10.1038/s41559-024-02390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
The search for drivers of hominin speciation and extinction has tended to focus on the impact of climate change. Far less attention has been paid to the role of interspecific competition. However, research across vertebrates more broadly has shown that both processes are often correlated with species diversity, suggesting an important role for interspecific competition. Here we ask whether hominin speciation and extinction conform to the expected patterns of negative and positive diversity dependence, respectively. We estimate speciation and extinction rates from fossil occurrence data with preservation variability priors in a validated Bayesian framework and test whether these rates are correlated with species diversity. We supplement these analyses with calculations of speciation rate across a phylogeny, again testing whether these are correlated with diversity. Our results are consistent with clade-wide diversity limits that governed speciation in hominins overall but that were not quite reached by the Australopithecus and Paranthropus subclade before its extinction. Extinction was not correlated with species diversity within the Australopithecus and Paranthropus subclade or within hominins overall; this is concordant with climate playing a greater part in hominin extinction than speciation. By contrast, Homo is characterized by positively diversity-dependent speciation and negatively diversity-dependent extinction-both exceedingly rare patterns across all forms of life. The genus Homo expands the set of reported associations between diversity and macroevolution in vertebrates, underscoring that the relationship between diversity and macroevolution is complex. These results indicate an important, previously underappreciated and comparatively unusual role of biotic interactions in Homo macroevolution, and speciation in particular. The unusual and unexpected patterns of diversity dependence in Homo speciation and extinction may be a consequence of repeated Homo range expansions driven by interspecific competition and made possible by recurrent innovations in ecological strategies. Exploring how hominin macroevolution fits into the general vertebrate macroevolutionary landscape has the potential to offer new perspectives on longstanding questions in vertebrate evolution and shed new light on evolutionary processes within our own lineage.
Collapse
Affiliation(s)
- Laura A van Holstein
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Cambridge, UK.
| | - Robert A Foley
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Boyd BM, House N, Carduck CW, Reed DL. Genomic Diversity in the Endosymbiotic Bacteria of Human Head Lice. Mol Biol Evol 2024; 41:msae064. [PMID: 38513084 PMCID: PMC10986857 DOI: 10.1093/molbev/msae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Insects have repeatedly forged symbioses with heritable microbes, gaining novel traits. For the microbe, the transition to symbioses can lead to the degeneration of the symbiont's genome through transmission bottlenecks, isolation, and the loss of DNA repair enzymes. However, some insect-microbial symbioses have persisted for millions of years, suggesting that natural selection slows genetic drift and maintains functional consistency between symbiont populations. By sampling in multiple countries, we examine genomic diversity within a symbiont species, a heritable symbiotic bacterium found only in human head lice. We find that human head louse symbionts contain genetic diversity that appears to have arisen contemporaneously with the appearance of anatomically modern humans within Africa and/or during the colonization of Eurasia by humans. We predict that the observed genetic diversity underlies functional differences in extant symbiont lineages, through the inactivation of genes involved in symbiont membrane construction. Furthermore, we find evidence of additional gene losses prior to the appearance of modern humans, also impacting the symbiont membrane. From this, we conclude that symbiont genome degeneration is proceeding, via gene inactivation and subsequent loss, in human head louse symbionts, while genomic diversity is maintained. Collectively, our results provide a look into the genomic diversity within a single symbiont species and highlight the shared evolutionary history of humans, lice, and bacteria.
Collapse
Affiliation(s)
- Bret M Boyd
- Center for Biological Data Science, Life Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Niyomi House
- Department of Biology, University of Nevada Reno, Reno, NV, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Christopher W Carduck
- Center for Biological Data Science, Life Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - David L Reed
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Shanmugasundaram S, Nayak N, Karmakar S, Chopra A, Arangaraju R. Evolutionary History of Periodontitis and the Oral Microbiota—Lessons for the Future. CURRENT ORAL HEALTH REPORTS 2024; 11:105-116. [DOI: 10.1007/s40496-024-00370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 01/03/2025]
Abstract
Abstract
Purpose of Review
Currently, periodontal disease is the sixth most prevalent disease in the world. Emerging evidence suggests the possibility of pre-historic humans having relatively low occurrences of oral diseases, particularly periodontitis when compared to modern humans. In this review, we look back into the history of Homo sapiens and explore the emerging scientific literature to discuss the evolution of the human oral microbiota and the prevalence of periodontitis from pre-historic to modern times.
