1
|
Wu J, Zhou C, Zhong M, Du Q, Ji C, Hu Q, Ji L, Li X, Rupprechter G, Li Y. Green Syngas from Photothermal Catalytic Cellulose Steam Reforming on Ni/SiO 2 Nanocatalysts: Synergy of La 3+ Promotion and Ni-O Photoactivation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411977. [PMID: 40028967 DOI: 10.1002/smll.202411977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Replacing fossil fuels by renewable biomass enables green syngas production in an effort to achieve carbon neutrality and sustainable circular processes. Here, an inexpensive catalyst of Ni nanoparticles supported on SiO2 modified by La3+ (Ni/La0.10-S) is presented, exhibiting exceptional H2 and CO production rates (4051.4 and 2467.8 mmol gcatalyst -1 h-1, respectively) with 7.7% light-to-fuel efficiency in cellulose steam reforming (SR), merely under focused illumination. Excellent performance is mainly attributed to photothermal catalysis resulting from the strong solar absorption and high photothermal conversion by the Ni nanoparticles. The mitigation of tar and char formation significantly benefits from the H2O involvement in the reaction, which is substantially improved by La3+ addition enhancing H2O sorption. Remarkably, the illumination exerts mere photoactivation during reaction, which is primarily attributed to the pronounced activation of Ni─O bonds at the catalyst surface. Particularly, the photoactivation of the Ni-O-La moieties, in combination with O species replenishment by H2O, makes Ni/La0.10-S superior to Ni/SiO2. The synergy of La3+ promotion and Ni-O photoactivation poses a promising strategy for efficient photothermal catalytic cellulose SR to green syngas.
Collapse
Affiliation(s)
- Jichun Wu
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Chongyang Zhou
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Mengqi Zhong
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Qing Du
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Cong Ji
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Qianqian Hu
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Lei Ji
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Xia Li
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, Vienna, A-1060, Austria
| | - Günther Rupprechter
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, Vienna, A-1060, Austria
| | - Yuanzhi Li
- State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan, 430070, P. R. China
| |
Collapse
|
2
|
Peng M, Li C, Wang Z, Wang M, Zhang Q, Xu B, Li M, Ma D. Interfacial Catalysis at Atomic Level. Chem Rev 2025; 125:2371-2439. [PMID: 39818776 DOI: 10.1021/acs.chemrev.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Heterogeneous catalysts are pivotal to the chemical and energy industries, which are central to a multitude of industrial processes. Large-scale industrial catalytic processes rely on special structures at the nano- or atomic level, where reactions proceed on the so-called active sites of heterogeneous catalysts. The complexity of these catalysts and active sites often lies in the interfacial regions where different components in the catalysts come into contact. Recent advances in synthetic methods, characterization technologies, and reaction kinetics studies have provided atomic-scale insights into these critical interfaces. Achieving atomic precision in interfacial engineering allows for the manipulation of electronic profiles, adsorption patterns, and surface motifs, deepening our understanding of reaction mechanisms at the atomic or molecular level. This mechanistic understanding is indispensable not only for fundamental scientific inquiry but also for the design of the next generation of highly efficient industrial catalysts. This review examines the latest developments in atomic-scale interfacial engineering, covering fundamental concepts, catalyst design, mechanistic insights, and characterization techniques, and shares our perspective on the future trajectory of this dynamic research field.
Collapse
Affiliation(s)
- Mi Peng
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Chengyu Li
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zhaohua Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Maolin Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Qingxin Zhang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Bingjun Xu
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Mufan Li
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
3
|
Chen X, Pei J, Guo Y, Ning Y, Fu Q. In Situ Probing Dynamic Exsolution of Fe 0 from Perovskite under Graded Potentials. J Phys Chem Lett 2025:2245-2253. [PMID: 39984295 DOI: 10.1021/acs.jpclett.5c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Metal exsolution from perovskite oxides offers a promising approach to developing highly active catalysts. Voltage-driven exsolution achieves a faster rate and better dispersion of the nanoparticles. However, the impact of the external voltage on the dynamic of metal exsolution remains unclear. In this work, we utilized spatially resolved in situ X-ray photoelectron spectroscopy and photoemission electron microscopy to systematically investigate the effect of varied potentials on exsolution within one sample, where spatially graded potentials were applied on a La0.6Sr0.4FeO3-δ electrode. The dynamic characterizations reveal that the exsolution process includes pre-reduction and metal exsolution stages, with exsolution rate and degree modulated by the local surface potential. Potentials more negative than the critical potential at approximately -1.05 V can enhance oxygen vacancy formation and increase the exsolution rate and content of Fe0. This work establishes a direct correlation between the local surface potential and exsolution process and highlights the critical role of oxygen vacancies in voltage-driven exsolution.
Collapse
Affiliation(s)
- Xiaoqin Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhui Pei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yige Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxiao Ning
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Liu H, Zhang L, Lebègue S, Bournel F, Gallet JJ, Naitabdi A. Morphology-electronic effects in ultra-model nanocatalysts under the CO oxidation reaction: the case of ZnO ultrathin films grown on Pt(111). NANOSCALE 2024; 16:20216-20227. [PMID: 39397448 DOI: 10.1039/d4nr02935f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The study of the surface morphology and interface of metal-oxides is crucial for understanding the behavior of these model systems as nanocatalysts. Besides, understanding the interplay between morphology, stability, and reactivity is crucial for designing efficient catalysts. Here, we investigated the stability and dewetting of ZnO ultrathin films on Pt(111) under CO oxidation conditions. For films <1 monolayer (ML), CO-induced dewetting occurs at the metal-oxide interface or defects. The morphology, dependent on thickness, influences reactivity. (6 × 6) structures show greater CO binding and structural changes compared to (4 × 4) structures, which exhibit resilience due to Zn-OH formation. ZnO electronic properties, as revealed by Auger spectroscopy and scanning tunneling spectroscopy (STS) investigations, vary with thickness. Low-thickness films [<2 monolayers (ML)] exhibit metallic-like behavior, possibly due to Zn-Pt interaction, while thicker films show n-type semiconductor behavior with a bandgap opening (EBG = 0.9 eV at 2 ML). DFT calculations of the local density of states (LDOS) as a function of ZnO thickness confirm the thickness-dependent electronic structure, with 0.3 ML films having a higher LDOS near the Fermi level than 1 ML films. These findings highlight the critical role of ZnO morphology in determining its stability and reactivity which opens up avenues for designing efficient and more stable ZnO-based nanocatalysts for a wide range of chemical reactions, including CO oxidation and CO2 hydrogenation.
Collapse
Affiliation(s)
- Hang Liu
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 4 place Jussieu, 75005 Paris, France.
| | - Lei Zhang
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 4 place Jussieu, 75005 Paris, France.
| | - Sébastien Lebègue
- Université de Lorraine, CNRS, Laboratoire de Physique et Chimie Théoriques, UMR 7019, 54000 Nancy, France
| | - Fabrice Bournel
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 4 place Jussieu, 75005 Paris, France.
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Jean-Jacques Gallet
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 4 place Jussieu, 75005 Paris, France.
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Ahmed Naitabdi
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
5
|
Chen Y, Liang D, Lee EMY, Muy S, Guillaume M, Braida MD, Emery AA, Marzari N, de Pablo JJ. Ion Transport at Polymer-Argyrodite Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48223-48234. [PMID: 39213640 PMCID: PMC11403566 DOI: 10.1021/acsami.4c07440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Solid-state electrolytes, particularly polymer/ceramic composite electrolytes, are emerging as promising candidates for lithium-ion batteries due to their high ionic conductivity and mechanical flexibility. The interfaces that arise between the inorganic and organic materials in these composites play a crucial role in ion transport mechanisms. While lithium ions are proposed to diffuse across or parallel to the interface, few studies have directly examined the quantitative impact of these pathways on ion transport and little is known about how they affect the overall conductivity. Here, we present an atomistic study of lithium-ion (Li+) transport across well-defined polymer-argyrodite interfaces. We present a force field for polymer-argyrodite interfacial systems, and we carry out molecular dynamics and enhanced sampling simulations of several composite systems, including poly(ethylene oxide) (PEO)/Li6PS5Cl, hydrogenated nitrile butadiene rubber (HNBR)/Li6PS5Cl, and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/Li6PS5Cl. For the materials considered here, Li-ion exhibits a preference for the ceramic material, as revealed by free energy differences for Li-ion between the inorganic and the organic polymer phase in excess of 13 kBT. The relative free energy profiles of Li-ion for different polymeric materials exhibit similar shapes, but their magnitude depends on the strength of interaction between the polymers and Li-ion: the greater the interaction between the polymer and Li-ions, the smaller the free energy difference between the inorganic and organic materials. The influence of the interface is felt over a range of approximately 1.5 nm, after which the behavior of Li-ion in the polymer is comparable to that in the bulk. Near the interface, Li-ion transport primarily occurs parallel to the interfacial plane, and ion mobility is considerably slower near the interface itself, consistent with the reduced segmental mobility of the polymer in the vicinity of the ceramic material. These findings provide insights into ionic complexation and transport mechanisms in composite systems, and will help improve design of improved solid electrolyte systems.
