1
|
Dutta S, Poddar S, Chakraborty J, Srinivasan R, Gayathri P. Membrane Binding and Cholesterol Sensing Motif in Mycoplasma genitalium FtsZ: A Novel Mode of Membrane Recruitment for Bacterial FtsZ. Biochemistry 2025; 64:1864-1877. [PMID: 40184362 DOI: 10.1021/acs.biochem.4c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Cell division in bacteria is initiated by constriction of the Z-ring comprising two essential proteins, FtsZ and FtsA. Though the essential function of the Z-ring in bacterial division has been established, the precise roles of FtsZ and FtsA in the constriction process remain elusive. Due to the minimal number of components, FtsZ/FtsA in cell wall-less bacteria is an ideal model system for obtaining mechanistic insights into Z-ring constriction in the absence of a cell wall synthesis machinery. In this study, we undertook a comparative analysis of FtsZ and FtsA protein sequences from 113 mycoplasma species and the corresponding sequences in cell-walled bacteria. We report a phylogenetically distinct group of 12 species that possess a putative membrane binding amphipathic helix at either the N- or C-terminal extensions of the globular FtsZ domain. Importantly, these FtsZs lack conservation of the conserved C-terminal peptide sequence. We experimentally prove that the proposed C-terminal amphipathic helix in Mycoplasma genitalium (M. genitalium) FtsZ exhibits membrane binding. Additionally, we identify a potential cholesterol recognition motif within the C-terminal amphipathic helix region of M. genitalium FtsZ. Our study catalogues the functional variations of membrane attachment by the FtsZ and FtsA system in cell wall-less mycoplasmas and provides a new perspective to dissect the role of FtsZ and FtsA in cell division.
Collapse
Affiliation(s)
- Soumyajit Dutta
- Biology Division, Indian Institute of Science Education and Research, Pune 411008, India
| | - Sakshi Poddar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Joyeeta Chakraborty
- Biology Division, Indian Institute of Science Education and Research, Pune 411008, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Pananghat Gayathri
- Biology Division, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
2
|
Naha A, Cameron TA, Margolin W. A Predicted Helix-Turn-Helix Core Is Critical for Bacteriophage Kil Peptide to Disrupt Escherichia coli Cell Division. Antibiotics (Basel) 2025; 14:52. [PMID: 39858338 PMCID: PMC11762379 DOI: 10.3390/antibiotics14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Background/objectives: FtsZ, a eukaryotic tubulin homolog and an essential component of the bacterial divisome, is the target of numerous antimicrobial compounds as well as proteins and peptides, most of which inhibit FtsZ polymerization dynamics. We previously showed that the Kil peptide from bacteriophage λ inhibits Escherichia coli cell division by disrupting FtsZ ring assembly, and this inhibition requires the presence of the essential FtsZ membrane anchor protein ZipA. Methods: To investigate Kil's molecular mechanism further, we employed deletions, truncations, and molecular modeling to identify the minimal residues necessary for its activity. Results: Modeling suggested that Kil's core segment folds into a helix-turn-helix (HTH) structure. Deleting either the C-terminal 11 residues or the N-terminal 5 residues of Kil still allowed the inhibition of E. coli cell division, but removing both termini nearly abolished this activity, indicating that a minimal region within the Kil HTH core is essential for its structure and function. Another Kil-like peptide from a closely related enterobacterial phage also disrupted FtsZ ring assembly and required ZipA for this activity. Consistent with its broader activity against FtsZ, λ Kil was able to efficiently inhibit cell division of a uropathogenic E. coli (UPEC) strain. Conclusions: Understanding the structure and function of Kil and similar peptides can potentially reveal additional ways to target FtsZ for antimicrobial therapies and elucidate how FtsZ functions in bacterial cell division.
