1
|
Santoshi M, Tare P, Nagaraja V. Nucleoid-associated proteins of mycobacteria come with a distinctive flavor. Mol Microbiol 2025; 123:177-194. [PMID: 38922783 DOI: 10.1111/mmi.15287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
In every bacterium, nucleoid-associated proteins (NAPs) play crucial roles in chromosome organization, replication, repair, gene expression, and other DNA transactions. Their central role in controlling the chromatin dynamics and transcription has been well-appreciated in several well-studied organisms. Here, we review the diversity, distribution, structure, and function of NAPs from the genus Mycobacterium. We highlight the progress made in our understanding of the effects of these proteins on various processes and in responding to environmental stimuli and stress of mycobacteria in their free-living as well as during distinctive intracellular lifestyles. We project them as potential drug targets and discuss future studies to bridge the information gap with NAPs from well-studied systems.
Collapse
Affiliation(s)
- Meghna Santoshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Priyanka Tare
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
2
|
Yue X, Yang H, Li J, Zhu Z, Ouyang H, Guo T, Fu Z. Fluorescent lateral flow assay strip for Mycobacterium tuberculosis and Mycobacterium smegmatis based on mycobacteriophage tail protein and aptamer. Talanta 2025; 282:127000. [PMID: 39378764 DOI: 10.1016/j.talanta.2024.127000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Timely and facile monitoring of Mycobacterium tuberculosis (M. tuberculosis) plays an important role for preventing and controlling tuberculosis infection. Mycobacterium smegmatis (M. smegmatis) has long been employed as a safe surrogate for the investigation of M. tuberculosis. In this work, an aqueous soluble tail protein derived from our previously isolated mycobacteriophage was prepared with a recombinant expression technique and noted as GP89, which shows noticeable binding capacity to Mycobacterium genus. GP89 was sprayed as a capture agent onto a nitrocellulose membrane for forming the test line of a lateral flow assay (LFA) strip. Moreover, an aptamer binding M. tuberculosis and M. smegmatis was labeled with fluorescent microspheres to act as the signal tracer of the LFA method. With the GP89 based LFA, M. tuberculosis and M. smegmatis can be detected with the aid of a handheld UV flashlight or a portable fluorescent strip reader within 10 min. The concentration range for quantitating M. tuberculosis and M. smegmatis are both 1.0 × 102 CFU mL-1 - 1.0 × 106 CFU mL-1, and the detection limits for the two mycobacteria are 2.0 and 24 CFU mL-1 (S/N = 3), respectively. The test strip was applied to detect M. tuberculosis and M. smegmatis in different samples such as physiological salt solution, urine, and saliva. This study offers a promising screening tool for diagnosing M. tuberculosis infection in resource-limited institutes.
Collapse
Affiliation(s)
- Xin Yue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Honglin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jizhou Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongjie Zhu
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Ting Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Rubino I, Guerrero-Bustamante CA, Harrison M, Co S, Tetreau I, Ordoubadi M, Larsen SE, Coler RN, Vehring R, Hatfull GF, Sauvageau D. Comparative study on the virulence of mycobacteriophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619922. [PMID: 39554140 PMCID: PMC11565895 DOI: 10.1101/2024.10.23.619922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The global tuberculosis (TB) epidemic affected 10 million people and caused 1.3 million deaths in 2022 alone. Multidrug-resistant TB is successfully treated in less than 60% of cases by long, expensive and aggressive treatments. Mycobacteriophages, viruses that can infect bacteria such as Mycobacterium tuberculosis-the species responsible for TB, have the potential to redefine TB prevention and treatments. However, the development of phage-based products necessitates the assessment of numerous parameters, including virulence and adsorption, to ensure their performance and quality. In this work, we characterized the virulence of three different mycobacteriophages (Fionnbharth, Muddy and D29), alone and as cocktails, against a TB model host (Mycobacterium smegmatis) under planktonic and early-stage biofilm growth conditions. Phage D29 and cocktails containing D29 had the highest virulence under all conditions. Interestingly, phages Fionnbharth and Muddy and their combination showed higher virulence against early-stage biofilm than against the planktonic phenotype. Adsorption assays indicated that all three phages had lower adsorption efficiencies on the early-stage biofilm phenotype than on the planktonic one, suggesting a reduced availability of receptors in the former. Given that, despite these lower adsorption efficiencies, the virulence of the phages and phage cocktails was either unchanged or higher against the early-stage biofilm, this phenotype must display properties that are favorable to other steps of the infection process. These results inform us on the dynamics of mycobacteriophage infections, alone and in cocktail formulations, under different host growth conditions, and serve as a basis for the development of phage products targeting mycobacteria biofilms.
