1
|
Week B, Ralph PL, Tavalire HF, Cresko WA, Bohannan BJM. Quantitative Genetics of Microbiome Mediated Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628599. [PMID: 39763787 PMCID: PMC11702574 DOI: 10.1101/2024.12.16.628599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Multicellular organisms host a rich assemblage of associated microorganisms, collectively known as their "microbiomes". Microbiomes have the capacity to influence their hosts' fitnesses, but the conditions under which such influences contribute to evolution are not clear. This is due in part to a lack of a comprehensive theoretical framework for describing the combined effects of host and associated microbes on phenotypic variation. Here we begin to address this gap by extending the foundations of quantitative genetic theory to include host-associated microbes, as well as alleles of hosts, as factors that explain quantitative host trait variation. We introduce a way to partition host-associated microbiomes into componenents relevant for predicting a microbiome-mediated response to selection. We then apply our general framework to a simulation model of microbiome inheritance to illustrate principles for predicting host trait dynamics, and to generalize classical narrow and broad sense heritabilities to account for microbial effects. We demonstrate that microbiome-mediated responses to host selection can arise from various transmission modes, not solely vertical, with the contribution of non-vertical modes depending on host life history. Our work lays a foundation for integrating microbiome-mediated host variation and adaptation into our understanding of natural variation.
Collapse
|
2
|
Silvaraju S, Zhang QH, Kittelmann S, Puniamoorthy N. Genetics, age, and diet influence gut bacterial communities and performance of black soldier fly larvae (Hermetia illucens). Anim Microbiome 2024; 6:56. [PMID: 39407272 PMCID: PMC11481748 DOI: 10.1186/s42523-024-00340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The gut microbiota of black soldier fly larvae (BSFL, Hermetia illucens) play a crucial role in recycling various organic waste streams. This capability is linked to the presence of a potential common core microbiota in BSFL. However, subjective thresholds for defining core taxa and the difficulty of separating genetic and environmental influences have prevented a clear consensus in the literature. We analysed the gut bacterial communities of two genetically distinct BSF lines (wild type (WT) and lab-adapted line (LD)) raised on ten different diets based on common agricultural by-products and food waste in Southeast Asia. RESULTS High-throughput 16S rRNA gene sequencing revealed that gut bacterial communities were significantly influenced by genetics (p = 0.001), diet (plant/meat-dominated; p = 0.001), larval age (p = 0.001), and the interactions between all three (p = 0.002). This led us to investigate both common core taxa and lineage-specific core taxa. At a strict > 97% prevalence threshold, four core taxa were identified: Providencia_A_732258, an unclassified genus within the family Enterococcaceae, Morganella, and Enterococcus_H_360604. A relaxed threshold (> 80% prevalence) extended the core to include other potential common core taxa such as Klebsiella, Proteus, and Scrofimicrobium. Our data suggest that Proteus, Scrofimicrobium, Corynebacterium, Vagococcus_B, Lysinibacillus_304693 (all LD), and Paenibacillus_J_366884 (WT) are lineage-specific rather than members of a common core (> 90% prevalence in either LD or WT, with prevalence significantly different between lines (p ≤ 0.05)). Positive correlations were observed between several core genera and larval performance in LD, typical of a highly optimized lab-adapted line. Interestingly, only members of the genus Providencia appeared to play a crucial role in most aspects of larval performance in both genetic lineages. CONCLUSION Our study demonstrates that the gut microbiota of BSFL is influenced by genetic factors, diet composition, larval age, and their interactions. We identified a distinct lineage-specific core microbiota, emphasizing genetic background's role. Future studies should apply a standardized high prevalence threshold of at least > 90% unless there is a valid reason for relaxation or sample exclusion. The consistent association of Providencia spp. with larval performance across both genetic lines highlights their crucial role in the BSFL gut ecosystem.
Collapse
Affiliation(s)
- Shaktheeshwari Silvaraju
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Wilmar International Limited, 28 Biopolis Road, Singapore, 138568, Singapore
| | - Qi-Hui Zhang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Sandra Kittelmann
- Wilmar International Limited, 28 Biopolis Road, Singapore, 138568, Singapore.
| | - Nalini Puniamoorthy
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| |
Collapse
|
3
|
Xue Y, Xie Y, Cao X, Zhang L. The marine environmental microbiome mediates physiological outcomes in host nematodes. BMC Biol 2024; 22:224. [PMID: 39379910 PMCID: PMC11463140 DOI: 10.1186/s12915-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Nematodes are the most abundant metazoans in marine sediments, many of which are bacterivores; however, how habitat bacteria affect physiological outcomes in marine nematodes remains largely unknown. RESULTS: Here, we used a Litoditis marina inbred line to assess how native bacteria modulate host nematode physiology. We characterized seasonal dynamic bacterial compositions in L. marina habitats and examined the impacts of 448 habitat bacteria isolates on L. marina development, then focused on HQbiome with 73 native bacteria, of which we generated 72 whole genomes sequences. Unexpectedly, we found that the effects of marine native bacteria on the development of L. marina and its terrestrial relative Caenorhabditis elegans were significantly positively correlated. Next, we reconstructed bacterial metabolic networks and identified several bacterial metabolic pathways positively correlated with L. marina development (e.g., ubiquinol and heme b biosynthesis), while pyridoxal 5'-phosphate biosynthesis pathway was negatively associated. Through single metabolite supplementation, we verified CoQ10, heme b, acetyl-CoA, and acetaldehyde promoted L. marina development, while vitamin B6 attenuated growth. Notably, we found that only four development correlated metabolic pathways were shared between L. marina and C. elegans. Furthermore, we identified two bacterial metabolic pathways correlated with L. marina lifespan, while a distinct one in C. elegans. Strikingly, we found that glycerol supplementation significantly extended L. marina but not C. elegans longevity. Moreover, we comparatively demonstrated the distinct gut microbiota characteristics and their effects on L. marina and C. elegans physiology. CONCLUSIONS Given that both bacteria and marine nematodes are dominant taxa in sedimentary ecosystems, the resource presented here will provide novel insights to identify mechanisms underpinning how habitat bacteria affect nematode biology in a more natural context. Our integrative approach will provide a microbe-nematodes framework for microbiome mediated effects on host animal fitness.
