1
|
Cylke A, Banerjee S. Mechanistic basis for non-exponential bacterial growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.29.646116. [PMID: 40236093 PMCID: PMC11996336 DOI: 10.1101/2025.03.29.646116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Bacterial populations typically exhibit exponential growth under resource-rich conditions, yet individual cells often deviate from this pattern. Recent work has shown that the elongation rates of Escherichia coli and Caulobacter crescentus increase throughout the cell cycle (super-exponential growth), while Bacillus subtilis displays a mid-cycle minimum (convex growth), and Mycobacterium tuberculosis grows linearly. Here, we develop a single-cell model linking gene expression, proteome allocation, and mass growth to explain these diverse growth trajectories. By calibrating model parameters with experimental data, we show that DNA-proportional mRNA transcription produces near-exponential growth, whereas deviations from this proportionality yield the observed non-exponential growth patterns. Analysis of gene expression perturbations reveals that ribosome expression primarily controls dry mass growth rate, whereas envelope expression more strongly affects cell elongation rate. Fitting our model to single-cell experimental data reproduces convex, super-exponential, and linear modes of growth, demonstrating how envelope and ribosome expression schedules drive cell-cycle-specific behaviors. These findings provide a mechanistic basis for non-exponential single-cell growth and offer insights into how bacterial cells dynamically regulate elongation rates within each generation.
Collapse
|
2
|
Khan E, Mera PE. Cell size regulation in bacteria: a tale of old regulators with new mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.639668. [PMID: 40027726 PMCID: PMC11870628 DOI: 10.1101/2025.02.22.639668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Proper function in a bacterial cell relies on intrinsic cell size regulation. The molecular mechanisms underlying how bacteria maintain their cell size remain unclear. The conserved regulator DnaA, the initiator of chromosome replication, is associated to size regulation by controlling the number of origins of replication ( oriC ) per cell. In this study, we identify and characterize a new mechanism in which DnaA modulates cell size independently of oriC -copy number. By altering the levels of DnaA without impacting chromosome replication, we demonstrate that DnaA's activity as a transcription factor can slow down cell elongation rate resulting in cells that are ∼20% smaller. We identify the peptidoglycan biosynthetic enzyme MurD as a key player of cell size regulation in Caulobacter crescentus and in the evolutionarily distant bacterium Escherichia coli . Collectively, our findings provide mechanistic insights to the complex regulation of cell size in bacteria.
Collapse
Affiliation(s)
- Ezza Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paola E. Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Herrick J, Norris V, Kohiyama M. 60 Years of Studies into the Initiation of Chromosome Replication in Bacteria. Biomolecules 2025; 15:203. [PMID: 40001506 PMCID: PMC11853086 DOI: 10.3390/biom15020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
The Replicon Theory has guided the way experiments into DNA replication have been designed and interpreted for 60 years. As part of the related, explanatory package guiding experiments, it is thought that the timing of the cell cycle depends in some way on a critical mass for initiation, Mi, as licensed by a variety of macromolecules and molecules reflecting the state of the cell. To help in the re-interpretation of this data, we focus mainly on the roles of DnaA, RNA polymerase, SeqA, and ribonucleotide reductase in the context of the "nucleotypic effect".
Collapse
Affiliation(s)
- John Herrick
- Independent Researcher, 3 rue des Jeûneurs, 75002 Paris, France;
| | - Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76000 Rouen, France
| | - Masamichi Kohiyama
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France;
| |
Collapse
|
4
|
Namboodiri SK, Aranovich A, Hadad U, Gheber LA, Feingold M, Fishov I. Relative Distribution of DnaA and DNA in Escherichia coli Cells as a Factor of Their Phenotypic Variability. Int J Mol Sci 2025; 26:464. [PMID: 39859179 PMCID: PMC11765206 DOI: 10.3390/ijms26020464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Phenotypic variability in isogenic bacterial populations is a remarkable feature that helps them cope with external stresses, yet it is incompletely understood. This variability can stem from gene expression noise and/or the unequal partitioning of low-copy-number freely diffusing proteins during cell division. Some high-copy-number components are transiently associated with almost immobile large assemblies (hyperstructures) and may be unequally distributed, contributing to bacterial phenotypic variability. We focus on the nucleoid hyperstructure containing numerous DNA-associated proteins, including the replication initiator DnaA. Previously, we found an increasing asynchrony in the nucleoid segregation dynamics in growing E. coli cell lineages and suggested that variable replication initiation timing may be the main cause of this phenomenon. Here, we support this hypothesis revealing that DnaA/DNA variability represents a key factor leading to the enhanced asynchrony in E. coli. We followed the intra- and intercellular distribution of fluorescently tagged DnaA and histone-like HU chromosomally encoded under their native promoters. The diffusion rate of DnaA is low, corresponding to a diffusion-binding mode of mobility, but still one order faster than that of HU. The intracellular distribution of DnaA concentration is homogeneous in contrast to the significant asymmetry in the distribution of HU to the cell halves, leading to the unequal DNA content of nucleoids and DnaA/DNA ratios in future daughter compartments. Accordingly, the intercellular variabilities in HU concentration (CV = 26%) and DnaA/DNA ratio (CV = 18%) are high. The variable DnaA/DNA may cause a variable replication initiation time (initiation noise). Asynchronous initiation at different replication origins may, in turn, be the mechanism leading to the observed asymmetric intracellular DNA distribution. Our findings indicate that the feature determining the variability of the initiation time in E. coli is the DnaA/DNA ratio, rather than each of them separately. We provide a likely mechanism for the 'loss of segregation synchrony' phenomenon.
Collapse
Affiliation(s)
- Sharanya K. Namboodiri
- Department of Physics, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel; (S.K.N.); (A.A.); (M.F.)
| | - Alexander Aranovich
- Department of Physics, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel; (S.K.N.); (A.A.); (M.F.)
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science & Technology, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Levi A. Gheber
- Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Mario Feingold
- Department of Physics, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel; (S.K.N.); (A.A.); (M.F.)
- Ilse Katz Institute for Nanoscale Science & Technology, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Itzhak Fishov
- Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
5
|
Li F, Yu H, Zhang B, Hu C, Lan F, Wang Y, You Z, Liu Q, Tang R, Zhang J, Li C, Shi L, Li W, Nealson KH, Liu Z, Song H. Engineered Cell Elongation Promotes Extracellular Electron Transfer of Shewanella Oneidensis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403067. [PMID: 39234800 PMCID: PMC11538702 DOI: 10.1002/advs.202403067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
To investigate how cell elongation impacts extracellular electron transfer (EET) of electroactive microorganisms (EAMs), the division of model EAM Shewanella oneidensis (S. oneidensis) MR-1 is engineered by reducing the formation of cell divisome. Specially, by blocking the translation of division proteins via anti-sense RNAs or expressing division inhibitors, the cellular length and output power density are all increased. Electrophysiological and transcriptomic results synergistically reveal that the programmed cell elongation reinforces EET by enhancing NADH oxidation, inner-membrane quinone pool, and abundance of c-type cytochromes. Moreover, cell elongation enhances hydrophobicity due to decreased cell-surface polysaccharide, thus facilitates the initial surface adhesion stage during biofilm formation. The output current and power density all increase in positive correction with cellular length. However, inhibition of cell division reduces cell growth, which is then restored by quorum sensing-based dynamic regulation of cell growth and elongation phases. The QS-regulated elongated strain thus enables a cell length of 143.6 ± 40.3 µm (72.6-fold of that of S. oneidensis MR-1), which results in an output power density of 248.0 ± 10.6 mW m-2 (3.41-fold of that of S. oneidensis MR-1) and exhibits superior potential for pollutant treatment. Engineering cellular length paves an innovate avenue for enhancing the EET of EAMs.
Collapse
Affiliation(s)
- Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Baocai Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Chaoning Hu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Fei Lan
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Zixuan You
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Rui Tang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Chao Li
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Liang Shi
- Department of Biological Sciences and TechnologySchool of Environmental StudiesChina University of Geoscience in WuhanWuhanHubei430074China
| | - Wen‐Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant ConversionDepartment of Environmental Science and EngineeringUniversity of Science & Technology of ChinaHefei230026China
| | - Kenneth H. Nealson
- Departments of Earth Science & Biological SciencesUniversity of Southern California4953 Harriman Ave.South PasadenaCA91030USA
| | - ZhanYing Liu
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner MongoliaEngineering Research Center of Inner Mongolia for Green Manufacturing in Bio‐fermentation Industryand School of Chemical EngineeringInner Mongolia University of TechnologyInner MongoliaHohhot010051China
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
6
|
Li H, Yang X. Effect of Surface Morphologies on the In Vitro and In Vivo Properties of Biomedical Metallic Materials. ACS Biomater Sci Eng 2024; 10:6017-6028. [PMID: 39269725 DOI: 10.1021/acsbiomaterials.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Metallic biomaterials, including traditional bioinert materials (such as stainless steel, cobalt-chromium alloys, pure titanium, and titanium alloys), novel biodegradable metals (such as pure magnesium and magnesium alloys, pure zinc and zinc alloys, and pure iron and iron alloys), and biomedical metallic glasses, have been widely used and studied as various biomedical implants and devices. Many scientists and researchers have investigated their superior biomechanical properties, corrosion behavior, and biocompatibility. However, their surface characteristics are of extreme importance due to continuing interactions between the surface/interface of an implanted metallic biomaterial and the surrounding physiological environment. Surface morphologies on these metallic biomaterials can modulate their in vitro and in vivo biological responses. In this review, we have summarized and investigated the effect of various surface morphologies on the corrosion behavior, cellular response, antibacterial activity, and osteogenesis of biomedical metallic materials. In addition, future research directions and challenges of surface morphologies on biomedical metallic materials have been elaborated. This review can lay a theoretical and practical foundation for further research and development on biomedical metallic materials.