Collapse
Affiliation(s)
| | | | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA; (A.N.); (T.A.C.)
| |
Collapse
|
3
|
Männik J, Kar P, Amarasinghe C, Amir A, Männik J. Determining the rate-limiting processes for cell division in Escherichia coli. Nat Commun 2024; 15:9948. [PMID: 39550358 PMCID: PMC11569214 DOI: 10.1038/s41467-024-54242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024] Open
Abstract
A critical cell cycle checkpoint for most bacteria is the onset of constriction when the septal peptidoglycan synthesis starts. According to the current understanding, the arrival of FtsN to midcell triggers this checkpoint in Escherichia coli. Recent structural and in vitro data suggests that recruitment of FtsN to the Z-ring leads to a conformational switch in actin-like FtsA, which links FtsZ protofilaments to the cell membrane and acts as a hub for the late divisome proteins. Here, we investigate this putative pathway using in vivo measurements and stochastic cell cycle modeling at moderately fast growth rates. Quantitatively upregulating protein concentrations and determining the resulting division timings shows that FtsN and FtsA numbers are not rate-limiting for the division in E. coli. However, at higher overexpression levels, they affect divisions: FtsN by accelerating and FtsA by inhibiting them. At the same time, we find that the FtsZ numbers in the cell are one of the rate-limiting factors for cell divisions in E. coli. Altogether, these findings suggest that instead of FtsN, accumulation of FtsZ in the Z-ring is one of the main drivers of the onset of constriction in E. coli at faster growth rates.
Collapse
Affiliation(s)
- Jaana Männik
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Prathitha Kar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02134, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02134, USA
| | | | - Ariel Amir
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Jaan Männik
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
4
|
Gong H, Yan D, Cui Y, Li Y, Yang J, Yang W, Zhan R, Wan Q, Wang X, He H, Chen X, Lutkenhaus J, Yang X, Du S. The divisome is a self-enhancing machine in Escherichia coli and Caulobacter crescentus. Nat Commun 2024; 15:8198. [PMID: 39294118 PMCID: PMC11410940 DOI: 10.1038/s41467-024-52217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
During bacterial cytokinesis, polymers of the bacterial tubulin FtsZ coalesce into the Z ring to orchestrate divisome assembly and septal cell wall synthesis. Previous studies have found that Z ring condensation and stability is critical for successful cell division. However, how FtsZ filaments condense into a Z ring remains enigmatic and whether septal cell wall synthesis can feedback to the Z ring has not been investigated. Here, we show that FtsZ-associated proteins (Zaps) play important roles in Z ring condensation and stability, and discover septal cell wall synthesis as a novel player for Z ring condensation and stabilization in Escherichia coli and Caulobacter crescentus. Moreover, we find that the interaction between the Z ring membrane anchor, FtsA, and components of the septal cell wall synthetic complex are critical for septal cell wall synthesis-mediated Z ring condensation. Altogether, these findings suggest that the divisome is a self-enhancing machine in these two gram-negative bacteria, where the Z ring and the septal cell wall synthetic complex communicate with and reinforce each other to ensure robustness of cell division.
Collapse
Affiliation(s)
- Han Gong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Key Laboratory of Polar Environment Monitoring and Public Governance (Ministry of Education), Wuhan University, Wuhan, China
| | - Di Yan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanyuan Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ying Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jize Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenjie Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Rui Zhan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianqian Wan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xinci Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Haofeng He
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xinxing Yang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Shishen Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
- Key Laboratory of Polar Environment Monitoring and Public Governance (Ministry of Education), Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Perkins A, Mounange-Badimi MS, Margolin W. Role of the antiparallel double-stranded filament form of FtsA in activating the Escherichia coli divisome. mBio 2024; 15:e0168724. [PMID: 39041810 PMCID: PMC11323482 DOI: 10.1128/mbio.01687-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
The actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including Escherichia coli. Previous in vitro studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsAR286W and FtsAG50E can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. However, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome. Here, we used an in vivo crosslinking assay for FtsA DS filaments to show that they largely depend on proper divisome assembly and are prevalent at later stages of cell division. We also used a previously reported variant that fails to assemble DS filaments, FtsAM96E R153D, to investigate the roles of FtsA oligomeric states in divisome assembly and activation. We show that FtsAM96E R153D cannot form DS filaments in vivo, fails to replace native FtsA, and confers a dominant negative phenotype, underscoring the importance of the DS filament stage for FtsA function. Surprisingly, however, activation of the divisome through the ftsL* or ftsW* superfission alleles suppressed the dominant negative phenotype and rescued the functionality of FtsAM96E R153D. Our results suggest that FtsA DS filaments are needed for divisome activation once it is assembled, but they are not essential for divisome assembly or guiding septum synthesis.IMPORTANCECell division is fundamental for cellular duplication. In simple cells like Escherichia coli bacteria, the actin homolog FtsA is essential for cell division and assembles into a variety of protein filaments at the cytoplasmic membrane. These filaments not only help tether polymers of the tubulin-like FtsZ to the membrane at early stages of cell division but also play crucial roles in recruiting other cell division proteins to a complex called the divisome. Once assembled, the E. coli divisome subsequently activates synthesis of the division septum that splits the cell in two. One recently discovered oligomeric conformation of FtsA is an antiparallel double-stranded filament. Using a combination of in vivo crosslinking and genetics, we provide evidence suggesting that these FtsA double filaments have a crucial role in activating the septum synthesis enzymes.