Collapse
Affiliation(s)
- Yiming Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yusu Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Xuwen Cao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liusuo Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| |
Collapse
|
4
|
Zhang Y, Mao K, Chen K, Zhao Z, Ju F. Symbiont community assembly shaped by insecticide exposure and feedback on insecticide resistance of Spodoptera frugiperda. Commun Biol 2024; 7:1194. [PMID: 39333238 PMCID: PMC11436667 DOI: 10.1038/s42003-024-06892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Exploring the mechanism of microbiota assembly and its ecological consequences is crucial for connecting microbiome variation to ecosystem function. However, the influencing factors underlying microbiota assembly in the host-microbe system and their impact on the host phenotype remain unclear. Through investigating the prevalent and worsening ecological phenomenon of insecticide resistance in global agriculture, we found that insecticide exposure significantly changed the gut microbiota assembly patterns of a major agricultural invasive insect pest, Spodoptera frugiperda. The relative importance of various microbiota assembly processes significantly varied with habitat heterogeneity and heterogeneous selection serving as a potential predictor of the host's insecticide resistance in field populations. Moreover, disturbance of the gut microbiota assembly through antibiotics was revealed to significantly affect the rate and heritability of insecticide resistance evolution, leading to a delay in insecticide resistance evolution in this insect pest. These findings indicate that the gut microbiota assembly process of the insect host is influenced by persistent exposure to habitat conditions, particularly insecticides. This variation in insecticide exposure-related community assembly process subsequently influences the insect host's insecticide resistance phenotype. This study provides insights into gut microbiota assembly processes from a symbiotic perspective and underscores the significant impact of symbiotic community changes on host phenotypic variation.
Collapse
Affiliation(s)
- Yunhua Zhang
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang Province, China
| | - Kaikai Mao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, 530004, Nanning, Guangxi, China
| | - Keyi Chen
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang Province, China
- Center for Infectious Disease Research, Westlake University, 310024, Hangzhou, Zhejiang Province, China
| | - Ze Zhao
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang Province, China
- Center for Infectious Disease Research, Westlake University, 310024, Hangzhou, Zhejiang Province, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang Province, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang Province, China.
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang Province, China.
- Center for Infectious Disease Research, Westlake University, 310024, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Wilde J, Slack E, Foster KR. Host control of the microbiome: Mechanisms, evolution, and disease. Science 2024; 385:eadi3338. [PMID: 39024451 DOI: 10.1126/science.adi3338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
Many species, including humans, host communities of symbiotic microbes. There is a vast literature on the ways these microbiomes affect hosts, but here we argue for an increased focus on how hosts affect their microbiomes. Hosts exert control over their symbionts through diverse mechanisms, including immunity, barrier function, physiological homeostasis, and transit. These mechanisms enable hosts to shape the ecology and evolution of microbiomes and generate natural selection for microbial traits that benefit the host. Our microbiomes result from a perpetual tension between host control and symbiont evolution, and we can leverage the host's evolved abilities to regulate the microbiota to prevent and treat disease. The study of host control will be central to our ability to both understand and manipulate microbiotas for better health.
Collapse
Affiliation(s)
- Jacob Wilde
- Department of Biology, University of Oxford, Oxford, UK
| | - Emma Slack
- Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Basel Institute for Child Health, Basel, Switzerland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Henry LP, Fernandez M, Wolf S, Abhyankar V, Ayroles JF. Wolbachia impacts microbiome diversity and fitness-associated traits for Drosophila melanogaster in a seasonally fluctuating environment. Ecol Evol 2024; 14:e70004. [PMID: 39041013 PMCID: PMC11262851 DOI: 10.1002/ece3.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
The microbiome contributes to many different host traits, but its role in host adaptation remains enigmatic. The fitness benefits of the microbiome often depend on ecological conditions, but theory suggests that fluctuations in both the microbiome and environment modulate these fitness benefits. Moreover, vertically transmitted bacteria might constrain the ability of both the microbiome and host to respond to changing environments. Drosophila melanogaster provides an excellent system to investigate the impacts of interactions between the microbiome and the environment. To address this question, we created field mesocosms of D. melanogaster undergoing seasonal environmental change with and without the vertically transmitted bacteria, Wolbachia pipientis. Sampling temporal patterns in the microbiome revealed that Wolbachia constrained microbial diversity. Furthermore, Wolbachia and a dominant member of the microbiome, Commensalibacter, were associated with differences in two higher-order fitness traits, starvation resistance and lifespan. Our work here suggests that the interplay between the abiotic context and microbe-microbe interactions may shape key host phenotypes that underlie adaptation to changing environments. We conclude by exploring the consequences of complex interactions between Wolbachia and the microbiome for our understanding of eco-evolutionary processes that shape host-microbiome interactions.
Collapse
Affiliation(s)
- Lucas P. Henry
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Michael Fernandez
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Scott Wolf
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Varada Abhyankar
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Julien F. Ayroles
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
7
|
Pearman WS, Duffy GA, Gemmell NJ, Morales SE, Fraser CI. Long-distance movement dynamics shape host microbiome richness and turnover. FEMS Microbiol Ecol 2024; 100:fiae089. [PMID: 38857884 PMCID: PMC11212666 DOI: 10.1093/femsec/fiae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/22/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024] Open
Abstract
Host-associated microbial communities are shaped by host migratory movements. These movements can have contrasting impacts on microbiota, and understanding such patterns can provide insight into the ecological processes that contribute to community diversity. Furthermore, long-distance movements to new environments are anticipated to occur with increasing frequency due to host distribution shifts resulting from climate change. Understanding how hosts transport their microbiota with them could be of importance when examining biological invasions. Although microbial community shifts are well-documented, the underlying mechanisms that lead to the restructuring of these communities remain relatively unexplored. Using literature and ecological simulations, we develop a framework to elucidate the major factors that lead to community change. We group host movements into two types-regular (repeated/cyclical migratory movements, as found in many birds and mammals) and irregular (stochastic/infrequent movements that do not occur on a cyclical basis, as found in many insects and plants). Ecological simulations and prior research suggest that movement type and frequency, alongside environmental exposure (e.g. internal/external microbiota) are key considerations for understanding movement-associated community changes. From our framework, we derive a series of testable hypotheses, and suggest means to test them, to facilitate future research into host movement and microbial community dynamics.
Collapse
Affiliation(s)
- William S Pearman
- Department of Marine Science, University of Otago, 310 Castle St, Dunedin 9016, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin 9016, New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 720 Cumberland St, Dunedin 9016, New Zealand
| | - Grant A Duffy
- Department of Marine Science, University of Otago, 310 Castle St, Dunedin 9016, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin 9016, New Zealand
| | - Sergio E Morales
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 720 Cumberland St, Dunedin 9016, New Zealand
| | - Ceridwen I Fraser
- Department of Marine Science, University of Otago, 310 Castle St, Dunedin 9016, New Zealand
| |
Collapse
|
8
|
Jibril SM, Yan W, Wang Y, Zhu X, Yunying Z, Wu J, Wang L, Zhang L, Li C. Highly diverse microbial community of regenerated seedlings reveals the high capacity of the bulb in lily, Lilium brownii. Front Microbiol 2024; 15:1387870. [PMID: 38903799 PMCID: PMC11188333 DOI: 10.3389/fmicb.2024.1387870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Lily bulbs, which have both nutrient storage and reproductive functions, are a representative group of plants for studying the maintenance and transfer of plant-associated microbiomes. In this study, a comparison of the microbial composition of bulbs and their regenerated seedlings cultured under aseptic conditions, as well as subcultured seedlings that succeeded five times, was examined by amplicon sequencing. A total of 62 bacterial taxa and 56 fungal taxa were found to be transferred to the 5th generation in seedlings, which are the core microbiome of lily. After the regeneration of seedlings from bulbs, there was a significant increase in the number of detectable microbial species, and after 1, 3, and 5 successive generations, there was a decrease in the number of detectable species. Interestingly, some "new" microorganisms appeared in each generation of samples; for instance, 167 and 168 bacterial operational taxonomic units (OTUs) in the 3rd and 5th generations of seedlings that were not detected in either bulbs or seedlings of the previous two generations. These results suggest that bulbs can maintain a high diversity of microorganisms, including some with ultra-low abundance, and have a high transfer capacity to tuck shoots through continuous subculture. The diversity and maintenance of the microbiome can provide the necessary microbial reservoir support for regenerating seedlings. This habit of maintaining low abundance and high diversity may be biologically and ecologically critical for maintaining microbiome stability and function due to the sequestration nature of the plant.
