1
|
Tachibana Y, Yamamoto M. Recent advances in identifying and characterizing secretory proteins of Toxoplasma gondii by CRISPR-based screening. Parasitol Int 2025; 105:102997. [PMID: 39586398 DOI: 10.1016/j.parint.2024.102997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
The apicomplexan parasite, Toxoplasma gondii, develops unique secretory organelles, such as micronemes, rhoptries, and dense granules, which do not exist in other well-studied eukaryotic organisms. These secretory organelles are key features of apicomplexan parasites and discharge various proteins that are essential for invasion, replication, egress, host-parasite interactions, and virulence. Many studies have therefore focused on identifying and characterizing the proteins secreted by T. gondii that play essential roles in pathology and that can be targeted for therapeutics and vaccine development. The recent development of functional genetic screens based on CRISPR/Cas9 technology has revolutionized this field and has enabled the identification of genes that contribute to parasite fitness in vitro and in vivo. Consequently, characterization of genes identified by unbiased CRISPR screens has revealed novel aspects of apicomplexan biology. In this review, we describe the development of CRIPSR-based screening technology for T. gondii, and recent advances in our understanding of secretory proteins identified and characterized by CRISPR-based screening.
Collapse
Affiliation(s)
- Yuta Tachibana
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan; Center for Advanced Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Watzlowik MT, Silberhorn E, Das S, Singhal R, Venugopal K, Holzinger S, Stokes B, Schadt E, Sollelis L, Bonnell VA, Gow M, Klingl A, Marti M, Llinás M, Meissner M, Längst G. Plasmodium blood stage development requires the chromatin remodeller Snf2L. Nature 2025; 639:1069-1075. [PMID: 39972139 PMCID: PMC11946908 DOI: 10.1038/s41586-025-08595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/03/2025] [Indexed: 02/21/2025]
Abstract
The complex life cycle of the malaria parasite Plasmodium falciparum involves several major differentiation stages, each requiring strict control of gene expression. Fundamental changes in chromatin structure and epigenetic modifications during life cycle progression suggest a central role for these mechanisms in regulating the transcriptional program of malaria parasite development1-6. P. falciparum chromatin is distinct from other eukaryotes, with an extraordinarily high AT content (>80%)7 and highly divergent histones resulting in atypical DNA packaging properties8. Moreover, the chromatin remodellers that are critical for shaping chromatin structure are not conserved and are unexplored in P. falciparum. Here we identify P. falciparum Snf2L (PfSnf2L, encoded by PF3D7_1104200) as an ISWI-related ATPase that actively repositions P. falciparum nucleosomes in vitro. Our results demonstrate that PfSnf2L is essential, regulating both asexual development and sexual differentiation. PfSnf2L globally controls just-in-time transcription by spatiotemporally determining nucleosome positioning at the promoters of stage-specific genes. The unique sequence and functional properties of PfSnf2L led to the identification of an inhibitor that specifically kills P. falciparum and phenocopies the loss of correct gene expression timing. The inhibitor represents a new class of antimalarial transmission-blocking drugs, inhibiting gametocyte formation.
Collapse
Affiliation(s)
| | - Elisabeth Silberhorn
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Sujaan Das
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Ritwik Singhal
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA, USA
| | - Kannan Venugopal
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Simon Holzinger
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Barbara Stokes
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ella Schadt
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Lauriane Sollelis
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Victoria A Bonnell
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA, USA
| | - Matthew Gow
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Klingl
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Matthias Marti
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA, USA
- Department of Chemistry, Pennsylvania State University, State College, PA, USA
| | - Markus Meissner
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany.
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Hildebrandt F, N Matias A, Treeck M. A CRISPR view on genetic screens in Toxoplasma gondii. Curr Opin Microbiol 2025; 83:102577. [PMID: 39778479 DOI: 10.1016/j.mib.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Genome editing technologies, such as CRISPR-Cas9, have revolutionised the study of genes in a variety of organisms, including unicellular parasites. Today, the CRISPR-Cas9 technology is vastly applied in high-throughput screens to investigate interactions between the Apicomplexan parasite Toxoplasma gondii and its hosts. In vitro and in vivo T. gondii screens performed in naive and restrictive conditions have led to the discovery of essential and fitness-conferring T. gondii genes, as well as factors important for virulence and dissemination. Recent studies have adapted the CRISPR-Cas9 screening technology to study T. gondii genes based on phenotypes unrelated to parasite survival. These advances were achieved by using conditional systems coupled with imaging, as well as single-cell RNA sequencing and phenotypic selection. Here, we review the state-of-the-art of CRISPR-Cas9 screening technologies with a focus on T. gondii, highlighting strengths, current limitations and future avenues for its development, including its application to other Apicomplexan species.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Ana N Matias
- Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Moritz Treeck
- Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal.