Collapse
Affiliation(s)
- Ilaria Rubino
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
- Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Melissa Harrison
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Sheila Co
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Isobel Tetreau
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- University of Washington School of Medicine, Department of Pediatrics, Seattle, WA, USA
- University of Washington, Department of Global Health, Seattle, WA, USA
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania, USA
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Di Marco F, Nicola F, Giannese F, Saliu F, Tonon G, de Pretis S, Cirillo DM, Lorè NI. Dual spatial host-bacterial gene expression in Mycobacterium abscessus respiratory infections. Commun Biol 2024; 7:1287. [PMID: 39384974 PMCID: PMC11479615 DOI: 10.1038/s42003-024-06929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
Co-localization of spatial transcriptome information of host and pathogen can revolutionize our understanding of microbial pathogenesis. Here, we aimed to demonstrate that customized bacterial probes can be successfully used to identify host-pathogen interactions in formalin-fixed-paraffin-embedded (FFPE) tissues by probe-based spatial transcriptomics technology. We analyzed the spatial gene expression of bacterial transcripts with the host transcriptomic profile in murine lung tissue chronically infected with Mycobacterium abscessus embedded in agar beads. Customized mycobacterial probes were designed for the constitutively expressed rpoB gene (an RNA polymerase β subunit) and the virulence factor precursor lsr2, modulated by oxidative stress. We found a correlation between the rpoB expression, bacterial abundance in the airways, and an increased expression of lsr2 virulence factor in lung tissue with high oxidative stress. Overall, we demonstrate the potential of dual bacterial and host gene expression assay in FFPE tissues, paving the way for the simultaneous detection of host and bacterial transcriptomes in pathological tissues.
Collapse
Affiliation(s)
- Federico Di Marco
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Milan, Italy
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Nicola
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Fabio Saliu
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanni Tonon
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano de Pretis
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nicola I Lorè
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
5
|
Heller DM, Sivanathan V, Asai DJ, Hatfull GF. SEA-PHAGES and SEA-GENES: Advancing Virology and Science Education. Annu Rev Virol 2024; 11:1-20. [PMID: 38684129 DOI: 10.1146/annurev-virology-113023-110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Research opportunities for undergraduate students are strongly advantageous, but implementation at a large scale presents numerous challenges. The enormous diversity of the bacteriophage population and a supportive programmatic structure provide opportunities to engage early-career undergraduates in phage discovery, genomics, and genetics. The Science Education Alliance (SEA) is an inclusive Research-Education Community (iREC) providing centralized programmatic support for students and faculty without prior experience in virology at institutions from community colleges to research-active universities to participate in two course-based projects, SEA-PHAGES (SEA Phage Hunters Advancing Genomic and Evolutionary Science) and SEA-GENES (SEA Gene-function Exploration by a Network of Emerging Scientists). Since 2008, the SEA has supported more than 50,000 undergraduate researchers who have isolated more than 23,000 bacteriophages of which more than 4,500 are fully sequenced and annotated. Students have functionally characterized hundreds of phage genes, and the phage collection has fueled the therapeutic use of phages for treatment of Mycobacterium infections. Participation in the SEA promotes student persistence in science education, and its inclusivity promotes a more equitable scientific community.