Collapse
Affiliation(s)
- Huafang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xuan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Norris V. Hunting the Cell Cycle Snark. Life (Basel) 2024; 14:1213. [PMID: 39459514 PMCID: PMC11509034 DOI: 10.3390/life14101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
In this very personal hunt for the meaning of the bacterial cell cycle, the snark, I briefly revisit and update some of the mechanisms we and many others have proposed to regulate the bacterial cell cycle. These mechanisms, which include the dynamics of calcium, membranes, hyperstructures, and networks, are based on physical and physico-chemical concepts such as ion condensation, phase transition, crowding, liquid crystal immiscibility, collective vibrational modes, reptation, and water availability. I draw on ideas from subjects such as the 'prebiotic ecology' and phenotypic diversity to help with the hunt. Given the fundamental nature of the snark, I would expect that its capture would make sense of other parts of biology. The route, therefore, followed by the hunt has involved trying to answer questions like "why do cells replicate their DNA?", "why is DNA replication semi-conservative?", "why is DNA a double helix?", "why do cells divide?", "is cell division a spandrel?", and "how are catabolism and anabolism balanced?". Here, I propose some relatively unexplored, experimental approaches to testing snark-related hypotheses and, finally, I propose some possibly original ideas about DNA packing, about phase separations, and about computing with populations of virtual bacteria.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76000 Rouen, France
| |
Collapse
|
8
|
Greene J, Snyder RA, Cotten KL, Huiszoon RC, Chu S, Braza RED, Chapin AA, Stine JM, Bentley WE, Ghodssi R, Davis KM. Yersinia pseudotuberculosis growth arrest during type-III secretion system expression is associated with altered ribosomal protein expression and decreased gentamicin susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610769. [PMID: 39282321 PMCID: PMC11398311 DOI: 10.1101/2024.09.02.610769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
It has been long appreciated that expression of the Yersinia type-III secretion system (T3SS) in culture is associated with growth arrest. Here we sought to understand whether this impacts expression of ribosomal protein genes, which were among the most highly abundant transcripts in exponential phase Yersinia pseudotuberculosis based on RNA-seq analysis. To visualize changes in ribosomal protein expression, we generated a fluorescent transcriptional reporter with the promoter upstream of rpsJ/S10 fused to a destabilized gfp variant. We confirmed reporter expression significantly increases in exponential phase and decreases as cells transition to stationary phase. We then utilized a mouse model of systemic Y. pseudotuberculosis infection to compare T3SS and S10 reporter expression during clustered bacterial growth in the spleen, and found that cells expressing high levels of the T3SS had decreased S10 levels, while cells with lower T3SS expression retained higher S10 expression. In bacteriological media, growth inhibition with T3SS induction and a reduction in S10 expression were observed in subsets of cells, while cells with high expression of both T3SS and S10 were also observed. Loss of T3SS genes resulted in rescued growth and heightened S10 expression. To understand if clustered growth impacted bacterial gene expression, we utilized droplet-based microfluidics to encapsulate bacteria in spherical agarose droplets, and also observed growth inhibition with high expression of T3SS and reduced S10 levels that better mirrored phenotypes observed in the mouse spleen. Finally, we show that T3SS expression is sufficient to promote tolerance to the ribosome-targeting antibiotic, gentamicin. Collectively, these data indicate that the growth arrest associated with T3SS induction leads to decreased expression of ribosomal protein genes, and this results in reduced antibiotic susceptibility.
Collapse
Affiliation(s)
- Justin Greene
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rhett A. Snyder
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Katherine L. Cotten
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ryan C. Huiszoon
- Institute for Systems Research, University of Maryland, College Park, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Sangwook Chu
- Institute for Systems Research, University of Maryland, College Park, MD, USA
| | - Rezia Era D. Braza
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley A. Chapin
- Institute for Systems Research, University of Maryland, College Park, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Justin M. Stine
- Institute for Systems Research, University of Maryland, College Park, MD, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Reza Ghodssi
- Institute for Systems Research, University of Maryland, College Park, MD, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Kimberly M. Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
9
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
10
|
Boesen TO, Charbon G, Fu H, Jensen C, Sandler M, Jun S, Løbner-Olesen A. Dispensability of extrinsic DnaA regulators in Escherichia coli cell-cycle control. Proc Natl Acad Sci U S A 2024; 121:e2322772121. [PMID: 40014855 PMCID: PMC11331064 DOI: 10.1073/pnas.2322772121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/26/2024] [Indexed: 03/01/2025] Open
Abstract
Investigating a long-standing conceptual question in bacterial physiology, we examine why DnaA, the bacterial master replication initiator protein, exists in both ATP and ADP forms, despite only the ATP form being essential for initiation. We engineered the Δ4 Escherichia coli strain, devoid of all known external elements facilitating the DnaA-ATP/ADP conversion and found that these cells display nearly wild-type behaviors under nonoverlapping replication cycles. However, during rapid growth with overlapping cycles, Δ4 cells exhibit initiation instability. This aligns with our model predictions, suggesting that the intrinsic ATPase activity of DnaA alone is sufficient for robust initiation control in E. coli and the DnaA-ATP/ADP conversion regulatory elements extend the robustness to multifork replication, indicating an evolutionary adaptation. Moreover, our experiments revealed constant DnaA concentrations during steady-state cell elongation in both wild-type and Δ4 cells. These insights not only advance our understanding of bacterial cell-cycle regulation and DnaA but also highlight a fundamental divergence from eukaryotic cell-cycle controls, emphasizing protein copy-number sensing in bacteria versus programmed protein concentration oscillations in eukaryotes.
Collapse
Affiliation(s)
- Thias Oberg Boesen
- Department of Biology, University of Copenhagen, Copenhagen2200, Denmark
| | - Godefroid Charbon
- Department of Biology, University of Copenhagen, Copenhagen2200, Denmark
| | - Haochen Fu
- Department of Physics, University of California San Diego, La Jolla, CA92093
| | - Cara Jensen
- Department of Physics, University of California San Diego, La Jolla, CA92093
| | - Michael Sandler
- Department of Physics, University of California San Diego, La Jolla, CA92093
| | - Suckjoon Jun
- Department of Physics, University of California San Diego, La Jolla, CA92093
| | | |
Collapse
|
11
|
Iuliani I, Mbemba G, Lagomarsino MC, Sclavi B. Direct single-cell observation of a key Escherichia coli cell-cycle oscillator. SCIENCE ADVANCES 2024; 10:eado5398. [PMID: 39018394 PMCID: PMC466948 DOI: 10.1126/sciadv.ado5398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
Initiation of DNA replication in Escherichia coli is coupled to cell size via the DnaA protein, whose activity is dependent on its nucleotide-bound state. However, the oscillations in DnaA activity have never been observed at the single-cell level. By measuring the volume-specific production rate of a reporter protein under control of a DnaA-regulated promoter, we could distinguish two distinct cell-cycle oscillators. The first, driven by both DnaA activity and SeqA repression, shows a causal relationship with cell size and divisions, similarly to initiation events. The second one, a reporter of DnaA activity alone, loses the synchrony and causality properties. Our results show that transient inhibition of gene expression by SeqA keeps the oscillation of volume-sensing DnaA activity in phase with the subsequent division event and suggest that DnaA activity peaks do not correspond directly to initiation events.
Collapse
Affiliation(s)
- Ilaria Iuliani
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, 91190 Gif-sur-Yvette, France
- LCQB, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Gladys Mbemba
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Marco Cosentino Lagomarsino
- IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, and I.N.F.N, Via Celoria 16, 20133 Milan, Italy
| | - Bianca Sclavi
- LCQB, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
12
|
Wu L, Zhang Y, Hong X, Wu M, Wang L, Yan X. Deciphering the Relationship between Cell Growth and Cell Cycle in Individual Escherichia coli Cells by Flow Cytometry. Anal Chem 2024. [PMID: 39015018 DOI: 10.1021/acs.analchem.4c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Accurate coordination of chromosome replication and cell division is essential for cellular processes, yet the regulatory mechanisms governing the bacterial cell cycle remain contentious. The lack of quantitative data connecting key cell cycle players at the single-cell level across large samples hinders consensus. Employing high-throughput flow cytometry, we quantitatively correlated the expression levels of key cell cycle proteins (FtsZ, MreB, and DnaA) with DNA content in individual bacteria. Our findings reveal distinct correlations depending on the chromosome number (CN), specifically whether CN ≤2 or ≥4, unveiling a mixed regulatory scenario in populations where CN of 2 or 4 coexist. We observed function-dependent regulations for these key proteins across nonoverlapping division cycles and various nutrient conditions. Notably, a logarithmic relationship between total protein content and replication origin number across nutrient conditions suggests a unified mechanism governing cell cycle progression, confirming the applicability of Schaechter's growth law to cells with CN ≥4. For the first time, we established a proportional relationship between the synthesis rates of key cell cycle proteins and chromosome dynamics in cells with CN ≥4. Drug experiments highlighted CN 2 and 4 as pivotal turning points influencing cellular resource allocation. This high-throughput, single-cell analysis provides interconnected quantitative insights into key molecular events, facilitating a predictive understanding of the relationship between cell growth and cell cycle.
Collapse
Affiliation(s)
- Lina Wu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuzhen Zhang
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xinyi Hong
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Mingkai Wu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Liangan Wang
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
13
|
Nieto C, Vargas-García CA, Pedraza JM, Singh A. Mechanisms of cell size regulation in slow-growing Escherichia coli cells: discriminating models beyond the adder. NPJ Syst Biol Appl 2024; 10:61. [PMID: 38811603 PMCID: PMC11137094 DOI: 10.1038/s41540-024-00383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Under ideal conditions, Escherichia coli cells divide after adding a fixed cell size, a strategy known as the adder. This concept applies to various microbes and is often explained as the division that occurs after a certain number of stages, associated with the accumulation of precursor proteins at a rate proportional to cell size. However, under poor media conditions, E. coli cells exhibit a different size regulation. They are smaller and follow a sizer-like division strategy where the added size is inversely proportional to the size at birth. We explore three potential causes for this deviation: degradation of the precursor protein and two models where the propensity for accumulation depends on the cell size: a nonlinear accumulation rate, and accumulation starting at a threshold size termed the commitment size. These models fit the mean trends but predict different distributions given the birth size. To quantify the precision of the models to explain the data, we used the Akaike information criterion and compared them to open datasets of slow-growing E. coli cells in different media. We found that none of the models alone can consistently explain the data. However, the degradation model better explains the division strategy when cells are larger, whereas size-related models (power-law and commitment size) account for smaller cells. Our methodology proposes a data-based method in which different mechanisms can be tested systematically.
