1
|
Hsieh HC, Han Q, Brenes D, Bishop KW, Wang R, Wang Y, Poudel C, Glaser AK, Freedman BS, Vaughan JC, Allbritton NL, Liu JTC. Imaging 3D cell cultures with optical microscopy. Nat Methods 2025:10.1038/s41592-025-02647-w. [PMID: 40247123 DOI: 10.1038/s41592-025-02647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/16/2025] [Indexed: 04/19/2025]
Abstract
Three-dimensional (3D) cell cultures have gained popularity in recent years due to their ability to represent complex tissues or organs more faithfully than conventional two-dimensional (2D) cell culture. This article reviews the application of both 2D and 3D microscopy approaches for monitoring and studying 3D cell cultures. We first summarize the most popular optical microscopy methods that have been used with 3D cell cultures. We then discuss the general advantages and disadvantages of various microscopy techniques for several broad categories of investigation involving 3D cell cultures. Finally, we provide perspectives on key areas of technical need in which there are clear opportunities for innovation. Our goal is to guide microscope engineers and biomedical end users toward optimal imaging methods for specific investigational scenarios and to identify use cases in which additional innovations in high-resolution imaging could be helpful.
Collapse
Affiliation(s)
- Huai-Ching Hsieh
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Qinghua Han
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - David Brenes
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Kevin W Bishop
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Rui Wang
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chetan Poudel
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Adam K Glaser
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Benjamin S Freedman
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Medicine, Division of Nephrology, Kidney Research Institute and Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
- Plurexa LLC, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jonathan T C Liu
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Kostas JC, Brainard CS, Cristea IM. A Primer on Proteomic Characterization of Intercellular Communication in a Virus Microenvironment. Mol Cell Proteomics 2025; 24:100913. [PMID: 39862905 PMCID: PMC11889360 DOI: 10.1016/j.mcpro.2025.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Intercellular communication is fundamental to multicellular life and a core determinant of outcomes during viral infection, where the common goals of virus and host for persistence and replication are generally at odds. Hosts rely on encoded innate and adaptive immune responses to detect and clear viral pathogens, while viruses can exploit or disrupt these pathways and other intercellular communication processes to enhance their spread and promote pathogenesis. While virus-induced signaling can result in systemic changes to the host, striking alterations are observed within the cellular microenvironment directly surrounding a site of infection, termed the virus microenvironment (VME). Mechanisms employed by viruses to condition their VMEs are emerging and are critical for understanding the biology and pathologies of viral infections. Recent advances in experimental approaches, including proteomic methods, have enabled study of the VME in unprecedented detail. In this review article, we provide a primer on proteomic approaches used to study how viral infections alter intercellular communication, highlighting the ways in which these approaches have been implemented and the exciting biology they have uncovered. First, we consider the different molecules secreted by an infected cell, including proteins, either soluble or contained within extracellular vesicles, and metabolites. We further discuss the modalities of interactions facilitated by alteration at the cell surface of infected cells, including immunopeptide presentation and interactions with the extracellular matrix. Finally, we review spatial profiling approaches that have allowed distinguishing how specific subpopulations of cells within a VME respond to infection and alter their protein composition, discussing valuable insights these methods have offered.