Collapse
Affiliation(s)
- Danielle M Heller
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Viknesh Sivanathan
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David J Asai
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
6
|
Ng WL, Rego EH. A nucleoid-associated protein is involved in the emergence of antibiotic resistance by promoting the frequent exchange of the replicative DNA polymerase in Mycobacterium smegmatis. mSphere 2024; 9:e0012224. [PMID: 38591887 PMCID: PMC11237743 DOI: 10.1128/msphere.00122-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024] Open
Abstract
Antibiotic resistance in Mycobacterium tuberculosis exclusively originates from chromosomal mutations, either during normal DNA replication or under stress, when the expression of error-prone DNA polymerases increases to repair damaged DNA. To bypass DNA lesions and catalyze error-prone DNA synthesis, translesion polymerases must be able to access the DNA, temporarily replacing the high-fidelity replicative polymerase. The mechanisms that govern polymerase exchange are not well understood, especially in mycobacteria. Here, using a suite of quantitative fluorescence imaging techniques, we discover that in Mycobacterium smegmatis, as in other bacterial species, the replicative polymerase, DnaE1, exchanges at a timescale much faster than that of DNA replication. Interestingly, this fast exchange rate depends on an actinobacteria-specific nucleoid-associated protein (NAP), Lsr2. In cells missing lsr2, DnaE1 exchanges less frequently, and the chromosome is replicated more faithfully. Additionally, in conditions that damage DNA, cells lacking lsr2 load the complex needed to bypass DNA lesions less effectively and, consistently, replicate with higher fidelity but exhibit growth defects. Together, our results show that Lsr2 promotes dynamic flexibility of the mycobacterial replisome, which is critical for robust cell growth and lesion repair in conditions that damage DNA. IMPORTANCE Unlike many other pathogens, Mycobacterium tuberculosis has limited ability for horizontal gene transfer, a major mechanism for developing antibiotic resistance. Thus, the mechanisms that facilitate chromosomal mutagenesis are of particular importance in mycobacteria. Here, we show that Lsr2, a nucleoid-associated protein, has a novel role in DNA replication and mutagenesis in the model mycobacterium Mycobacterium smegmatis. We find that Lsr2 promotes the fast exchange rate of the replicative DNA polymerase, DnaE1, at the replication fork and is important for the effective loading of the DnaE2-ImuA'-ImuB translesion complex. Without lsr2, M. smegmatis replicates its chromosome more faithfully and acquires resistance to rifampin at a lower rate, but at the cost of impaired survival to DNA damaging agents. Together, our work establishes Lsr2 as a potential factor in the emergence of mycobacterial antibiotic resistance.
Collapse
Affiliation(s)
- Wei L Ng
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Li Y, Wei Y, Guo X, Li X, Lu L, Hu L, He Z. Insertion sequence transposition activates antimycobacteriophage immunity through an lsr2-silenced lipid metabolism gene island. MLIFE 2024; 3:87-100. [PMID: 38827510 PMCID: PMC11139207 DOI: 10.1002/mlf2.12106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 06/04/2024]
Abstract
Insertion sequences (ISs) exist widely in bacterial genomes, but their roles in the evolution of bacterial antiphage defense remain to be clarified. Here, we report that, under the pressure of phage infection, the IS1096 transposition of Mycobacterium smegmatis into the lsr2 gene can occur at high frequencies, which endows the mutant mycobacterium with a broad-spectrum antiphage ability. Lsr2 functions as a negative regulator and directly silences expression of a gene island composed of 11 lipid metabolism-related genes. The complete or partial loss of the gene island leads to a significant decrease of bacteriophage adsorption to the mycobacterium, thus defending against phage infection. Strikingly, a phage that has evolved mutations in two tail-filament genes can re-escape from the lsr2 inactivation-triggered host defense. This study uncovered a new signaling pathway for activating antimycobacteriophage immunity by IS transposition and provided insight into the natural evolution of bacterial antiphage defense.