Collapse
Affiliation(s)
- Yuxi Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Dongyue Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Elizabeth M Y Lee
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Sokseiha Muy
- Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | - Nicola Marzari
- Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
7
|
Wei Y, Yu Y, Chen J, Wei M, Huang Y, Zhou X, Liu W. Fabrication of High Surface Area Fe/Fe 3 O 4 with Enhanced Performance for Electrocatalytic Nitrogen Reduction Reaction. Chemistry 2023; 29:e202302734. [PMID: 37926848 DOI: 10.1002/chem.202302734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 11/07/2023]
Abstract
The development of high-efficient and large-scale non-precious electrocatalysts to improve sluggish reaction kinetics plays a key role in enhancing electrocatalytic nitrogen reduction reaction (NRR) for ammonia production under mild condition. Herein, Fe3 O4 and Fe supported by porous carbon (denoted as Fe/Fe3 O4 /PC-800) composite with a high specific surface area of 1004.1 m2 g-1 was prepared via a simple template method. On one hand, the high surface area of Fe/Fe3 O4 /PC-800 provides a large area to enhance N2 adsorption and promote more protons and electrons to accelerate the reaction, thereby greatly improving the dynamics. On the other hand, mesoporous Fe/Fe3 O4 /PC-800 provides high electrochemically active surface area for promoting the occurrence of catalytic kinetics. As a result, Fe/Fe3 O4 /PC-800 exhibited significantly enhanced NRR performance with an ammonia yield of 31.15 μg h-1 mg-1 cat. and faraday efficiency of 22.26 % at -0.1 V vs. reversible hydrogen electrode (RHE). This study is expected to provide a new strategy for the synthesis of catalysts with large specific area and pave the way for the foundational research in NRR.
Collapse
Affiliation(s)
- Yuao Wei
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yingjie Yu
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Jie Chen
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Mo Wei
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yuting Huang
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Xinru Zhou
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Wenjing Liu
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
8
|
Qiu C, Odarchenko Y, Meng Q, Dong H, Gonzalez IL, Panchal M, Olalde-Velasco P, Maccherozzi F, Zanetti-Domingues L, Martin-Fernandez ML, Beale AM. Compositional Evolution of Individual CoNPs on Co/TiO 2 during CO and Syngas Treatment Resolved through Soft XAS/X-PEEM. ACS Catal 2023; 13:15956-15966. [PMID: 38125980 PMCID: PMC10729030 DOI: 10.1021/acscatal.3c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
The nanoparticle (NP) redox state is an important parameter in the performance of cobalt-based Fischer-Tropsch synthesis (FTS) catalysts. Here, the compositional evolution of individual CoNPs (6-24 nm) in terms of the oxide vs metallic state was investigated in situ during CO/syngas treatment using spatially resolved X-ray absorption spectroscopy (XAS)/X-ray photoemission electron microscopy (X-PEEM). It was observed that in the presence of CO, smaller CoNPs (i.e., ≤12 nm in size) remained in the metallic state, whereas NPs ≥ 15 nm became partially oxidized, suggesting that the latter were more readily able to dissociate CO. In contrast, in the presence of syngas, the oxide content of NPs ≥ 15 nm reduced, while it increased in quantity in the smaller NPs; this reoxidation that occurs primarily at the surface proved to be temporary, reforming the reduced state during subsequent UHV annealing. O K-edge measurements revealed that a key parameter mitigating the redox behavior of the CoNPs were proximate oxygen vacancies (Ovac). These results demonstrate the differences in the reducibility and the reactivity of Co NP size on a Co/TiO2 catalyst and the effect Ovac have on these properties, therefore yielding a better understanding of the physicochemical properties of this popular choice of FTS catalysts.
Collapse
Affiliation(s)
- Chengwu Qiu
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Yaroslav Odarchenko
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Qingwei Meng
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China)
| | - Hongyang Dong
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Ines Lezcano Gonzalez
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Monik Panchal
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | | | | | | | | | - Andrew M. Beale
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| |
Collapse
|
9
|
Han J, Yang J, Zhang Z, Jiang X, Liu W, Qiao B, Mu J, Wang F. Strong Metal-Support Interaction Facilitated Multicomponent Alloy Formation on Metal Oxide Support. J Am Chem Soc 2023; 145:22671-22684. [PMID: 37814206 DOI: 10.1021/jacs.3c07915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Multicomponent alloy (MA) contains a nearly infinite number of unprecedented active sites through entropy stabilization, which is a desired platform for exploring high-performance catalysts. However, MA catalysts are usually synthesized under severe conditions, which induce support structure collapse and further deteriorate the synergy between MA and support. We propose that a strong metal-support interaction (SMSI) could facilitate the formation of MA by establishing a tunnel of oxygen vacancy for metal atom transport under low reduction temperature (400-600 °C), which exemplifies the holistic design of MA catalysts without deactivating supports. PtPdCoFe MA is readily synthesized on anatase TiO2 with the help of SMSI, which exhibits good catalytic activity and stability for methane combustion. This strategy demonstrates excellent universality on various supports and multicomponent alloy compositions. Our work not only reports a holistic synthesis strategy for MA synthesis by synergizing unique properties of reducible oxides and the mixing entropy of alloy but also offers a new insight that SMSI plays a vigorous role in the formation of alloy NPs on reducible oxides.
Collapse
Affiliation(s)
- Jianyu Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyi Yang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Xunzhu Jiang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Botao Qiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Junju Mu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| |
Collapse
|
10
|
Castro-Latorre P, Neyman KM, Bruix A. Systematic Characterization of Electronic Metal-Support Interactions in Ceria-Supported Pt Particles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:17700-17710. [PMID: 37736294 PMCID: PMC10510437 DOI: 10.1021/acs.jpcc.3c03383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/31/2023] [Indexed: 09/23/2023]
Abstract
Electronic metal-support interactions affect the chemical and catalytic properties of metal particles supported on reducible metal oxides, but their characterization is challenging due to the complexity of the electronic structure of these systems. These interactions often involve different states with varying numbers and positions of strongly correlated d or f electrons and the corresponding polarons. In this work, we present an approach to characterize electronic metal-support interactions by means of computationally efficient density functional calculations within the projector augmented wave method. We describe Ce3+ cations with potentials that include a Ce4f electron in the frozen core, overcoming prevalent convergence and 4f electron localization issues. We systematically explore the stability and chemical properties of different electronic states for a Pt8/CeO2(111) model system, revealing the predominant effect of electronic metal-support interactions on Pt atoms located directly at the metal-oxide interface. Adsorption energies and the reactivity of these interface Pt atoms vary significantly upon donation of electrons to the oxide support, pointing to a strategy to selectively activate interfacial sites of metal particles supported on reducible metal oxides.