Collapse
Affiliation(s)
- Sauban Musa Jibril
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Wu Yan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Xishen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Zhou Yunying
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Jie Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Ling Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Limin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
9
|
Cao K, Tao M, Pu X, Hou Y, Ren Y, Liu W, Yang X. Effects of dietary nutrients of the gut microbiota in the long-tailed dwarf hamster ( Cricetulus longicaudatus). Ecol Evol 2024; 14:e11507. [PMID: 38932956 PMCID: PMC11199130 DOI: 10.1002/ece3.11507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Gut microbiota is a key factor in maintaining the dietary and metabolic homeostasis of small mammals. To explore the effect of diet on the gut microbiota of the long-tailed dwarf hamster (Cricetulus longicaudatus), 16S rDNA high-throughput sequencing combined with bioinformatics analysis was used to investigate the succession process of the gut microbiota and effects of different nutrients on the composition and function of the gut microbiota. The results showed that diet structure can significantly influence the composition and function of the gut microbiota, as well as the health of animals. The highest relative abundance of Firmicutes, and the simplest co-occurrence network occurred in the wild. Whereas the relative abundance of Bacteroidetes is higher and the most complex network structure was observed after 35 days of same feeding. Compared to the other four groups, the relative abundance of Firmicutes in the wheat + peanuts (WP) group was the highest after 35 days of different feeding, and the highest relative abundance of Bacteroidetes occurred in the wheat-only (WH) group. Bacteroidetes exhibit carbohydrate degradation activity, and Firmicutes are strongly associated with fat uptake. We also found a significant positive correlation between Lactobacillus and body weight, indicating that Lactobacillus plays a crucial role in modulating fat intake and weight management. This study provides empirical evidence to facilitate the understanding of the co-evolutionary dynamics between C. longicaudatus and their gut microbiota and establishes a theoretical foundation for utilizing gut microbiota in rodent control.
Collapse
Affiliation(s)
- Kanglin Cao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant ProtectionShanxi Agricultural UniversityTaiyuanChina
| | - Mengfan Tao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant ProtectionShanxi Agricultural UniversityTaiyuanChina
| | - Xinsheng Pu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant ProtectionShanxi Agricultural UniversityTaiyuanChina
| | - Yu Hou
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant ProtectionShanxi Agricultural UniversityTaiyuanChina
| | - Yue Ren
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant ProtectionShanxi Agricultural UniversityTaiyuanChina
| | - Wei Liu
- Shanxi Forestry and Grassland General Engineering StationTaiyuanChina
| | - Xin'gen Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant ProtectionShanxi Agricultural UniversityTaiyuanChina
| |
Collapse
|
10
|
Horváthová T, Lafuente E, Bartels J, Wallisch J, Vorburger C. Tolerance to environmental pollution in the freshwater crustacean Asellus aquaticus: A role for the microbiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13252. [PMID: 38783543 PMCID: PMC11116767 DOI: 10.1111/1758-2229.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
Freshwater habitats are frequently contaminated by diverse chemicals of anthropogenic origin, collectively referred to as micropollutants, that can have detrimental effects on aquatic life. The animals' tolerance to micropollutants may be mediated by their microbiome. If polluted aquatic environments select for contaminant-degrading microbes, the acquisition of such microbes by the host may increase its tolerance to pollution. Here we tested for the potential effects of the host microbiome on the growth and survival of juvenile Asellus aquaticus, a widespread freshwater crustacean. Using faecal microbiome transplants, we provided newly hatched juveniles with the microbiome isolated from donor adults reared in either clean or micropollutant-contaminated water and, after transplantation, recipient juveniles were reared in water with and without micropollutants. The experiment revealed a significant negative effect of the micropollutants on the survival of juvenile isopods regardless of the received faecal microbiome. The micropollutants had altered the composition of the bacterial component of the donors' microbiome, which in turn influenced the microbiome of juvenile recipients. Hence, we show that relatively high environmental concentrations of micropollutants reduce survival and alter the microbiome composition of juvenile A. aquaticus, but we have no evidence that tolerance to micropollutants is modulated by their microbiome.
Collapse
Affiliation(s)
- Terézia Horváthová
- Department of Aquatic EcologyEawagDübendorfSwitzerland
- Institute of Soil Biology and BiochemistryBiology Centre CASČeské BudějoviceCzechia
| | - Elvira Lafuente
- Department of Aquatic EcologyEawagDübendorfSwitzerland
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | | | - Christoph Vorburger
- Department of Aquatic EcologyEawagDübendorfSwitzerland
- D‐USYS, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| |
Collapse
|
11
|
Fowler JC, Ziegler S, Whitney KD, Rudgers JA, Miller TEX. Microbial symbionts buffer hosts from the demographic costs of environmental stochasticity. Ecol Lett 2024; 27:e14438. [PMID: 38783567 DOI: 10.1111/ele.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Species' persistence in increasingly variable climates will depend on resilience against the fitness costs of environmental stochasticity. Most organisms host microbiota that shield against stressors. Here, we test the hypothesis that, by limiting exposure to temporally variable stressors, microbial symbionts reduce hosts' demographic variance. We parameterized stochastic population models using data from a 14-year symbiont-removal experiment including seven grass species that host Epichloë fungal endophytes. Results provide novel evidence that symbiotic benefits arise not only through improved mean fitness, but also through dampened inter-annual variance. Hosts with "fast" life-history traits benefited most from symbiont-mediated demographic buffering. Under current climate conditions, contributions of demographic buffering were modest compared to benefits to mean fitness. However, simulations of increased stochasticity amplified benefits of demographic buffering and made it the more important pathway of host-symbiont mutualism. Microbial-mediated variance buffering is likely an important, yet cryptic, mechanism of resilience in an increasingly variable world.