Collapse
Affiliation(s)
- James C Kostas
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Colter S Brainard
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
3
|
Hippee CE, Durnell LA, Kaufman JW, Murray E, Singh BK, Sinn PL. Epithelial-to-mesenchymal transition and live cell extrusion contribute to measles virus release from human airway epithelia. J Virol 2025; 99:e0122024. [PMID: 39791903 PMCID: PMC11852777 DOI: 10.1128/jvi.01220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Measles virus (MeV) is a highly contagious respiratory virus transmitted via aerosols. To understand how MeV exits the airways of an infected host, we use unpassaged primary cultures of human airway epithelial cells (HAE). MeV typically remains cell-associated in HAE and forms foci of infection, termed infectious centers, by directly spreading cell-to-cell. We previously described the phenomenon in which infectious centers detach en masse from HAE and remain viable. Here, we investigate the mechanism of this cellular detachment. Via immunostaining, we observed loss of tight junction and cell adhesion proteins within infectious centers. These morphological changes indicate activation of epithelial-to-mesenchymal transition (EMT). EMT can contribute to wound healing in respiratory epithelia by mobilizing nearby cells. Inhibiting TGF-β, and thus EMT, reduced infectious center detachment. Compared with uninfected cells, MeV-infected cells also expressed increased levels of sphingosine kinase 1 (SK1), a regulator of live cell extrusion. Live cell extrusion encourages cells to detach from respiratory epithelia by contracting the actomyosin of neighboring cells. Inhibition or induction of live cell extrusion impacted infectious center detachment rates. Thus, these two related pathways contributed to infectious center detachment in HAE. Detached infectious centers contained high titers of virus that may be protected from the environment, allowing the virus to live on surfaces longer and infect more hosts.IMPORTANCEMeasles virus (MeV) is an extremely contagious respiratory pathogen that continues to cause large, disruptive outbreaks each year. Here, we examine mechanisms of detachment of MeV-infected cells. MeV spreads cell-to-cell in human airway epithelial cells (HAE) to form groups of infected cells, termed "infectious centers". We reported that infectious centers ultimately detach from HAE as a unit, carrying high titers of virus. Viral particles within cells may be more protected from environmental conditions, such as ultraviolet radiation and desiccation. We identified two host pathways, epithelial-to-mesenchymal transition and live cell extrusion, that contribute to infectious center detachment. Perturbing these pathways altered the kinetics of infectious center detachment. These pathways influence one another and contribute to epithelial wound healing, suggesting that infectious center detachment may be a usurped consequence of the host's response to infection that benefits MeV by increasing its transmissibility between hosts.
Collapse
Affiliation(s)
- Camilla E. Hippee
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Lorellin A. Durnell
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Justin W. Kaufman
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Eileen Murray
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Liu Q, Long JE. Insight into the Life Cycle of Enterovirus-A71. Viruses 2025; 17:181. [PMID: 40006936 PMCID: PMC11861800 DOI: 10.3390/v17020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Human enterovirus 71 (EV-A71), a member of the Picornaviridae family, is predominantly associated with hand, foot, and mouth disease in infants and young children. Additionally, EV-A71 can cause severe neurological complications, including aseptic meningitis, brainstem encephalitis, and fatalities. The molecular mechanisms underlying these symptoms are complex and involve the viral tissue tropism, evasion from the host immune responses, induction of the programmed cell death, and cytokine storms. This review article delves into the EV-A71 life cycle, with a particular emphasis on recent advancements in understanding the virion structure, tissue tropism, and the interplay between the virus and host regulatory networks during replication. The comprehensive review is expected to contribute to our understanding of EV-A71 pathogenesis and inform the development of antiviral therapies and vaccines.
Collapse
Affiliation(s)
- Qi Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Jian-Er Long
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Tee HK, Crouzet S, Muliyil A, Mathez G, Cagno V, Dal Peraro M, Antanasijevic A, Clément S, Tapparel C. Virus adaptation to heparan sulfate comes with capsid stability tradeoff. eLife 2024; 13:e98441. [PMID: 39714930 PMCID: PMC11717363 DOI: 10.7554/elife.98441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as the model and demonstrated that, unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167 G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes. We experimentally confirmed that this pH-independent entry is not associated with the use of HS as an attachment receptor but rather with compromised capsid stability. We then extended these findings to another HS-dependent strain. In summary, our data indicate that the acquisition of capsid mutations conferring affinity for HS comes together with decreased capsid stability and allows EV-A71 to enter the cell via a pH-independent pathway. This pH-independent entry mechanism boosts viral replication in cell lines but may prove deleterious in vivo, especially for enteric viruses crossing the acidic gastric environment before reaching their primary replication site, the intestine. Our study thus provides new insight into the mechanisms underlying the in vivo attenuation of HS-binding EV-A71 strains. Not only are these viruses hindered in tissues rich in HS due to viral trapping, as generally accepted, but our research reveals that their diminished capsid stability further contributes to attenuation in vivo. This underscores the complex relationship between HS-binding, capsid stability, and viral fitness, where increased replication in cell lines coincides with attenuation in harsh in vivo environments like the gastrointestinal tract.