Collapse
Affiliation(s)
- Pablo Castro-Latorre
- Departament
de Ciència de Materials i Química Física, Institut de Quimica Teòrica i Computacional
(IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Konstantin M. Neyman
- Departament
de Ciència de Materials i Química Física, Institut de Quimica Teòrica i Computacional
(IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
- ICREA
(Institució Catalana de Recerca i Estudis Avançats), 08010 Barcelona, Spain
| | - Albert Bruix
- Departament
de Ciència de Materials i Química Física, Institut de Quimica Teòrica i Computacional
(IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Jiang Y, Lim AMH, Yan H, Zeng HC, Mirsaidov U. Phase Segregation in PdCu Alloy Nanoparticles During CO Oxidation Reaction at Atmospheric Pressure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302663. [PMID: 37377354 PMCID: PMC10477843 DOI: 10.1002/advs.202302663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Bimetallic nanoparticle (NP) catalysts are widely used in many heterogeneous gas-based reactions because they often outperform their monometallic counterparts. During these reactions, NPs often undergo structural changes, which impact their catalytic activity. Despite the important role of the structure in the catalytic activity, many aspects of how a reactive gaseous environment affects the structure of bimetallic nanocatalysts are still lacking. Here, using gas-cell transmission electron microscopy (TEM), it is shown that during a CO oxidation reaction over PdCu alloy NPs, the selective oxidation of Cu causes the segregation of Cu and transforms the NPs into Pd-CuO NPs. The segregated NPs are very stable and have high activity for the conversion of CO into CO2 . Based on the observations, the segregation of Cu from Cu-based alloys during a redox reaction is likely to be general and may have a positive impact on the catalytic activity. Hence, it is believed that similar insights based on direct observation of the reactions under relevant reactive conditions are critical both for understanding and designing high-performance catalysts.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Alvin M H Lim
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Hongwei Yan
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Utkur Mirsaidov
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
12
|
Winkler P, Raab M, Zeininger J, Rois LM, Suchorski Y, Stöger-Pollach M, Amati M, Parmar R, Gregoratti L, Rupprechter G. Imaging Interface and Particle Size Effects by In Situ Correlative Microscopy of a Catalytic Reaction. ACS Catal 2023; 13:7650-7660. [PMID: 37288091 PMCID: PMC10242684 DOI: 10.1021/acscatal.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Indexed: 06/09/2023]
Abstract
The catalytic behavior of Rh particles supported by three different materials (Rh, Au, and ZrO2) in H2 oxidation has been studied in situ by correlative photoemission electron microscopy (PEEM) and scanning photoemission electron microscopy (SPEM). Kinetic transitions between the inactive and active steady states were monitored, and self-sustaining oscillations on supported Rh particles were observed. Catalytic performance differed depending on the support and Rh particle size. Oscillations varied from particle size-independent (Rh/Rh) via size-dependent (Rh/ZrO2) to fully inhibited (Rh/Au). For Rh/Au, the formation of a surface alloy induced such effects, whereas for Rh/ZrO2, the formation of substoichiometric Zr oxides on the Rh surface, enhanced oxygen bonding, Rh-oxidation, and hydrogen spillover onto the ZrO2 support were held responsible. The experimental observations were complemented by micro-kinetic simulations, based on variations of hydrogen adsorption and oxygen binding. The results demonstrate how correlative in situ surface microscopy enables linking of the local structure, composition, and catalytic performance.
Collapse
Affiliation(s)
- Philipp Winkler
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Maximilian Raab
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Johannes Zeininger
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Lea M. Rois
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Yuri Suchorski
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Michael Stöger-Pollach
- University
Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstraße 8-10, Vienna 1040, Austria
| | - Matteo Amati
- Elettra-Sincrotrone
Trieste S.C.p.A., SS
14 km 163.5 in AREA Science Park, Trieste 34149, Italy
| | - Rahul Parmar
- Elettra-Sincrotrone
Trieste S.C.p.A., SS
14 km 163.5 in AREA Science Park, Trieste 34149, Italy
| | - Luca Gregoratti
- Elettra-Sincrotrone
Trieste S.C.p.A., SS
14 km 163.5 in AREA Science Park, Trieste 34149, Italy
| | - Günther Rupprechter
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| |
Collapse
|
13
|
Wang C, Liu W, Liao M, Weng J, Shen J, Chen Y, Du Y. Novel nano spinel-type high-entropy oxide (HEO) catalyst for hydrogen production using ethanol steam reforming. NANOSCALE 2023; 15:8619-8632. [PMID: 37092289 DOI: 10.1039/d2nr07195a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Catalyst sintering caused by high temperature operating conditions during ethanol steam reforming (ESR) is a common issue for traditional catalysts with low Tammann temperature metals. In recent years, high entropy oxides have been popular in thermal catalysis due to their special thermodynamics and kinetics characteristics, which is expected to be a suitable approach for enhancing catalyst stability. This paper first reports the application of HEO in ESR and the characterization. The results exhibited a nano structure (CoCrFeNiAl)3O4 HEO with a spinel-phase and was successfully synthesized by a polyol hydrothermal precipitation-calcination method. An abundance of oxygen vacancies were formed, and were further enriched in a hydrogen atmosphere as the M-O bond opened. Interestingly, its self-reorganization featured the rendered the metals spilling out of the HEO bulk phase as active species for hydrogen production during ESR, whereas the isolated metal cation randomly dissolved into the parent metal oxide cell again after the reaction instead of agglomerating over the catalyst surface. This gave the (CoCrFeNiAl)3O4 a large number of dispersed active sites, as well as a high thermal stability. In addition, 81% of the hydrogen yield as well as 85% of H2 selectivity were achieved at 600 °C. This research might offer possibilities for the development of thermal catalytic hydrogen production under high temperature conditions such as steam reforming.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Mingzheng Liao
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiahong Weng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Shen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanping Du
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Chen J, Aliasgar M, Zamudio FB, Zhang T, Zhao Y, Lian X, Wen L, Yang H, Sun W, Kozlov SM, Chen W, Wang L. Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution. Nat Commun 2023; 14:1711. [PMID: 36973303 PMCID: PMC10042996 DOI: 10.1038/s41467-023-37404-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Membrane-based alkaline water electrolyser is promising for cost-effective green hydrogen production. One of its key technological obstacles is the development of active catalyst-materials for alkaline hydrogen-evolution-reaction (HER). Here, we show that the activity of platinum towards alkaline HER can be significantly enhanced by anchoring platinum-clusters onto two-dimensional fullerene nanosheets. The unusually large lattice distance (~0.8 nm) of the fullerene nanosheets and the ultra-small size of the platinum-clusters (~2 nm) leads to strong confinement of platinum clusters accompanied by pronounced charge redistributions at the intimate platinum/fullerene interface. As a result, the platinum-fullerene composite exhibits 12 times higher intrinsic activity for alkaline HER than the state-of-the-art platinum/carbon black catalyst. Detailed kinetic and computational investigations revealed the origin of the enhanced activity to be the diverse binding properties of the platinum-sites at the interface of platinum/fullerene, which generates highly active sites for all elementary steps in alkaline HER, particularly the sluggish Volmer step. Furthermore, encouraging energy efficiency of 74% and stability were achieved for alkaline water electrolyser assembled using platinum-fullerene composite under industrially relevant testing conditions.
Collapse
Affiliation(s)
- Jiayi Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Mohammed Aliasgar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Fernando Buendia Zamudio
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Tianyu Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Yilin Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Xu Lian
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Lan Wen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Haozhou Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore.
| | - Wei Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China
- Centre for Hydrogen Innovations, National University of Singapore, 1 Engineering Drive 3, Singapore, Singapore
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, 1 Engineering Drive 3, Singapore, Singapore.
| |
Collapse
|
15
|
Hakimioun AH, Vandegehuchte BD, Curulla-Ferre D, Kaźmierczak K, Plessow PN, Studt F. Metal-Support Interactions in Heterogeneous Catalysis: DFT Calculations on the Interaction of Copper Nanoparticles with Magnesium Oxide. ACS OMEGA 2023; 8:10591-10599. [PMID: 36969458 PMCID: PMC10034847 DOI: 10.1021/acsomega.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Oxide supports play an important role in enhancing the catalytic properties of transition metal nanoparticles in heterogeneous catalysis. How extensively interactions between the oxide support and the nanoparticles impact the electronic structure as well as the surface properties of the nanoparticles is hence of high interest. In this study, the influence of a magnesium oxide support on the properties of copper nanoparticles with different size, shape, and adsorption sites is investigated using density functional theory (DFT) calculations. By proposing simple models to reduce the cost of the calculations while maintaining the accuracy of the results, we show using the nonreducible oxide support MgO as an example that there is no significant influence of the MgO support on the electronic structure of the copper nanoparticles, with the exception of adsorption directly at the Cu-MgO interface. We also propose a simplified methodology that allows us to reduce the cost of the calculations, while the accuracy of the results is maintained. We demonstrate in addition that the Cu nanowire model corresponds well to the nanoparticle model, which reduces the computational cost even further.
Collapse
Affiliation(s)
- Amir H. Hakimioun
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | - Philipp N. Plessow
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 18, 76131 Karlsruhe, Germany
| |
Collapse
|
16
|
Hu M, Ye K, Zhang G, Li X, Jiang J. Insight into the Mechanism for Catalytic Activity of the Oxygen/Hydrogen Evolution Reaction on a Dual-Site Catalyst. J Phys Chem Lett 2023; 14:2201-2207. [PMID: 36812359 DOI: 10.1021/acs.jpclett.3c00168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The dual-site catalysts consisting of two adjacent single-atom sites on graphene have exhibited promising catalytic activity of the electrochemical oxygen/hydrogen evolution reaction (OER/HER). However, the electrochemical mechanisms of the OER/HER on dual-site catalysts have still been ambiguous. In this work, we employed density functional theory calculations to study the catalytic activity of the OER/HER with a O-O (H-H) direct coupling mechanism on dual-site catalysts. Specifically, these element steps should be classified into two categories: a step evolving proton-coupled electron transfer (PCET step) that needs to be driven by electrode potential and a step without PCET (non-PCET step) that occurs naturally under mild conditions. Our calculated results show that both the maximal free energy change (ΔGMax) contributed by the PCET step and the activity barrier (Ea) of the non-PCET step must be examined to evaluate the catalytic activity of the OER/HER on the dual site. Importantly, it is a basically inevitable negative relationship between ΔGMax and Ea, which would play a critical role in guiding the rational design of effective dual-site catalysts for electrochemical reactions.