Collapse
Affiliation(s)
- César Nieto
- Department of Physics, Universidad de los Andes, Bogotá, Colombia
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, 19716, USA
| | | | | | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, 19716, USA.
- Department of Electrical and Computer Engineering, Biomedical Engineering, Mathematical Sciences, Center of Bioinformatic and Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
14
|
Hallgren J, Jonas K. Nutritional control of bacterial DNA replication. Curr Opin Microbiol 2024; 77:102403. [PMID: 38035509 DOI: 10.1016/j.mib.2023.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
All cells must ensure precise regulation of DNA replication initiation in coordination with growth rate and in response to nutrient availability. According to a long-standing model, DNA replication initiation is tightly coupled to cell mass increase in bacteria. Despite controversies regarding this model, recent studies have provided additional support of this idea. The exact molecular mechanisms linking cell growth with DNA replication under different nutrient conditions remain elusive. However, recent studies in Caulobacter crescentus and Escherichia coli have provided insights into the regulation of DNA replication initiation in response to starvation. These mechanisms include the starvation-dependent regulation of DnaA abundance as well as mechanisms involving the small signaling molecule (p)ppGpp. In this review, we discuss these mechanisms in the context of previous findings. We highlight species-dependent similarities and differences and consider the precise growth conditions, in which the different mechanisms are active.
Collapse
Affiliation(s)
- Joel Hallgren
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Kristina Jonas
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
15
|
Govers SK, Campos M, Tyagi B, Laloux G, Jacobs-Wagner C. Apparent simplicity and emergent robustness in the control of the Escherichia coli cell cycle. Cell Syst 2024; 15:19-36.e5. [PMID: 38157847 DOI: 10.1016/j.cels.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/15/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
To examine how bacteria achieve robust cell proliferation across diverse conditions, we developed a method that quantifies 77 cell morphological, cell cycle, and growth phenotypes of a fluorescently labeled Escherichia coli strain and >800 gene deletion derivatives under multiple nutrient conditions. This approach revealed extensive phenotypic plasticity and deviating mutant phenotypes were often nutrient dependent. From this broad phenotypic landscape emerged simple and robust unifying rules (laws) that connect DNA replication initiation, nucleoid segregation, FtsZ ring formation, and cell constriction to specific aspects of cell size (volume, length, or added length) at the population level. Furthermore, completion of cell division followed the initiation of cell constriction after a constant time delay across strains and nutrient conditions, identifying cell constriction as a key control point for cell size determination. Our work provides a population-level description of the governing principles by which E. coli integrates cell cycle processes and growth rate with cell size to achieve its robust proliferative capability. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Sander K Govers
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; de Duve Institute, UCLouvain, Brussels, Belgium; Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuel Campos
- Centre de Biologie Intégrative de Toulouse, Laboratoire de Microbiologie et Génétique Moléculaires, Université de Toulouse, Toulouse, France
| | - Bhavyaa Tyagi
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan Chemistry, Engineering Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Abstract
With the advantages of simple genetic composition, low metabolic background, low energy waste, and high genetic stability, genome-reduced strains, as promising functional chassis, have become an intensive direction for constructing potent biosynthesis factories. Herein, an innovative Genome-Reduced strain-based Active Cell-free Easy-to-make-protein (GRACE) system is built as minimal transcription-translation machinery. In this study, two Escherichia coli genome-reduced strains, ΔW3110 and ΔMG1655, with genome reduction of 11.53% and 37.85%, are fused with the cell-free transcription-translation (CFTT) system. The GRACE systems perform better than the corresponding CFTT systems derived from their parental strains in representative valuable applications, such as the expression and solubilization of membrane proteins or protein polymers, biosensing of inorganic or organic molecules based on different principles, and unnatural amino acid embedding. Obviously, the GRACE system has provided a brand-new enabling platform for cell-free transcription-translation basic and applied studies and also would inspire the potential of genome-reduced strains for versatile applications.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Roller BRK, Hellerschmied C, Wu Y, Miettinen TP, Gomez AL, Manalis SR, Polz MF. Single-cell mass distributions reveal simple rules for achieving steady-state growth. mBio 2023; 14:e0158523. [PMID: 37671861 PMCID: PMC10653891 DOI: 10.1128/mbio.01585-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023] Open
Abstract
IMPORTANCE Microbiologists have watched clear liquid turn cloudy for over 100 years. While the cloudiness of a culture is proportional to its total biomass, growth rates from optical density measurements are challenging to interpret when cells change size. Many bacteria adjust their size at different steady-state growth rates, but also when shifting between starvation and growth. Optical density cannot disentangle how mass is distributed among cells. Here, we use single-cell mass measurements to demonstrate that a population of cells in batch culture achieves a stable mass distribution for only a short period of time. Achieving steady-state growth in rich medium requires low initial biomass concentrations and enough time for individual cell mass accumulation and cell number increase via cell division to balance out. Steady-state growth is important for reliable cell mass distributions and experimental reproducibility. We discuss how mass variation outside of steady-state can impact physiology, ecology, and evolution experiments.
Collapse
Affiliation(s)
- Benjamin R. K. Roller
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Cathrine Hellerschmied
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Yanqi Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Annika L. Gomez
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Martin F. Polz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Nieto C, Vargas-García C, Pedraza JM, Singh A. Mechanisms of Cell Size Regulation in Slow-Growing Escherichia coli Cells: Discriminating Models Beyond the Adder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557238. [PMID: 37745550 PMCID: PMC10515837 DOI: 10.1101/2023.09.11.557238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Under ideal conditions, Escherichia coli cells divide after adding a fixed cell size, a strategy known as the adder. This concept applies to various microbes and is often explained as the division that occurs after a certain number of stages, associated with the accumulation of precursor proteins at a rate proportional to cell size. However, under poor media conditions, E. coli cells exhibit a different size regulation. They are smaller and follow a sizer-like division strategy where the added size is inversely proportional to the size at birth. We explore three potential causes for this deviation: precursor protein degradation, nonlinear accumulation rate, and a threshold size termed the commitment size. These models fit mean trends but predict different distributions given the birth size. To validate these models, we used the Akaike information criterion and compared them to open datasets of slow-growing E. coli cells in different media. the degradation model could explain the division strategy for media where cells are larger, while the commitment size model could account for smaller cells. The power-law model, finally, better fits the data at intermediate regimes.
Collapse
Affiliation(s)
- César Nieto
- Department of Physics, Universidad de los Andes, Bogotá, Colombia
- Department of Electrical and Computing Engineering, University of Delaware. Newark, DE 19716, USA
| | - César Vargas-García
- AGROSAVIA Corporación Colombiana de Investigación Agropecuaria. Mosquera. Colombia
| | | | - Abhyudai Singh
- Department of Electrical and Computing Engineering, University of Delaware. Newark, DE 19716, USA
| |
Collapse
|
19
|
Zhu J, Chu P, Fu X. Unbalanced response to growth variations reshapes the cell fate decision landscape. Nat Chem Biol 2023; 19:1097-1104. [PMID: 36959461 DOI: 10.1038/s41589-023-01302-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/27/2023] [Indexed: 03/25/2023]
Abstract
The global regulation of cell growth rate on gene expression perturbs the performance of gene networks, which would impose complex variations on the cell-fate decision landscape. Here we use a simple synthetic circuit of mutual repression that allows a bistable landscape to examine how such global regulation would affect the stability of phenotypic landscape and the accompanying dynamics of cell-fate determination. We show that the landscape experiences a growth-rate-induced bifurcation between monostability and bistability. Theoretical and experimental analyses reveal that this bifurcating deformation of landscape arises from the unbalanced response of gene expression to growth variations. The path of growth transition across the bifurcation would reshape cell-fate decisions. These results demonstrate the importance of growth regulation on cell-fate determination processes, regardless of specific molecular signaling or regulation.
Collapse
Affiliation(s)
- Jingwen Zhu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pan Chu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiongfei Fu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Zhang XE, Liu C, Dai J, Yuan Y, Gao C, Feng Y, Wu B, Wei P, You C, Wang X, Si T. Enabling technology and core theory of synthetic biology. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1742-1785. [PMID: 36753021 PMCID: PMC9907219 DOI: 10.1007/s11427-022-2214-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 02/09/2023]
Abstract
Synthetic biology provides a new paradigm for life science research ("build to learn") and opens the future journey of biotechnology ("build to use"). Here, we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology, including synthesis and assembly of a genome, DNA storage, gene editing, molecular evolution and de novo design of function proteins, cell and gene circuit engineering, cell-free synthetic biology, artificial intelligence (AI)-aided synthetic biology, as well as biofoundries. We also introduce the concept of quantitative synthetic biology, which is guiding synthetic biology towards increased accuracy and predictability or the real rational design. We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.
