1
|
Takahama S, Washizaki A, Okamura T, Kitamura S, Nogimori T, Satou Y, Yasutomi Y, Yoshinaga T, Yamamoto T. The quality of SIV-specific fCD8 T cells limits SIV RNA production in Tfh cells during antiretroviral therapy. J Virol 2025; 99:e0081224. [PMID: 39641620 PMCID: PMC11784340 DOI: 10.1128/jvi.00812-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
The attack and defense of infected cells and cytotoxic CD8 T cells occur in germinal centers in lymphoid tissue in chronic persistent HIV/SIV infection. Latently infected cells, the therapeutic target of HIV infection, accumulate in follicular helper T (Tfh) cells in lymphoid tissue; the impact of HIV-specific follicular CD8 (fCD8) T cells in lymphoid tissue on the latently infected cells remains unknown. We infected 15 cynomolgus macaques with SIVmac239 and examined the contribution of SIV-Gag-specific fCD8 T cells, defined by activation-induced markers (AIMs), to SIV-infected cells. Eight out of the 15 infected macaques served as progressors; a chronic phase combination antiretroviral therapy (cART) model was established for the eight macaques (progressors) with chronic persistent infection status, wherein cART was started in the chronic phase and discontinued after 27 weeks. Seven macaques that naturally controlled the viremia served as natural controllers. The frequency of SIV-Gag-specific fCD8 T cells was inversely correlated with the amount of cell-associated SIV-gag RNA in the Tfh only under cART or in the controllers but not in untreated progressors. scRNA-seq of SIV-Gag-specific fCD8 T cells in various conditions revealed that the gene expression pattern of SIV-Gag-specific fCD8 T cells in the controllers was closer to that of those under cART than the untreated progressors. Comparing the SIV-Gag-specific fCD8 T cells of those under cART to the controllers revealed their more exhausted and immunosenescent nature under cART. Improving the HIV/SIV-specific fCD8 T cells under cART by targeting those pathways might contribute to the development of potential curative strategies.IMPORTANCEWe infected cynomolgus macaques with SIVmac239 to establish an SIV-chronically infected cART model. We performed an in-depth characterization of Tfh and fCD8 T cells in three conditions-chronic stage of untreated, cART-treated, and natural controller cynomolgus macaques-by combining tissue section analysis and single-cell analyses of sorted cells. We revealed the inverse relationship between Tfh infection and SIV-Gag-specific fCD8 T cell frequencies as observed in HIV-infected individuals, thereby establishing the cynomolgus macaque as a relevant animal model to study the determinants of HIV/SIV persistence in lymphoid tissue. Additionally, scRNA-seq analysis of SIV-Gag-specific fCD8 T cells revealed an enrichment of exhausted or senescent transcriptomic signatures under cART. These data will provide the basic insights into virus-host CD8 T cell interactions, particularly within the follicular region, during latent HIV infection under ART.
Collapse
Affiliation(s)
- Shokichi Takahama
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Ayaka Washizaki
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Shingo Kitamura
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd, Toyonaka, Osaka, Japan
| | - Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Tomokazu Yoshinaga
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd, Toyonaka, Osaka, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Sun W, Gao C, Gladkov GT, Roseto I, Carrere L, Parsons EM, Gasca-Capote C, Frater J, Fidler S, Yu XG, Lichterfeld M. Footprints of innate immune activity during HIV-1 reservoir cell evolution in early-treated infection. J Exp Med 2024; 221:e20241091. [PMID: 39466203 PMCID: PMC11519379 DOI: 10.1084/jem.20241091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Antiretroviral treatment (ART) initiation during the early stages of HIV-1 infection is associated with a higher probability of maintaining drug-free viral control during subsequent treatment interruptions, for reasons that remain unclear. Using samples from a randomized-controlled human clinical trial evaluating therapeutic HIV-1 vaccines, we here show that early ART commencement is frequently associated with accelerated and efficient selection of genome-intact HIV-1 proviruses in repressive chromatin locations during the first year after treatment initiation. This selection process was unaffected by vaccine-induced HIV-1-specific T cell responses. Single-cell proteogenomic profiling demonstrated that cells harboring intact HIV-1 displayed a discrete phenotypic signature of immune selection by innate immune responses, characterized by a slight but significant upregulation of HLA-C, HLA-G, the IL-10 receptor, and other markers involved in innate immune regulation. Together, these results suggest an accelerated immune selection of viral reservoir cells during early-treated HIV-1 infection that seems at least partially driven by innate immune responses.