Collapse
Affiliation(s)
- Abbigale Perkins
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| | - Mwidy Sava Mounange-Badimi
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
6
|
Vanhille-Campos C, Whitley KD, Radler P, Loose M, Holden S, Šarić A. Self-organization of mortal filaments and its role in bacterial division ring formation. NATURE PHYSICS 2024; 20:1670-1678. [PMID: 39416851 PMCID: PMC11473364 DOI: 10.1038/s41567-024-02597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/27/2024] [Indexed: 10/19/2024]
Abstract
Filaments in the cell commonly treadmill. Driven by energy consumption, they grow on one end while shrinking on the other, causing filaments to appear motile even though individual proteins remain static. This process is characteristic of cytoskeletal filaments and leads to collective filament self-organization. Here we show that treadmilling drives filament nematic ordering by dissolving misaligned filaments. Taking the bacterial FtsZ protein involved in cell division as an example, we show that this mechanism aligns FtsZ filaments in vitro and drives the organization of the division ring in living Bacillus subtilis cells. We find that ordering via local dissolution also allows the system to quickly respond to chemical and geometrical biases in the cell, enabling us to quantitatively explain the ring formation dynamics in vivo. Beyond FtsZ and other cytoskeletal filaments, our study identifies a mechanism for self-organization via constant birth and death of energy-consuming filaments.
Collapse
Affiliation(s)
- Christian Vanhille-Campos
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, UK
| | - Kevin D. Whitley
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Philipp Radler
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Archaea Biology and Ecogenomics Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Martin Loose
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Séamus Holden
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Anđela Šarić
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
7
|
Velle KB, Swafford AJM, Garner E, Fritz-Laylin LK. Actin network evolution as a key driver of eukaryotic diversification. J Cell Sci 2024; 137:jcs261660. [PMID: 39120594 DOI: 10.1242/jcs.261660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Eukaryotic cells have been evolving for billions of years, giving rise to wildly diverse cell forms and functions. Despite their variability, all eukaryotic cells share key hallmarks, including membrane-bound organelles, heavily regulated cytoskeletal networks and complex signaling cascades. Because the actin cytoskeleton interfaces with each of these features, understanding how it evolved and diversified across eukaryotic phyla is essential to understanding the evolution and diversification of eukaryotic cells themselves. Here, we discuss what we know about the origin and diversity of actin networks in terms of their compositions, structures and regulation, and how actin evolution contributes to the diversity of eukaryotic form and function.
Collapse
Affiliation(s)
- Katrina B Velle
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | | | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
8
|
Perkins A, Mounange-Badimi MS, Margolin W. Role of the antiparallel double-stranded filament form of FtsA in activating the Escherichia coli divisome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600433. [PMID: 38979378 PMCID: PMC11230281 DOI: 10.1101/2024.06.24.600433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including Escherichia coli. Previous in vitro studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsAR286W and FtsAG50E can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. Yet, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome. Here we used an in vivo crosslinking assay for FtsA DS filaments to show that they largely depend on proper divisome assembly and are prevalent at later stages of cell division. We also used a previously reported variant that fails to assemble DS filaments, FtsAM96E R153D, to investigate the roles of FtsA oligomeric states in divisome assembly and activation. We show that FtsAM96E R153D cannot form DS filaments in vivo, fails to replace native FtsA, and confers a dominant negative phenotype, underscoring the importance of the DS filament stage for FtsA function. Surprisingly, however, activation of the divisome through the ftsL* or ftsW* superfission alleles suppressed the dominant negative phenotype and rescued the functionallity of FtsAM96E R153D. Our results suggest that FtsA DS filaments are needed for divisome activation once it is assembled, but they are not essential for divisome assembly or guiding septum synthesis.