Collapse
Affiliation(s)
- Joshua C Fowler
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Shaun Ziegler
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Tom E X Miller
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
12
|
Pearman WS, Duffy GA, Liu XP, Gemmell NJ, Morales SE, Fraser CI. Macroalgal microbiome biogeography is shaped by environmental drivers rather than geographical distance. ANNALS OF BOTANY 2024; 133:169-182. [PMID: 37804485 PMCID: PMC10921836 DOI: 10.1093/aob/mcad151] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND AND AIMS Contrasting patterns of host and microbiome biogeography can provide insight into the drivers of microbial community assembly. Distance-decay relationships are a classic biogeographical pattern shaped by interactions between selective and non-selective processes. Joint biogeography of microbiomes and their hosts is of increasing interest owing to the potential for microbiome-facilitated adaptation. METHODS In this study, we examine the coupled biogeography of the model macroalga Durvillaea and its microbiome using a combination of genotyping by sequencing (host) and 16S rRNA amplicon sequencing (microbiome). Alongside these approaches, we use environmental data to characterize the relationship between the microbiome, the host, and the environment. KEY RESULTS We show that although the host and microbiome exhibit shared biogeographical structure, these arise from different processes, with host biogeography showing classic signs of geographical distance decay, but with the microbiome showing environmental distance decay. Examination of microbial subcommunities, defined by abundance, revealed that the abundance of microbes is linked to environmental selection. As microbes become less common, the dominant ecological processes shift away from selective processes and towards neutral processes. Contrary to expectations, we found that ecological drift does not promote structuring of the microbiome. CONCLUSIONS Our results suggest that although host macroalgae exhibit a relatively 'typical' biogeographical pattern of declining similarity with increasing geographical distance, the microbiome is more variable and is shaped primarily by environmental conditions. Our findings suggest that the Baas Becking hypothesis of 'everything is everywhere, the environment selects' might be a useful hypothesis to understand the biogeography of macroalgal microbiomes. As environmental conditions change in response to anthropogenic influences, the processes structuring the microbiome of macroalgae might shift, whereas those governing the host biogeography are less likely to change. As a result, increasingly decoupled host-microbe biogeography might be observed in response to such human influences.
Collapse
Affiliation(s)
- William S Pearman
- Department of Marine Science, University of Otago, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, New Zealand
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, New Zealand
| | - Grant A Duffy
- Department of Marine Science, University of Otago, New Zealand
| | - Xiaoyue P Liu
- Department of Marine Science, University of Otago, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, New Zealand
| | - Sergio E Morales
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, New Zealand
| | | |
Collapse
|
13
|
Law SR, Mathes F, Paten AM, Alexandre PA, Regmi R, Reid C, Safarchi A, Shaktivesh S, Wang Y, Wilson A, Rice SA, Gupta VVSR. Life at the borderlands: microbiomes of interfaces critical to One Health. FEMS Microbiol Rev 2024; 48:fuae008. [PMID: 38425054 PMCID: PMC10977922 DOI: 10.1093/femsre/fuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.
Collapse
Affiliation(s)
- Simon R Law
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Falko Mathes
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Floreat, WA 6014, Australia
| | - Amy M Paten
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Canberra, ACT 2601, Australia
| | - Pamela A Alexandre
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, St Lucia, Qld 4072, Australia
| | - Roshan Regmi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| | - Cameron Reid
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Urrbrae, SA 5064, Australia
| | - Azadeh Safarchi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Westmead, NSW 2145, Australia
| | - Shaktivesh Shaktivesh
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Data 61, Clayton, Vic 3168, Australia
| | - Yanan Wang
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Adelaide SA 5000, Australia
| | - Annaleise Wilson
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Geelong, Vic 3220, Australia
| | - Scott A Rice
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture, and Food, Westmead, NSW 2145, Australia
| | - Vadakattu V S R Gupta
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| |
Collapse
|
14
|
Garrido-Bautista J, Norte AC, Moreno-Rueda G, Nadal-Jiménez P. Ecological determinants of prevalence of the male-killing bacterium Arsenophonus nasoniae. J Invertebr Pathol 2024; 203:108073. [PMID: 38346575 DOI: 10.1016/j.jip.2024.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Male-killing bacteria are found in a broad range of arthropods. Arsenophonus nasoniae is a male-killing bacterium, causing a 80% reduction of the male progeny in infected Nasonia vitripennis wasps. Although the discovery of A. nasoniae dates from the early 80's, knowledge about the biology and ecology of this endosymbiont is still scarce. One of these poorly studied features is the ecological factors underlying A. nasoniae incidence on its Nasonia spp. hosts in different geographical locations. Here, we studied the prevalence of A. nasoniae in Iberian wild populations of its host N. vitripennis. This wasp species is a common parasitoid of the blowfly Protocalliphora azurea pupae, which in turn is a parasite of hole-nesting birds, such as the blue tit (Cyanistes caeruleus). We also examined the effects of bird rearing conditions on the prevalence of A. nasoniae through a brood size manipulation experiment (creating enlarged, control and reduced broods). Both the wasp and bacterium presence were tested through PCR assays in blowfly pupae. We found A. nasoniae in almost half (47%) of nests containing blowflies parasitized by N. vitripennis. The prevalence of A. nasoniae was similar in the two geographical areas examined (central Portugal and southeastern Spain) and the probability of infection by A. nasoniae was independent of the number of blowfly pupae in the nest. Experimental manipulation of brood size did not affect the prevalence of A. nasoniae nor the prevalence of its host, N. vitripennis. These results suggest that the incidence of A. nasoniae in natural populations of N. vitripennis is high in the Iberian Peninsula, and the infestation frequency of nests by N. vitripennis carrying A. nasoniae is spatially stable in this geographical region independently of bird rearing conditions.
Collapse
Affiliation(s)
- Jorge Garrido-Bautista
- Department of Zoology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Ana Cláudia Norte
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Gregorio Moreno-Rueda
- Department of Zoology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Pol Nadal-Jiménez
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB Liverpool, United Kingdom; Departments of Vector Biology, Tropical Disease Biology, and Centre for Neglected Topical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| |
Collapse
|
15
|
González-Pech RA, Li VY, Garcia V, Boville E, Mammone M, Kitano H, Ritchie KB, Medina M. The Evolution, Assembly, and Dynamics of Marine Holobionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:443-466. [PMID: 37552896 DOI: 10.1146/annurev-marine-022123-104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vivian Y Li
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vanessa Garcia
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Elizabeth Boville
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Marta Mammone
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina, Beaufort, South Carolina, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| |
Collapse
|
16
|
Montoya-Ciriaco N, Hereira-Pacheco S, Estrada-Torres A, Dendooven L, Méndez de la Cruz FR, Gómez-Acata ES, Díaz de la Vega-Pérez AH, Navarro-Noya YE. Maternal transmission of bacterial microbiota during embryonic development in a viviparous lizard. Microbiol Spectr 2023; 11:e0178023. [PMID: 37847033 PMCID: PMC10714757 DOI: 10.1128/spectrum.01780-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE We investigated the presence and diversity of bacteria in the embryos of the viviparous lizard Sceloporus grammicus and their amniotic environment. We compared this diversity to that found in the maternal intestine, mouth, and cloaca. We detected bacterial DNA in the embryos, albeit with a lower bacterial species diversity than found in maternal tissues. Most of the bacterial species detected in the embryos were also found in the mother, although not all of them. Interestingly, we detected a high similarity in the composition of bacterial species among embryos from different mothers. These findings suggest that there may be a mechanism controlling the transmission of bacteria from the mother to the embryo. Our results highlight the possibility that the interaction between maternal bacteria and the embryo may affect the development of the lizards.