Collapse
Affiliation(s)
- Weiwei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Gregory Takashi Gladkov
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Isabelle Roseto
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Leah Carrere
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Elizabeth M. Parsons
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Carmen Gasca-Capote
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College and Imperial College NIHR Biomedical Research Centre, London, UK
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
3
|
Varco-Merth B, Chaunzwa M, Duell DM, Marenco A, Goodwin W, Dannay R, Nekorchuk M, Shao D, Busman-Sahay K, Fennessey CM, Silipino L, Hull M, Bosche WJ, Fast R, Oswald K, Shoemaker R, Bochart R, MacAllister R, Labriola CS, Smedley JV, Axthelm MK, Davenport MP, Edlefsen PT, Estes JD, Keele BF, Lifson JD, Lewin SR, Picker LJ, Okoye AA. Impact of alemtuzumab-mediated lymphocyte depletion on SIV reservoir establishment and persistence. PLoS Pathog 2024; 20:e1012496. [PMID: 39173097 PMCID: PMC11373844 DOI: 10.1371/journal.ppat.1012496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Persistence of the rebound-competent viral reservoir (RCVR) within the CD4+ T cell compartment of people living with HIV remains a major barrier to HIV cure. Here, we determined the effects of the pan-lymphocyte-depleting monoclonal antibody (mAb) alemtuzumab on the RCVR in SIVmac239-infected rhesus macaques (RM) receiving antiretroviral therapy (ART). Alemtuzumab administered during chronic ART or at the time of ART initiation induced >95% depletion of circulating CD4+ T cells in peripheral blood and substantial CD4+ T cell depletion in lymph nodes. However, treatment was followed by proliferation and reconstitution of CD4+ T cells in blood, and despite ongoing ART, levels of cell-associated SIV DNA in blood and lymphoid tissues were not substantially different between alemtuzumab-treated and control RM after immune cell reconstitution, irrespective of the time of alemtuzumab treatment. Upon ART cessation, 19 of 22 alemtuzumab-treated RM and 13 of 13 controls rebounded with no difference in the time to rebound between treatment groups. Time to rebound and reactivation rate was associated with plasma viral loads (pVLs) at time of ART initiation, suggesting lymphocyte depletion had no durable impact on the RCVR. However, 3 alemtuzumab-treated RM that had lowest levels of pre-ART viremia, failed to rebound after ART withdrawal, in contrast to controls with similar levels of SIV replication. These observations suggest that alemtuzumab therapy has little to no ability to reduce well-established RCVRs but may facilitate RCVR destabilization when pre-ART virus levels are particularly low.