| |
Collapse
|
4
|
Douglas RG, Moon RW, Frischknecht F. Cytoskeleton Organization in Formation and Motility of Apicomplexan Parasites. Annu Rev Microbiol 2024; 78:311-335. [PMID: 39094056 DOI: 10.1146/annurev-micro-041222-011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Apicomplexan parasites are a group of eukaryotic protozoans with diverse biology that have affected human health like no other group of parasites. These obligate intracellular parasites rely on their cytoskeletal structures for giving them form, enabling them to replicate in unique ways and to migrate across tissue barriers. Recent progress in transgenesis and imaging tools allowed detailed insights into the components making up and regulating the actin and microtubule cytoskeleton as well as the alveolate-specific intermediate filament-like cytoskeletal network. These studies revealed interesting details that deviate from the cell biology of canonical model organisms. Here we review the latest developments in the field and point to a number of open questions covering the most experimentally tractable parasites: Plasmodium, the causative agent of malaria; Toxoplasma gondii, the causative agent of toxoplasmosis; and Cryptosporidium, a major cause of diarrhea.
Collapse
Affiliation(s)
- Ross G Douglas
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre and Molecular Infection Biology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Robert W Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Friedrich Frischknecht
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Parasitology, Center for Integrative Infectious Diseases Research at Heidelberg University, Heidelberg, Germany;
| |
Collapse
|
5
|
Tachibana Y, Sasai M, Yamamoto M. CRISPR screens identify genes essential for in vivo virulence among proteins of hyperLOPIT-unassigned subcellular localization in Toxoplasma. mBio 2024; 15:e0172824. [PMID: 39082802 PMCID: PMC11389413 DOI: 10.1128/mbio.01728-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 09/12/2024] Open
Abstract
The research field to identify and characterize genes essential for in vivo virulence in Toxoplasma gondii has been dramatically advanced by a series of in vivo clustered regularly interspaced short palindromic repeats (CRISPR) screens. Although subcellular localizations of thousands of proteins were predicted by the spatial proteomic method called hyperLOPIT, those of more than 1,000 proteins remained unassigned, and their essentiality in virulence was also unknown. In this study, we generated two small-scale gRNA libraries targeting approximately 600 hyperLOPIT-unassigned proteins and performed in vivo CRISPR screens. As a result, we identified several genes essential for in vivo virulence that were previously unreported. We further characterized two candidates, TgGTPase and TgRimM, which are localized in the cytoplasm and the apicoplast, respectively. Both genes are essential for parasite virulence and widely conserved in the phylum Apicomplexa. Collectively, our current study provides a resource for estimating the in vivo essentiality of Toxoplasma proteins with previously unknown localizations.IMPORTANCEToxoplasma gondii is a protozoan parasite that causes severe infection in immunocompromised patients or newborns. Toxoplasma possesses more than 8,000 genes; however, the genes essential for in vivo virulence were not fully identified. The apicomplexan parasites, including Toxoplasma, developed unique organelles that do not exist in other model organisms; thus, determining the subcellular location of parasite proteins is important for understanding their functions. Here, we used in vivo genetic screens that enabled us to investigate hundreds of genes in Toxoplasma during mouse infection. We screened approximately 600 parasite proteins with previously unknown subcellular localizations. We identified many novel genes that confer parasite virulence in mice. Among the top hits, we characterized two genes essential for in vivo virulence, TgGTPase and TgRimM, which are widely conserved in the phylum Apicomplexa. Our findings will contribute to understanding how apicomplexans adapt to the host environment and cause disease.