Recent Findings
Most of the scientific literature points to a more health-associated, eubiotic oral microbiota and a seemingly lower prevalence of periodontitis in pre-historic humans compared to modern times. The oral microbiome has evolved along with humans. Humans of the contemporary era are exposed to a far greater number of risk factors for periodontal disease. Also, major lifestyle changes induced by the agricultural revolution and the industrial revolution have led to the development of a more dysbiotic oral microbiota and a rise in the prevalence of periodontitis in modern humans.
Summary
An understanding of the prevalence of periodontitis across human history, the evolution of the oral microbiota, and the factors that influenced its nature and complexity helps identify and modify the disease-associated lifestyle factors acquired through modernization to manage the common worldwide problem of periodontitis.
Collapse
|
9
|
Cepeda AS, Mello B, Pacheco MA, Luo Z, Sullivan SA, Carlton JM, Escalante AA. The Genome of Plasmodium gonderi: Insights into the Evolution of Human Malaria Parasites. Genome Biol Evol 2024; 16:evae027. [PMID: 38376987 PMCID: PMC10901558 DOI: 10.1093/gbe/evae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
Plasmodium species causing malaria in humans are not monophyletic, sharing common ancestors with nonhuman primate parasites. Plasmodium gonderi is one of the few known Plasmodium species infecting African old-world monkeys that are not found in apes. This study reports a de novo assembled P. gonderi genome with complete chromosomes. The P. gonderi genome shares codon usage, syntenic blocks, and other characteristics with the human parasites Plasmodium ovale s.l. and Plasmodium malariae, also of African origin, and the human parasite Plasmodium vivax and species found in nonhuman primates from Southeast Asia. Using phylogenetically aware methods, newly identified syntenic blocks were found enriched with conserved metabolic genes. Regions outside those blocks harbored genes encoding proteins involved in the vertebrate host-Plasmodium relationship undergoing faster evolution. Such genome architecture may have facilitated colonizing vertebrate hosts. Phylogenomic analyses estimated the common ancestor between P. vivax and an African ape parasite P. vivax-like, within the Asian nonhuman primates parasites clade. Time estimates incorporating P. gonderi placed the P. vivax and P. vivax-like common ancestor in the late Pleistocene, a time of active migration of hominids between Africa and Asia. Thus, phylogenomic and time-tree analyses are consistent with an Asian origin for P. vivax and an introduction of P. vivax-like into Africa. Unlike other studies, time estimates for the clade with Plasmodium falciparum, the most lethal human malaria parasite, coincide with their host species radiation, African hominids. Overall, the newly assembled genome presented here has the quality to support comparative genomic investigations in Plasmodium.
Collapse
Affiliation(s)
- Axl S Cepeda
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| | - Beatriz Mello
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| | - Zunping Luo
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Steven A Sullivan
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Jane M Carlton
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| |
Collapse
|
10
|
Ruff CB, Wood BA. The estimation and evolution of hominin body mass. Evol Anthropol 2023; 32:223-237. [PMID: 37335778 DOI: 10.1002/evan.21988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/15/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023]
Abstract
Body mass is a critical variable in many hominin evolutionary studies, with implications for reconstructing relative brain size, diet, locomotion, subsistence strategy, and social organization. We review methods that have been proposed for estimating body mass from true and trace fossils, consider their applicability in different contexts, and the appropriateness of different modern reference samples. Recently developed techniques based on a wider range of modern populations hold promise for providing more accurate estimates in earlier hominins, although uncertainties remain, particularly in non-Homo taxa. When these methods are applied to almost 300 Late Miocene through Late Pleistocene specimens, the resulting body mass estimates fall within a 25-60 kg range for early non-Homo taxa, increase in early Homo to about 50-90 kg, then remain constant until the Terminal Pleistocene, when they decline.