Collapse
Affiliation(s)
- Benjamin Varco-Merth
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Morgan Chaunzwa
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Derick M. Duell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Alejandra Marenco
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - William Goodwin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Rachel Dannay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Danica Shao
- Fred Hutchinson Cancer Research Center, Seattle, Washington State, United States of America
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Lorna Silipino
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michael Hull
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - William J. Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Randy Fast
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Rachele Bochart
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Rhonda MacAllister
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Caralyn S. Labriola
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Miles P. Davenport
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul T. Edlefsen
- Fred Hutchinson Cancer Research Center, Seattle, Washington State, United States of America
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Afam A. Okoye
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
4
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Simpson J, Starke CE, Ortiz AM, Ransier A, Darko S, Llewellyn-Lacey S, Fennessey CM, Keele BF, Douek DC, Price DA, Brenchley JM. Immunotoxin-mediated depletion of Gag-specific CD8+ T cells undermines natural control of SIV. JCI Insight 2024; 9:e174168. [PMID: 38885329 PMCID: PMC11383179 DOI: 10.1172/jci.insight.174168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Antibody-mediated depletion studies have demonstrated that CD8+ T cells are required for effective immune control of SIV. However, this approach is potentially confounded by several factors, including reactive CD4+ T cell proliferation, and provides no information on epitope specificity, a likely determinant of CD8+ T cell efficacy. We circumvented these limitations by selectively depleting CD8+ T cells specific for the Gag epitope CTPYDINQM (CM9) via the administration of immunotoxin-conjugated tetrameric complexes of CM9/Mamu-A*01. Immunotoxin administration effectively depleted circulating but not tissue-localized CM9-specific CD8+ T cells, akin to the bulk depletion pattern observed with antibodies directed against CD8. However, we found no evidence to indicate that circulating CM9-specific CD8+ T cells suppressed viral replication in Mamu-A*01+ rhesus macaques during acute or chronic progressive infection with a pathogenic strain of SIV. This observation extended to macaques with established infection during and after continuous antiretroviral therapy. In contrast, natural controller macaques experienced dramatic increases in plasma viremia after immunotoxin administration, highlighting the importance of CD8+ T cell-mediated immunity against CM9. Collectively, these data showed that CM9-specific CD8+ T cells were necessary but not sufficient for robust immune control of SIV in a nonhuman primate model and, more generally, validated an approach that could inform the design of next-generation vaccines against HIV-1.
Collapse
Affiliation(s)
- Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Armani-Tourret M, Bone B, Tan TS, Sun W, Bellefroid M, Struyve T, Louella M, Yu XG, Lichterfeld M. Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nat Rev Microbiol 2024; 22:328-344. [PMID: 38337034 PMCID: PMC11131351 DOI: 10.1038/s41579-024-01010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Successful approaches for eradication or cure of HIV-1 infection are likely to include immunological mechanisms, but remarkably little is known about how human immune responses can recognize and interact with the few HIV-1-infected cells that harbour genome-intact viral DNA, persist long term despite antiretroviral therapy and represent the main barrier to a cure. For a long time regarded as being completely shielded from host immune responses due to viral latency, these cells do, on closer examination with single-cell analytic techniques, display discrete footprints of immune selection, implying that human immune responses may be able to effectively engage and target at least some of these cells. The failure to eliminate rebound-competent virally infected cells in the majority of persons likely reflects the evolution of a highly selected pool of reservoir cells that are effectively camouflaged from immune recognition or rely on sophisticated approaches for resisting immune-mediated killing. Understanding the fine-tuned interplay between host immune responses and viral reservoir cells will help to design improved interventions that exploit the immunological vulnerabilities of HIV-1 reservoir cells.
Collapse
Affiliation(s)
- Marie Armani-Tourret
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Benjamin Bone
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Toong Seng Tan
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Weiwei Sun
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Maxime Bellefroid
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Tine Struyve
- HIV Cure Research Center, Ghent University, Ghent, Belgium
| | - Michael Louella