Collapse
Affiliation(s)
- Nina Montoya-Ciriaco
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Stephanie Hereira-Pacheco
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Arturo Estrada-Torres
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, CINVESTAV, Mexico City, Mexico
| | - Fausto R. Méndez de la Cruz
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Selene Gómez-Acata
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Aníbal H. Díaz de la Vega-Pérez
- Consejo Nacional de Ciencia, Humanidades y Tecnología-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala., Tlaxcala, Mexico
| | - Yendi E. Navarro-Noya
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
17
|
An Y, Braga MP, Garcia SL, Grudzinska-Sterno M, Hambäck PA. Host Phylogeny Structures the Gut Bacterial Community Within Galerucella Leaf Beetles. MICROBIAL ECOLOGY 2023; 86:2477-2487. [PMID: 37314477 PMCID: PMC10640405 DOI: 10.1007/s00248-023-02251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023]
Abstract
Gut microbes play important roles for their hosts. Previous studies suggest that host-microbial systems can form long-term associations over evolutionary time and the dynamic changes of the intestinal system may represent major driving forces and contribute to insect dietary diversification and speciation. Our study system includes a set of six closely related leaf beetle species (Galerucella spp.) and our study aims to separate the roles of host phylogeny and ecology in determining the gut microbial community and to identify eventual relationship between host insects and gut bacteria. We collected adult beetles from their respective host plants and quantified their microbial community using 16S rRNA sequencing. The results showed that the gut bacteria community composition was structured by host beetle phylogeny, where more or less host-specific gut bacteria interact with the different Galerucella species. For example, the endosymbiotic bacteria Wolbachia was found almost exclusively in G. nymphaea and G. sagittariae. Diversity indicators also suggested that α- and β-diversities of gut bacteria communities varied among host beetle species. Overall, our results suggest a phylogenetically controlled co-occurrence pattern between the six closely related Galerucella beetles and their gut bacteria, indicating the potential of co-evolutionary processes occurring between hosts and their gut bacterial communities.
Collapse
Affiliation(s)
- Yueqing An
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
| | - Mariana P Braga
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Helsinki Life Science Institute, University of Helsinki, Helsinki, Finland
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | | | - Peter A Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
18
|
Sinotte VM, Renelies-Hamilton J, Andreu-Sánchez S, Vasseur-Cognet M, Poulsen M. Selective enrichment of founding reproductive microbiomes allows extensive vertical transmission in a fungus-farming termite. Proc Biol Sci 2023; 290:20231559. [PMID: 37848067 PMCID: PMC10581767 DOI: 10.1098/rspb.2023.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/09/2023] [Indexed: 10/19/2023] Open
Abstract
Mutualistic coevolution can be mediated by vertical transmission of symbionts between host generations. Termites host complex gut bacterial communities with evolutionary histories indicative of mixed-mode transmission. Here, we document that vertical transmission of gut bacterial strains is congruent across parent to offspring colonies in four pedigrees of the fungus-farming termite Macrotermes natalensis. We show that 44% of the offspring colony microbiome, including more than 80 bacterial genera and pedigree-specific strains, are consistently inherited. We go on to demonstrate that this is achieved because colony-founding reproductives are selectively enriched with a set of non-random, environmentally sensitive and termite-specific gut microbes from their colonies of origin. These symbionts transfer to offspring colony workers with high fidelity, after which priority effects appear to influence the composition of the establishing microbiome. Termite reproductives thus secure transmission of complex communities of specific, co-evolved microbes that are critical to their offspring colonies. Extensive yet imperfect inheritance implies that the maturing colony benefits from acquiring environmental microbes to complement combinations of termite, fungus and vertically transmitted microbes; a mode of transmission that is emerging as a prevailing strategy for hosts to assemble complex adaptive microbiomes.
Collapse
Affiliation(s)
- Veronica M. Sinotte
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
| | - Justinn Renelies-Hamilton
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark
| | - Sergio Andreu-Sánchez
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark
- Department of Paediatrics, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Mireille Vasseur-Cognet
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAe 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark
| |
Collapse
|
19
|
Zhang XY, Khakisahneh S, Liu W, Zhang X, Zhai W, Cheng J, Speakman JR, Wang DH. Phylogenetic signal in gut microbial community rather than in rodent metabolic traits. Natl Sci Rev 2023; 10:nwad209. [PMID: 37928774 PMCID: PMC10625476 DOI: 10.1093/nsr/nwad209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 11/07/2023] Open
Abstract
Host phylogeny and environment have all been implicated in shaping the gut microbiota and host metabolic traits of mammals. However, few studies have evaluated phylogeny-associated microbial assembly and host metabolic plasticity concurrently, and their relationships on both short-term and evolutionary timescales. We report that the branching order of a gut microbial dendrogram was nearly congruent with phylogenetic relationships of seven rodent species, and this pattern of phylosymbiosis was intact after diverse laboratory manipulations. Laboratory rearing, diet or air temperature (Ta) acclimation induced alterations in gut microbial communities, but could not override host phylogeny in shaping microbial community assembly. A simulative heatwave reduced core microbiota diversity by 26% in these species, and led to an unmatched relationship between the microbiota and host metabolic phenotypes in desert species. Moreover, the similarity of metabolic traits across species at different Tas was not correlated with phylogenetic distance. These data demonstrated that the gut microbial assembly showed strong concordance with host phylogeny and may be shaped by environmental variables, whereas host metabolic traits did not seem to be linked with phylogeny.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Saeid Khakisahneh
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Animal Evolution and Genetics, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Animal Evolution and Genetics, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB39 2PN, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Murphy KM, Le SM, Wilson AE, Warner DA. The Microbiome as a Maternal Effect: A Systematic Review on Vertical Transmission of Microbiota. Integr Comp Biol 2023; 63:597-609. [PMID: 37218690 DOI: 10.1093/icb/icad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
The microbiome is an interactive and fluctuating community of microbes that colonize and develop across surfaces, including those associated with organismal hosts. A growing number of studies exploring how microbiomes vary in ecologically relevant contexts have recognized the importance of microbiomes in affecting organismal evolution. Thus, identifying the source and mechanism for microbial colonization in a host will provide insight into adaptation and other evolutionary processes. Vertical transmission of microbiota is hypothesized to be a source of variation in offspring phenotypes with important ecological and evolutionary implications. However, the life-history traits that govern vertical transmission are largely unexplored in the ecological literature. To increase research attention to this knowledge gap, we conducted a systematic review to address the following questions: (1) How often is vertical transmission assessed as a contributor to offspring microbiome colonization and development? (2) Do studies have the capacity to address how maternal transmission of microbes affects the offspring phenotype? (3) How do studies vary based on taxonomy and life history of the study organism, as well as the experimental, molecular, and statistical methods employed? Extensive literature searches reveal that many studies examining vertical transmission of microbiomes fail to collect whole microbiome samples from both maternal and offspring sources, particularly for oviparous vertebrates. Additionally, studies should sample functional diversity of microbes to provide a better understanding of mechanisms that influence host phenotypes rather than solely taxonomic variation. An ideal microbiome study incorporates host factors, microbe-microbe interactions, and environmental factors. As evolutionary biologists continue to merge microbiome science and ecology, examining vertical transmission of microbes across taxa can provide inferences on causal links between microbiome variation and phenotypic evolution.