Collapse
Affiliation(s)
- Christopher B Ruff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bernard A Wood
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
11
|
de Sousa AA, Beaudet A, Calvey T, Bardo A, Benoit J, Charvet CJ, Dehay C, Gómez-Robles A, Gunz P, Heuer K, van den Heuvel MP, Hurst S, Lauters P, Reed D, Salagnon M, Sherwood CC, Ströckens F, Tawane M, Todorov OS, Toro R, Wei Y. From fossils to mind. Commun Biol 2023; 6:636. [PMID: 37311857 PMCID: PMC10262152 DOI: 10.1038/s42003-023-04803-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/04/2023] [Indexed: 06/15/2023] Open
Abstract
Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.
Collapse
Affiliation(s)
| | - Amélie Beaudet
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRS & Université de Poitiers, Poitiers, France.
- University of Cambridge, Cambridge, UK.
| | - Tanya Calvey
- Division of Clinical Anatomy and Biological Anthropology, University of Cape Town, Cape Town, South Africa.
| | - Ameline Bardo
- UMR 7194, CNRS-MNHN, Département Homme et Environnement, Musée de l'Homme, Paris, France
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Julien Benoit
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Colette Dehay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500, Bron, France
| | | | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | | | - Shawn Hurst
- University of Indianapolis, Indianapolis, IN, USA
| | - Pascaline Lauters
- Institut royal des Sciences naturelles, Direction Opérationnelle Terre et Histoire de la Vie, Brussels, Belgium
| | - Denné Reed
- Department of Anthropology, University of Texas at Austin, Austin, TX, USA
| | - Mathilde Salagnon
- CNRS, CEA, IMN, GIN, UMR 5293, Université Bordeaux, Bordeaux, France
- PACEA UMR 5199, CNRS, Université Bordeaux, Pessac, France
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Felix Ströckens
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Orlin S Todorov
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Yongbin Wei
- Beijing University of Posts and Telecommunications, Beijing, China
| |
Collapse
|
12
|
Kuderna LFK, Gao H, Janiak MC, Kuhlwilm M, Orkin JD, Bataillon T, Manu S, Valenzuela A, Bergman J, Rousselle M, Silva FE, Agueda L, Blanc J, Gut M, de Vries D, Goodhead I, Harris RA, Raveendran M, Jensen A, Chuma IS, Horvath JE, Hvilsom C, Juan D, Frandsen P, Schraiber JG, de Melo FR, Bertuol F, Byrne H, Sampaio I, Farias I, Valsecchi J, Messias M, da Silva MNF, Trivedi M, Rossi R, Hrbek T, Andriaholinirina N, Rabarivola CJ, Zaramody A, Jolly CJ, Phillips-Conroy J, Wilkerson G, Abee C, Simmons JH, Fernandez-Duque E, Kanthaswamy S, Shiferaw F, Wu D, Zhou L, Shao Y, Zhang G, Keyyu JD, Knauf S, Le MD, Lizano E, Merker S, Navarro A, Nadler T, Khor CC, Lee J, Tan P, Lim WK, Kitchener AC, Zinner D, Gut I, Melin AD, Guschanski K, Schierup MH, Beck RMD, Umapathy G, Roos C, Boubli JP, Rogers J, Farh KKH, Marques Bonet T. A global catalog of whole-genome diversity from 233 primate species. Science 2023; 380:906-913. [PMID: 37262161 DOI: 10.1126/science.abn7829] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/06/2023] [Indexed: 06/03/2023]
Abstract
The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage whole-genome data from 233 primate species representing 86% of genera and all 16 families. This dataset was used, together with fossil calibration, to create a nuclear DNA phylogeny and to reassess evolutionary divergence times among primate clades. We found within-species genetic diversity across families and geographic regions to be associated with climate and sociality, but not with extinction risk. Furthermore, mutation rates differ across species, potentially influenced by effective population sizes. Lastly, we identified extensive recurrence of missense mutations previously thought to be human specific. This study will open a wide range of research avenues for future primate genomic research.