Collapse
Affiliation(s)
- Min Hu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ke Ye
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiyu Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
17
|
Choi KI, Yadav D, Jung J, Park E, Lee KM, Kim T, Kim J. Noble Metal Nanoparticles Decorated Boron Nitride Nanotubes for Efficient and Selective Low-Temperature Catalytic Reduction of Nitric Oxide with Carbon Monoxide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10670-10678. [PMID: 36780665 DOI: 10.1021/acsami.2c20985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parallel to CO2 emission, NOx emission has become one of the menacing problems that seek a simple, durable, and high-efficiency deNOx catalyst. Herein, we demonstrated simple syntheses of platinum group metal nanoparticle-decorated f-BNNT (PGM = Pd, Pt, and Rh, and f-BNNT stands for -OH-functionalized boron nitride nanotubes) as a catalyst for efficient and selective reduction of NO by CO at low-temperature conditions. PGM/f-BNNT with a low amount of noble metal nanoparticles (0.7-0.8 wt %) presents very efficient catalytic activity for NO reduction as well as CO oxidation during their removal process. The removal efficiencies of NO and CO with Pd/f-BNNT, Pt/f-BNNT, and Rh/f-BNNT catalysts were investigated under various temperatures, flow rates, and reaction times, respectively. For most cases, NO catalytic reduction with CO reaction was >99% at a temperature as low as ∼200 °C. The catalyst robustness and efficiency were also verified by presenting almost 100% conversion of NO using a Rh/f-BNNT catalyst, which was aged under humid air at 600 and 700 °C for 24 h, respectively. The synergic effect of the catalytic efficacy of the well-dispersed noble metal nanoparticles and the excellent surface properties of BNNT are reasons for the high selectivity and catalytic property at a low temperature. On the basis of this investigation, we demonstrated that the noble metal nanoparticle-decorated f-BNNT catalysts are possible to save expensive PGM catalysts, such as Pt, Pd, and Rd, as much as 100 times while presenting similar or better catalytic performance for simultaneous NO and CO removals.
Collapse
Affiliation(s)
- Ki-In Choi
- R&D Center, NAiEEL Technology, 6-2 Yuseongdaero 1205, Daejeon 34104, Republic of Korea
| | - Dolly Yadav
- R&D Center, NAiEEL Technology, 6-2 Yuseongdaero 1205, Daejeon 34104, Republic of Korea
| | - Junghwan Jung
- R&D Center, NAiEEL Technology, 6-2 Yuseongdaero 1205, Daejeon 34104, Republic of Korea
| | - Eunkwang Park
- R&D Center, NAiEEL Technology, 6-2 Yuseongdaero 1205, Daejeon 34104, Republic of Korea
| | - Kyung-Min Lee
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, New York 11794, United States
| | - Taejin Kim
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jaewoo Kim
- R&D Center, NAiEEL Technology, 6-2 Yuseongdaero 1205, Daejeon 34104, Republic of Korea
| |
Collapse
|
18
|
Tian S, Li J, Xiao D, Ma D. Self-Enhanced Catalytic Activity of Pt/TiO 2 via Electronic Metal-Support Interaction. ACS CENTRAL SCIENCE 2023; 9:7-9. [PMID: 36712490 PMCID: PMC9881197 DOI: 10.1021/acscentsci.2c01546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Shuheng Tian
- Beijing National
Laboratory for Molecular Sciences, College
of Chemistry and Molecular Engineering Peking University, Beijing 100871, P. R. China
| | - Jiarui Li
- Beijing National
Laboratory for Molecular Sciences, College
of Chemistry and Molecular Engineering Peking University, Beijing 100871, P. R. China
| | - Dequan Xiao
- Center for Integrative Materials Discovery,
Department of Chemistry and Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Ding Ma
- Beijing National
Laboratory for Molecular Sciences, College
of Chemistry and Molecular Engineering Peking University, Beijing 100871, P. R. China
| |
Collapse
|
19
|
Gao M, Yang Z, Zhang H, Ma J, Zou Y, Cheng X, Wu L, Zhao D, Deng Y. Ordered Mesopore Confined Pt Nanoclusters Enable Unusual Self-Enhancing Catalysis. ACS CENTRAL SCIENCE 2022; 8:1633-1645. [PMID: 36589882 PMCID: PMC9801509 DOI: 10.1021/acscentsci.2c01290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Indexed: 06/17/2023]
Abstract
As an important kind of emerging heterogeneous catalyst for sustainable chemical processes, supported metal cluster (SMC) catalysts have received great attention for their outstanding activity; however, the easy aggregation of metal clusters due to their migration along the substrate's surface usually deteriorates their activity and even causes catalyst failure during cycling. Herein, stable Pt nanoclusters (NCs, ∼1.06 nm) are homogeneously confined in the uniform spherical mesopores of mesoporous titania (mpTiO2) by the interaction between Pt NCs and metal oxide pore walls made of polycrystalline anatase TiO2. The obtained Pt-mpTiO2 exhibits excellent stability with well-retained CO conversion (∼95.0%) and Pt NCs (∼1.20 nm) in the long term water-gas shift (WGS) reaction. More importantly, the Pt-mpTiO2 displays an unusual increasing activity during the cyclic catalyzing WGS reaction, which was found to stem from the in situ generation of interfacial active sites (Ti3+-Ov-Ptδ+) by the reduction effect of spillover hydrogen generated at the stably supported Pt NCs. The Pt-mpTiO2 catalysts also show superior performance toward the selective hydrogenation of furfural to 2-methylfuran. This work discloses an efficient and robust Pt-mpTiO2 catalyst and systematically elucidates the mechanism underlying its unique catalytic activity, which helps to design stable SMC catalysts with self-enhancing interfacial activity in sustainable heterogeneous catalysis.
Collapse
Affiliation(s)
- Meiqi Gao
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Zhirong Yang
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Haijiao Zhang
- Institute
of Nanochemistry and Nanobiology, School of Environmental and Chemical
Engineering, Shanghai University, Shanghai200444, People’s Republic of China
| | - Junhao Ma
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Yidong Zou
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Xiaowei Cheng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Limin Wu
- Institute
of Energy and Materials Chemistry, Inner
Mongolia University, Hohhot010021, China
| | - Dongyuan Zhao
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Yonghui Deng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| |
Collapse
|
20
|
Yan Z, Yao B, Hall C, Gao Q, Zang W, Zhou H, He Q, Zhu H. Metal-Metal Oxide Catalytic Interface Formation and Structural Evolution: A Discovery of Strong Metal-Support Bonding, Ordered Intermetallics, and Single Atoms. NANO LETTERS 2022; 22:8122-8129. [PMID: 36194541 DOI: 10.1021/acs.nanolett.2c02568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In-depth investigation of metal-metal oxide interactions and their corresponding evolution is of paramount importance to heterogeneous catalysis as it allows the understanding and maneuvering of the structure of catalytic motifs. Herein, using a series of core/shell metal/iron oxide (M/FeOx, M = Pd, Pt, Au) nanoparticles and through a combination of in situ and ex situ electron and X-ray investigations, we revealed anomalous and dissimilar M-FeOx interactions among different systems under reducing conditions. Pd interacts strongly with FeOx after high-temperature reductive treatment, featured by the formation of Pd single atoms in the FeOx matrix and increased Pd-Fe bonding, while Pt transforms into ordered PtFe intermetallics and Pt single atoms immediately upon the coating of FeOx. In contrast, Au does not manifest strong bonding with FeOx. As a proof of concept of tailoring metal-metal oxide interactions for catalysis, optimized Pd/FeOx demonstrates 100% conversion and 86.5% selectivity at 60 °C for acetylene semihydrogenation.