Collapse
Affiliation(s)
- Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chenli Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Junbiao Dai
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Wei
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Tong Si
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
21
|
Fu H, Xiao F, Jun S. Bacterial Replication Initiation as Precision Control by Protein Counting. PRX LIFE 2023; 1:013011. [PMID: 38550259 PMCID: PMC10977104 DOI: 10.1103/prxlife.1.013011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Balanced biosynthesis is the hallmark of bacterial cell physiology, where the concentrations of stable proteins remain steady. However, this poses a conceptual challenge to modeling the cell-cycle and cell-size controls in bacteria, as prevailing concentration-based eukaryote models are not directly applicable. In this study, we revisit and significantly extend the initiator-titration model, proposed 30 years ago, and we explain how bacteria precisely and robustly control replication initiation based on the mechanism of protein copy-number sensing. Using a mean-field approach, we first derive an analytical expression of the cell size at initiation based on three biological mechanistic control parameters for an extended initiator-titration model. We also study the stability of our model analytically and show that initiation can become unstable in multifork replication conditions. Using simulations, we further show that the presence of the conversion between active and inactive initiator protein forms significantly represses initiation instability. Importantly, the two-step Poisson process set by the initiator titration step results in significantly improved initiation synchrony with C V ~ 1 / N scaling rather than the standard 1 / N scaling in the Poisson process, where N is the total number of initiators required for initiation. Our results answer two long-standing questions in replication initiation: (i) Why do bacteria produce almost two orders of magnitude more DnaA, the master initiator proteins, than required for initiation? (ii) Why does DnaA exist in active (DnaA-ATP) and inactive (DnaA-ADP) forms if only the active form is competent for initiation? The mechanism presented in this work provides a satisfying general solution to how the cell can achieve precision control without sensing protein concentrations, with broad implications from evolution to the design of synthetic cells.
Collapse
Affiliation(s)
- Haochen Fu
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Fangzhou Xiao
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Suckjoon Jun
- Department of Physics and Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
22
|
Fu H, Xiao F, Jun S. Replication initiation in bacteria: precision control based on protein counting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542547. [PMID: 37292844 PMCID: PMC10246017 DOI: 10.1101/2023.05.26.542547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Balanced biosynthesis is the hallmark of bacterial cell physiology, where the concentrations of stable proteins remain steady. However, this poses a conceptual challenge to modeling the cell-cycle and cell-size controls in bacteria, as prevailing concentration-based eukaryote models are not directly applicable. In this study, we revisit and significantly extend the initiator-titration model, proposed thirty years ago, and explain how bacteria precisely and robustly control replication initiation based on the mechanism of protein copy-number sensing. Using a mean-field approach, we first derive an analytical expression of the cell size at initiation based on three biological mechanistic control parameters for an extended initiator-titration model. We also study the stability of our model analytically and show that initiation can become unstable in multifork replication conditions. Using simulations, we further show that the presence of the conversion between active and inactive initiator protein forms significantly represses initiation instability. Importantly, the two-step Poisson process set by the initiator titration step results in significantly improved initiation synchrony with C V ~ 1 / N scaling rather than the standard 1 / N scaling in the Poisson process, where N is the total number of initiators required for initiation. Our results answer two long-standing questions in replication initiation: (1) Why do bacteria produce almost two orders of magnitude more DnaA, the master initiator proteins, than required for initiation? (2) Why does DnaA exist in active (DnaA-ATP) and inactive (DnaA-ADP) forms if only the active form is competent for initiation? The mechanism presented in this work provides a satisfying general solution to how the cell can achieve precision control without sensing protein concentrations, with broad implications from evolution to the design of synthetic cells.
Collapse
Affiliation(s)
- Haochen Fu
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Fangzhou Xiao
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Suckjoon Jun
- Department of Physics and Department of Molecular Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| |
Collapse
|
23
|
Knöppel A, Broström O, Gras K, Elf J, Fange D. Regulatory elements coordinating initiation of chromosome replication to the Escherichia coli cell cycle. Proc Natl Acad Sci U S A 2023; 120:e2213795120. [PMID: 37220276 PMCID: PMC10235992 DOI: 10.1073/pnas.2213795120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/07/2023] [Indexed: 05/25/2023] Open
Abstract
Escherichia coli coordinates replication and division cycles by initiating replication at a narrow range of cell sizes. By tracking replisomes in individual cells through thousands of division cycles in wild-type and mutant strains, we were able to compare the relative importance of previously described control systems. We found that accurate triggering of initiation does not require synthesis of new DnaA. The initiation size increased only marginally as DnaA was diluted by growth after dnaA expression had been turned off. This suggests that the conversion of DnaA between its active ATP- and inactive ADP-bound states is more important for initiation size control than the total free concentration of DnaA. In addition, we found that the known ATP/ADP converters DARS and datA compensate for each other, although the removal of them makes the initiation size more sensitive to the concentration of DnaA. Only disruption of the regulatory inactivation of DnaA mechanism had a radical impact on replication initiation. This result was corroborated by the finding that termination of one round of replication correlates with the next initiation at intermediate growth rates, as would be the case if RIDA-mediated conversion from DnaA-ATP to DnaA-ADP abruptly stops at termination and DnaA-ATP starts accumulating.
Collapse
Affiliation(s)
- Anna Knöppel
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala75124, Sweden
| | - Oscar Broström
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala75124, Sweden
| | - Konrad Gras
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala75124, Sweden
| | - Johan Elf
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala75124, Sweden
| | - David Fange
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala75124, Sweden
| |
Collapse
|
24
|
Cao Q, Huang W, Zhang Z, Chu P, Wei T, Zheng H, Liu C. The Quantification of Bacterial Cell Size: Discrepancies Arise from Varied Quantification Methods. Life (Basel) 2023; 13:1246. [PMID: 37374027 PMCID: PMC10302572 DOI: 10.3390/life13061246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
The robust regulation of the cell cycle is critical for the survival and proliferation of bacteria. To gain a comprehensive understanding of the mechanisms regulating the bacterial cell cycle, it is essential to accurately quantify cell-cycle-related parameters and to uncover quantitative relationships. In this paper, we demonstrate that the quantification of cell size parameters using microscopic images can be influenced by software and by the parameter settings used. Remarkably, even if the consistent use of a particular software and specific parameter settings is maintained throughout a study, the type of software and the parameter settings can significantly impact the validation of quantitative relationships, such as the constant-initiation-mass hypothesis. Given these inherent characteristics of microscopic image-based quantification methods, it is recommended that conclusions be cross-validated using independent methods, especially when the conclusions are associated with cell size parameters that were obtained under different conditions. To this end, we presented a flexible workflow for simultaneously quantifying multiple bacterial cell-cycle-related parameters using microscope-independent methods.
Collapse
Affiliation(s)
- Qian’andong Cao
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Huang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Zhang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Chu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wei
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Zheng
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenli Liu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Wang S, Lu Q, Liang Z, Yu X, Lin M, Mai B, Qiu R, Shu W, He Z, Wall JD. Generation of zero-valent sulfur from dissimilatory sulfate reduction in sulfate-reducing microorganisms. Proc Natl Acad Sci U S A 2023; 120:e2220725120. [PMID: 37155857 PMCID: PMC10194018 DOI: 10.1073/pnas.2220725120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Dissimilatory sulfate reduction (DSR) mediated by sulfate-reducing microorganisms (SRMs) plays a pivotal role in global sulfur, carbon, oxygen, and iron cycles since at least 3.5 billion y ago. The canonical DSR pathway is believed to be sulfate reduction to sulfide. Herein, we report a DSR pathway in phylogenetically diverse SRMs through which zero-valent sulfur (ZVS) is directly generated. We identified that approximately 9% of sulfate reduction was directed toward ZVS with S8 as a predominant product, and the ratio of sulfate-to-ZVS could be changed with SRMs' growth conditions, particularly the medium salinity. Further coculturing experiments and metadata analyses revealed that DSR-derived ZVS supported the growth of various ZVS-metabolizing microorganisms, highlighting this pathway as an essential component of the sulfur biogeochemical cycle.
Collapse
Affiliation(s)
- Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou510006, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou510006, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou510006, China
| | - Xiaoxiao Yu
- State Key Laboratory of Isotope Geochemistry and CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100039, China
| | - Mang Lin
- State Key Laboratory of Isotope Geochemistry and CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100039, China
| | - Bixian Mai
- State Key Laboratory of Isotope Geochemistry and CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100039, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou510642, China
| | - Wensheng Shu
- Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou510631, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou510006, China
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO65211
- Department of Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, MO65211
| |
Collapse
|
26
|
Kratz JC, Banerjee S. Dynamic proteome trade-offs regulate bacterial cell size and growth in fluctuating nutrient environments. Commun Biol 2023; 6:486. [PMID: 37147517 PMCID: PMC10163005 DOI: 10.1038/s42003-023-04865-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Bacteria dynamically regulate cell size and growth to thrive in changing environments. While previous studies have characterized bacterial growth physiology at steady-state, a quantitative understanding of bacterial physiology in time-varying environments is lacking. Here we develop a quantitative theory connecting bacterial growth and division rates to proteome allocation in time-varying nutrient environments. In such environments, cell size and growth are regulated by trade-offs between prioritization of biomass accumulation or division, resulting in decoupling of single-cell growth rate from population growth rate. Specifically, bacteria transiently prioritize biomass accumulation over production of division machinery during nutrient upshifts, while prioritizing division over growth during downshifts. When subjected to pulsatile nutrient concentration, we find that bacteria exhibit a transient memory of previous metabolic states due to the slow dynamics of proteome reallocation. This allows for faster adaptation to previously seen environments and results in division control which is dependent on the time-profile of fluctuations.
Collapse
Affiliation(s)
- Josiah C Kratz
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
27
|
Scott M, Hwa T. Shaping bacterial gene expression by physiological and proteome allocation constraints. Nat Rev Microbiol 2023; 21:327-342. [PMID: 36376406 PMCID: PMC10121745 DOI: 10.1038/s41579-022-00818-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
Networks of molecular regulators are often the primary objects of focus in the study of gene regulation, with the machinery of protein synthesis tacitly relegated to the background. Shifting focus to the constraints imposed by the allocation of protein synthesis flux reveals surprising ways in which the actions of molecular regulators are shaped by physiological demands. Using carbon catabolite repression as a case study, we describe how physiological constraints are sensed through metabolic fluxes and how flux-controlled regulation gives rise to simple empirical relations between protein levels and the rate of cell growth.