Collapse
Affiliation(s)
- Abbigale Perkins
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| | - Mwidy Sava Mounange-Badimi
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| | - William Margolin
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| |
Collapse
|
9
|
Charles-Orszag A, Petek-Seoane NA, Mullins RD. Archaeal actins and the origin of a multi-functional cytoskeleton. J Bacteriol 2024; 206:e0034823. [PMID: 38391233 PMCID: PMC10955848 DOI: 10.1128/jb.00348-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Actin and actin-like proteins form filamentous polymers that carry out important cellular functions in all domains of life. In this review, we sketch a map of the function and regulation of actin-like proteins across bacteria, archaea, and eukarya, marking some of the terra incognita that remain in this landscape. We focus particular attention on archaea because mapping the structure and function of cytoskeletal systems across this domain promises to help us understand the evolutionary relationship between the (mostly) mono-functional actin-like filaments found in bacteria and the multi-functional actin cytoskeletons that characterize eukaryotic cells.
Collapse
Affiliation(s)
- Arthur Charles-Orszag
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| | - Natalie A. Petek-Seoane
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| | - R. Dyche Mullins
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Radler P, Loose M. A dynamic duo: Understanding the roles of FtsZ and FtsA for Escherichia coli cell division through in vitro approaches. Eur J Cell Biol 2024; 103:151380. [PMID: 38218128 DOI: 10.1016/j.ejcb.2023.151380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
Bacteria divide by binary fission. The protein machine responsible for this process is the divisome, a transient assembly of more than 30 proteins in and on the surface of the cytoplasmic membrane. Together, they constrict the cell envelope and remodel the peptidoglycan layer to eventually split the cell into two. For Escherichia coli, most molecular players involved in this process have probably been identified, but obtaining the quantitative information needed for a mechanistic understanding can often not be achieved from experiments in vivo alone. Since the discovery of the Z-ring more than 30 years ago, in vitro reconstitution experiments have been crucial to shed light on molecular processes normally hidden in the complex environment of the living cell. In this review, we summarize how rebuilding the divisome from purified components - or at least parts of it - have been instrumental to obtain the detailed mechanistic understanding of the bacterial cell division machinery that we have today.
Collapse
Affiliation(s)
- Philipp Radler
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria; University of Vienna, Djerassiplatz 1, 1030 Wien, Austria.
| | - Martin Loose
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
11
|
Santiago-Collazo G, Brown PJB, Randich AM. The divergent early divisome: is there a functional core? Trends Microbiol 2024; 32:231-240. [PMID: 37741788 DOI: 10.1016/j.tim.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
The bacterial divisome is a complex nanomachine that drives cell division and separation. The essentiality of these processes leads to the assumption that proteins with core roles will be strictly conserved across all bacterial genomes. However, recent studies in diverse proteobacteria have revealed considerable variation in the early divisome compared with Escherichia coli. While some proteins are highly conserved, their specific functions and interacting partners vary. Meanwhile, different subphyla use clade-specific proteins with analogous functions. Thus, instead of focusing on gene conservation, we must also explore how key functions are maintained during early division by diverging protein networks. An enhanced awareness of these complex genetic networks will clarify the physical and evolutionary constraints of bacterial division.
Collapse
Affiliation(s)
- Gustavo Santiago-Collazo
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Pamela J B Brown
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Amelia M Randich
- Department of Biology, College of Arts and Sciences, University of Scranton, Scranton, PA, USA.
| |
Collapse
|
12
|
Hu B, Margolin W. Probing Membrane-Associated Cytoskeletal Oligomers of the Bacterial Divisome by Electron Microscopy and Tomography. Methods Mol Biol 2024; 2727:17-25. [PMID: 37815705 PMCID: PMC11295944 DOI: 10.1007/978-1-0716-3491-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The cell division machinery or "divisome" of many bacteria, including Escherichia coli, contains homologs of tubulin (FtsZ) and actin (FtsA) that interact with each other to promote the synthesis of septal peptidoglycan. FtsA oligomers have an essential role as a track for tethering dynamically treadmilling FtsZ protofilaments to the cytoplasmic membrane. Other bacterial cytoskeletal oligomers such as MreB also assemble on and move along the membrane. Structures of these oligomers on membranes in vitro may mimic their behavior in the cell. Here, we describe a protocol to visualize FtsA oligomeric structures on membranes and their interactions with FtsZ protofilaments using negative stain transmission electron microscopy along with tomography.