Collapse
Affiliation(s)
- Han Kang Tee
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Simon Crouzet
- Interschool Institute of Bioengineering (SV), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Arunima Muliyil
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Gregory Mathez
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Matteo Dal Peraro
- Interschool Institute of Bioengineering (SV), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Aleksandar Antanasijevic
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| |
Collapse
|
6
|
Martin P, Pardo-Pastor C, Jenkins RG, Rosenblatt J. Imperfect wound healing sets the stage for chronic diseases. Science 2024; 386:eadp2974. [PMID: 39636982 PMCID: PMC7617408 DOI: 10.1126/science.adp2974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Although the age of the genome gave us much insight about how our organs fail with disease, it also suggested that diseases do not arise from mutations alone; rather, they develop as we age. In this Review, we examine how wound healing might act to ignite disease. Wound healing works well when we are younger, repairing damage from accidents, environmental assaults, and battles with pathogens. Yet, with age and accumulation of mutations and tissue damage, the repair process can devolve, leading to inflammation, fibrosis, and neoplastic signaling. We discuss healthy wound responses and how our bodies might misappropriate these pathways in disease. Although we focus predominantly on epithelial-based (lung and skin) diseases, similar pathways might operate in cardiac, muscle, and neuronal diseases.
Collapse
Affiliation(s)
- Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Carlos Pardo-Pastor
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - R Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart & Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London, UK
| | - Jody Rosenblatt
- The Randall and Cancer Centres King's College London, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
7
|
Chio CC, Chien JC, Chan HW, Huang HI. Overview of the Trending Enteric Viruses and Their Pathogenesis in Intestinal Epithelial Cell Infection. Biomedicines 2024; 12:2773. [PMID: 39767680 PMCID: PMC11672972 DOI: 10.3390/biomedicines12122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Enteric virus infection is a major public health issue worldwide. Enteric viruses have become epidemic infectious diseases in several countries. Enteric viruses primarily infect the gastrointestinal tract and complete their life cycle in intestinal epithelial cells. These viruses are transmitted via the fecal-oral route through contaminated food, water, or person to person and cause similar common symptoms, including vomiting, abdominal pain, and diarrhea. Diarrheal disease is the third leading cause of death in children under five years of age, accounting for approximately 1.7 billion cases and 443,832 deaths annually in this age group. Additionally, some enteric viruses can invade other tissues, leading to severe conditions and even death. The pathogenic mechanisms of enteric viruses are also unclear. In this review, we organized the research on trending enteric virus infections, including rotavirus, norovirus, adenovirus, Enterovirus-A71, Coxsackievirus A6, and Echovirus 11. Furthermore, we discuss the gastrointestinal effects and pathogenic mechanisms of SARS-CoV-2 in intestinal epithelial cells, given the gastrointestinal symptoms observed during the COVID-19 pandemic. We conducted a literature review on their pathogenic mechanisms, which serves as a guide for formulating future treatment strategies for enteric virus infections.
Collapse
Affiliation(s)
- Chi-Chong Chio
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Jou-Chun Chien
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hio-Wai Chan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Taoyuan 33305, Taiwan
| |
Collapse
|
8
|
Luo W, Wang L, Chen Z, Liu M, Zhao Y, Wu Y, Huang B, Wang P. Pathoimmunological analyses of fatal E11 infection in premature infants. Front Cell Infect Microbiol 2024; 14:1391824. [PMID: 39045132 PMCID: PMC11263194 DOI: 10.3389/fcimb.2024.1391824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
E11 causes acute fulminant hepatitis in newborns. We investigated the pathological changes of different tissues from premature male twins who died due to E11 infection. The E11 expression level was higher in the liver than in other tissues. IP10 was upregulated in liver tissue in the patient group, and might be regulated by IFNAR and IRF7, whereas IFNα was regulated by IFNAR or IRF5.