Collapse
Affiliation(s)
- Yuta Tachibana
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Morano AA, Ali I, Dvorin JD. Elucidating the spatio-temporal dynamics of the Plasmodium falciparum basal complex. PLoS Pathog 2024; 20:e1012265. [PMID: 38829893 PMCID: PMC11175456 DOI: 10.1371/journal.ppat.1012265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/13/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Asexual replication of Plasmodium falciparum occurs via schizogony, wherein 16-36 daughter cells are produced within the parasite during one semi-synchronized cytokinetic event. Schizogony requires a divergent contractile ring structure known as the basal complex. Our lab has previously identified PfMyoJ (PF3D7_1229800) and PfSLACR (PF3D7_0214700) as basal complex proteins recruited midway through segmentation. Using ultrastructure expansion microscopy, we localized both proteins to a novel basal complex subcompartment. While both colocalize with the basal complex protein PfCINCH upon recruitment, they form a separate, more basal subcompartment termed the posterior cup during contraction. We also show that PfSLACR is recruited to the basal complex prior to PfMyoJ, and that both proteins are removed unevenly as segmentation concludes. Using live-cell microscopy, we show that actin dynamics are dispensable for basal complex formation, expansion, and contraction. We then show that EF-hand containing P. falciparum Centrin 2 partially localizes to this posterior cup of the basal complex and that it is essential for growth and replication, with variable defects in basal complex contraction and synchrony. Finally, we demonstrate that free intracellular calcium is necessary but not sufficient for basal complex contraction in P. falciparum. Thus, we demonstrate dynamic spatial compartmentalization of the Plasmodium falciparum basal complex, identify an additional basal complex protein, and begin to elucidate the unique mechanism of contraction utilized by P. falciparum, opening the door for further exploration of Apicomplexan cellular division.
Collapse
Affiliation(s)
- Alexander A. Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Ilzat Ali
- Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Lucky AB, Wang C, Li X, Liang X, Muneer A, Miao J. Transforming the CRISPR/dCas9-based gene regulation technique into a forward screening tool in Plasmodium falciparum. iScience 2024; 27:109602. [PMID: 38617559 PMCID: PMC11015506 DOI: 10.1016/j.isci.2024.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/11/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
It is a significant challenge to assess the functions of many uncharacterized genes in human malaria parasites. Here, we present a genetic screening tool to assess the contribution of essential genes from Plasmodium falciparum by the conditional CRISPR-/deadCas9-based interference and activation (i/a) systems. We screened both CRISPRi and CRISPRa sets, consisting of nine parasite lines per set targeting nine genes via their respective gRNAs. By conducting amplicon sequencing of gRNA loci, we identified the contribution of each targeted gene to parasite fitness upon drug (artemisinin, chloroquine) and stress (starvation, heat shock) treatment. The screening was highly reproducible, and the screening libraries were easily generated by transfection of mixed plasmids expressing different gRNAs. We demonstrated that this screening is straightforward, robust, and can provide a fast and efficient tool to study essential genes that have long presented a bottleneck in assessing their functions using existing genetic tools.
Collapse
Affiliation(s)
- Amuza Byaruhanga Lucky
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Xiaoying Liang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Azhar Muneer
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Klinger CM, Jimenez-Ruiz E, Mourier T, Klingl A, Lemgruber L, Pain A, Dacks JB, Meissner M. Evolutionary analysis identifies a Golgi pathway and correlates lineage-specific factors with endomembrane organelle emergence in apicomplexans. Cell Rep 2024; 43:113740. [PMID: 38363682 DOI: 10.1016/j.celrep.2024.113740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
The organelle paralogy hypothesis (OPH) aims to explain the evolution of non-endosymbiotically derived organelles. It predicts that lineage-specific pathways or organelles should result when identity-encoding membrane-trafficking components duplicate and co-evolve. Here, we investigate the presence of such lineage-specific membrane-trafficking machinery paralogs in Apicomplexa, a globally important parasitic lineage. We are able to identify 18 paralogs of known membrane-trafficking machinery, in several cases co-incident with the presence of new endomembrane organelles in apicomplexans or their parent lineage, the Alveolata. Moreover, focused analysis of the apicomplexan Arf-like small GTPases (i.e., ArlX3) revealed a specific post-Golgi trafficking pathway. This pathway appears involved in delivery of proteins to micronemes and rhoptries, with knockdown demonstrating reduced invasion capacity. Overall, our data have identified an unforeseen post-Golgi trafficking pathway in apicomplexans and are consistent with the OPH mechanism acting to produce endomembrane pathways or organelles at various evolutionary stages across the alveolate lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Elena Jimenez-Ruiz
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| | - Tobias Mourier
- Pathogen Genomics Laboratory, Bioscience Programme, Biological, and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Andreas Klingl
- Pflanzliche Entwicklungsbiologie, Biozentrum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Leandro Lemgruber
- Cellular Analysis Facility, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Programme, Biological, and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; International Institute for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Japan
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Centre for Life's Origin and Evolution, Department of Genetics, Evolution & Environment, University College London, London, UK.
| | - Markus Meissner
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany.
| |
Collapse
|
9
|
Reber S, Singer M, Frischknecht F. Cytoskeletal dynamics in parasites. Curr Opin Cell Biol 2024; 86:102277. [PMID: 38048658 DOI: 10.1016/j.ceb.2023.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Cytoskeletal dynamics are essential for cellular homeostasis and development for both metazoans and protozoans. The function of cytoskeletal elements in protozoans can diverge from that of metazoan cells, with microtubules being more stable and actin filaments being more dynamic. This is particularly striking in protozoan parasites that evolved to enter metazoan cells. Here, we review recent progress towards understanding cytoskeletal dynamics in protozoan parasites, with a focus on divergent properties compared to classic model organisms.