- Community Advisory Board, Delaney AIDS Research Enterprise (DARE), San Francisco, CA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Keele BF, Okoye AA, Fennessey CM, Varco-Merth B, Immonen TT, Kose E, Conchas A, Pinkevych M, Lipkey L, Newman L, Macairan A, Bosche M, Bosche WJ, Berkemeier B, Fast R, Hull M, Oswald K, Shoemaker R, Silipino L, Gorelick RJ, Duell D, Marenco A, Brantley W, Smedley J, Axthelm M, Davenport MP, Lifson JD, Picker LJ. Early antiretroviral therapy in SIV-infected rhesus macaques reveals a multiphasic, saturable dynamic accumulation of the rebound competent viral reservoir. PLoS Pathog 2024; 20:e1012135. [PMID: 38593120 PMCID: PMC11003637 DOI: 10.1371/journal.ppat.1012135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
The rebound competent viral reservoir (RCVR)-virus that persists during antiretroviral treatment (ART) and can reignite systemic infection when treatment is stopped-is the primary barrier to eradicating HIV. We used time to initiation of ART during primary infection of rhesus macaques (RMs) after intravenous challenge with barcoded SIVmac239 as a means to elucidate the dynamics of RCVR establishment in groups of RMs by creating a multi-log range of pre-ART viral loads and then assessed viral time-to-rebound and reactivation rates resulting from the discontinuation of ART after one year. RMs started on ART on days 3, 4, 5, 6, 7, 9 or 12 post-infection showed a nearly 10-fold difference in pre-ART viral measurements for successive ART-initiation timepoints. Only 1 of 8 RMs initiating ART on days 3 and 4 rebounded after ART interruption despite measurable pre-ART plasma viremia. Rebounding plasma from the 1 rebounding RM contained only a single barcode lineage detected at day 50 post-ART. All RMs starting ART on days 5 and 6 rebounded between 14- and 50-days post-ART with 1-2 rebounding variants each. RMs starting ART on days 7, 9, and 12 had similar time-to-measurable plasma rebound kinetics despite multiple log differences in pre-ART plasma viral load (pVL), with all RMs rebounding between 7- and 16-days post-ART with 3-28 rebounding lineages. Calculated reactivation rates per pre-ART pVL were highest for RMs starting ART on days 5, 6, and 7 after which the rate of accumulation of the RCVR markedly decreased for RMs treated on days 9 and 12, consistent with multiphasic establishment and near saturation of the RCVR within 2 weeks post infection. Taken together, these data highlight the heterogeneity of the RCVR between RMs, the stochastic establishment of the very early RCVR, and the saturability of the RCVR prior to peak viral infection.
Collapse
Affiliation(s)
- Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Afam A. Okoye
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Benjamin Varco-Merth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Taina T. Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Emek Kose
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Andrew Conchas
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mykola Pinkevych
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
| | - Leslie Lipkey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Laura Newman
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Agatha Macairan
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Marjorie Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - William J. Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Randy Fast
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mike Hull
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Lorna Silipino
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Derick Duell
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Alejandra Marenco
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - William Brantley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeremy Smedley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Michael Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Miles P. Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
8
|
Mudd JC. Quantitative and Qualitative Distinctions between HIV-1 and SIV Reservoirs: Implications for HIV-1 Cure-Related Studies. Viruses 2024; 16:514. [PMID: 38675857 PMCID: PMC11054464 DOI: 10.3390/v16040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
The persistence of the latent viral reservoir is the main hurdle to curing HIV-1 infection. SIV infection of non-human primates (NHPs), namely Indian-origin rhesus macaques, is the most relevant and widely used animal model to evaluate therapies that seek to eradicate HIV-1. The utility of a model ultimately rests on how accurately it can recapitulate human disease, and while reservoirs in the NHP model behave quantitatively very similar to those of long-term suppressed persons with HIV-1 (PWH) in the most salient aspects, recent studies have uncovered key nuances at the clonotypic level that differentiate the two in qualitative terms. In this review, we will highlight differences relating to proviral intactness, clonotypic structure, and decay rate during ART between HIV-1 and SIV reservoirs and discuss the relevance of these distinctions in the interpretation of HIV-1 cure strategies. While these, to some degree, may reflect a unique biology of the virus or host, distinctions among the proviral landscape in SIV are likely to be shaped significantly by the condensed timeframe of NHP studies. ART is generally initiated earlier in the disease course, and animals are virologically suppressed for shorter periods before receiving interventions. Because these are experimental variables dictated by the investigator, we offer guidance on study design for cure-related studies performed in the NHP model. Finally, we highlight the case of GS-9620 (Vesatolimod), an antiviral TLR7 agonist tested in multiple independent pre-clinical studies in which virological outcomes may have been influenced by study-related variables.