Collapse
Affiliation(s)
- Wei Luo
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lixia Wang
- College of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Chen
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ming Liu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yixue Zhao
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yucan Wu
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Huang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Wang
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Qiao W, Richards CM, Kim Y, Zengel JR, Ding S, Greenberg HB, Carette JE. MYADM binds human parechovirus 1 and is essential for viral entry. Nat Commun 2024; 15:3469. [PMID: 38658526 PMCID: PMC11043367 DOI: 10.1038/s41467-024-47825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Human parechoviruses (PeV-A) are increasingly being recognized as a cause of infection in neonates and young infants, leading to a spectrum of clinical manifestations ranging from mild gastrointestinal and respiratory illnesses to severe sepsis and meningitis. However, the host factors required for parechovirus entry and infection remain poorly characterized. Here, using genome-wide CRISPR/Cas9 loss-of-function screens, we identify myeloid-associated differentiation marker (MYADM) as a host factor essential for the entry of several human parechovirus genotypes including PeV-A1, PeV-A2 and PeV-A3. Genetic knockout of MYADM confers resistance to PeV-A infection in cell lines and in human gastrointestinal epithelial organoids. Using immunoprecipitation, we show that MYADM binds to PeV-A1 particles via its fourth extracellular loop, and we identify critical amino acid residues within the loop that mediate binding and infection. The demonstrated interaction between MYADM and PeV-A1, and its importance specifically for viral entry, suggest that MYADM is a virus receptor. Knockout of MYADM does not reduce PeV-A1 attachment to cells pointing to a role at the post-attachment stage. Our study suggests that MYADM is a multi-genotype receptor for human parechoviruses with potential as an antiviral target to combat disease associated with emerging parechoviruses.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M Richards
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Youlim Kim
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - James R Zengel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Harry B Greenberg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
López-Posadas R, Bagley DC, Pardo-Pastor C, Ortiz-Zapater E. The epithelium takes the stage in asthma and inflammatory bowel diseases. Front Cell Dev Biol 2024; 12:1258859. [PMID: 38529406 PMCID: PMC10961468 DOI: 10.3389/fcell.2024.1258859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
The epithelium is a dynamic barrier and the damage to this epithelial layer governs a variety of complex mechanisms involving not only epithelial cells but all resident tissue constituents, including immune and stroma cells. Traditionally, diseases characterized by a damaged epithelium have been considered "immunological diseases," and research efforts aimed at preventing and treating these diseases have primarily focused on immuno-centric therapeutic strategies, that often fail to halt or reverse the natural progression of the disease. In this review, we intend to focus on specific mechanisms driven by the epithelium that ensure barrier function. We will bring asthma and Inflammatory Bowel Diseases into the spotlight, as we believe that these two diseases serve as pertinent examples of epithelium derived pathologies. Finally, we will argue how targeting the epithelium is emerging as a novel therapeutic strategy that holds promise for addressing these chronic diseases.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universtiy Eralngen-Nürnberg, Erlangen, Germany
| | - Dustin C. Bagley
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Carlos Pardo-Pastor
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- Instituto Investigación Hospital Clínico-INCLIVA, Valencia, Spain
| |
Collapse
|
11
|
Vecchio F, Carré A, Korenkov D, Zhou Z, Apaolaza P, Tuomela S, Burgos-Morales O, Snowhite I, Perez-Hernandez J, Brandao B, Afonso G, Halliez C, Kaddis J, Kent SC, Nakayama M, Richardson SJ, Vinh J, Verdier Y, Laiho J, Scharfmann R, Solimena M, Marinicova Z, Bismuth E, Lucidarme N, Sanchez J, Bustamante C, Gomez P, Buus S, You S, Pugliese A, Hyoty H, Rodriguez-Calvo T, Flodstrom-Tullberg M, Mallone R. Coxsackievirus infection induces direct pancreatic β cell killing but poor antiviral CD8 + T cell responses. SCIENCE ADVANCES 2024; 10:eadl1122. [PMID: 38446892 PMCID: PMC10917340 DOI: 10.1126/sciadv.adl1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Coxsackievirus B (CVB) infection of pancreatic β cells is associated with β cell autoimmunity and type 1 diabetes. We investigated how CVB affects human β cells and anti-CVB T cell responses. β cells were efficiently infected by CVB in vitro, down-regulated human leukocyte antigen (HLA) class I, and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized a fraction of these peptides; only another subfraction was targeted by effector/memory T cells that expressed exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with β cell antigen GAD. Infected β cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Our in vitro and ex vivo data highlight limited CD8+ T cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and nonstructural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.