Collapse
Affiliation(s)
- Simone Reber
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany; University of Applied Sciences Berlin, 13353 Berlin, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Wang Y. mSphere of Influence: Systemic decoding gene function in Toxoplasma gondii pathogenesis-CRISPR screens and beyond. mSphere 2023; 8:e0027123. [PMID: 37382434 PMCID: PMC10449525 DOI: 10.1128/msphere.00271-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023] Open
Abstract
Yifan Wang works in the field of molecular parasitology with a focus on host-pathogen interactions. In this mSphere of Influence article, he reflects on how papers entitled "A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes" by S. M. Sidik, D. Huet, S. M. Ganesan, M.-H. Huynh, et al. (Cell 166:1423.e12-1435.e12, 2016, https://doi.org/10.1016/j.cell.2016.08.019) and "Mapping host-microbe transcriptional interactions by dual Perturb-seq" by S. Butterworth, K. Kordova, S. Chandrasekaran, K. K. Thomas, et al. (bioRxiv, https://doi.org/10.1101/2023.04.21.537779) made an impact on his research and changed the way he thinks how functional genomics and high-throughput screens provide novel insights into pathogen pathogenesis.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Hanna JC, Corpas-Lopez V, Seizova S, Colon BL, Bacchetti R, Hall GMJ, Sands EM, Robinson L, Baragaña B, Wyllie S, Pawlowic MC. Mode of action studies confirm on-target engagement of lysyl-tRNA synthetase inhibitor and lead to new selection marker for Cryptosporidium. Front Cell Infect Microbiol 2023; 13:1236814. [PMID: 37600947 PMCID: PMC10436570 DOI: 10.3389/fcimb.2023.1236814] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Cryptosporidiosis is a leading cause of diarrheal-associated morbidity and mortality, predominantly affecting children under 5 years old in low-and-middle-income countries. There is no effective treatment and no vaccine. New therapeutics are emerging from drug discovery efforts. It is critical that mode of action studies are performed alongside drug discovery to ensure the best clinical outcomes. Unfortunately, technology to identify and validate drug targets for Cryptosporidium is severely lacking. Methods We used C. parvum lysyl-tRNA synthetase (CpKRS) and DDD01510706 as a target-compound pair to develop both chemical and genetic tools for mode of action studies for Cryptosporidium. We adapted thermal proteome profiling (TPP) for Cryptosporidium, an unbiased approach for target identification. Results Using TPP we identified the molecular target of DDD01510706 and confirm that it is CpKRS. Genetic tools confirm that CpKRS is expressed throughout the life cycle and that this target is essential for parasite survival. Parasites genetically modified to over-express CpKRS or parasites with a mutation at the compound-binding site are resistant to treatment with DDD01510706. We leveraged these mutations to generate a second drug selection marker for genetic modification of Cryptosporidium, KRSR. This second selection marker is interchangeable with the original selection marker, NeoR, and expands the range of reverse genetic approaches available to study parasite biology. Due to the sexual nature of the Cryptosporidium life cycle, parental strains containing different drug selection markers can be crossed in vivo. Discussion Selection with both drug markers produces highly efficient genetic crosses (>99% hybrid progeny), paving the way for forward genetics approaches in Cryptosporidium.