Collapse
Affiliation(s)
- Matthew Scott
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.
| | - Terence Hwa
- Department of Physics, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Leonard AC. Recollections of a Helmstetter Disciple. Life (Basel) 2023; 13:life13051114. [PMID: 37240759 DOI: 10.3390/life13051114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Nearly fifty years ago, it became possible to construct E. coli minichromosomes using recombinant DNA technology. These very small replicons, comprising the unique replication origin of the chromosome oriC coupled to a drug resistance marker, provided new opportunities to study the regulation of bacterial chromosome replication, were key to obtaining the nucleotide sequence information encoded into oriC and were essential for the development of a ground-breaking in vitro replication system. However, true authenticity of the minichromosome model system required that they replicate during the cell cycle with chromosome-like timing specificity. I was fortunate enough to have the opportunity to construct E. coli minichromosomes in the laboratory of Charles Helmstetter and, for the first time, measure minichromosome cell cycle regulation. In this review, I discuss the evolution of this project along with some additional studies from that time related to the DNA topology and segregation properties of minichromosomes. Despite the significant passage of time, it is clear that large gaps in our understanding of oriC regulation still remain. I discuss some specific topics that continue to be worthy of further study.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32952, USA
| |
Collapse
|
29
|
Helmstetter CE. Fifty-Five Years of Research on B, C and D in Escherichia coli. Life (Basel) 2023; 13:life13040977. [PMID: 37109506 PMCID: PMC10141973 DOI: 10.3390/life13040977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The basic properties of the Escherichia coli duplication process can be defined by two time periods: C, the time for a round of chromosome replication, and D, the time between the end of a round of replication and cell division. Given the durations of these periods, the pattern of chromosome replication during the cell cycle can be determined for cells growing with any doubling time. In the 55 years since these parameters were identified, there have been numerous investigations into their durations and into the elements that determine their initiations. In this review, I discuss the history of our involvement in these studies from the very beginning, some of what has been learned over the years by measuring the durations of C and D, and what might be learned with additional investigations.
Collapse
Affiliation(s)
- Charles E Helmstetter
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
30
|
Cylke A, Banerjee S. Super-exponential growth and stochastic size dynamics in rod-like bacteria. Biophys J 2023; 122:1254-1267. [PMID: 36814380 PMCID: PMC10111284 DOI: 10.1016/j.bpj.2023.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Proliferating bacterial cells exhibit stochastic growth and size dynamics, but the regulation of noise in bacterial growth and morphogenesis remains poorly understood. A quantitative understanding of morphogenetic noise control, and how it changes under different growth conditions, would provide better insights into cell-to-cell variability and intergenerational fluctuations in cell physiology. Using multigenerational growth and width data of single Escherichia coli and Caulobacter crescentus cells, we deduce the equations governing growth and size dynamics of rod-like bacterial cells. Interestingly, we find that both E. coli and C. crescentus cells deviate from exponential growth within the cell cycle. In particular, the exponential growth rate increases during the cell cycle irrespective of nutrient or temperature conditions. We propose a mechanistic model that explains the emergence of super-exponential growth from autocatalytic production of ribosomes coupled to the rate of cell elongation and surface area synthesis. Using this new model and statistical inference on large datasets, we construct the Langevin equations governing cell growth and size dynamics of E. coli cells in different nutrient conditions. The single-cell level model predicts how noise in intragenerational and intergenerational processes regulate variability in cell morphology and generation times, revealing quantitative strategies for cellular resource allocation and morphogenetic noise control in different growth conditions.
Collapse
Affiliation(s)
- Arianna Cylke
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
31
|
Le LQ, Zhu K, Su H. Bridging ribosomal synthesis to cell growth through the lens of kinetics. Biophys J 2023; 122:544-553. [PMID: 36564946 PMCID: PMC9941725 DOI: 10.1016/j.bpj.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/20/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding prokaryotic cell growth requires a multiscale modeling framework from the kinetics perspective. The detailed kinetics pathway of ribosomes exhibits features beyond the scope of the classical Hopfield kinetics model. The complexity of the molecular responses to various nutrient conditions poses additional challenge to elucidate the cell growth. Herein, a kinetics framework is developed to bridge ribosomal synthesis to cell growth. For the ribosomal synthesis kinetics, the competitive binding between cognate and near-cognate tRNAs for ribosomes can be modulated by Mg2+. This results in distinct patterns of the speed - accuracy relation comprising "trade-off" and "competition" regimes. Furthermore, the cell growth rate is optimized by varying the characteristics of ribosomal synthesis through cellular responses to different nutrient conditions. In this scenario, cellular responses to nutrient conditions manifest by two quadratic scaling relations: one for nutrient flux versus cell mass, the other for ribosomal number versus growth rate. Both are in quantitative agreement with experimental measurements.
Collapse
Affiliation(s)
- Luan Quang Le
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore; Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kaicheng Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Haibin Su
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
32
|
Liu Q, Wang Y, Sun S, Tang F, Chen H, Chen S, Zhao C, Li L. A novel chitosan-biochar immobilized microorganism strategy to enhance bioremediation of crude oil in soil. CHEMOSPHERE 2023; 313:137367. [PMID: 36427578 DOI: 10.1016/j.chemosphere.2022.137367] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
The chitosan-biochar composite is a clean and environmentally friendly immobilized microorganisms carrier. In this study, the chitosan-biochar composite as a carrier to immobilize a compound microbial agent contained Pseudomonas aeruginosa and Bacillus licheniformis, and investigated its role in the remediation of oil-contaminated soil. When using 1% (v/v) acetic acid, 3% (m/v) chitosan solution, 0.1% biochar, 4% (v/v) NaOH solution, freeze-drying 6 h, the optimal chitosan-biochar composite material could be obtained. The specific surfacearea of the material increased to 1.725 m2/g and the average pore size also increased from 130.2260 nm to 165.2980 nm after the addition of biochar through the analysis of specific surface area and pore size, which enlarged the contact area of microorganisms and crude oil with the material. SEM showed that the bacterial successfully adhered to the surface and internal of the material. Using FTIR, the results showed that the synthesis of composite carrier material was the covalent combination of -NH2 on chitosan and -COOH on biochar, forming a new chemical bond -NH-CO-. After 60 days of remediation of oil-contaminated soil, the removal rate of crude oil by chitosan-biochar composite immobilized microorganism method was 45.82%, which was 21.26% higher than that of natural remediation. Simultaneously, several oil-degrading bacteria increased at genus level, including Nocardioides (26.79%-33.09%), Bacillus (3.01%-4.10%), Dietzia (1.84%-5.56%), Pseudomonas (0-0.78%), among which Pseudomonas belongs to exogenous bacteria. The results indicated that the chitosan-biochar composite material has high application value in removing crude oil, and further provides a new strategy for bioremediation of oil-contaminated soil.
Collapse
Affiliation(s)
- Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China.
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Fang Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Hongxu Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Shuiquan Chen
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Lin Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| |
Collapse
|
33
|
Hadjeras L, Bouvier M, Canal I, Poljak L, Morin-Ogier Q, Froment C, Burlet-Schlitz O, Hamouche L, Girbal L, Cocaign-Bousquet M, Carpousis AJ. Attachment of the RNA degradosome to the bacterial inner cytoplasmic membrane prevents wasteful degradation of rRNA in ribosome assembly intermediates. PLoS Biol 2023; 21:e3001942. [PMID: 36603027 PMCID: PMC9848016 DOI: 10.1371/journal.pbio.3001942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/18/2023] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
RNA processing and degradation shape the transcriptome by generating stable molecules that are necessary for translation (rRNA and tRNA) and by facilitating the turnover of mRNA, which is necessary for the posttranscriptional control of gene expression. In bacteria and the plant chloroplast, RNA degradosomes are multienzyme complexes that process and degrade RNA. In many bacterial species, the endoribonuclease RNase E is the central component of the RNA degradosome. RNase E-based RNA degradosomes are inner membrane proteins in a large family of gram-negative bacteria (β- and γ-Proteobacteria). Until now, the reason for membrane localization was not understood. Here, we show that a mutant strain of Escherichia coli, in which the RNA degradosome is localized to the interior of the cell, has high levels of 20S and 40S particles that are defective intermediates in ribosome assembly. These particles have aberrant protein composition and contain rRNA precursors that have been cleaved by RNase E. After RNase E cleavage, rRNA fragments are degraded to nucleotides by exoribonucleases. In vitro, rRNA in intact ribosomes is resistant to RNase E cleavage, whereas protein-free rRNA is readily degraded. We conclude that RNA degradosomes in the nucleoid of the mutant strain interfere with cotranscriptional ribosome assembly. We propose that membrane-attached RNA degradosomes in wild-type cells control the quality of ribosome assembly after intermediates are released from the nucleoid. That is, the compact structure of mature ribosomes protects rRNA against cleavage by RNase E. Turnover of a proportion of intermediates in ribosome assembly explains slow growth of the mutant strain. Competition between mRNA and rRNA degradation could be the cause of slower mRNA degradation in the mutant strain. We conclude that attachment of the RNA degradosome to the bacterial inner cytoplasmic membrane prevents wasteful degradation of rRNA precursors, thus explaining the reason for conservation of membrane-attached RNA degradosomes throughout the β- and γ-Proteobacteria.
Collapse
Affiliation(s)
- Lydia Hadjeras
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | - Marie Bouvier
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | - Isabelle Canal
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | - Leonora Poljak
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | | | - Carine Froment
- IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, Toulouse, France
| | - Odile Burlet-Schlitz
- IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, Toulouse, France
| | - Lina Hamouche
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | - Laurence Girbal
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Agamemnon J. Carpousis
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- * E-mail:
| |
Collapse
|
34
|
Sanders S, Joshi K, Levin PA, Iyer-Biswas S. Beyond the average: An updated framework for understanding the relationship between cell growth, DNA replication, and division in a bacterial system. PLoS Genet 2023; 19:e1010505. [PMID: 36602967 DOI: 10.1371/journal.pgen.1010505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Our understanding of the bacterial cell cycle is framed largely by population-based experiments that focus on the behavior of idealized average cells. Most famously, the contributions of Cooper and Helmstetter help to contextualize the phenomenon of overlapping replication cycles observed in rapidly growing bacteria. Despite the undeniable value of these approaches, their necessary reliance on the behavior of idealized average cells masks the stochasticity inherent in single-cell growth and physiology and limits their mechanistic value. To bridge this gap, we propose an updated and agnostic framework, informed by extant single-cell data, that quantitatively accounts for stochastic variations in single-cell dynamics and the impact of medium composition on cell growth and cell cycle progression. In this framework, stochastic timers sensitive to medium composition impact the relationship between cell cycle events, accounting for observed differences in the relationship between cell cycle events in slow- and fast-growing cells. We conclude with a roadmap for potential application of this framework to longstanding open questions in the bacterial cell cycle field.