Collapse
Affiliation(s)
- Joseph C. Mudd
- Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Koofhethile CK, Gao C, Chang C, Lian X, Shapiro R, Yu XG, Lichterfeld M, Kanki PJ. The HIV-2 proviral landscape is dominated by defective proviruses. AIDS 2024; 38:309-316. [PMID: 37916471 PMCID: PMC10842655 DOI: 10.1097/qad.0000000000003776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Compared with HIV-1 infection, HIV-2 infection is associated with a slower progression to AIDS. Understanding the persistence of HIV-2 infection might inform the mechanisms responsible for differences in the pathogenicity of HIV-2 versus HIV-1. METHODS In this study, we analyzed the genetic composition of the proviral reservoir in archived blood samples collected from 13 untreated HIV-2-infected adults from Senegal. We used single-genome, near-full-length individual proviral sequencing (FLIP-Seq) to assess the relative frequency of intact and defective proviruses. RESULTS Ten out of 13 (77%) study participants demonstrated virologic suppression (<90 HIV RNA copies/ml) while the remaining 3 (23%) had detectable HIV RNA. We obtained 363 proviral sequences from peripheral blood mononuclear cells (PBMCs) from the 13 study participants. Within these sequences, 342 (94%) defective proviruses were detected. Twenty-one (6%) intact proviruses were detected from three study participants, with one study participant displaying a large clone consisting of 16 genome-intact sequences. CONCLUSION This data suggests that similar to HIV-1 infection, the proviral landscape of HIV-2 is dominated by defective proviruses.
Collapse
Affiliation(s)
- Catherine K. Koofhethile
- Harvard T.H. Chan School of Public Health, Boston
- Ragon Institute of MGH, MIT and Harvard, Cambridge
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge
| | | | | | | | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
10
|
Solis-Leal A, Boby N, Mallick S, Cheng Y, Wu F, De La Torre G, Dufour J, Alvarez X, Shivanna V, Liu Y, Fennessey CM, Lifson JD, Li Q, Keele BF, Ling B. Lymphoid tissues contribute to plasma viral clonotypes early after antiretroviral therapy interruption in SIV-infected rhesus macaques. Sci Transl Med 2023; 15:eadi9867. [PMID: 38091409 PMCID: PMC11244655 DOI: 10.1126/scitranslmed.adi9867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023]
Abstract
The rebound-competent viral reservoir, composed of a virus that is able to persist during antiretroviral therapy (ART) and mediate reactivation of systemic viral replication and rebound viremia after ART interruption (ATI), remains the biggest obstacle to treating HIV infection. A better understanding of the cellular and tissue origins and the dynamics of viral populations that initiate rebound upon ATI could help develop therapeutic strategies for reducing the rebound-competent viral reservoir. In this study, barcoded simian immunodeficiency virus (SIV), SIVmac239M, was used to infect rhesus macaques to enable monitoring of viral barcode clonotypes contributing to virus detectable in plasma after ATI. Blood and tissues from secondary lymphoid organs (spleen, mesenteric lymph nodes, and inguinal lymph nodes) and from the colon, ileum, lung, liver, and brain were analyzed using viral barcode sequencing, intact proviral DNA assay, single-cell RNA sequencing, and combined CODEX and RNAscope in situ hybridization. Four of seven animals had viral barcodes detectable by deep sequencing of plasma at necropsy, although plasma viral RNA remained below 22 copies per milliliter. Among the tissues studied, mesenteric lymph nodes, inguinal lymph nodes, and spleen contained viral barcodes detected in plasma. CD4+ T cells were the main cell type harboring viral RNA after ATI. Furthermore, T cell zones in lymphoid tissues showed higher viral RNA abundance than B cell zones for most animals. These findings are consistent with lymphoid tissues contributing to the virus present in plasma early after ATI.