Collapse
Affiliation(s)
- Zihao Yan
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Bingqing Yao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Connor Hall
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Qiang Gao
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Wenjie Zang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Hua Zhou
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Huiyuan Zhu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
21
|
Kim H, Yoo JM, Chung DY, Kim Y, Jung M, Bootharaju MS, Kim J, Koo S, Shin H, Na G, Mun BS, Kwak JH, Sung YE, Hyeon T. Design of a Metal/Oxide/Carbon Interface for Highly Active and Selective Electrocatalysis. ACS NANO 2022; 16:16529-16538. [PMID: 36153951 DOI: 10.1021/acsnano.2c05856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sustainable energy-conversion and chemical-production require catalysts with high activity, durability, and product-selectivity. Metal/oxide hybrid structure has been intensively investigated to achieve promising catalytic performance, especially in neutral or alkaline electrocatalysis where water dissociation is promoted near the oxide surface for (de)protonation of intermediates. Although catalytic promise of the hybrid structure is demonstrated, it is still challenging to precisely modulate metal/oxide interfacial interactions on the nanoscale. Herein, we report an effective strategy to construct rich metal/oxide nano-interfaces on conductive carbon supports in a surfactant-free and self-terminated way. When compared to the physically mixed Pd/CeO2 system, a much higher degree of interface formation was identified with largely improved hydrogen oxidation reaction (HOR) kinetics. The benefits of the rich metal-CeO2 interface were further generalized to Pd alloys for optimized adsorption energy, where the Pd3Ni/CeO2/C catalyst shows superior performance with HOR selectivity against CO poisoning and shows long-term stability. We believe this work highlights the importance of controlling the interfacial junctions of the electrocatalyst in simultaneously achieving enhanced activity, selectivity, and stability.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Mun Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Young Chung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yongseon Kim
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Moonjung Jung
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiheon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sagang Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Heejong Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Geumbi Na
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Bongjin Simon Mun
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hun Kwak
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
22
|
Periodic structural changes in Pd nanoparticles during oscillatory CO oxidation reaction. Nat Commun 2022; 13:6176. [PMID: 36261440 PMCID: PMC9582216 DOI: 10.1038/s41467-022-33304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/12/2022] [Indexed: 11/08/2022] Open
Abstract
Nanoparticle (NP) catalysts are ubiquitous in energy systems, chemical production, and reducing the environmental impact of many industrial processes. Under reactive environments, the availability of catalytically active sites on the NP surface is determined by its dynamic structure. However, atomic-scale insights into how a NP surface reconstructs under reaction conditions and the impact of the reconstruction on catalytic activity are still lacking. Using operando transmission electron microscopy, we show that Pd NPs exhibit periodic round-to-flat transitions altering their facets during CO oxidation reaction at atmospheric pressure and elevated temperatures. This restructuring causes spontaneous oscillations in the conversion of CO to CO2 under constant reaction conditions. Our study reveals that the oscillatory behavior stems from the CO-adsorption-mediated periodic restructuring of the nanocatalysts between high-index-faceted round and low-index-faceted flat shapes. These atomic-scale insights into the dynamic surface properties of NPs under reactive conditions play an important role in the design of high-performance catalysts.
Collapse
|
23
|
Ma Y, Ge H, Yi S, Yang M, Feng D, Ren Y, Gao J, Qin Y. Understanding the intrinsic synergistic mechanism between Pt—O—Ti interface sites and TiO2 surface sites of Pt/TiO2 catalysts in Fenton-like reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Anodic TiO2 nanotube layers decorated by Pd nanoparticles using ALD: An efficient electrocatalyst for methanol oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Zaman S, Wang M, Liu H, Sun F, Yu Y, Shui J, Chen M, Wang H. Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
26
|
Truttmann V, Drexler H, Stöger‐Pollach M, Kawawaki T, Negishi Y, Barrabés N, Rupprechter G. CeO 2 Supported Gold Nanocluster Catalysts for CO Oxidation: Surface Evolution Influenced by the Ligand Shell. ChemCatChem 2022; 14:e202200322. [PMID: 36035519 PMCID: PMC9400996 DOI: 10.1002/cctc.202200322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Indexed: 11/15/2022]
Abstract
Monolayer protected Au nanocluster catalysts are known to undergo structural changes during catalytic reactions, including dissociation and migration of ligands onto the support, which strongly affects their activity and stability. To better understand how the nature of ligands influences the catalytic activity of such catalysts, three types of ceria supported Au nanoclusters with different kinds of ligands (thiolates, phosphines and a mixture thereof) have been studied, employing CO oxidation as model reaction. The thiolate-protected Au25/CeO2 showed significantly higher CO conversion after activation at 250 °C than the cluster catalysts possessing phosphine ligands. Temperature programmed oxidation and in situ infrared spectroscopy revealed that while the phosphine ligands seemed to decompose and free Au surface was exposed, temperatures higher than 250 °C are required to efficiently remove them from the whole catalyst system. Moreover, the presence of residues on the support seemed to have much greater influence on the reactivity than the gold particle size.
Collapse
Affiliation(s)
- Vera Truttmann
- Institute of Materials ChemistryTU WienGetreidemarkt 9/1651060ViennaAustria
| | - Hedda Drexler
- Institute of Materials ChemistryTU WienGetreidemarkt 9/1651060ViennaAustria
| | - Michael Stöger‐Pollach
- University Service Center for Transmission Electron Microscopy (USTEM)TU WienWiedner Hauptstraße 8–101040ViennaAustria
| | - Tokuhisa Kawawaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo 162-8601Japan
| | - Yuichi Negishi
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo 162-8601Japan
| | - Noelia Barrabés
- Institute of Materials ChemistryTU WienGetreidemarkt 9/1651060ViennaAustria
| | | |
Collapse
|
27
|
Zhang H, Zhao M, Li Y, Li C, Ge W. Concentration fluctuation caused by reaction-diffusion coupling near catalytic active sites. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Muravev V, Simons JFM, Parastaev A, Verheijen MA, Struijs JJC, Kosinov N, Hensen EJM. Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO Oxidation on Pd/CeO
2
Catalysts. Angew Chem Int Ed Engl 2022; 61:e202200434. [PMID: 35303388 PMCID: PMC9325467 DOI: 10.1002/anie.202200434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 11/18/2022]
Abstract
Aiming at knowledge‐driven design of novel metal–ceria catalysts for automotive exhaust abatement, current efforts mostly pertain to the synthesis and understanding of well‐defined systems. In contrast, technical catalysts are often heterogeneous in their metal speciation. Here, we unveiled rich structural dynamics of a conventional impregnated Pd/CeO2 catalyst during CO oxidation. In situ X‐ray photoelectron spectroscopy and operando X‐ray absorption spectroscopy revealed the presence of metallic and oxidic Pd states during the reaction. Using transient operando infrared spectroscopy, we probed the nature and reactivity of the surface intermediates involved in CO oxidation. We found that while low‐temperature activity is associated with sub‐oxidized and interfacial Pd sites, the reaction at elevated temperatures involves metallic Pd. These results highlight the utility of the multi‐technique operando approach for establishing structure–activity relationships of technical catalysts.
Collapse
Affiliation(s)
- Valery Muravev
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Jérôme F. M. Simons
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Alexander Parastaev
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Marcel A. Verheijen
- Department of Applied Physics Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
- Eurofins Material Science Netherlands BV 5656AE Eindhoven The Netherlands
| | - Job J. C. Struijs
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
29
|
Zachman MJ, Fung V, Polo-Garzon F, Cao S, Moon J, Huang Z, Jiang DE, Wu Z, Chi M. Measuring and directing charge transfer in heterogenous catalysts. Nat Commun 2022; 13:3253. [PMID: 35668115 PMCID: PMC9170698 DOI: 10.1038/s41467-022-30923-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/19/2022] [Indexed: 11/09/2022] Open
Abstract
Precise control of charge transfer between catalyst nanoparticles and supports presents a unique opportunity to enhance the stability, activity, and selectivity of heterogeneous catalysts. While charge transfer is tunable using the atomic structure and chemistry of the catalyst-support interface, direct experimental evidence is missing for three-dimensional catalyst nanoparticles, primarily due to the lack of a high-resolution method that can probe and correlate both the charge distribution and atomic structure of catalyst/support interfaces in these structures. We demonstrate a robust scanning transmission electron microscopy (STEM) method that simultaneously visualizes the atomic-scale structure and sub-nanometer-scale charge distribution in heterogeneous catalysts using a model Au-catalyst/SrTiO3-support system. Using this method, we further reveal the atomic-scale mechanisms responsible for the highly active perimeter sites and demonstrate that the charge transfer behavior can be readily controlled using post-synthesis treatments. This methodology provides a blueprint for better understanding the role of charge transfer in catalyst stability and performance and facilitates the future development of highly active advanced catalysts.