Collapse
Affiliation(s)
- Federica Vecchio
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Alexia Carré
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Daniil Korenkov
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Zhicheng Zhou
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Paola Apaolaza
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Soile Tuomela
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Isaac Snowhite
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | | | - Barbara Brandao
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Georgia Afonso
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Clémentine Halliez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - John Kaddis
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sally C. Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical Chan School, Worcester, MA, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sarah J. Richardson
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Joelle Vinh
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
| | - Yann Verdier
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
| | - Jutta Laiho
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Michele Solimena
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Zuzana Marinicova
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Elise Bismuth
- Assistance Publique Hôpitaux de Paris, Service d’Endocrinologie Pédiatrique, Robert Debré Hospital, Paris, France
| | - Nadine Lucidarme
- Assistance Publique Hôpitaux de Paris, Service de Pédiatrie, Jean Verdier Hospital, Bondy, France
| | - Janine Sanchez
- Department of Pediatrics, Division of Pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Carmen Bustamante
- Department of Pediatrics, Division of Pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Patricia Gomez
- Department of Pediatrics, Division of Pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Soren Buus
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - the nPOD-Virus Working Group
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical Chan School, Worcester, MA, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Paul Langerhans Institute Dresden (PLID), Helmholtz Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- Assistance Publique Hôpitaux de Paris, Service d’Endocrinologie Pédiatrique, Robert Debré Hospital, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Pédiatrie, Jean Verdier Hospital, Bondy, France
- Department of Pediatrics, Division of Pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
- Fimlab Laboratories, Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Sylvaine You
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Heikki Hyoty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Malin Flodstrom-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
12
|
Yousaf I, Hannon WW, Donohue RC, Pfaller CK, Yadav K, Dikdan RJ, Tyagi S, Schroeder DC, Shieh WJ, Rota PA, Feder AF, Cattaneo R. Brain tropism acquisition: The spatial dynamics and evolution of a measles virus collective infectious unit that drove lethal subacute sclerosing panencephalitis. PLoS Pathog 2023; 19:e1011817. [PMID: 38127684 PMCID: PMC10735034 DOI: 10.1371/journal.ppat.1011817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
It is increasingly appreciated that pathogens can spread as infectious units constituted by multiple, genetically diverse genomes, also called collective infectious units or genome collectives. However, genetic characterization of the spatial dynamics of collective infectious units in animal hosts is demanding, and it is rarely feasible in humans. Measles virus (MeV), whose spread in lymphatic tissues and airway epithelia relies on collective infectious units, can, in rare cases, cause subacute sclerosing panencephalitis (SSPE), a lethal human brain disease. In different SSPE cases, MeV acquisition of brain tropism has been attributed to mutations affecting either the fusion or the matrix protein, or both, but the overarching mechanism driving brain adaptation is not understood. Here we analyzed MeV RNA from several spatially distinct brain regions of an individual who succumbed to SSPE. Surprisingly, we identified two major MeV genome subpopulations present at variable frequencies in all 15 brain specimens examined. Both genome types accumulated mutations like those shown to favor receptor-independent cell-cell spread in other SSPE cases. Most infected cells carried both genome types, suggesting the possibility of genetic complementation. We cannot definitively chart the history of the spread of this virus in the brain, but several observations suggest that mutant genomes generated in the frontal cortex moved outwards as a collective and diversified. During diversification, mutations affecting the cytoplasmic tails of both viral envelope proteins emerged and fluctuated in frequency across genetic backgrounds, suggesting convergent and potentially frequency-dependent evolution for modulation of fusogenicity. We propose that a collective infectious unit drove MeV pathogenesis in this brain. Re-examination of published data suggests that similar processes may have occurred in other SSPE cases. Our studies provide a primer for analyses of the evolution of collective infectious units of other pathogens that cause lethal disease in humans.