Collapse
Affiliation(s)
- Antonio Solis-Leal
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Nongthombam Boby
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Suvadip Mallick
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Yilun Cheng
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, USA
| | - Fei Wu
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Grey De La Torre
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Jason Dufour
- Tulane National Primate Research Center, 18703 Three Rivers Rd, Covington, LA 70433, USA
| | - Xavier Alvarez
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Vinay Shivanna
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Yaozhong Liu
- Tulane University School of Public Health and Tropical Medicine, 1440 Canal St, New Orleans, LA 70112, USA
| | | | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702 USA
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702 USA
| | - Binhua Ling
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| |
Collapse
|
11
|
Yucha R, Litchford ML, Fish CS, Yaffe ZA, Richardson BA, Maleche-Obimbo E, John-Stewart G, Wamalwa D, Overbaugh J, Lehman DA. Higher HIV-1 Env gp120-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) Activity Is Associated with Lower Levels of Defective HIV-1 Provirus. Viruses 2023; 15:2055. [PMID: 37896832 PMCID: PMC10611199 DOI: 10.3390/v15102055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
A cure for HIV-1 (HIV) remains unrealized due to a reservoir of latently infected cells that persist during antiretroviral therapy (ART), with reservoir size associated with adverse health outcomes and inversely with time to viral rebound upon ART cessation. Once established during ART, the HIV reservoir decays minimally over time; thus, understanding factors that impact the size of the HIV reservoir near its establishment is key to improving the health of people living with HIV and for the development of novel cure strategies. Yet, to date, few correlates of HIV reservoir size have been identified, particularly in pediatric populations. Here, we employed a cross-subtype intact proviral DNA assay (CS-IPDA) to quantify HIV provirus between one- and two-years post-ART initiation in a cohort of Kenyan children (n = 72), which had a median of 99 intact (range: 0-2469), 1340 defective (range: 172-3.84 × 104), and 1729 total (range: 178-5.11 × 104) HIV proviral copies per one million T cells. Additionally, pre-ART plasma was tested for HIV Env-specific antibody-dependent cellular cytotoxicity (ADCC) activity. We found that pre-ART gp120-specific ADCC activity inversely correlated with defective provirus levels (n = 68, r = -0.285, p = 0.0214) but not the intact reservoir (n = 68, r = -0.0321, p-value = 0.800). Pre-ART gp41-specific ADCC did not significantly correlate with either proviral population (n = 68; intact: r = -0.0512, p-value = 0.686; defective: r = -0.109, p-value = 0.389). This suggests specific host immune factors prior to ART initiation can impact proviruses that persist during ART.
Collapse
Affiliation(s)
- Ryan Yucha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Morgan L. Litchford
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Carolyn S. Fish
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Barbra A. Richardson
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Grace John-Stewart
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Dalton Wamalwa
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi P.O. Box 30197, Kenya
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Dara A. Lehman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Harwood OE, Matschke LM, Moriarty RV, Balgeman AJ, Weaver AJ, Ellis-Connell AL, Weiler AM, Winchester LC, Fletcher CV, Friedrich TC, Keele BF, O'Connor DH, Lang JD, Reynolds MR, O'Connor SL. CD8+ cells and small viral reservoirs facilitate post-ART control of SIV in Mauritian cynomolgus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530655. [PMID: 36909458 PMCID: PMC10002716 DOI: 10.1101/2023.03.01.530655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Sustainable HIV remission after antiretroviral therapy (ART) withdrawal, or post-treatment control (PTC), remains a top priority for HIV treatment. We observed surprising PTC in an MHC-haplomatched cohort of MHC-M3+ SIVmac239+ Mauritian cynomolgus macaques (MCMs) initiated on ART at two weeks post-infection (wpi). For six months after ART withdrawal, we observed undetectable or transient viremia in seven of eight MCMs. In vivo depletion of CD8α+ cells induced rebound in all animals, indicating the PTC was mediated, at least in part, by CD8α+ cells. We found that MCMs had smaller acute viral reservoirs than a cohort of identically infected rhesus macaques, a population that rarely develops PTC. The mechanisms by which unusually small viral reservoirs and CD8α+ cell-mediated virus suppression enable PTC can be investigated using this MHC-haplomatched MCM model. Further, defining the immunologic mechanisms that engender PTC in this model may identify therapeutic targets for inducing durable HIV remission in humans.
Collapse
Affiliation(s)
- Olivia E Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Lea M Matschke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711
| | - Ryan V Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Abigail J Weaver
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Amy L Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Andrea M Weiler
- Wisconsin National Primate Research Center, Madison, WI, 53711
| | - Lee C Winchester
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| | | | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711
- Wisconsin National Primate Research Center, Madison, WI, 53711
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
- Wisconsin National Primate Research Center, Madison, WI, 53711
| | - Jessica D Lang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Matthew R Reynolds
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711
- Wisconsin National Primate Research Center, Madison, WI, 53711
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
- Wisconsin National Primate Research Center, Madison, WI, 53711
| |
Collapse
|