Collapse
Affiliation(s)
- Kaitlyn M Murphy
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Samantha M Le
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
21
|
Henry LP, Bergelson J. Evolutionary implications of host genetic control for engineering beneficial microbiomes. CURRENT OPINION IN SYSTEMS BIOLOGY 2023; 34:None. [PMID: 37287906 PMCID: PMC10242548 DOI: 10.1016/j.coisb.2023.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Engineering new functions in the microbiome requires understanding how host genetic control and microbe-microbe interactions shape the microbiome. One key genetic mechanism underlying host control is the immune system. The immune system can promote stability in the composition of the microbiome by reshaping the ecological dynamics of its members, but the degree of stability will depend on the interplay between ecological context, immune system development, and higher-order microbe-microbe interactions. The eco-evolutionary interplay affecting composition and stability should inform the strategies used to engineer new functions in the microbiome. We conclude with recent methodological developments that provide an important path forward for both engineering new functionality in the microbiome and broadly understanding how ecological interactions shape evolutionary processes in complex biological systems.
Collapse
|
22
|
Carrier TJ, Schmittmann L, Jung S, Pita L, Hentschel U. Maternal provisioning of an obligate symbiont in a sponge. Ecol Evol 2023; 13:e10012. [PMID: 37153023 PMCID: PMC10154371 DOI: 10.1002/ece3.10012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/09/2023] Open
Abstract
The transmission of microbes from mother to offspring is an ancient, advantageous, and widespread feature of metazoan life history. Despite this, little is known about the quantitative strategies taken to maintain symbioses across generations. The quantity of maternal microbes that is provided to each offspring through vertical transmission could theoretically be stochastic (no trend), consistent (an optimal range is allocated), or provisioned (a trade-off with fecundity). Examples currently come from animals that release free-living eggs (oviparous) and suggest that offspring are provided a consistent quantity of symbionts. The quantity of maternal microbes that is vertically transmitted in other major reproductive strategies has yet to be assessed. We used the brooding (viviparous) sponge Halichondria panicea to test whether offspring receive quantitatively similar numbers of maternal microbes. We observed that H. panicea has a maternal pool of the obligate symbiont Candidatus Halichondribacter symbioticus and that this maternal pool is provisioned proportionally to reproductive output and allometrically by offspring size. This pattern was not observed for the total bacterial community. Experimental perturbation by antibiotics could not reduce the abundance of Ca. H. symbioticus in larvae, while the total bacterial community could be reduced without affecting the ability of larvae to undergo metamorphosis. A trade-off between offspring size and number is, by definition, maternal provisioning and parallel differences in Ca. H. symbioticus abundance would suggest that this obligate symbiont is also provisioned.
Collapse
Affiliation(s)
- Tyler J. Carrier
- GEOMAR Helmholtz Center for Ocean ResearchKielGermany
- Zoological Institute, Christian‐Albrechts University of KielKielGermany
| | | | - Sabrina Jung
- GEOMAR Helmholtz Center for Ocean ResearchKielGermany
| | - Lucía Pita
- GEOMAR Helmholtz Center for Ocean ResearchKielGermany
- Department Marine Biology and OceanographyInstitute of Marine Sciences (ICM‐CSIC)BarcelonaSpain
| | - Ute Hentschel
- GEOMAR Helmholtz Center for Ocean ResearchKielGermany
- Zoological Institute, Christian‐Albrechts University of KielKielGermany
| |
Collapse
|
23
|
Cosme M. Mycorrhizas drive the evolution of plant adaptation to drought. Commun Biol 2023; 6:346. [PMID: 36997637 PMCID: PMC10063553 DOI: 10.1038/s42003-023-04722-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Plant adaptation to drought facilitates major ecological transitions, and will likely play a vital role under looming climate change. Mycorrhizas, i.e. strategic associations between plant roots and soil-borne symbiotic fungi, can exert strong influence on the tolerance to drought of extant plants. Here, I show how mycorrhizal strategy and drought adaptation have been shaping one another throughout the course of plant evolution. To characterize the evolutions of both plant characters, I applied a phylogenetic comparative method using data of 1,638 extant species globally distributed. The detected correlated evolution unveiled gains and losses of drought tolerance occurring at faster rates in lineages with ecto- or ericoid mycorrhizas, which were on average about 15 and 300 times faster than in lineages with the arbuscular mycorrhizal and naked root (non-mycorrhizal alone or with facultatively arbuscular mycorrhizal) strategy, respectively. My study suggests that mycorrhizas can play a key facilitator role in the evolutionary processes of plant adaptation to critical changes in water availability across global climates.
Collapse
Affiliation(s)
- Marco Cosme
- Mycology, Earth and Life Institute, Université Catholique de Louvain, Croix du sud 2, 1348, Louvain‑la‑Neuve, Belgium.
| |
Collapse
|
24
|
Bogaert D, van Beveren GJ, de Koff EM, Lusarreta Parga P, Balcazar Lopez CE, Koppensteiner L, Clerc M, Hasrat R, Arp K, Chu MLJN, de Groot PCM, Sanders EAM, van Houten MA, de Steenhuijsen Piters WAA. Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites. Cell Host Microbe 2023; 31:447-460.e6. [PMID: 36893737 DOI: 10.1016/j.chom.2023.01.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023]
Abstract
Early-life microbiota seeding and subsequent development is crucial to future health. Cesarean-section (CS) birth, as opposed to vaginal delivery, affects early mother-to-infant transmission of microbes. Here, we assess mother-to-infant microbiota seeding and early-life microbiota development across six maternal and four infant niches over the first 30 days of life in 120 mother-infant pairs. Across all infants, we estimate that on average 58.5% of the infant microbiota composition can be attributed to any of the maternal source communities. All maternal source communities seed multiple infant niches. We identify shared and niche-specific host/environmental factors shaping the infant microbiota. In CS-born infants, we report reduced seeding of infant fecal microbiota by maternal fecal microbes, whereas colonization with breastmilk microbiota is increased when compared with vaginally born infants. Therefore, our data suggest auxiliary routes of mother-to-infant microbial seeding, which may compensate for one another, ensuring that essential microbes/microbial functions are transferred irrespective of disrupted transmission routes.