Collapse
Affiliation(s)
- Lukas F K Kuderna
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Hong Gao
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Mareike C Janiak
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Martin Kuhlwilm
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Austria
| | - Joseph D Orkin
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Département d'anthropologie, Université de Montréal, 3150 Jean-Brillant, Montréal, QC H3T 1N8, Canada
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Shivakumara Manu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Alejandro Valenzuela
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Felipe Ennes Silva
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development, Estrada da Bexiga 2584, CEP 69553-225, Tefé, Amazonas, Brazil
- Evolutionary Biology and Ecology (EBE), Département de Biologie des Organismes, Université libre de Bruxelles (ULB), Av. Franklin D. Roosevelt 50, CP 160/12, B-1050 Brussels Belgium
| | - Lidia Agueda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Ian Goodhead
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
| | | | - Julie E Horvath
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - David Juan
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
| | | | - Joshua G Schraiber
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | | | - Fabrício Bertuol
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas 69080-900, Brazil
| | - Hazel Byrne
- Department of Anthropology, University of Utah, Salt Lake City. UT 84102, USA
| | | | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas 69080-900, Brazil
| | - João Valsecchi
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development, Tefé, Amazonas, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia - RedeFauna, Manaus, Amazonas, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica - ComFauna, Iquitos, Loreto, Peru
| | - Malu Messias
- Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | | | - Mihir Trivedi
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Rogerio Rossi
- Instituto de Biociências, Universidade Federal do Mato Grosso, Cuiabá, MT, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas 69080-900, Brazil
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Clément J Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Clifford J Jolly
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Jane Phillips-Conroy
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Gregory Wilkerson
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop TX 78602, USA
| | - Christian Abee
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop TX 78602, USA
| | - Joe H Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop TX 78602, USA
| | | | - Sree Kanthaswamy
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85004, USA
| | - Fekadu Shiferaw
- Guinea Worm Eradication Program, The Carter Center Ethiopia, Addis Ababa, Ethiopia
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Long Zhou
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Shangcheng District, Hangzhou 310006, China
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Head Office, P.O. Box 661, Arusha, Tanzania
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Minh D Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
| | - Esther Lizano
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Arcadi Navarro
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra. Pg. Luís Companys 23, 08010 Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Av. Doctor Aiguader, N88, 08003 Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, C. Wellington 30, 08005 Barcelona, Spain
| | - Tilo Nadler
- Cuc Phuong Commune, Nho Quan District, Ninh Binh Province, Vietnam
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Jessica Lee
- Mandai Nature, 80 Mandai Lake Road, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK, and School of Geosciences, Drummond Street, Edinburgh EH8 9XP, UK
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, Germany Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, HMRB 202, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, HMRB 202, Calgary, AB T2N 4N1, Canada
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Robin M D Beck
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Jean P Boubli
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Tomas Marques Bonet
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra. Pg. Luís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Hagen EH, Blackwell AD, Lightner AD, Sullivan RJ. Homo medicus: The transition to meat eating increased pathogen pressure and the use of pharmacological plants in Homo. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:589-617. [PMID: 36815505 DOI: 10.1002/ajpa.24718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The human lineage transitioned to a more carnivorous niche 2.6 mya and evolved a large body size and slower life history, which likely increased zoonotic pathogen pressure. Evidence for this increase includes increased zoonotic infections in modern hunter-gatherers and bushmeat hunters, exceptionally low stomach pH compared to other primates, and divergence in immune-related genes. These all point to change, and probably intensification, in the infectious disease environment of Homo compared to earlier hominins and other apes. At the same time, the brain, an organ in which immune responses are constrained, began to triple in size. We propose that the combination of increased zoonotic pathogen pressure and the challenges of defending a large brain and body from pathogens in a long-lived mammal, selected for intensification of the plant-based self-medication strategies already in place in apes and other primates. In support, there is evidence of medicinal plant use by hominins in the middle Paleolithic, and all cultures today have sophisticated, plant-based medical systems, add spices to food, and regularly consume psychoactive plant substances that are harmful to helminths and other pathogens. We propose that the computational challenges of discovering effective plant-based treatments, the consequent ability to consume more energy-rich animal foods, and the reduced reliance on energetically-costly immune responses helped select for increased cognitive abilities and unique exchange relationships in Homo. In the story of human evolution, which has long emphasized hunting skills, medical skills had an equal role to play.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Blackwell
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Lightner
- Department of Anthropology, Washington State University, Pullman, Washington, USA
- Department of the Study of Religion, Aarhus University, Aarhus, Denmark
| | - Roger J Sullivan
- Department of Anthropology, California State University, Sacramento, California, USA
| |
Collapse
|
14
|
Pestana C, de Sousa AA, Todorov OS, Beaudet A, Benoit J. Evolutionary history of hominin brain size and phylogenetic comparative methods. PROGRESS IN BRAIN RESEARCH 2023; 275:217-232. [PMID: 36841569 DOI: 10.1016/bs.pbr.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
An absolutely and relatively large brain has traditionally been viewed as a distinctive characteristic of the Homo genus, with anatomically modern humans presented at the apex of a long line of progressive increases in encephalization. Many studies continue to focus attention on increasing brain size in the Homo genus, while excluding measures of absolute and relative brain size of more geologically recent, smaller brained, hominins such as Homo floresiensis, and Homo naledi and smaller brained Homo erectus specimens. This review discusses the benefits of using phylogenetic comparative methods to trace the diverse changes in hominin brain evolution and the drawbacks of not doing so.