Collapse
Affiliation(s)
- Michael J Zachman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Victor Fung
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Felipe Polo-Garzon
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shaohong Cao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jisue Moon
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zhennan Huang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
30
|
Ghosh T, Liu X, Sun W, Chen M, Liu Y, Li Y, Mirsaidov U. Revealing the Origin of Low-Temperature Activity of Ni-Rh Nanostructures during CO Oxidation Reaction with Operando TEM. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105599. [PMID: 35514057 PMCID: PMC9189651 DOI: 10.1002/advs.202105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/30/2022] [Indexed: 06/14/2023]
Abstract
In bimetallic heterostructured nanoparticles (NPs), the synergistic effect between their different metallic components leads to higher catalytic activity compared to the activity of the individual components. However, how the dynamic changes through which these NPs adopt catalytically active structures during a reaction and how the restructuring affects their activity are largely unknown. Here, using operando transmission electron microscopy, structural changes are studied in bimetallic Ni-Rh NPs, comprising of a Ni core whose surface is decorated with smaller Rh NPs, during a CO oxidation reaction. The direct atomic-scale imaging reveals that, under O2 -rich conditions, Ni core partially transforms into NiO, forming a (Ni+NiO)-Rh hollow nanocatalyst with high catalytic activity. Under O2 -poor conditions, Rh NPs alloy with the surface of the core to form a NiRh-alloy surface, and the NPs display significantly lower activity. The theoretical calculations indicate that NiO component that forms only under O2 -rich conditions enhances the activity by preventing the CO poisoning of the nanocatalysts. The results demonstrate that visualizing the structural changes during reactions is indispensable in identifying the origin of catalytic activity. These insights into the dynamic restructuring of NP catalysts under a reactive environment are critical for the rational design of high-performance nanocatalysts.
Collapse
Affiliation(s)
- Tanmay Ghosh
- Department of PhysicsNational University of SingaporeSingapore117551Singapore
- Centre for BioImaging SciencesDepartment of Biological SciencesNational University of SingaporeSingapore117557Singapore
| | - Xiangwen Liu
- Department of PhysicsNational University of SingaporeSingapore117551Singapore
- Centre for BioImaging SciencesDepartment of Biological SciencesNational University of SingaporeSingapore117557Singapore
- Institute of Analysis and TestingBeijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis)Beijing100094P. R. China
| | - Wenming Sun
- College of ScienceChina Agricultural UniversityBeijing100193P. R. China
| | - Meiqi Chen
- College of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Yuxi Liu
- College of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Yadong Li
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Utkur Mirsaidov
- Department of PhysicsNational University of SingaporeSingapore117551Singapore
- Centre for BioImaging SciencesDepartment of Biological SciencesNational University of SingaporeSingapore117557Singapore
- Centre for Advanced 2D Materials and Graphene Research CentreNational University of SingaporeSingapore117546Singapore
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| |
Collapse
|
31
|
Wen M, Dong F, Yao J, Tang Z, Zhang J. Pt nanoparticles confined in the ordered mesoporous CeO2 as a highly efficient catalyst for the elimination of VOCs. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Feng C, Zhang Z, Wang D, Kong Y, Wei J, Wang R, Ma P, Li H, Geng Z, Zuo M, Bao J, Zhou S, Zeng J. Tuning the Electronic and Steric Interaction at the Atomic Interface for Enhanced Oxygen Evolution. J Am Chem Soc 2022; 144:9271-9279. [PMID: 35549330 DOI: 10.1021/jacs.2c00533] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The two-dimensional surface or one-dimensional interface of heterogeneous catalysts is essential to determine the adsorption strengths and configurations of the reaction intermediates for desired activities. Recently, the development of single-atom catalysts has enabled an atomic-level understanding of catalytic processes. However, it remains obscure whether the conventional concept and mechanism of one-dimensional interface are applicable to zero-dimensional single atoms. In this work, we arranged the locations of single atoms to explore their interfacial interactions for improved oxygen evolution. When iridium single atoms were confined into the lattice of CoOOH, efficient electron transfer between Ir and Co tuned the adsorption strength of oxygenated intermediates. In contrast, atomic iridium species anchored on the surface of CoOOH induced inappreciable modification in electronic structures, whereas steric interactions with key intermediates at its Ir-OH-Co interface played a primary role in reducing its energy barrier toward oxygen evolution.
Collapse
Affiliation(s)
- Chen Feng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Zhirong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Dongdi Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yuan Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jie Wei
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Ruyang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Peiyu Ma
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Ming Zuo
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jun Bao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Shiming Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
33
|
Tian FX, Li H, Zhu M, Tu W, Lin D, Han YF. Effect of MnO 2 Polymorphs' Structure on Low-Temperature Catalytic Oxidation: Crystalline Controlled Oxygen Vacancy Formation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18525-18538. [PMID: 35418231 DOI: 10.1021/acsami.2c01727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MnO2 polymorphs (α-, β-, and ε-MnO2) were synthesized, and their chemical/physical properties for CO oxidation were systematically studied using multiple techniques. Density functional theory (DFT) calculations and temperature-programmed experiments reveal that β-MnO2 shows low energies for oxygen vacancy generation and excellent redox properties, exhibiting significant CO oxidation activity (T90 = 75 °C) and stability even under a humid atmosphere. For the first time, we report that the specific reaction rate for β-MnO2 (0.135 moleculeCO·nm-2·s-1 at 90 °C) is roughly approximately 4 and 17 times higher than that of ε-MnO2 and α-MnO2, respectively. The specific reaction rate order (β-MnO2 > ε-MnO2 > α-MnO2) is not only in good agreement with reduction rates (CO-TPSR measurements) but also agrees with the DFT calculation. In combination with in situ spectra and intrinsic kinetic studies, the mechanisms of CO oxidation over various crystal structures of MnO2 were proposed as well. We believe the new insights from this study will largely inspire the design of such a kind of catalyst.
Collapse
Affiliation(s)
- Fei-Xiang Tian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hu Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weifeng Tu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Dehai Lin
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Fan Han
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
34
|
Sainju R, Rathnayake D, Tan H, Bollas G, Dongare AM, Suib SL, Zhu Y. In Situ Studies of Single-Nanoparticle-Level Nickel Thermal Oxidation: From Early Oxide Nucleation to Diffusion-Balanced Oxide Thickening. ACS NANO 2022; 16:6468-6479. [PMID: 35413193 DOI: 10.1021/acsnano.2c00742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-temperature oxidation mechanisms of metallic nanoparticles have been extensively investigated; however, it is challenging to determine whether the kinetic modeling is applicable at the nanoscale and how the differences in nanoparticle size influence the oxidation mechanisms. In this work, we study thermal oxidation of pristine Ni nanoparticles ranging from 4 to 50 nm in 1 bar 1%O2/N2 at 600 °C using in situ gas-cell environmental transmission electron microscopy. Real-space in situ oxidation videos revealed an unexpected nanoparticle surface refacetting before oxidation and a strong Ni nanoparticle size dependence, leading to distinct structural development during the oxidation and different final NiO morphology. By quantifying the NiO thickness/volume change in real space, individual nanoparticle-level oxidation kinetics was established and directly correlated with nanoparticle microstructural evolution with specified fast and slow oxidation directions. Thus, for the size-dependent Ni nanoparticle oxidation, we propose a unified oxidation theory with a two-stage oxidation process: stage 1: dominated by the early NiO nucleation (Avrami-Erofeev model) and stage 2: the Wagner diffusion-balanced NiO shell thickening (Wanger model). In particular, to what extent the oxidation would proceed into stage 2 dictates the final NiO morphology, which depends on the Ni starting radius with respect to the critical thickness under given oxidation conditions. The overall oxidation duration is controlled by both the diffusivity of Ni2+ in NiO and the Ni in Ni self-diffusion. We also compare the single-particle kinetic curve with the collective one and discuss the effects of nanoparticle size differences on kinetic model analysis.