Collapse
Affiliation(s)
- Sara Sanders
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kunaal Joshi
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Srividya Iyer-Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
35
|
Balakrishnan R, Mori M, Segota I, Zhang Z, Aebersold R, Ludwig C, Hwa T. Principles of gene regulation quantitatively connect DNA to RNA and proteins in bacteria. Science 2022; 378:eabk2066. [PMID: 36480614 PMCID: PMC9804519 DOI: 10.1126/science.abk2066] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein concentrations are set by a complex interplay between gene-specific regulatory processes and systemic factors, including cell volume and shared gene expression machineries. Elucidating this interplay is crucial for discerning and designing gene regulatory systems. We quantitatively characterized gene-specific and systemic factors that affect transcription and translation genome-wide for Escherichia coli across many conditions. The results revealed two design principles that make regulation of gene expression insulated from concentrations of shared machineries: RNA polymerase activity is fine-tuned to match translational output, and translational characteristics are similar across most messenger RNAs (mRNAs). Consequently, in bacteria, protein concentration is set primarily at the promoter level. A simple mathematical formula relates promoter activities and protein concentrations across growth conditions, enabling quantitative inference of gene regulation from omics data.
Collapse
Affiliation(s)
- Rohan Balakrishnan
- Department of Physics, University of California at San Diego, La Jolla, California 92093-0374
| | - Matteo Mori
- Department of Physics, University of California at San Diego, La Jolla, California 92093-0374
| | - Igor Segota
- Departments of Medicine and Pharmacology, University of California at San Diego, La Jolla, California 92093
| | - Zhongge Zhang
- Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093
| | - Ruedi Aebersold
- Faculty of Science, University of Zurich, Zurich, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Terence Hwa
- Department of Physics, University of California at San Diego, La Jolla, California 92093-0374
- Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
36
|
Mu H, Han F, Wang Q, Wang Y, Dai X, Zhu M. Recent functional insights into the magic role of (p)ppGpp in growth control. Comput Struct Biotechnol J 2022; 21:168-175. [PMID: 36544478 PMCID: PMC9747358 DOI: 10.1016/j.csbj.2022.11.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Rapid growth and survival are two key traits that enable bacterial cells to thrive in their natural habitat. The guanosine tetraphosphate and pentaphosphate [(p)ppGpp], also known as "magic spot", is a key second messenger inside bacterial cells as well as chloroplasts of plants and green algae. (p)ppGpp not only controls various stages of central dogma processes (replication, transcription, ribosome maturation and translation) and central metabolism but also regulates various physiological processes such as pathogenesis, persistence, motility and competence. Under extreme conditions such as nutrient starvation, (p)ppGpp-mediated stringent response is crucial for the survival of bacterial cells. This mini-review highlights some of the very recent progress on the key role of (p)ppGpp in bacterial growth control in light of cellular resource allocation and cell size regulation. We also briefly discuss some recent functional insights into the role of (p)ppGpp in plants and green algae from the angle of growth and development and further discuss several important open directions for future studies.
Collapse
Affiliation(s)
| | | | - Qian Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Yanling Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Xiongfeng Dai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Manlu Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| |
Collapse
|
37
|
Serbanescu D, Ojkic N, Banerjee S. Cellular resource allocation strategies for cell size and shape control in bacteria. FEBS J 2022; 289:7891-7906. [PMID: 34665933 PMCID: PMC9016100 DOI: 10.1111/febs.16234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Bacteria are highly adaptive microorganisms that thrive in a wide range of growth conditions via changes in cell morphologies and macromolecular composition. How bacterial morphologies are regulated in diverse environmental conditions is a long-standing question. Regulation of cell size and shape implies control mechanisms that couple the growth and division of bacteria to their cellular environment and macromolecular composition. In the past decade, simple quantitative laws have emerged that connect cell growth to proteomic composition and the nutrient availability. However, the relationships between cell size, shape, and growth physiology remain challenging to disentangle and unifying models are lacking. In this review, we focus on regulatory models of cell size control that reveal the connections between bacterial cell morphology and growth physiology. In particular, we discuss how changes in nutrient conditions and translational perturbations regulate the cell size, growth rate, and proteome composition. Integrating quantitative models with experimental data, we identify the physiological principles of bacterial size regulation, and discuss the optimization strategies of cellular resource allocation for size control.
Collapse
Affiliation(s)
- Diana Serbanescu
- Department of Physics and Astronomy, University College London, UK
| | - Nikola Ojkic
- Department of Physics and Astronomy, University College London, UK
| | | |
Collapse
|
38
|
Berger M, Wolde PRT. Robust replication initiation from coupled homeostatic mechanisms. Nat Commun 2022; 13:6556. [PMID: 36344507 PMCID: PMC9640692 DOI: 10.1038/s41467-022-33886-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
The bacterium Escherichia coli initiates replication once per cell cycle at a precise volume per origin and adds an on average constant volume between successive initiation events, independent of the initiation size. Yet, a molecular model that can explain these observations has been lacking. Experiments indicate that E. coli controls replication initiation via titration and activation of the initiator protein DnaA. Here, we study by mathematical modelling how these two mechanisms interact to generate robust replication-initiation cycles. We first show that a mechanism solely based on titration generates stable replication cycles at low growth rates, but inevitably causes premature reinitiation events at higher growth rates. In this regime, the DnaA activation switch becomes essential for stable replication initiation. Conversely, while the activation switch alone yields robust rhythms at high growth rates, titration can strongly enhance the stability of the switch at low growth rates. Our analysis thus predicts that both mechanisms together drive robust replication cycles at all growth rates. In addition, it reveals how an origin-density sensor yields adder correlations.
Collapse
Affiliation(s)
- Mareike Berger
- Biochemical Networks Group, Department of Information in Matter, AMOLF, 1098, XG, Amsterdam, The Netherlands
| | - Pieter Rein Ten Wolde
- Biochemical Networks Group, Department of Information in Matter, AMOLF, 1098, XG, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Lao Z, Matsui Y, Ijichi S, Ying BW. Global coordination of the mutation and growth rates across the genetic and nutritional variety in Escherichia coli. Front Microbiol 2022; 13:990969. [PMID: 36204613 PMCID: PMC9530902 DOI: 10.3389/fmicb.2022.990969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Fitness and mutability are the primary traits of living organisms for adaptation and evolution. However, their quantitative linkage remained largely deficient. Whether there is any general relationship between the two features and how genetic and environmental variables influence them remained unclear and were addressed here. The mutation and growth rates of an assortment of Escherichia coli strain collections, including the wild-type strains and the genetically disturbed strains of either reduced genomes or deletion of the genes involved in the DNA replication fidelity, were evaluated in various media. The contribution of media to the mutation and growth rates was differentiated depending on the types of genetic disturbance. Nevertheless, the negative correlation between the mutation and growth rates was observed across the genotypes and was common in all media. It indicated the comprehensive association of the correlated mutation and growth rates with the genetic and medium variation. Multiple linear regression and support vector machine successfully predicted the mutation and growth rates and the categories of genotypes and media, respectively. Taken together, the study provided a quantitative dataset linking the mutation and growth rates, genotype, and medium and presented a simple and successful example of predicting bacterial growth and mutability by data-driven approaches.
Collapse
|
40
|
Honda T, Cremer J, Mancini L, Zhang Z, Pilizota T, Hwa T. Coordination of gene expression with cell size enables Escherichia coli to efficiently maintain motility across conditions. Proc Natl Acad Sci U S A 2022; 119:e2110342119. [PMID: 36067284 PMCID: PMC9478672 DOI: 10.1073/pnas.2110342119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
To swim and navigate, motile bacteria synthesize a complex motility machinery involving flagella, motors, and a sensory system. A myriad of studies has elucidated the molecular processes involved, but less is known about the coordination of motility expression with cellular physiology: In Escherichia coli, motility genes are strongly up-regulated in nutrient-poor conditions compared to nutrient-replete conditions; yet a quantitative link to cellular motility has not been developed. Here, we systematically investigated gene expression, swimming behavior, cell growth, and available proteomics data across a broad spectrum of exponential growth conditions. Our results suggest that cells up-regulate the expression of motility genes at slow growth to compensate for reduction in cell size, such that the number of flagella per cell is maintained across conditions. The observed four or five flagella per cell is the minimum number needed to keep the majority of cells motile. This simple regulatory objective allows E. coli cells to remain motile across a broad range of growth conditions, while keeping the biosynthetic and energetic demands to establish and drive the motility machinery at the minimum needed. Given the strong reduction in flagella synthesis resulting from cell size increases at fast growth, our findings also provide a different physiological perspective on bacterial cell size control: A larger cell size at fast growth is an efficient strategy to increase the allocation of cellular resources to the synthesis of those proteins required for biomass synthesis and growth, while maintaining processes such as motility that are only needed on a per-cell basis.