Collapse
Affiliation(s)
- Jack C. Hanna
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Victor Corpas-Lopez
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Simona Seizova
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ross Bacchetti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Grant M. J. Hall
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Emma M. Sands
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lee Robinson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Beatriz Baragaña
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mattie C. Pawlowic
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
12
|
Kuehnel RM, Ganga E, Balestra AC, Suarez C, Wyss M, Klages N, Brusini L, Maco B, Brancucci N, Voss TS, Soldati D, Brochet M. A Plasmodium membrane receptor platform integrates cues for egress and invasion in blood forms and activation of transmission stages. SCIENCE ADVANCES 2023; 9:eadf2161. [PMID: 37327340 PMCID: PMC10275601 DOI: 10.1126/sciadv.adf2161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
Critical events in the life cycle of malaria-causing parasites depend on cyclic guanosine monophosphate homeostasis by guanylyl cyclases (GCs) and phosphodiesterases, including merozoite egress or invasion of erythrocytes and gametocyte activation. These processes rely on a single GCα, but in the absence of known signaling receptors, how this pathway integrates distinct triggers is unknown. We show that temperature-dependent epistatic interactions between phosphodiesterases counterbalance GCα basal activity preventing gametocyte activation before mosquito blood feed. GCα interacts with two multipass membrane cofactors in schizonts and gametocytes: UGO (unique GC organizer) and SLF (signaling linking factor). While SLF regulates GCα basal activity, UGO is essential for GCα up-regulation in response to natural signals inducing merozoite egress and gametocyte activation. This work identifies a GC membrane receptor platform that senses signals triggering processes specific to an intracellular parasitic lifestyle, including host cell egress and invasion to ensure intraerythrocytic amplification and transmission to mosquitoes.
Collapse
Affiliation(s)
- Ronja Marie Kuehnel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Emma Ganga
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Aurélia C. Balestra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Catherine Suarez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Matthias Wyss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Nicolas Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Dominique Soldati
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| |
Collapse
|
13
|
Koreny L, Mercado-Saavedra BN, Klinger CM, Barylyuk K, Butterworth S, Hirst J, Rivera-Cuevas Y, Zaccai NR, Holzer VJC, Klingl A, Dacks JB, Carruthers VB, Robinson MS, Gras S, Waller RF. Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. Nat Commun 2023; 14:2167. [PMID: 37061511 PMCID: PMC10105704 DOI: 10.1038/s41467-023-37431-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/17/2023] [Indexed: 04/17/2023] Open
Abstract
Apicomplexan parasites have immense impacts on humanity, but their basic cellular processes are often poorly understood. Where endocytosis occurs in these cells, how conserved this process is with other eukaryotes, and what the functions of endocytosis are across this phylum are major unanswered questions. Using the apicomplexan model Toxoplasma, we identified the molecular composition and behavior of unusual, fixed endocytic structures. Here, stable complexes of endocytic proteins differ markedly from the dynamic assembly/disassembly of these machineries in other eukaryotes. We identify that these endocytic structures correspond to the 'micropore' that has been observed throughout the Apicomplexa. Moreover, conserved molecular adaptation of this structure is seen in apicomplexans including the kelch-domain protein K13 that is central to malarial drug-resistance. We determine that a dominant function of endocytosis in Toxoplasma is plasma membrane homeostasis, rather than parasite nutrition, and that these specialized endocytic structures originated early in infrakingdom Alveolata likely in response to the complex cell pellicle that defines this medically and ecologically important ancient eukaryotic lineage.
Collapse
Affiliation(s)
- Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | | | - Christen M Klinger
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | | | - Simon Butterworth
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Victoria J C Holzer
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany
| | - Andreas Klingl
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Simon Gras
- Experimental Parasitology, Department for Veterinary Sciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany.
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
14
|
Arabiotorre A, Formanowicz M, Bankaitis VA, Grabon A. Phosphatidylinositol-4-phosphate signaling regulates dense granule biogenesis and exocytosis in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523261. [PMID: 36712082 PMCID: PMC9882004 DOI: 10.1101/2023.01.09.523261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phosphoinositide metabolism defines the foundation of a major signaling pathway that is conserved throughout the eukaryotic kingdom. The 4-OH phosphorylated phosphoinositides such as phosphatidylinositol-4-phosphate (PtdIns4P) and phosphatidylinositol-4,5-bisphosphate are particularly important molecules as these execute intrinsically essential activities required for the viability of all eukaryotic cells studied thus far. Using intracellular tachyzoites of the apicomplexan parasite Toxoplasma gondii as model for assessing primordial roles for PtdIns4P signaling, we demonstrate the presence of PtdIns4P pools in Golgi/trans-Golgi (TGN) system and in post-TGN compartments of the parasite. Moreover, we show that deficits in PtdIns4P signaling result in structural perturbation of compartments that house dense granule cargo with accompanying deficits in dense granule exocytosis. Taken together, the data report a direct role for PtdIns4P in dense granule biogenesis and exocytosis. The data further indicate that the biogenic pathway for secretion-competent dense granule formation in T. gondii is more complex than simple budding of fully matured dense granules from the TGN.