Collapse
Affiliation(s)
- Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
13
|
Morrison JJ, Camberg JL. Building the Bacterial Divisome at the Septum. Subcell Biochem 2024; 104:49-71. [PMID: 38963483 DOI: 10.1007/978-3-031-58843-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Across living organisms, division is necessary for cell survival and passing heritable information to the next generation. For this reason, cell division is highly conserved among eukaryotes and prokaryotes. Among the most highly conserved cell division proteins in eukaryotes are tubulin and actin. Tubulin polymerizes to form microtubules, which assemble into cytoskeletal structures in eukaryotes, such as the mitotic spindle that pulls chromatids apart during mitosis. Actin polymerizes to form a morphological framework for the eukaryotic cell, or cytoskeleton, that undergoes reorganization during mitosis. In prokaryotes, two of the most highly conserved cell division proteins are the tubulin homolog FtsZ and the actin homolog FtsA. In this chapter, the functions of the essential bacterial cell division proteins FtsZ and FtsA and their roles in assembly of the divisome at the septum, the site of cell division, will be discussed. In most bacteria, including Escherichia coli, the tubulin homolog FtsZ polymerizes at midcell, and this step is crucial for recruitment of many other proteins to the division site. For this reason, both FtsZ abundance and polymerization are tightly regulated by a variety of proteins. The actin-like FtsA protein polymerizes and tethers FtsZ polymers to the cytoplasmic membrane. Additionally, FtsA interacts with later stage cell division proteins, which are essential for division and for building the new cell wall at the septum. Recent studies have investigated how actin-like polymerization of FtsA on the lipid membrane may impact division, and we will discuss this and other ways that division in bacteria is regulated through FtsZ and FtsA.
Collapse
Affiliation(s)
- Josiah J Morrison
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
14
|
Cameron TA, Margolin W. Insights into the assembly and regulation of the bacterial divisome. Nat Rev Microbiol 2024; 22:33-45. [PMID: 37524757 PMCID: PMC11102604 DOI: 10.1038/s41579-023-00942-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/02/2023]
Abstract
The ability to split one cell into two is fundamental to all life, and many bacteria can accomplish this feat several times per hour with high accuracy. Most bacteria call on an ancient homologue of tubulin, called FtsZ, to localize and organize the cell division machinery, the divisome, into a ring-like structure at the cell midpoint. The divisome includes numerous other proteins, often including an actin homologue (FtsA), that interact with each other at the cytoplasmic membrane. Once assembled, the protein complexes that comprise the dynamic divisome coordinate membrane constriction with synthesis of a division septum, but only after overcoming checkpoints mediated by specialized protein-protein interactions. In this Review, we summarize the most recent evidence showing how the divisome proteins of Escherichia coli assemble at the cell midpoint, interact with each other and regulate activation of septum synthesis. We also briefly discuss the potential of divisome proteins as novel antibiotic targets.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
15
|
Dunajova Z, Mateu BP, Radler P, Lim K, Brandis D, Velicky P, Danzl JG, Wong RW, Elgeti J, Hannezo E, Loose M. Chiral and nematic phases of flexible active filaments. NATURE PHYSICS 2023; 19:1916-1926. [PMID: 38075437 PMCID: PMC10709145 DOI: 10.1038/s41567-023-02218-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/21/2023] [Indexed: 01/05/2025]
Abstract
The emergence of large-scale order in self-organized systems relies on local interactions between individual components. During bacterial cell division, FtsZ-a prokaryotic homologue of the eukaryotic protein tubulin-polymerizes into treadmilling filaments that further organize into a cytoskeletal ring. In vitro, FtsZ filaments can form dynamic chiral assemblies. However, how the active and passive properties of individual filaments relate to these large-scale self-organized structures remains poorly understood. Here we connect single-filament properties with the mesoscopic scale by combining minimal active matter simulations and biochemical reconstitution experiments. We show that the density and flexibility of active chiral filaments define their global order. At intermediate densities, curved, flexible filaments organize into chiral rings and polar bands. An effectively nematic organization dominates for high densities and for straight, mutant filaments with increased rigidity. Our predicted phase diagram quantitatively captures these features, demonstrating how the flexibility, density and chirality of the active filaments affect their collective behaviour. Our findings shed light on the fundamental properties of active chiral matter and explain how treadmilling FtsZ filaments organize during bacterial cell division.