Collapse
Affiliation(s)
- Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK.
| | - Gina J van Beveren
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Emma M de Koff
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Paula Lusarreta Parga
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Carlos E Balcazar Lopez
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Lilian Koppensteiner
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Melanie Clerc
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Raiza Hasrat
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Kayleigh Arp
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Mei Ling J N Chu
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Pieter C M de Groot
- Department of Obstetrics and Gynaecology, Spaarne Gasthuis, 2035 RC Haarlem, the Netherlands
| | - Elisabeth A M Sanders
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | | | - Wouter A A de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands.
| |
Collapse
|
25
|
Abstract
The concept of one health highlights that human health is not isolated but connected to the health of animals, plants and environments. In this Review, we demonstrate that soils are a cornerstone of one health and serve as a source and reservoir of pathogens, beneficial microorganisms and the overall microbial diversity in a wide range of organisms and ecosystems. We list more than 40 soil microbiome functions that either directly or indirectly contribute to soil, plant, animal and human health. We identify microorganisms that are shared between different one health compartments and show that soil, plant and human microbiomes are perhaps more interconnected than previously thought. Our Review further evaluates soil microbial contributions to one health in the light of dysbiosis and global change and demonstrates that microbial diversity is generally positively associated with one health. Finally, we present future challenges in one health research and formulate recommendations for practice and evaluation.
Collapse
Affiliation(s)
- Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA.
| | - Marcel G A van der Heijden
- Plant-Soil Interactions Group, Agroscope, Zurich, Switzerland. .,Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Grieneisen L, Blekhman R, Archie E. How longitudinal data can contribute to our understanding of host genetic effects on the gut microbiome. Gut Microbes 2023; 15:2178797. [PMID: 36794811 PMCID: PMC9980606 DOI: 10.1080/19490976.2023.2178797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
A key component of microbiome research is understanding the role of host genetic influence on gut microbial composition. However, it can be difficult to link host genetics with gut microbial composition because host genetic similarity and environmental similarity are often correlated. Longitudinal microbiome data can supplement our understanding of the relative role of genetic processes in the microbiome. These data can reveal environmentally contingent host genetic effects, both in terms of controlling for environmental differences and in comparing how genetic effects differ by environment. Here, we explore four research areas where longitudinal data could lend new insights into host genetic effects on the microbiome: microbial heritability, microbial plasticity, microbial stability, and host and microbiome population genetics. We conclude with a discussion of methodological considerations for future studies.
Collapse
Affiliation(s)
- Laura Grieneisen
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Elizabeth Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
27
|
Jiang Y, Qin X, Zhu F, Zhang Y, Zhang X, Hartley W, Xue S. Halving gypsum dose by Penicillium oxalicum on alkaline neutralization and microbial community reconstruction in bauxite residue. CHEMICAL ENGINEERING JOURNAL 2023; 451:139008. [DOI: 10.1016/j.cej.2022.139008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
28
|
Watson M, May G, Bushley KE. Sources of Fungal Symbionts in the Microbiome of a Mobile Insect Host, Spodoptera frugiperda. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02140-3. [PMID: 36478022 DOI: 10.1007/s00248-022-02140-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
The sources of fungal symbionts of insects are not well understood, yet the acquisition and assembly of fungal communities in mobile insect hosts have important implications for the ecology of migratory insects and their plant hosts. To determine potential sources of fungi associated with the fall armyworm (Spodoptera frugiperda), we characterized the fungal communities associated with four different ecological compartments (insects, infested leaves, uninfested leaves, and soil) and estimated the contributions of each of these potential sources to the insect's fungal microbiome. Results show that insect fungal community composition was distinct from and more varied than the composition of fungal communities in the environment of those insects (plants and soil). Among the sources evaluated, on average we found a surprisingly large apparent contribution from other congeneric S. frugiperda insect larvae (ca. 25%) compared to the contribution from soil or plant sources (< 5%). However, a large proportion of the insect microbiome could not be attributed to the sampled sources and was instead attributed to unknown sources (ca. 50%). Surprisingly, we found little evidence for exchange of fungal taxa, with the exception of a Fusarium oxysporum and a Cladosporium sp. OTU, between larvae and the infested leaves on which they fed. Together, our results suggest that mobile insects such as S. frugiperda obtain their fungal symbionts from a variety of sources, not limited to plants and soil, but including conspecific insects and other unsampled environmental sources, and that transmission among insects may play an important role in acquisition of fungal symbionts.
Collapse
Affiliation(s)
- Monica Watson
- Graduate Program in Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, USA
| | - Georgiana May
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
29
|
Zapién-Campos R, Bansept F, Sieber M, Traulsen A. On the effect of inheritance of microbes in commensal microbiomes. BMC Ecol Evol 2022; 22:75. [PMID: 35710335 PMCID: PMC9204957 DOI: 10.1186/s12862-022-02029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Our current view of nature depicts a world where macroorganisms dwell in a landscape full of microbes. Some of these microbes not only transit but establish themselves in or on hosts. Although hosts might be occupied by microbes for most of their lives, a microbe-free stage during their prenatal development seems to be the rule for many hosts. The questions of who the first colonizers of a newborn host are and to what extent these are obtained from the parents follow naturally. Results We have developed a mathematical model to study the effect of the transfer of microbes from parents to offspring. Even without selection, we observe that microbial inheritance is particularly effective in modifying the microbiome of hosts with a short lifespan or limited colonization from the environment, for example by favouring the acquisition of rare microbes. Conclusion By modelling the inheritance of commensal microbes to newborns, our results suggest that, in an eco-evolutionary context, the impact of microbial inheritance is of particular importance for some specific life histories. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02029-2.
Collapse
|
30
|
Zhao XJG, Cao H. Linking research of biomedical datasets. Brief Bioinform 2022; 23:6712704. [PMID: 36151775 DOI: 10.1093/bib/bbac373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Biomedical data preprocessing and efficient computing can be as important as the statistical methods used to fit the data; data processing needs to consider application scenarios, data acquisition and individual rights and interests. We review common principles, knowledge and methods of integrated research according to the whole-pipeline processing mechanism diverse, coherent, sharing, auditable and ecological. First, neuromorphic and native algorithms integrate diverse datasets, providing linear scalability and high visualization. Second, the choice mechanism of different preprocessing, analysis and transaction methods from raw to neuromorphic was summarized on the node and coordinator platforms. Third, combination of node, network, cloud, edge, swarm and graph builds an ecosystem of cohort integrated research and clinical diagnosis and treatment. Looking forward, it is vital to simultaneously combine deep computing, mass data storage and massively parallel communication.