Collapse
Affiliation(s)
- Yakun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Yuyun Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Xiao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Xiaohui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Lining Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Zheng‐Guo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| |
Collapse
|
8
|
Gerges E, Herrmann JL, Crémazy F. [Lsr2: A Nucleoid Associated Protein (NAP) and a transcription factor in mycobacteria]. Med Sci (Paris) 2024; 40:154-160. [PMID: 38411423 DOI: 10.1051/medsci/2023218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Lsr2, a small protein mainly found in actinobacteria, plays a crucial role in the virulence and adaptation of mycobacteria to environmental conditions. As a member of the nucleoid-associated protein (NAPs) superfamily, Lsr2 influences DNA organization by facilitating the formation of chromosomal loops in vitro and, therefore, may be a major player in the three-dimensional folding of the genome. Additionally, Lsr2 also acts as a transcription factor, regulating the expression of numerous genes responsible for coordinating a myriad of cellular and molecular processes essential for the actinobacteria. Similar to the H-NS protein, its ortholog in enterobacteria, its role in transcriptional repression likely relies on oligomerization, rigidifying, and bridging of DNA, thereby disrupting RNA polymerase recruitment as well as the elongation of RNA transcripts.
Collapse
Affiliation(s)
- Elias Gerges
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180 Montigny-Le-Bretonneux, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180 Montigny-Le-Bretonneux, France
| | - Frédéric Crémazy
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180 Montigny-Le-Bretonneux, France
| |
Collapse
|
9
|
Schmalstig AA, Wiggins A, Badillo D, Wetzel KS, Hatfull GF, Braunstein M. Bacteriophage infection and killing of intracellular Mycobacterium abscessus. mBio 2024; 15:e0292423. [PMID: 38059609 PMCID: PMC10790704 DOI: 10.1128/mbio.02924-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE As we rapidly approach a post-antibiotic era, bacteriophage (phage) therapy may offer a solution for treating drug-resistant bacteria. Mycobacterium abscessus is an emerging, multidrug-resistant pathogen that causes disease in people with cystic fibrosis, chronic obstructive pulmonary disease, and other underlying lung diseases. M. abscessus can survive inside host cells, a niche that can limit access to antibiotics. As current treatment options for M. abscessus infections often fail, there is an urgent need for alternative therapies. Phage therapy is being used to treat M. abscessus infections as an option of last resort. However, little is known about the ability of phages to kill bacteria in the host environment and specifically in an intracellular environment. Here, we demonstrate the ability of phages to enter mammalian cells and to infect and kill intracellular M. abscessus. These findings support the use of phages to treat intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Alan A. Schmalstig
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew Wiggins
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Debbie Badillo
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katherine S. Wetzel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Ng WL, Rego EH. A nucleoid-associated protein is involved in the emergence of antibiotic resistance by promoting the frequent exchange of the replicative DNA polymerase in M. smegmatis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.12.544663. [PMID: 38260554 PMCID: PMC10802252 DOI: 10.1101/2023.06.12.544663] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Antibiotic resistance in M. tuberculosis exclusively originates from chromosomal mutations, either during normal DNA replication or under stress, when the expression of error-prone DNA polymerases increases to repair damaged DNA. To bypass DNA lesions and catalyze error-prone DNA synthesis, translesion polymerases must be able to access the DNA, temporarily replacing the high-fidelity replicative polymerase. The mechanisms that govern polymerase exchange are not well understood, especially in mycobacteria. Here, using a suite of quantitative fluorescence imaging techniques, we discover that, as in other bacterial species, in M. smegmatis, the replicative polymerase, DnaE1, exchanges at a timescale much faster than that of DNA replication. Interestingly, this fast exchange rate depends on an actinobacteria-specific nucleoid-associated protein (NAP), Lsr2. In cells missing lsr2, DnaE1 exchanges less frequently, and the chromosome is replicated more faithfully. Additionally, in conditions that damage DNA, cells lacking lsr2 load the complex needed to bypass DNA lesions less effectively and, consistently, replicate with higher fidelity but exhibit growth defects. Together, our results show that Lsr2 promotes dynamic flexibility of the mycobacterial replisome, which is critical for robust cell growth and lesion repair in conditions that damage DNA.