Collapse
Affiliation(s)
- Zuzana Dunajova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Philipp Radler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Dörte Brandis
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Philipp Velicky
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Johann Georg Danzl
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Richard W. Wong
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Jens Elgeti
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Edouard Hannezo
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Martin Loose
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
16
|
Naha A, Haeusser DP, Margolin W. Anchors: A way for FtsZ filaments to stay membrane bound. Mol Microbiol 2023; 120:525-538. [PMID: 37503768 PMCID: PMC10593102 DOI: 10.1111/mmi.15067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 07/29/2023]
Abstract
Most bacteria use the tubulin homolog FtsZ to organize their cell division. FtsZ polymers initially assemble into mobile complexes that circle around a ring-like structure at the cell midpoint, followed by the recruitment of other proteins that will constrict the cytoplasmic membrane and synthesize septal peptidoglycan to divide the cell. Despite the need for FtsZ polymers to associate with the membrane, FtsZ lacks intrinsic membrane binding ability. Consequently, FtsZ polymers have evolved to interact with the membrane through adaptor proteins that both bind FtsZ and the membrane. Here, we discuss recent progress in understanding the functions of these FtsZ membrane tethers. Some, such as FtsA and SepF, are widely conserved and assemble into varied oligomeric structures bound to the membrane through an amphipathic helix. Other less-conserved proteins, such as EzrA and ZipA, have transmembrane domains, make extended structures, and seem to bind to FtsZ through two separate interactions. This review emphasizes that most FtsZs use multiple membrane tethers with overlapping functions, which not only attach FtsZ polymers to the membrane but also organize them in specific higher-order structures that can optimize cell division activity. We discuss gaps in our knowledge of these concepts and how future studies can address them.
Collapse
Affiliation(s)
- Arindam Naha
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
| | - Daniel P. Haeusser
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
- Department of Biology, Canisius College, Buffalo, NY 14208, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
| |
Collapse
|
17
|
Britton BM, Yovanno RA, Costa SF, McCausland J, Lau AY, Xiao J, Hensel Z. Conformational changes in the essential E. coli septal cell wall synthesis complex suggest an activation mechanism. Nat Commun 2023; 14:4585. [PMID: 37524712 PMCID: PMC10390529 DOI: 10.1038/s41467-023-39921-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
The bacterial divisome is a macromolecular machine composed of more than 30 proteins that controls cell wall constriction during division. Here, we present a model of the structure and dynamics of the core complex of the E. coli divisome, supported by a combination of structure prediction, molecular dynamics simulation, single-molecule imaging, and mutagenesis. We focus on the septal cell wall synthase complex formed by FtsW and FtsI, and its regulators FtsQ, FtsL, FtsB, and FtsN. The results indicate extensive interactions in four regions in the periplasmic domains of the complex. FtsQ, FtsL, and FtsB support FtsI in an extended conformation, with the FtsI transpeptidase domain lifted away from the membrane through interactions among the C-terminal domains. FtsN binds between FtsI and FtsL in a region rich in residues with superfission (activating) and dominant negative (inhibitory) mutations. Mutagenesis experiments and simulations suggest that the essential domain of FtsN links FtsI and FtsL together, potentially modulating interactions between the anchor-loop of FtsI and the putative catalytic cavity of FtsW, thus suggesting a mechanism of how FtsN activates the cell wall synthesis activities of FtsW and FtsI.