Collapse
|
35
|
Muravev V, Simons JF, Parastaev A, Verheijen MA, Struijs JJ, Kosinov N, Hensen E. Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO oxidation on Pd/CeO2 catalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Valery Muravev
- Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Jérôme F.M. Simons
- TU/e: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Alexander Parastaev
- TU/e: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | | | - Job J.C. Struijs
- TU/e: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Nikolay Kosinov
- TU/e: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Emiel Hensen
- Department of Chemical Engineering Eindhoven University of Technology Schuit Institute of Catalysis PO Box 513 5600 MB Eindhoven NETHERLANDS
| |
Collapse
|
36
|
Jeon OS, Lee H, Lee KS, Paidi VK, Ji Y, Kwon OC, Kim JP, Myung JH, Park SY, Yoo YJ, Lee JG, Lee SY, Shul YG. Harnessing Strong Metal-Support Interaction to Proliferate the Dry Reforming of Methane Performance by In Situ Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12140-12148. [PMID: 35238550 DOI: 10.1021/acsami.1c20889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The strong bonding at the interface between the metal and the support, which can inhibit the undesirable aggregation of metal nanoparticles and carbon deposition from reforming of hydrocarbon, is well known as the classical strong metal-support interaction (SMSI). SMSI of nanocatalysts was significantly affected by heat treatment and reducing conditions during catalyst preparation.the heat treatment and reduction conditions during catalyst preparation. SMSI can be weakened by the decrement of metal-doped sites in the supporting oxide and can often deactivate catalysts by the encapsulation of active sites through these processes. To retain SMSI near the active sites and to enhance the catalytic activity of the nanocatalyst, it is essential to increase the number of surficial metal-doped sites between nanometal and the support. Herein, we propose a mild reduction process using dry methane (CH4/CO2) gas that suppresses the aggregation of nanoparticles and increases the exposed interface between the metal and support, Ni and cerium oxide. The effects of mild reduction on the chemical state of Ni-cerium oxide nanocatalysts were specifically investigated in this study. As a result, mild reduction led to form large amounts of the Ni3+ phase at the catalyst surface of which SMSI was significantly enhanced. It can be easily fabricated while the dry reforming of methane (DRM) reaction is on stream. The superior performance of the catalyst achieved a considerably high CH4 conversion rate of approximately 60% and stable operation up to 550 h at a low temperature, 600 °C.
Collapse
Affiliation(s)
- Ok Sung Jeon
- Department of Chemical and Bio-Molecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Hyesung Lee
- Department of Chemical and Bio-Molecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Vinod K Paidi
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Yunseong Ji
- Department of Chemical and Bio-Molecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | - Oh Chan Kwon
- Department of Chemical and Bio-Molecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Jeong Pil Kim
- Department of Chemical and Bio-Molecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Jae-Ha Myung
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Sang Yoon Park
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Young Joon Yoo
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Jin Goo Lee
- Advanced Energy Materials and Components R&D Group, Dongnam Division, Korea Institute of Industrial Technology, 33-1, Jungang-ro, Yangsan, Gyeongsangnam-do 50623, Republic of Korea
| | - Sang-Yup Lee
- Department of Chemical and Bio-Molecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Yong Gun Shul
- Department of Chemical and Bio-Molecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
37
|
Li T, Dong Q, Huang Z, Wu L, Yao Y, Gao J, Wang X, Zhang H, Wang D, Li T, Shahbazian-Yassar R, Hu L. Interface Engineering Between Multi-Elemental Alloy Nanoparticles and a Carbon Support Toward Stable Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106436. [PMID: 34875115 DOI: 10.1002/adma.202106436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Multi-elemental alloy (MEA) nanoparticles have recently received notable attention owing to their high activity and superior phase stability. Previous syntheses of MEA nanoparticles mainly used carbon as the support, owing to its high surface area, good electrical conductivity, and tunable defective sites. However, the interfacial stability issue, such as nanoparticle agglomeration, remains outstanding due to poor interfacial binding between MEA and carbon. Such a problem often causes performance decay when MEA nanoparticles are used as catalysts, hindering their practical applications. Herein, an interface engineering strategy is developed to synthesize MEA-oxide-carbon hierarchical catalysts, where the oxide on carbon helps disperse and stabilize the MEA nanoparticles toward superior thermal and electrochemical stability. Using several MEA compositions (PdRuRh, PtPdIrRuRh, and PdRuRhFeCoNi) and oxides (TiO2 and Cr2 O3 ) as model systems, it is shown that adding the oxide renders superior interfacial stability and therefore excellent catalytic performance. Excellent thermal stability is demonstrated under transmission electron microscopy with in situ heating up to 1023 K, as well as via long-term cycling (>370 hours) of a Li-O2 battery as a harsh electrochemical condition to challenge the catalyst stability. This work offers a new route toward constructing efficient and stable catalysts for various applications.
Collapse
Affiliation(s)
- Tangyuan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Qi Dong
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Zhennan Huang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Lianping Wu
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yonggang Yao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Jinlong Gao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Xizheng Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Haochuan Zhang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Dunwei Wang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Reza Shahbazian-Yassar
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
38
|
Plessow PN, Campbell CT. Influence of Adhesion on the Chemical Potential of Supported Nanoparticles as Modeled with Spherical Caps. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Philipp N. Plessow
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Charles T. Campbell
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
39
|
Zhou J, Gao Z, Xiang G, Zhai T, Liu Z, Zhao W, Liang X, Wang L. Interfacial compatibility critically controls Ru/TiO 2 metal-support interaction modes in CO 2 hydrogenation. Nat Commun 2022; 13:327. [PMID: 35039518 PMCID: PMC8764066 DOI: 10.1038/s41467-021-27910-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022] Open
Abstract
Supports can widely affect or even dominate the catalytic activity, selectivity, and stability of metal nanoparticles through various metal-support interactions (MSIs). However, underlying principles have not been fully understood yet, because MSIs are influenced by the composition, size, and facet of both metals and supports. Using Ru/TiO2 supported on rutile and anatase as model catalysts, we demonstrate that metal-support interfacial compatibility can critically control MSI modes and catalytic performances in CO2 hydrogenation. Annealing Ru/rutile-TiO2 in air can enhance CO2 conversion to methane resulting from enhanced interfacial coupling driven by matched lattices of RuOx with rutile-TiO2; annealing Ru/anatase-TiO2 in air decreases CO2 conversion and converts the product into CO owing to strong metal-support interaction (SMSI). Although rutile and anatase share the same chemical composition, we show that interfacial compatibility can basically modify metal-support coupling strength, catalyst morphology, surface atomic configuration, MSI mode, and catalytic performances of Ru/TiO2 in heterogeneous catalysis. Supports can largely affect the catalytic performance of metal nanoparticles, but the underlying principles are not yet fully understood. Here the authors demonstrate that metal-support interfacial compatibility of Ru/TiO2 can critically control the metal-support interaction modes and the catalytic performances in CO2 hydrogenation.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhe Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Road 27, Taiyuan, 030001, China
| | - Guolei Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tianyu Zhai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zikai Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weixin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
40
|
Mine S, Toyao T, Hinuma Y, Shimizu KI. Understanding and controlling the formation of surface anion vacancies for catalytic applications. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00014h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic computational efforts aimed at calculating surface anion vacancy formation energies as important descriptors of catalytic performance are summarized.
Collapse
Affiliation(s)
- Shinya Mine
- Institute for Catalysis, Hokkaido University, N-21, W-10, 1-5, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, 1-5, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Nishigyo, Kyoto 615-8520, Japan
| | - Yoyo Hinuma
- Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda 563-8577, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, 1-5, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Nishigyo, Kyoto 615-8520, Japan
| |
Collapse
|
41
|
Model Catalysis with HOPG-Supported Pd Nanoparticles and Pd Foil: XPS, STM and C2H4 Hydrogenation. Catal Letters 2021; 152:2892-2907. [PMID: 36196216 PMCID: PMC9525433 DOI: 10.1007/s10562-021-03868-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
A surface science based approach was applied to model carbon supported Pd nanoparticle catalysts. Employing physical vapour deposition of Pd on sputtered surfaces of highly oriented pyrolytic graphite (HOPG), model catalysts were prepared that are well-suited for characterization by X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Analysis of the HOPG substrate before and after ion-bombardment, and of Pd/HOPG before and after annealing, revealed the number of “nominal” HOPG defects (~ 1014 cm−2) as well as the nucleation density (~ 1012 cm−2) and structural characteristics of the Pd nanoparticles (mean size/height/distribution). Two model systems were stabilized by UHV annealing to 300 °C, with mean Pd particles sizes of 4.3 and 6.8 nm and size/height aspect ratio up to ~ 10. A UHV-compatible flow microreactor and gas chromatography were used to determine the catalytic performance of Pd/HOPG in ethylene (C2H4) hydrogenation up to 150 °C under atmospheric pressure, yielding temperature-dependent conversion values, turnover frequencies (TOFs) and activation energies. The performance of Pd nanocatalysts is compared to that of polycrystalline Pd foil and contrasted to Pt/HOPG and Pt foil, pointing to a beneficial effect of the metal/carbon phase boundary, reflected by up to 10 kJ mol−1 lower activation energies for supported nanoparticles.