Collapse
Affiliation(s)
- Christopher Pestana
- Evolutionary Studies Institute, School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Orlin S Todorov
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julien Benoit
- Evolutionary Studies Institute, School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
15
|
Reed DN, Raney E, Johnson J, Jackson H, Virabalin N, Mbonu N. Hominin nomenclature and the importance of information systems for managing complexity in paleoanthropology. J Hum Evol 2023; 175:103308. [PMID: 36649665 DOI: 10.1016/j.jhevol.2022.103308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/17/2023]
Affiliation(s)
- Denné N Reed
- Department of Anthropology, University of Texas at Austin, 2100 Speedway, Stop C3200, Austin, TX, 78712, USA.
| | - Emily Raney
- Department of Anthropology, University of Texas at Austin, 2100 Speedway, Stop C3200, Austin, TX, 78712, USA
| | - Jyhreh Johnson
- Department of Anthropology, University of Texas at Austin, 2100 Speedway, Stop C3200, Austin, TX, 78712, USA
| | - Harper Jackson
- University of Texas at Austin, 2100 Speedway, Stop C3200, Austin, TX, 78712, USA
| | - Nida Virabalin
- University of Texas at Austin, 2100 Speedway, Stop C3200, Austin, TX, 78712, USA
| | - Nina Mbonu
- University of Texas at Austin, 2100 Speedway, Stop C3200, Austin, TX, 78712, USA
| |
Collapse
|
16
|
Hagen EH. The Biological Roots of Music and Dance : Extending the Credible Signaling Hypothesis to Predator Deterrence. HUMAN NATURE (HAWTHORNE, N.Y.) 2022; 33:261-279. [PMID: 35986877 DOI: 10.1007/s12110-022-09429-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
After they diverged from panins, hominins evolved an increasingly committed terrestrial lifestyle in open habitats that exposed them to increased predation pressure from Africa's formidable predator guild. In the Pleistocene, Homo transitioned to a more carnivorous lifestyle that would have further increased predation pressure. An effective defense against predators would have required a high degree of cooperation by the smaller and slower hominins. It is in the interest of predator and potential prey to avoid encounters that will be costly for both. A wide variety of species, including carnivores and apes and other primates, have therefore evolved visual and auditory signals that deter predators by credibly signaling detection and/or the ability to effectively defend themselves. In some cooperative species, these predator deterrent signals involve highly synchronized visual and auditory displays among group members. Hagen and Bryant (Human Nature, 14(1), 21-51, 2003) proposed that synchronized visual and auditory displays credibly signal coalition quality. Here, this hypothesis is extended to include credible signals to predators that they have been detected and would be met with a highly coordinated defensive response, thereby deterring an attack. Within-group signaling functions are also proposed. The evolved cognitive abilities underlying these behaviors were foundations for the evolution of fully human music and dance.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA, 98686, USA.
| |
Collapse
|
17
|
Postcranial evidence of late Miocene hominin bipedalism in Chad. Nature 2022; 609:94-100. [PMID: 36002567 DOI: 10.1038/s41586-022-04901-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Bipedal locomotion is one of the key adaptations that define the hominin clade. Evidence of bipedalism is known from postcranial remains of late Miocene hominins as early as 6 million years ago (Ma) in eastern Africa1-4. Bipedality of Sahelanthropus tchadensis was hitherto inferred about 7 Ma in central Africa (Chad) based on cranial evidence5-7. Here we present postcranial evidence of the locomotor behaviour of S. tchadensis, with new insights into bipedalism at the early stage of hominin evolutionary history. The original material was discovered at locality TM 266 of the Toros-Ménalla fossiliferous area and consists of one left femur and two, right and left, ulnae. The morphology of the femur is most parsimonious with habitual bipedality, and the ulnae preserve evidence of substantial arboreal behaviour. Taken together, these findings suggest that hominins were already bipeds at around 7 Ma but also suggest that arboreal clambering was probably a significant part of their locomotor repertoire.