Collapse
Affiliation(s)
- Wei L. Ng
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06519
| | - E. Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06519
| |
Collapse
|
11
|
Wetzel KS, Illouz M, Abad L, Aull HG, Russell DA, Garlena RA, Cristinziano M, Malmsheimer S, Chalut C, Hatfull GF, Kremer L. Therapeutically useful mycobacteriophages BPs and Muddy require trehalose polyphleates. Nat Microbiol 2023; 8:1717-1731. [PMID: 37644325 PMCID: PMC10465359 DOI: 10.1038/s41564-023-01451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/17/2023] [Indexed: 08/31/2023]
Abstract
Mycobacteriophages show promise as therapeutic agents for non-tuberculous mycobacterium infections. However, little is known about phage recognition of Mycobacterium cell surfaces or mechanisms of phage resistance. We show here that trehalose polyphleates (TPPs)-high-molecular-weight, surface-exposed glycolipids found in some mycobacterial species-are required for infection of Mycobacterium abscessus and Mycobacterium smegmatis by clinically useful phages BPs and Muddy. TPP loss leads to defects in adsorption and infection and confers resistance. Transposon mutagenesis shows that TPP disruption is the primary mechanism for phage resistance. Spontaneous phage resistance occurs through TPP loss by mutation, and some M. abscessus clinical isolates are naturally phage-insensitive due to TPP synthesis gene mutations. Both BPs and Muddy become TPP-independent through single amino acid substitutions in their tail spike proteins, and M. abscessus mutants resistant to TPP-independent phages reveal additional resistance mechanisms. Clinical use of BPs and Muddy TPP-independent mutants should preempt phage resistance caused by TPP loss.
Collapse
Affiliation(s)
- Katherine S Wetzel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Morgane Illouz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haley G Aull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca A Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madison Cristinziano
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silke Malmsheimer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.
- INSERM, IRIM, Montpellier, France.
| |
Collapse
|
12
|
Wetzel KS, Illouz M, Abad L, Aull HG, Russell DA, Garlena RA, Cristinziano M, Malmsheimer S, Chalut C, Hatfull GF, Kremer L. Mycobacterium trehalose polyphleates are required for infection by therapeutically useful mycobacteriophages BPs and Muddy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532567. [PMID: 36993724 PMCID: PMC10055034 DOI: 10.1101/2023.03.14.532567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mycobacteriophages are good model systems for understanding their bacterial hosts and show promise as therapeutic agents for nontuberculous mycobacterium infections. However, little is known about phage recognition of Mycobacterium cell surfaces, or mechanisms of phage resistance. We show here that surface-exposed trehalose polyphleates (TPPs) are required for infection of Mycobacterium abscessus and Mycobacterium smegmatis by clinically useful phages BPs and Muddy, and that TPP loss leads to defects in adsorption, infection, and confers resistance. Transposon mutagenesis indicates that TPP loss is the primary mechanism for phage resistance. Spontaneous phage resistance occurs through TPP loss, and some M. abscessus clinical isolates are phage-insensitive due to TPP absence. Both BPs and Muddy become TPP-independent through single amino acid substitutions in their tail spike proteins, and M. abscessus mutants resistant to TPP-independent phages reveal additional resistance mechanisms. Clinical use of BPs and Muddy TPP-independent mutants should preempt phage resistance caused by TPP loss.
Collapse
|