Collapse
Affiliation(s)
- Xiu-Ju George Zhao
- Wuhan Institute of Physics and Mathematics (WIPM), China.,Wuhan Polytechnic University, China
| | - Hui Cao
- Wuhan Polytechnic University, China
| |
Collapse
|
31
|
Henry LP, Ayroles JF. Drosophila melanogaster microbiome is shaped by strict filtering and neutrality along a latitudinal cline. Mol Ecol 2022; 31:5861-5871. [PMID: 36094780 PMCID: PMC9643648 DOI: 10.1111/mec.16692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
Microbiomes affect many aspects of host biology, but the eco-evolutionary forces that shape their diversity in natural populations remain poorly understood. Geographical gradients, such as latitudinal clines, generate predictable patterns in biodiversity at macroecological scales, but whether these macroscale processes apply to host-microbiome interactions is an open question. To address this question, we sampled the microbiomes of 13 natural populations of Drosophila melanogaster along a latitudinal cline in the eastern United States. The microbiomes were surprisingly consistent across the cline, as latitude did not predict either alpha or beta diversity. Only a narrow taxonomic range of bacteria were present in all microbiomes, indicating that strict taxonomic filtering by the host and neutral ecological dynamics are the primary factors shaping the fly microbiome. Our findings reveal the complexity of eco-evolutionary interactions shaping microbial variation in D. melanogaster and highlight the need for additional sampling of the microbiomes in natural populations along environmental gradients.
Collapse
Affiliation(s)
- Lucas P Henry
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Julien F Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
32
|
Sato Y, Wippler J, Wentrup C, Ansorge R, Sadowski M, Gruber-Vodicka H, Dubilier N, Kleiner M. Fidelity varies in the symbiosis between a gutless marine worm and its microbial consortium. MICROBIOME 2022; 10:178. [PMID: 36273146 PMCID: PMC9587655 DOI: 10.1186/s40168-022-01372-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/15/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Many animals live in intimate associations with a species-rich microbiome. A key factor in maintaining these beneficial associations is fidelity, defined as the stability of associations between hosts and their microbiota over multiple host generations. Fidelity has been well studied in terrestrial hosts, particularly insects, over longer macroevolutionary time. In contrast, little is known about fidelity in marine animals with species-rich microbiomes at short microevolutionary time scales, that is at the level of a single host population. Given that natural selection acts most directly on local populations, studies of microevolutionary partner fidelity are important for revealing the ecological and evolutionary processes that drive intimate beneficial associations within animal species. RESULTS In this study on the obligate symbiosis between the gutless marine annelid Olavius algarvensis and its consortium of seven co-occurring bacterial symbionts, we show that partner fidelity varies across symbiont species from strict to absent over short microevolutionary time. Using a low-coverage sequencing approach that has not yet been applied to microbial community analyses, we analysed the metagenomes of 80 O. algarvensis individuals from the Mediterranean and compared host mitochondrial and symbiont phylogenies based on single-nucleotide polymorphisms across genomes. Fidelity was highest for the two chemoautotrophic, sulphur-oxidizing symbionts that dominated the microbial consortium of all O. algarvensis individuals. In contrast, fidelity was only intermediate to absent in the sulphate-reducing and spirochaetal symbionts with lower abundance. These differences in fidelity are likely driven by both selective and stochastic forces acting on the consistency with which symbionts are vertically transmitted. CONCLUSIONS We hypothesize that variable degrees of fidelity are advantageous for O. algarvensis by allowing the faithful transmission of their nutritionally most important symbionts and flexibility in the acquisition of other symbionts that promote ecological plasticity in the acquisition of environmental resources. Video Abstract.
Collapse
Affiliation(s)
- Yui Sato
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany.
| | - Juliane Wippler
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Cecilia Wentrup
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Rebecca Ansorge
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Miriam Sadowski
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
33
|
Bisschop K, Kortenbosch HH, van Eldijk TJB, Mallon CA, Salles JF, Bonte D, Etienne RS. Microbiome Heritability and Its Role in Adaptation of Hosts to Novel Resources. Front Microbiol 2022; 13:703183. [PMID: 35865927 PMCID: PMC9296072 DOI: 10.3389/fmicb.2022.703183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Microbiomes are involved in most vital processes, such as immune response, detoxification, and digestion and are thereby elementary to organismal functioning and ultimately the host’s fitness. In turn, the microbiome may be influenced by the host and by the host’s environment. To understand microbiome dynamics during the process of adaptation to new resources, we performed an evolutionary experiment with the two-spotted spider mite, Tetranychus urticae. We generated genetically depleted strains of the two-spotted spider mite and reared them on their ancestral host plant and two novel host plants for approximately 12 generations. The use of genetically depleted strains reduced the magnitude of genetic adaptation of the spider mite host to the new resource and, hence, allowed for better detection of signals of adaptation via the microbiome. During the course of adaptation, we tested spider mite performance (number of eggs laid and longevity) and characterized the bacterial component of its microbiome (16S rRNA gene sequencing) to determine: (1) whether the bacterial communities were shaped by mite ancestry or plant environment and (2) whether the spider mites’ performance and microbiome composition were related. We found that spider mite performance on the novel host plants was clearly correlated with microbiome composition. Because our results show that only little of the total variation in the microbiome can be explained by the properties of the host (spider mite) and the environment (plant species) we studied, we argue that the bacterial community within hosts could be valuable for understanding a species’ performance on multiple resources.
Collapse
Affiliation(s)
- Karen Bisschop
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, Belgium
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Aquatic Biology, Department of Biology, KU Leuven, Kortrijk, Belgium
- *Correspondence: Karen Bisschop,
| | - Hylke H. Kortenbosch
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Timo J. B. van Eldijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Cyrus A. Mallon
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Joana F. Salles
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, Belgium
| | - Rampal S. Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
34
|
Mueller UG, Linksvayer TA. Microbiome breeding: conceptual and practical issues. Trends Microbiol 2022; 30:997-1011. [PMID: 35595643 DOI: 10.1016/j.tim.2022.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Microbiome breeding is a new artificial selection technique that seeks to change the genetic composition of microbiomes in order to benefit plant or animal hosts. Recent experimental and theoretical analyses have shown that microbiome breeding is possible whenever microbiome-encoded genetic factors affect host traits (e.g., health) and microbiomes are transmissible between hosts with sufficient fidelity, such as during natural microbiome transmission between individuals of social animals, or during experimental microbiome transplanting between plants. To address misunderstandings that stymie microbiome-breeding programs, we (i) clarify and visualize the corresponding elements of microbiome selection and standard selection; (ii) elucidate the eco-evolutionary processes underlying microbiome selection within a quantitative genetic framework to summarize practical guidelines that optimize microbiome breeding; and (iii) characterize the kinds of host species most amenable to microbiome breeding.
Collapse
Affiliation(s)
- Ulrich G Mueller
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Timothy A Linksvayer
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
35
|
Jiang Y, Qin X, Zhu F, Zhang Y, Zhang X, Hartley W, Xue S. Halving Gypsum Dose by Penicillium Oxalicum on Alkaline Neutralization and Microbial Community Reconstruction in Bauxite Residue. SSRN ELECTRONIC JOURNAL 2022. [DOI: 10.2139/ssrn.4106099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|