Collapse
|
18
|
Püschel HP, Bertrand OC, Reilly JEO, Bobe R, Püschel TA. Reply to: Modelling hominin evolution requires accurate hominin data. Nat Ecol Evol 2022; 6:1092-1094. [PMID: 35788711 DOI: 10.1038/s41559-022-01792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hans P Püschel
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK.
| | - Ornella C Bertrand
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | - Joseph E O' Reilly
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - René Bobe
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, School of Anthropology, University of Oxford, Oxford, UK.,Gorongosa National Park, Sofala, Mozambique
| | - Thomas A Püschel
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, School of Anthropology, University of Oxford, Oxford, UK. .,School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
19
|
Mongle CS, Pugh KD, Strait DS, Grine FE. Modelling hominin evolution requires accurate hominin data. Nat Ecol Evol 2022; 6:1090-1091. [PMID: 35788710 DOI: 10.1038/s41559-022-01791-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/17/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Carrie S Mongle
- Division of Anthropology, American Museum of Natural History, New York, USA. .,Department of Anthropology, Stony Brook University, New York, USA. .,Turkana Basin Institute, Stony Brook University, New York, USA.
| | - Kelsey D Pugh
- Division of Anthropology, American Museum of Natural History, New York, USA.,New York Consortium in Evolutionary Primatology, New York, USA
| | - David S Strait
- Department of Anthropology, Washington University in St Louis, St Louis, USA
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, New York, USA.,Department of Anatomical Sciences, Stony Brook University, New York, USA
| |
Collapse
|
20
|
Pozzi L, Penna A. Rocks and clocks revised: New promises and challenges in dating the primate tree of life. Evol Anthropol 2022; 31:138-153. [PMID: 35102633 DOI: 10.1002/evan.21940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 10/04/2021] [Accepted: 01/12/2022] [Indexed: 01/14/2023]
Abstract
In recent years, multiple technological and methodological advances have increased our ability to estimate phylogenies, leading to more accurate dating of the primate tree of life. Here we provide an overview of the limitations and potentials of some of these advancements and discuss how dated phylogenies provide the crucial temporal scale required to understand primate evolution. First, we review new methods, such as the total-evidence dating approach, that promise a better integration between the fossil record and molecular data. We then explore how the ever-increasing availability of genomic-level data for more primate species can impact our ability to accurately estimate timetrees. Finally, we discuss more recent applications of mutation rates to date divergence times. We highlight example studies that have applied these approaches to estimate divergence dates within primates. Our goal is to provide a critical overview of these new developments and explore the promises and challenges of their application in evolutionary anthropology.
Collapse
Affiliation(s)
- Luca Pozzi
- Department of Anthropology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Anna Penna
- Department of Anthropology, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
21
|
Stibel JM. Decreases in Brain Size and Encephalization in Anatomically Modern Humans. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:64-77. [PMID: 34718234 DOI: 10.1159/000519504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/28/2021] [Indexed: 12/25/2022]
Abstract
Growth in human brain size and encephalization is well documented throughout much of prehistory and believed to be responsible for increasing cognitive faculties. Over the past 50,000 years, however, both body size and brain mass have decreased but little is known about the scaling relationship between the two. Here, changes to the human brain are examined using matched body remains to determine encephalization levels across an evolutionary timespan. The results find decreases to encephalization levels in modern humans as compared to earlier Holocene H. sapiens and Late Pleistocene anatomically modern Homo. When controlled for lean body mass, encephalization changes are isometric, suggesting that much of the declines in encephalization are driven by recent increases in obesity. A meta-review of genome-wide association studies finds some evidence for selective pressures acting on human cognitive ability, which may be an evolutionary consequence of the more than 5% loss in brain mass over the past 50,000 years.
Collapse
|