Collapse
Affiliation(s)
- Iris Yousaf
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| | - William W. Hannon
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Ryan C. Donohue
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| | - Christian K. Pfaller
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| | - Kalpana Yadav
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ryan J. Dikdan
- Public Health Research Institute, Rutgers University, Newark, New Jersey, United States of America
| | - Sanjay Tyagi
- Public Health Research Institute, Rutgers University, Newark, New Jersey, United States of America
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Wun-Ju Shieh
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Paul A. Rota
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Alison F. Feder
- Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Public Health Sciences and Computational Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| |
Collapse
|
13
|
Lorentzen EM, Henriksen S, Rinaldo CH. Modelling BK Polyomavirus dissemination and cytopathology using polarized human renal tubule epithelial cells. PLoS Pathog 2023; 19:e1011622. [PMID: 37639485 PMCID: PMC10491296 DOI: 10.1371/journal.ppat.1011622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Most humans have a lifelong imperceptible BK Polyomavirus (BKPyV) infection in epithelial cells lining the reno-urinary tract. In kidney transplant recipients, unrestricted high-level replication of donor-derived BKPyV in the allograft underlies polyomavirus-associated nephropathy, a condition with massive epithelial cell loss and inflammation causing premature allograft failure. There is limited understanding on how BKPyV disseminates throughout the reno-urinary tract and sometimes causes kidney damage. Tubule epithelial cells are tightly connected and have unique apical and basolateral membrane domains with highly specialized functions but all in vitro BKPyV studies have been performed in non-polarized cells. We therefore generated a polarized cell model of primary renal proximal tubule epithelial cells (RPTECs) and characterized BKPyV entry and release. After 8 days on permeable inserts, RPTECs demonstrated apico-basal polarity. BKPyV entry was most efficient via the apical membrane, that in vivo faces the tubular lumen, and depended on sialic acids. Progeny release started between 48 and 58 hours post-infection (hpi), and was exclusively detected in the apical compartment. From 72 hpi, cell lysis and detachment gradually increased but cells were mainly shed by extrusion and the barrier function was therefore maintained. The decoy-like cells were BKPyV infected and could transmit BKPyV to uninfected cells. By 120 hpi, the epithelial barrier was disrupted by severe cytopathic effects, and BKPyV entered the basolateral compartment mimicking the interstitial space. Addition of BKPyV-specific neutralizing antibodies to this compartment inhibited new infections. Taken together, we propose that during in vivo low-level BKPyV replication, BKPyV disseminates inside the tubular system, thereby causing minimal damage and delaying immune detection. However, in kidney transplant recipients lacking a well-functioning immune system, replication in the allograft will progress and eventually cause denudation of the basement membrane, leading to an increased number of decoy cells, high-level BKPyV-DNAuria and DNAemia, the latter a marker of allograft damage.
Collapse
Affiliation(s)
- Elias Myrvoll Lorentzen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Stian Henriksen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Christine Hanssen Rinaldo
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|