Collapse
Affiliation(s)
- Brooke M Britton
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Remy A Yovanno
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Sara F Costa
- ITQB NOVA, Universidade NOVA de Lisboa, Lisbon, Av. da República, 2780-157, Oeiras, Portugal
| | - Joshua McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA.
| | - Zach Hensel
- ITQB NOVA, Universidade NOVA de Lisboa, Lisbon, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
18
|
Morrison JJ, Ferreira CN, Siler EM, Nelson K, Trebino CE, Piraino B, Camberg JL. Nucleotide-dependent activities of FtsA regulate the early establishment of a functional divisome during the Escherichia coli cell cycle. Front Microbiol 2023; 14:1171376. [PMID: 37250038 PMCID: PMC10213515 DOI: 10.3389/fmicb.2023.1171376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
During cell division in Escherichia coli, the highly conserved tubulin homolog FtsZ polymerizes and assembles into a ring-like structure, called the Z-ring, at the site of septation. For recruitment to the membrane surface, FtsZ polymers directly interact with membrane-associated proteins, predominantly FtsA in E. coli. FtsA shares structural homology with actin and, like actin, hydrolyzes ATP. Yeast actin detects nucleotide occupancy through a sensor region adjacent to the nucleotide binding site and adopts distinct conformations in monomeric and filamentous actin. Bacterial actin homologs also display considerable conformational flexibility across different nucleotide-bound states and polymerize. Here, we show that several amino acid residues proximal to the nucleotide binding site in FtsA are critical for function in vitro and in vivo. Each of these residues are important for ATP hydrolysis, phospholipid (PL) binding, ATP-dependent vesicle remodeling, and recruitment to the divisome in vivo, to varying degrees. Notably, we observed that Ser 84 and Glu 14 are essential for ATP-dependent vesicle remodeling and magnesium-dependent membrane release of FtsA from vesicles in vitro, and these defects likely underlie the loss of function by FtsA(E14R) and FtsA(S84L) in vivo. Finally, we demonstrate that FtsA(A188V), which is associated with temperature-sensitive growth in vivo, is defective for rapid ATP hydrolysis and ATP-dependent remodeling of PL vesicles in vitro. Together, our results show that loss of nucleotide-dependent activities by FtsA, such as ATP hydrolysis, membrane binding and release, and, most importantly, ATP-dependent PL remodeling, lead to failed Z-ring assembly and division defects in cells.
Collapse
|
19
|
Construction and Characterization of Functional FtsA Sandwich Fusions for Studies of FtsA Localization and Dynamics during Escherichia coli Cell Division. J Bacteriol 2023; 205:e0037322. [PMID: 36622232 PMCID: PMC9879108 DOI: 10.1128/jb.00373-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
FtsA, a homolog of actin, is essential for cell division of Escherichia coli and is widely conserved among many bacteria. FtsA helps to tether polymers of the bacterial tubulin homolog FtsZ to the cytoplasmic membrane as part of the cytokinetic Z ring. GFP fusions to FtsA have illuminated FtsA's localization in live E. coli, but these fusions have not been fully functional and required the presence of the native FtsA. Here, we characterize "sandwich" fusions of E. coli FtsA to either mCherry or msfGFP that are functional for cell division and exhibit fluorescent rings at midcell that persist throughout constriction until cell separation. FtsA within the Z ring moved circumferentially like FtsZ, and FtsA outside the rings formed highly dynamic patches at the membrane. Notably, both FtsA-mCherrysw and FtsA-msfGFPsw acted as mild hypermorphs, as they were not toxic when overproduced, bypassed the essential cell division protein ZipA, and suppressed several thermosensitive fts alleles, although not as effectively as the prototypical hypermorph FtsA*. Overall, our results indicate that fluorescent FtsA sandwich fusions can be used as the sole FtsA in E. coli and thus should shed new light on FtsA dynamics during the cell division cycle in this model system. IMPORTANCE FtsA is a key conserved cell division protein, and E. coli is the most well studied model system for bacterial cell division. One obstacle to full understanding of this process is the lack of a fully functional fluorescent reporter for FtsA in vivo. Here, we describe a fluorescent fusion to E. coli FtsA that promotes efficient cell division in the absence of the native FtsA and can be used to monitor FtsA dynamics during cell division.
Collapse
|