Collapse
Affiliation(s)
- Tomoya Honda
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
- US Department of Energy, Joint Genome Institute, Berkeley, CA 94720
| | - Jonas Cremer
- Department of Physics, University of California at San Diego, La Jolla, CA 92093
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Leonardo Mancini
- School of Biological Sciences, Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, United Kingdom
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Zhongge Zhang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
| | - Teuta Pilizota
- School of Biological Sciences, Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, United Kingdom
| | - Terence Hwa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
- Department of Physics, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
41
|
Lin WH, Jacobs-Wagner C. Connecting single-cell ATP dynamics to overflow metabolism, cell growth, and the cell cycle in Escherichia coli. Curr Biol 2022; 32:3911-3924.e4. [PMID: 35961315 DOI: 10.1016/j.cub.2022.07.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
Adenosine triphosphate (ATP) is an abundant and essential metabolite that cells consume and regenerate in large amounts to support growth. Although numerous studies have inferred the intracellular concentration of ATP in bacterial cultures, what happens in individual bacterial cells under stable growth conditions is less clear. Here, we use the QUEEN-2m biosensor to quantify ATP dynamics in single Escherichia coli cells in relation to their growth rate, metabolism, cell cycle, and cell lineage. We find that ATP dynamics are more complex than expected from population studies and are associated with growth-rate variability. Under stable nutrient-rich condition, cells can display large fluctuations in ATP level that are partially coordinated with the cell cycle. Abrogation of aerobic acetate fermentation (overflow metabolism) through genetic deletion considerably reduces both the amplitude of ATP level fluctuations and the cell-cycle trend. Similarly, growth in media in which acetate fermentation is lower or absent results in the reduction of ATP level fluctuation and cell-cycle trend. This suggests that overflow metabolism exhibits temporal dynamics, which contributes to fluctuating ATP levels during growth. Remarkably, at the single-cell level, growth rate negatively correlates with the amplitude of ATP fluctuation for each tested condition, linking ATP dynamics to growth-rate heterogeneity in clonal populations. Our work highlights the importance of single-cell analysis in studying metabolism and its implication to phenotypic diversity and cell growth.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA; Chemistry, Engineering, Medicine for Human Health Institute, Stanford University, Palo Alto, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305, USA
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA; Chemistry, Engineering, Medicine for Human Health Institute, Stanford University, Palo Alto, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
42
|
Fahmy K. Simple Growth–Metabolism Relations Are Revealed by Conserved Patterns of Heat Flow from Cultured Microorganisms. Microorganisms 2022; 10:microorganisms10071397. [PMID: 35889118 PMCID: PMC9318308 DOI: 10.3390/microorganisms10071397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Quantitative analyses of cell replication address the connection between metabolism and growth. Various growth models approximate time-dependent cell numbers in culture media, but physiological implications of the parametrizations are vague. In contrast, isothermal microcalorimetry (IMC) measures with unprecedented sensitivity the heat (enthalpy) release via chemical turnover in metabolizing cells. Hence, the metabolic activity can be studied independently of modeling the time-dependence of cell numbers. Unexpectedly, IMC traces of various origins exhibit conserved patterns when expressed in the enthalpy domain rather than the time domain, as exemplified by cultures of Lactococcus lactis (prokaryote), Trypanosoma congolese (protozoan) and non-growing Brassica napus (plant) cells. The data comply extraordinarily well with a dynamic Langmuir adsorption reaction model of nutrient uptake and catalytic turnover generalized here to the non-constancy of catalytic capacity. Formal relations to Michaelis–Menten kinetics and common analytical growth models are briefly discussed. The proposed formalism reproduces the “life span” of cultured microorganisms from exponential growth to metabolic decline by a succession of distinct metabolic phases following remarkably simple nutrient–metabolism relations. The analysis enables the development of advanced enzyme network models of unbalanced growth and has fundamental consequences for the derivation of toxicity measures and the transferability of metabolic activity data between laboratories.
Collapse
Affiliation(s)
- Karim Fahmy
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany;
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
43
|
The possible modes of microbial reproduction are fundamentally restricted by distribution of mass between parent and offspring. Proc Natl Acad Sci U S A 2022; 119:e2122197119. [PMID: 35294281 PMCID: PMC8944278 DOI: 10.1073/pnas.2122197119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cells and simple cell colonies reproduce by fragmenting their bodies into pieces. Produced newborns need to grow before they can reproduce again. How big a cell or a cell colony should grow? How many offspring should be produced? Should they be of equal size or diverse? We show that the simple fact that the immediate mass of offspring cannot exceed the mass of parents restricts possible answers to these questions. For example, our theory states that, when mass is conserved in the course of fragmentation, the evolutionarily optimal reproduction mode is fragmentation into exactly two, typically equal, parts. Our theory also shows conditions which promote evolution of asymmetric division or fragmentation into multiple pieces. Multiple modes of asexual reproduction are observed among microbial organisms in natural populations. These modes are not only subject to evolution, but may drive evolutionary competition directly through their impact on population growth rates. The most prominent transition between two such modes is the one from unicellularity to multicellularity. We present a model of the evolution of reproduction modes, where a parent organism fragments into smaller parts. While the size of an organism at fragmentation, the number of offspring, and their sizes may vary a lot, the combined mass of fragments is limited by the mass of the parent organism. We found that mass conservation can fundamentally limit the number of possible reproduction modes. This has important direct implications for microbial life: For unicellular species, the interplay between cell shape and kinetics of the cell growth implies that the largest and the smallest possible cells should be rod shaped rather than spherical. For primitive multicellular species, these considerations can explain why rosette cell colonies evolved a mechanistically complex binary split reproduction. Finally, we show that the loss of organism mass during sporulation can explain the macroscopic sizes of the formally unicellular microorganism Myxomycetes plasmodium. Our findings demonstrate that a number of seemingly unconnected phenomena observed in unrelated species may be different manifestations of the same underlying process.
Collapse
|
44
|
Chen J, Zang Y, Yang Z, Qu T, Sun T, Liang S, Zhu M, Wang Y, Tang X. Composition and Functional Diversity of Epiphytic Bacterial and Fungal Communities on Marine Macrophytes in an Intertidal Zone. Front Microbiol 2022; 13:839465. [PMID: 35369473 PMCID: PMC8972133 DOI: 10.3389/fmicb.2022.839465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Marine macrophytes (seagrasses and macroalgae) and their epiphytic microorganisms play an important role in the ecological and biochemical processes of coastal oceans. However, simultaneous comparative studies on the biodiversity and functions of epiphytic bacteria and fungi associated with marine macrophytes have not been conducted. In this study, high-throughput sequencing technology was used to describe the epiphytic bacterial and fungal communities of 11 common macroalgae and 2 seagrasses from an intertidal zone of northern China and compare them with seawater communities. The results showed that Proteobacteria and Bacteroidota were the dominant bacterial phyla in marine macrophytes, whereas Ascomycota, Chytridiomycota, and Basidiomycota were the dominant fungal phyla. The alpha diversity of the bacterial and fungal communities in seagrasses was the highest of all macrophyte samples. This may have been related to their ability to recruit microorganisms from multiple sources. Host phylogeny may influence bacterial community structure, and geographical differences may influence fungal community structure. The FAPROTAX data indicated that C metabolic microbes were enriched in marine macrophytes, while the FUNGuild data indicated that undefined saprotroph, which participated in organic matter degradation, were also enriched in marine macrophytes. These findings provide a theoretical basis regarding the epiphytic microorganisms of macrophytes and may offer new insights to support the improved ecological restoration of seagrass and macroalgae beds.
Collapse
Affiliation(s)
- Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Zang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tao Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiling Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
45
|
Santos-Navarro FN, Vignoni A, Boada Y, Picó J. RBS and Promoter Strengths Determine the Cell-Growth-Dependent Protein Mass Fractions and Their Optimal Synthesis Rates. ACS Synth Biol 2021; 10:3290-3303. [PMID: 34767708 PMCID: PMC8689641 DOI: 10.1021/acssynbio.1c00131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Models of gene expression
considering host–circuit interactions
are relevant for understanding both the strategies and associated
trade-offs that cell endogenous genes have evolved and for the efficient
design of heterologous protein expression systems and synthetic genetic
circuits. Here, we consider a small-size model of gene expression
dynamics in bacterial cells accounting for host–circuit interactions
due to limited cellular resources. We define the cellular resources
recruitment strength as a key functional coefficient that explains
the distribution of resources among the host and the genes of interest
and the relationship between the usage of resources and cell growth.
This functional coefficient explicitly takes into account lab-accessible
gene expression characteristics, such as promoter and ribosome binding
site (RBS) strengths, capturing their interplay with the growth-dependent
flux of available free cell resources. Despite its simplicity, the
model captures the differential role of promoter and RBS strengths
in the distribution of protein mass fractions as a function of growth
rate and the optimal protein synthesis rate with remarkable fit to
the experimental data from the literature for Escherichia
coli. This allows us to explain why endogenous genes
have evolved different strategies in the expression space and also
makes the model suitable for model-based design of exogenous synthetic
gene expression systems with desired characteristics.
Collapse
Affiliation(s)
- Fernando N. Santos-Navarro
- Synthetic Biology and Biosystems Control Lab, Institut d’Automàtica i Informàtica Industrial, Universitat Politècnica de València, Camí de Vera S/N, 46022 Valencia, Spain
| | - Alejandro Vignoni
- Synthetic Biology and Biosystems Control Lab, Institut d’Automàtica i Informàtica Industrial, Universitat Politècnica de València, Camí de Vera S/N, 46022 Valencia, Spain
| | - Yadira Boada
- Synthetic Biology and Biosystems Control Lab, Institut d’Automàtica i Informàtica Industrial, Universitat Politècnica de València, Camí de Vera S/N, 46022 Valencia, Spain
| | - Jesús Picó
- Synthetic Biology and Biosystems Control Lab, Institut d’Automàtica i Informàtica Industrial, Universitat Politècnica de València, Camí de Vera S/N, 46022 Valencia, Spain
| |
Collapse
|
46
|
Le Treut G, Si F, Li D, Jun S. Quantitative Examination of Five Stochastic Cell-Cycle and Cell-Size Control Models for Escherichia coli and Bacillus subtilis. Front Microbiol 2021; 12:721899. [PMID: 34795646 PMCID: PMC8594374 DOI: 10.3389/fmicb.2021.721899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
We examine five quantitative models of the cell-cycle and cell-size control in Escherichia coli and Bacillus subtilis that have been proposed over the last decade to explain single-cell experimental data generated with high-throughput methods. After presenting the statistical properties of these models, we test their predictions against experimental data. Based on simple calculations of the defining correlations in each model, we first dismiss the stochastic Helmstetter-Cooper model and the Initiation Adder model, and show that both the Replication Double Adder (RDA) and the Independent Double Adder (IDA) model are more consistent with the data than the other models. We then apply a recently proposed statistical analysis method and obtain that the IDA model is the most likely model of the cell cycle. By showing that the RDA model is fundamentally inconsistent with size convergence by the adder principle, we conclude that the IDA model is most consistent with the data and the biology of bacterial cell-cycle and cell-size control. Mechanistically, the Independent Adder Model is equivalent to two biological principles: (i) balanced biosynthesis of the cell-cycle proteins, and (ii) their accumulation to a respective threshold number to trigger initiation and division.