Collapse
Affiliation(s)
- Angela Arabiotorre
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
| | - Megan Formanowicz
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Vytas A. Bankaitis
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843-2128
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-2128
| | - Aby Grabon
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
| |
Collapse
|
15
|
Singer M, Simon K, Forné I, Meissner M. A central CRMP complex essential for invasion in Toxoplasma gondii. PLoS Biol 2023; 21:e3001937. [PMID: 36602948 PMCID: PMC9815656 DOI: 10.1371/journal.pbio.3001937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Apicomplexa are obligate intracellular parasites. While most species are restricted to specific hosts and cell types, Toxoplasma gondii can invade every nucleated cell derived from warm-blooded animals. This broad host range suggests that this parasite can recognize multiple host cell ligands or structures, leading to the activation of a central protein complex, which should be conserved in all apicomplexans. During invasion, the unique secretory organelles (micronemes and rhoptries) are sequentially released and several micronemal proteins have been suggested to be required for host cell recognition and invasion. However, to date, only few micronemal proteins have been demonstrated to be essential for invasion, suggesting functional redundancy that might allow such a broad host range. Cysteine Repeat Modular Proteins (CRMPs) are a family of apicomplexan-specific proteins. In T. gondii, two CRMPs are present in the genome, CRMPA (TGGT1_261080) and CRMPB (TGGT1_292020). Here, we demonstrate that both proteins form a complex that contains the additional proteins MIC15 and the thrombospondin type 1 domain-containing protein (TSP1). Disruption of this complex results in a block of rhoptry secretion and parasites being unable to invade the host cell. In conclusion, this complex is a central invasion complex conserved in all apicomplexans.
Collapse
Affiliation(s)
- Mirko Singer
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig-Maximilians-University (LMU) Munich, Germany
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- * E-mail: (MS); (MM)
| | - Kathrin Simon
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig-Maximilians-University (LMU) Munich, Germany
| | - Ignasi Forné
- Faculty of Medicine, Protein Analysis Unit, Biomedical Center (BMC), Ludwig-Maximilians-University (LMU) Munich, Martinsried, Germany
| | - Markus Meissner
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig-Maximilians-University (LMU) Munich, Germany
- * E-mail: (MS); (MM)
| |
Collapse
|
16
|
Haase R, Dos Santos Pacheco N, Soldati-Favre D. Nanoscale imaging of the conoid and functional dissection of its dynamics in Apicomplexa. Curr Opin Microbiol 2022; 70:102226. [PMID: 36332501 DOI: 10.1016/j.mib.2022.102226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022]
Abstract
Members of the Apicomplexa phylum are unified by an apical complex tailored for motility and host cell invasion. It includes regulated secretory organelles and a conoid attached to the apical polar ring (APR) from which subpellicular microtubules emerge. In coccidia, the conoid is composed of a cone of spiraling tubulin fibers, two preconoidal rings, and two intraconoidal microtubules. The conoid extrudes through the APR in motile parasites. Recent advances in proteomics, cryo-electron tomography, super-resolution, and expansion microscopy provide a more comprehensive view of the spatial and temporal resolution of proteins belonging to the conoid subcomponents. In combination with the phenotyping of targeted mutants, the biogenesis, turnover, dynamics, and function of the conoid begin to be elucidated.
Collapse
Affiliation(s)
- Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
17
|
Roumégous C, Abou Hammoud A, Fuster D, Dupuy JW, Blancard C, Salin B, Robinson DR, Renesto P, Tardieux I, Frénal K. Identification of new components of the basal pole of Toxoplasma gondii provides novel insights into its molecular organization and functions. Front Cell Infect Microbiol 2022; 12:1010038. [PMID: 36310866 PMCID: PMC9613666 DOI: 10.3389/fcimb.2022.1010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The Toxoplasma gondii tachyzoite is a singled-cell obligate intracellular parasite responsible for the acute phase of toxoplasmosis. This polarized cell exhibits an apical complex, a hallmark of the phylum Apicomplexa, essential for motility, invasion, and egress from the host cell. Located on the opposite end of the cell is the basal complex, an elaborated cytoskeletal structure that also plays critical roles in the lytic cycle of the parasite, being involved in motility, cell division, constriction and cytokinesis, as well as intravacuolar cell-cell communication. Nevertheless, only a few proteins of this structure have been described and functionally assessed. In this study, we used spatial proteomics to identify new basal complex components (BCC), and in situ imaging, including ultrastructure expansion microscopy, to position them. We thus confirmed the localization of nine BCCs out of the 12 selected candidates and assigned them to different sub-compartments of the basal complex, including two new domains located above the basal ring and below the posterior cup. Their functional investigation revealed that none of these BCCs are essential for parasite growth in vitro. However, one BCC is critical for constricting of the basal complex, likely through direct interaction with the class VI myosin heavy chain J (MyoJ), and for gliding motility. Four other BCCs, including a phosphatase and a guanylate-binding protein, are involved in the formation and/or maintenance of the intravacuolar parasite connection, which is required for the rosette organization and synchronicity of cell division.