Collapse
|
42
|
Lee S, Ha H, Bae KT, Kim S, Choi H, Lee J, Kim JH, Seo J, Choi JS, Jo YR, Kim BJ, Yang Y, Lee KT, Kim HY, Jung W. A measure of active interfaces in supported catalysts for high-temperature reactions. Chem 2021. [DOI: 10.1016/j.chempr.2021.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Maruyama T, Ohnari J, Tada K, Hinuma Y, Kawakami T, Yamanaka S, Okumura M. Extension of the Linear Response Function of Electron Density to a Plane-wave Basis and the First Application to Periodic Surface Systems. CHEM LETT 2021. [DOI: 10.1246/cl.210375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Maruyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jinta Ohnari
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kohei Tada
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yoyo Hinuma
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Takashi Kawakami
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shusuke Yamanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Mitsutaka Okumura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo Ohara, Nishikyo, Kyoto 615-8245, Japan
| |
Collapse
|
44
|
Grafting nanometer metal/oxide interface towards enhanced low-temperature acetylene semi-hydrogenation. Nat Commun 2021; 12:5770. [PMID: 34599160 PMCID: PMC8486880 DOI: 10.1038/s41467-021-25984-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/03/2021] [Indexed: 11/25/2022] Open
Abstract
Metal/oxide interface is of fundamental significance to heterogeneous catalysis because the seemingly “inert” oxide support can modulate the morphology, atomic and electronic structures of the metal catalyst through the interface. The interfacial effects are well studied over a bulk oxide support but remain elusive for nanometer-sized systems like clusters, arising from the challenges associated with chemical synthesis and structural elucidation of such hybrid clusters. We hereby demonstrate the essential catalytic roles of a nanometer metal/oxide interface constructed by a hybrid Pd/Bi2O3 cluster ensemble, which is fabricated by a facile stepwise photochemical method. The Pd/Bi2O3 cluster, of which the hybrid structure is elucidated by combined electron microscopy and microanalysis, features a small Pd-Pd coordination number and more importantly a Pd-Bi spatial correlation ascribed to the heterografting between Pd and Bi terminated Bi2O3 clusters. The intra-cluster electron transfer towards Pd across the as-formed nanometer metal/oxide interface significantly weakens the ethylene adsorption without compromising the hydrogen activation. As a result, a 91% selectivity of ethylene and 90% conversion of acetylene can be achieved in a front-end hydrogenation process with a temperature as low as 44 °C. Metal/oxide interface is of fundamental significance to heterogeneous catalysis. Here, the authors construct a nanometer Pd/Bi2O3 interface by grafting Pd clusters onto Bi2O3 clusters and demonstrate its essential roles in the low-temperature semi-hydrogenation of acetylene.
Collapse
|
45
|
Wei DY, Yue MF, Qin SN, Zhang S, Wu YF, Xu GY, Zhang H, Tian ZQ, Li JF. In Situ Raman Observation of Oxygen Activation and Reaction at Platinum-Ceria Interfaces during CO Oxidation. J Am Chem Soc 2021; 143:15635-15643. [PMID: 34541841 DOI: 10.1021/jacs.1c04590] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding the fundamental insights of oxygen activation and reaction at metal-oxide interfaces is of significant importance yet remains a major challenge due to the difficulty in in situ characterization of active oxygen species. Herein, the activation and reaction of molecular oxygen during CO oxidation at platinum-ceria interfaces has been in situ explored using surface-enhanced Raman spectroscopy (SERS) via a borrowing strategy, and different active oxygen species and their evolution during CO oxidation at platinum-ceria interfaces have been directly observed. In situ Raman spectroscopic evidence with isotopic exchange experiments demonstrate that oxygen is efficiently dissociated to chemisorbed O on Pt and lattice Ce-O species simultaneously at interfacial Ce3+ defect sites under CO oxidation, leading to a much higher activity at platinum-ceria interfaces compared to that at Pt alone. Further in situ time-resolved SERS studies and density functional theory simulations reveal a more efficient molecular pathway through the reaction between adsorbed CO and chemisorbed Pt-O species transferred from the interfaces. This work deepens the fundamental understandings on oxygen activation and CO oxidation at metal-oxide interfaces and offers a sensitive technique for the in situ characterization of oxygen species under working conditions.
Collapse
Affiliation(s)
- Di-Ye Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Mu-Fei Yue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Si-Na Qin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Sa Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yuan-Fei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Ge-Yang Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China.,College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
46
|
Tian FX, Zhu M, Liu X, Tu W, Han YF. Dynamic structure of highly disordered manganese oxide catalysts for low-temperature CO oxidation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Piccolo L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Dery S, Mehlman H, Hale L, Carmiel-Kostan M, Yemini R, Ben-Tzvi T, Noked M, Toste FD, Gross E. Site-Independent Hydrogenation Reactions on Oxide-Supported Au Nanoparticles Facilitated by Intraparticle Hydrogen Atom Diffusion. ACS Catal 2021; 11:9875-9884. [PMID: 35756326 PMCID: PMC9223368 DOI: 10.1021/acscatal.1c01987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/07/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Shahar Dery
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Hillel Mehlman
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Lillian Hale
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Mazal Carmiel-Kostan
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Reut Yemini
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - Tzipora Ben-Tzvi
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Malachi Noked
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Elad Gross
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
49
|
Rupprechter G. Operando Surface Spectroscopy and Microscopy during Catalytic Reactions: From Clusters via Nanoparticles to Meso-Scale Aggregates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004289. [PMID: 33694320 PMCID: PMC11475487 DOI: 10.1002/smll.202004289] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/16/2021] [Indexed: 05/16/2023]
Abstract
Operando characterization of working catalysts, requiring per definitionem the simultaneous measurement of catalytic performance, is crucial to identify the relevant catalyst structure, composition and adsorbed species. Frequently applied operando techniques are discussed, including X-ray absorption spectroscopy, near ambient pressure X-ray photoelectron spectroscopy and infrared spectroscopy. In contrast to these area-averaging spectroscopies, operando surface microscopy by photoemission electron microscopy delivers spatially-resolved data, directly visualizing catalyst heterogeneity. For thorough interpretation, the experimental results should be complemented by density functional theory. The operando approach enables to identify changes of cluster/nanoparticle structure and composition during ongoing catalytic reactions and reveal how molecules interact with surfaces and interfaces. The case studies cover the length-scales from clusters via nanoparticles to meso-scale aggregates, and demonstrate the benefits of specific operando methods. Restructuring, ligand/atom mobility, and surface composition alterations during the reaction may have pronounced effects on activity and selectivity. The nanoscale metal/oxide interface steers catalytic performance via a long ranging effect. Combining operando spectroscopy with switching gas feeds or concentration-modulation provides further mechanistic insights. The obtained fundamental understanding is a prerequisite for improving catalytic performance and for rational design.
Collapse
Affiliation(s)
- Günther Rupprechter
- Institute of Materials ChemistryTechnische Universität WienGetreidemarkt 9/BC/01Vienna1060Austria
| |
Collapse
|
50
|
Suchorski Y, Zeininger J, Buhr S, Raab M, Stöger-Pollach M, Bernardi J, Grönbeck H, Rupprechter G. Resolving multifrequential oscillations and nanoscale interfacet communication in single-particle catalysis. Science 2021; 372:1314-1318. [PMID: 34016741 DOI: 10.1126/science.abf8107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/17/2021] [Accepted: 05/05/2021] [Indexed: 11/02/2022]
Abstract
In heterogeneous catalysis research, the reactivity of individual nanofacets of single particles is typically not resolved. We applied in situ field electron microscopy to the apex of a curved rhodium crystal (radius of 650 nanometers), providing high spatial (~2 nanometers) and time resolution (~2 milliseconds) of oscillatory catalytic hydrogen oxidation, to image adsorbed species and reaction fronts on the individual facets. Using ionized water as the imaging species, the active sites were directly imaged with field ion microscopy. The catalytic behavior of differently structured nanofacets and the extent of coupling between them were monitored individually. We observed limited interfacet coupling, entrainment, frequency locking, and reconstruction-induced collapse of spatial coupling. The experimental results are backed up by microkinetic modeling of time-dependent oxygen species coverages and oscillation frequencies.
Collapse
Affiliation(s)
- Y Suchorski
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - J Zeininger
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - S Buhr
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - M Raab
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - M Stöger-Pollach
- University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - J Bernardi
- University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - H Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - G Rupprechter
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
| |
Collapse
|