Collapse
Affiliation(s)
| | - Fangwei Si
- Department of Physics, University of California, San Diego, San Diego, CA, United States
| | - Dongyang Li
- Division of Biology and Biological Engineering, Broad Center, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, United States
| | - Suckjoon Jun
- Department of Physics, University of California, San Diego, San Diego, CA, United States.,Section of Molecular Biology, Division of Biology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
47
|
Bai Y, He C, Chu P, Long J, Li X, Fu X. Spatial modulation of individual behaviors enables an ordered structure of diverse phenotypes during bacterial group migration. eLife 2021; 10:67316. [PMID: 34726151 PMCID: PMC8563000 DOI: 10.7554/elife.67316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Coordination of diverse individuals often requires sophisticated communications and high-order computational abilities. Microbial populations can exhibit diverse individualistic behaviors, and yet can engage in collective migratory patterns with a spatially sorted arrangement of phenotypes. However, it is unclear how such spatially sorted patterns emerge from diverse individuals without complex computational abilities. Here, by investigating the single-cell trajectories during group migration, we discovered that, despite the constant migrating speed of a group, the drift velocities of individual bacteria decrease from the back to the front. With a Langevin-type modeling framework, we showed that this decreasing profile of drift velocities implies the spatial modulation of individual run-and-tumble random motions, and enables the bacterial population to migrate as a pushed wave front. Theoretical analysis and stochastic simulations further predicted that the pushed wave front can help a diverse population to stay in a tight group, while diverse individuals perform the same type of mean reverting processes around centers orderly aligned by their chemotactic abilities. This mechanism about the emergence of orderly collective migration from diverse individuals is experimentally demonstrated by titration of bacterial chemoreceptor abundance. These results reveal a simple computational principle for emergent ordered behaviors from heterogeneous individuals. Organisms living in large groups often have to move together in order to navigate, forage for food, and increase their roaming range. Such groups are often made up of distinct individuals that must integrate their different behaviors in order to migrate in the same direction at a similar pace. For instance, for the bacteria Escherichia coli to travel as a condensed group, they must coordinate their response to a set of chemical signals called chemoattractants that tell them where to go. The chemoattractants surrounding the bacteria are unequally distributed so that there is more of them at the front than the back of the group. During migration, each bacterium moves towards this concentration gradient in a distinct way, spontaneously rotating its direction in a ‘run-and-tumble’ motion that guides it towards areas where there are high levels of these chemical signals. In addition to this variability, how well individual bacteria are able to swim up the gradient also differs within the population. Bacteria that are better at sensing the chemoattractant gradient are placed at the front of the group, while those that are worst are shifted towards the back. This spatial arrangement is thought to help the bacteria migrate together. But how E. coli organize themselves in to this pattern is unclear, especially as they cannot communicate directly with one another and display such diverse, randomized behaviors. To help answer this question, Bai, He et al. discovered a general principle that describes how single bacterial cells move within a group. The results showed that E. coli alter their run-and-tumble motion depending on where they reside within the population: individuals at the rear drift faster so they can catch up with the group, while those leading the group drift slower to draw themselves back. This ‘reversion behavior’ allows the migrating bacteria to travel at a constant speed around a mean position relative to the group. A cell’s drifting speed is determined by how well it moves towards the chemoattractant and its response to the concentration gradient. As a result, the mean position around which the bacterium accelerates or deaccelerates will vary depending on how sensitive it is to the chemoattractant gradient. The E. coli therefore spatially arrange themselves so that the more sensitive bacteria are located at the front of the group where the gradient is shallower; and cells that are less sensitive are located towards the back where the gradient is steeper. These findings suggest a general principle for how bacteria form ordered patterns whilst migrating as a collective group. This behavior could also apply to other populations of distinct individuals, such as ants following a trail or flocks of birds migrating in between seasons.
Collapse
Affiliation(s)
- Yang Bai
- CAS Key Laboratory for Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Caiyun He
- CAS Key Laboratory for Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pan Chu
- CAS Key Laboratory for Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junjiajia Long
- Yale University, Department of Physics, New Haven, United States
| | - Xuefei Li
- CAS Key Laboratory for Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiongfei Fu
- CAS Key Laboratory for Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Grimwade JE, Leonard AC. Blocking, Bending, and Binding: Regulation of Initiation of Chromosome Replication During the Escherichia coli Cell Cycle by Transcriptional Modulators That Interact With Origin DNA. Front Microbiol 2021; 12:732270. [PMID: 34616385 PMCID: PMC8488378 DOI: 10.3389/fmicb.2021.732270] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Genome duplication is a critical event in the reproduction cycle of every cell. Because all daughter cells must inherit a complete genome, chromosome replication is tightly regulated, with multiple mechanisms focused on controlling when chromosome replication begins during the cell cycle. In bacteria, chromosome duplication starts when nucleoprotein complexes, termed orisomes, unwind replication origin (oriC) DNA and recruit proteins needed to build new replication forks. Functional orisomes comprise the conserved initiator protein, DnaA, bound to a set of high and low affinity recognition sites in oriC. Orisomes must be assembled each cell cycle. In Escherichia coli, the organism in which orisome assembly has been most thoroughly examined, the process starts with DnaA binding to high affinity sites after chromosome duplication is initiated, and orisome assembly is completed immediately before the next initiation event, when DnaA interacts with oriC’s lower affinity sites, coincident with origin unwinding. A host of regulators, including several transcriptional modulators, targets low affinity DnaA-oriC interactions, exerting their effects by DNA bending, blocking access to recognition sites, and/or facilitating binding of DnaA to both DNA and itself. In this review, we focus on orisome assembly in E. coli. We identify three known transcriptional modulators, SeqA, Fis (factor for inversion stimulation), and IHF (integration host factor), that are not essential for initiation, but which interact directly with E. coli oriC to regulate orisome assembly and replication initiation timing. These regulators function by blocking sites (SeqA) and bending oriC DNA (Fis and IHF) to inhibit or facilitate cooperative low affinity DnaA binding. We also examine how the growth rate regulation of Fis levels might modulate IHF and DnaA binding to oriC under a variety of nutritional conditions. Combined, the regulatory mechanisms mediated by transcriptional modulators help ensure that at all growth rates, bacterial chromosome replication begins once, and only once, per cell cycle.
Collapse
Affiliation(s)
- Julia E Grimwade
- Microbial Genetics Laboratory, Biological Sciences Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Alan C Leonard
- Microbial Genetics Laboratory, Biological Sciences Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
49
|
Colin A, Micali G, Faure L, Cosentino Lagomarsino M, van Teeffelen S. Two different cell-cycle processes determine the timing of cell division in Escherichia coli. eLife 2021; 10:67495. [PMID: 34612203 PMCID: PMC8555983 DOI: 10.7554/elife.67495] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Cells must control the cell cycle to ensure that key processes are brought to completion. In Escherichia coli, it is controversial whether cell division is tied to chromosome replication or to a replication-independent inter-division process. A recent model suggests instead that both processes may limit cell division with comparable odds in single cells. Here, we tested this possibility experimentally by monitoring single-cell division and replication over multiple generations at slow growth. We then perturbed cell width, causing an increase of the time between replication termination and division. As a consequence, replication became decreasingly limiting for cell division, while correlations between birth and division and between subsequent replication-initiation events were maintained. Our experiments support the hypothesis that both chromosome replication and a replication-independent inter-division process can limit cell division: the two processes have balanced contributions in non-perturbed cells, while our width perturbations increase the odds of the replication-independent process being limiting.
Collapse
Affiliation(s)
- Alexandra Colin
- Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
| | - Gabriele Micali
- Department of Environmental Microbiology, Dübendorf, Switzerland.,Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Louis Faure
- Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
| | - Marco Cosentino Lagomarsino
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy.,Physics Department, University of Milan, and INFN, Milan, Italy
| | - Sven van Teeffelen
- Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Canada
| |
Collapse
|
50
|
Belliveau NM, Chure G, Hueschen CL, Garcia HG, Kondev J, Fisher DS, Theriot JA, Phillips R. Fundamental limits on the rate of bacterial growth and their influence on proteomic composition. Cell Syst 2021; 12:924-944.e2. [PMID: 34214468 PMCID: PMC8460600 DOI: 10.1016/j.cels.2021.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/12/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Despite abundant measurements of bacterial growth rate, cell size, and protein content, we lack a rigorous understanding of what sets the scale of these quantities and when protein abundances should (or should not) depend on growth rate. Here, we estimate the basic requirements and physical constraints on steady-state growth by considering key processes in cellular physiology across a collection of Escherichia coli proteomic data covering ≈4,000 proteins and 36 growth rates. Our analysis suggests that cells are predominantly tuned for the task of cell doubling across a continuum of growth rates; specific processes do not limit growth rate or dictate cell size. We present a model of proteomic regulation as a function of nutrient supply that reconciles observed interdependences between protein synthesis, cell size, and growth rate and propose that a theoretical inability to parallelize ribosomal synthesis places a firm limit on the achievable growth rate. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Nathan M Belliveau
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| | - Griffin Chure
- Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christina L Hueschen
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hernan G Garcia
- Department of Molecular Cell Biology and Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Daniel S Fisher
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Julie A Theriot
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA.
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|