Collapse
Affiliation(s)
- Chloé Roumégous
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Aya Abou Hammoud
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Damien Fuster
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | | | - Corinne Blancard
- Univ. Bordeaux, CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Bénédicte Salin
- Univ. Bordeaux, CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Derrick R. Robinson
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Patricia Renesto
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| | - Isabelle Tardieux
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| | - Karine Frénal
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- *Correspondence: Karine Frénal,
| |
Collapse
|
18
|
A Signaling Factor Linked to Toxoplasma gondii Guanylate Cyclase Complex Controls Invasion and Egress during Acute and Chronic Infection. mBio 2022; 13:e0196522. [PMID: 36200777 PMCID: PMC9600588 DOI: 10.1128/mbio.01965-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an intracellular apicomplexan parasite that relies on cyclic GMP (cGMP)-dependent signaling to trigger timely egress from host cells in response to extrinsic and intrinsic signals. A guanylate cyclase (GC) complex, conserved across the Apicomplexa, plays a pivotal role in integrating these signals, such as the key lipid mediator phosphatidic acid and changes in pH and ionic composition. This complex is composed of an atypical GC fused to a flippase-like P4-ATPase domain and assembled with the cell division control protein CDC50.1 and a unique GC organizer (UGO). While the dissemination of the fast-replicating tachyzoites responsible for acute infection is well understood, it is less clear if the cyst-forming bradyzoites can disseminate and contribute to cyst burden. Here, we characterized a novel component of the GC complex recently termed signaling linking factor (SLF). Tachyzoites conditionally depleted in SLF are impaired in microneme exocytosis, conoid extrusion, and motility and hence unable to invade and egress. A stage-specific promoter swap strategy allowed the generation of SLF- and GC-deficient bradyzoites that are viable as tachyzoites but show a reduction in cyst burden during the onset of chronic infection. Upon oral infection, SLF-deficient cysts failed to establish infection in mice, suggesting SLF's importance for the natural route of T. gondii infection. IMPORTANCE Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa. This life-threatening opportunistic pathogen establishes a chronic infection in human and animals that is resistant to immune attacks and chemotherapeutic intervention. The slow-growing parasites persist in tissue cysts that constitute a predominant source of transmission. Host cell invasion and egress are two critical steps of the parasite lytic cycle that are governed by a guanylate cyclase complex conserved across the Apicomplexa. A signaling linked factor is characterized here as an additional component of the complex that not only is essential during acute infection but also plays a pivotal role during natural oral infection with tissue cysts' dissemination and persistence.
Collapse
|
19
|
Herneisen AL, Li ZH, Chan AW, Moreno SNJ, Lourido S. Temporal and thermal profiling of the Toxoplasma proteome implicates parasite Protein Phosphatase 1 in the regulation of Ca 2+-responsive pathways. eLife 2022; 11:e80336. [PMID: 35976251 PMCID: PMC9436416 DOI: 10.7554/elife.80336] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Apicomplexan parasites cause persistent mortality and morbidity worldwide through diseases including malaria, toxoplasmosis, and cryptosporidiosis. Ca2+ signaling pathways have been repurposed in these eukaryotic pathogens to regulate parasite-specific cellular processes governing the replicative and lytic phases of the infectious cycle, as well as the transition between them. Despite the presence of conserved Ca2+-responsive proteins, little is known about how specific signaling elements interact to impact pathogenesis. We mapped the Ca2+-responsive proteome of the model apicomplexan Taxoplasma gondii via time-resolved phosphoproteomics and thermal proteome profiling. The waves of phosphoregulation following PKG activation and stimulated Ca2+ release corroborate known physiological changes but identify specific proteins operating in these pathways. Thermal profiling of parasite extracts identified many expected Ca2+-responsive proteins, such as parasite Ca2+-dependent protein kinases. Our approach also identified numerous Ca2+-responsive proteins that are not predicted to bind Ca2+, yet are critical components of the parasite signaling network. We characterized protein phosphatase 1 (PP1) as a Ca2+-responsive enzyme that relocalized to the parasite apex upon Ca2+ store release. Conditional depletion of PP1 revealed that the phosphatase regulates Ca2+ uptake to promote parasite motility. PP1 may thus be partly responsible for Ca2+-regulated serine/threonine phosphatase activity in apicomplexan parasites.
Collapse
Affiliation(s)
- Alice L Herneisen
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Alex W Chan
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Silvia NJ Moreno
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
20
|
Tsee Dawson A, Tonkin CJ. A CRISPR upgrade unlocks Toxoplasma gene function. Trends Parasitol 2022; 38:826-828. [PMID: 35973902 DOI: 10.1016/j.pt.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
Abstract
Forward genetic screens are invaluable in describing gene function. CRISPR has reinvigorated phenotypic screens in Toxoplasma - a model apicomplexan parasite. Two recent papers by Smith et al. and Li et al. take the next big leap in performing forward genetic screens in Toxoplasma by combining conditional gene regulation with CRISPR.
Collapse
Affiliation(s)
- Aurelie Tsee Dawson
- The Division of Infectious Diseases and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Christopher J Tonkin
- The Division of Infectious Diseases and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
Ishizaki T, Hernandez S, Paoletta MS, Sanderson T, Bushell ES. CRISPR/Cas9 and genetic screens in malaria parasites: small genomes, big impact. Biochem Soc Trans 2022; 50:1069-1079. [PMID: 35621119 PMCID: PMC9246331 DOI: 10.1042/bst20210281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022]
Abstract
The ∼30 Mb genomes of the Plasmodium parasites that cause malaria each encode ∼5000 genes, but the functions of the majority remain unknown. This is due to a paucity of functional annotation from sequence homology, which is compounded by low genetic tractability compared with many model organisms. In recent years technical breakthroughs have made forward and reverse genome-scale screens in Plasmodium possible. Furthermore, the adaptation of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Associated protein 9 (CRISPR/Cas9) technology has dramatically improved gene editing efficiency at the single gene level. Here, we review the arrival of genetic screens in malaria parasites to analyse parasite gene function at a genome-scale and their impact on understanding parasite biology. CRISPR/Cas9 screens, which have revolutionised human and model organism research, have not yet been implemented in malaria parasites due to the need for more complex CRISPR/Cas9 gene targeting vector libraries. We therefore introduce the reader to CRISPR-based screens in the related apicomplexan Toxoplasma gondii and discuss how these approaches could be adapted to develop CRISPR/Cas9 based genome-scale genetic screens in malaria parasites. Moreover, since more than half of Plasmodium genes are required for normal asexual blood-stage reproduction, and cannot be targeted using knockout methods, we discuss how CRISPR/Cas9 could be used to scale up conditional gene knockdown approaches to systematically assign function to essential genes.
Collapse
Affiliation(s)
- Takahiro Ishizaki
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Sophia Hernandez
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Martina S. Paoletta
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA - CONICET, Hurlingham, Argentina
| | - Theo Sanderson
- Francis Crick Institute, 1 Midland Rd, London NW1 1AT, U.K
| | - Ellen S.C. Bushell
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| |
Collapse
|
22
|
Smith TA, Lopez-Perez GS, Herneisen AL, Shortt E, Lourido S. Screening the Toxoplasma kinome with high-throughput tagging identifies a regulator of invasion and egress. Nat Microbiol 2022; 7:868-881. [PMID: 35484233 PMCID: PMC9167752 DOI: 10.1038/s41564-022-01104-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Protein kinases regulate fundamental aspects of eukaryotic cell biology, making them attractive chemotherapeutic targets in parasites like Plasmodium spp. and Toxoplasma gondii. To systematically examine the parasite kinome, we developed a high-throughput tagging (HiT) strategy to endogenously label protein kinases with an auxin-inducible degron and fluorophore. Hundreds of tagging vectors were assembled from synthetic sequences in a single reaction and used to generate pools of mutants to determine localization and function. Examining 1,160 arrayed clones, we assigned 40 protein localizations and associated 15 kinases with distinct defects. The fitness of tagged alleles was also measured by pooled screening, distinguishing delayed from acute phenotypes. A previously unstudied kinase, associated with a delayed phenotype, was shown to be a regulator of invasion and egress. We named the kinase Store Potentiating/Activating Regulatory Kinase (SPARK), based on its impact on intracellular Ca2+ stores. Despite homology to mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1), SPARK lacks a lipid-binding domain, suggesting a rewiring of the pathway in parasites. HiT screening extends genome-wide approaches into complex cellular phenotypes, providing a scalable and versatile platform to dissect parasite biology.
Collapse
Affiliation(s)
- Tyler A Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|