1
|
Yu C, Jiao Y, Bi L, Zou Y, Zhao J, Tong M, Zong X, Zhang J, Zhang S, Li D. Nanoconfined in-situ sampling and extracting switching needle device construction for highly enrichment of polar metabolites in human urine. Anal Chim Acta 2025; 1345:343738. [PMID: 40015780 DOI: 10.1016/j.aca.2025.343738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Urine, as a non-invasive sampling specimen, offers significant advantages for the diagnosis and treatment of diseases. However, as a water-based matrix, most metabolites in urine are high polarity, which limits the ultrafast extraction and high enrichment of these polar metabolites from urine. Though solvent-based extraction method has demonstrated considerable benefits in extraction rates, the necessity for selecting water-immiscible solvents restricts the extraction of highly polar metabolites. Consequently, there is a pressing need for a rapid extraction method that achieves a high enrichment factor specifically targeting highly polar metabolites in urine. (90) RESULTS: This study is the first attempt to use water-soluble solvent to extract highly polar metabolites from urine. Firstly, a needle device capable of switching between sampling and extracting modes was constructed by utilizing carbon nanofibers/carbon fibers (CNFs/CFs) filled with the needle tip. Under the effect of nanoconfinement, the needle can achieve in-situ ultrafast extraction employing a methanol/water mixture as the nanoconfined extraction solvent. Additionally, the nanodistribution of the extracted solvent within the nanoconfined space enhances the exaction rate and efficiency. By coupling this method with HILIC-LC/MS detection protocol, 33 highly polar metabolites from human urine were simultaneously quantified within 3 min. Following systematic validation, the established method was successfully applied to urine target metabolomics analysis for hepatocellular carcinoma, the potential diagnosis biomarkers were screened out using multiple data processing methods. (130) SIGNIFICANCE: In conclusion, the home-made nanoconfinement effect based in-situ sampling and extracting (NISE) switching needle device demonstrates strong advantages in the highly enrichment and ultrafast analysis of highly polar metabolites in an aqueous matrix, providing a promising tool for clinical disease diagnosis and screening. (44).
Collapse
Affiliation(s)
- Chunyu Yu
- Department of Pharmaceutical Analysis, College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yifan Jiao
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Lang Bi
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yilin Zou
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jinhua Zhao
- Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China
| | - Meihui Tong
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Xiaohan Zong
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jiaxin Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Songnan Zhang
- Department of Oncology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China.
| | - Donghao Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Yanbian University, Yanji, 133002, Jilin Province, China; Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
2
|
Wang B, Zhang K, Pan L, Li Y, Song DP. Scalable and Precise Synthesis of Structurally Colored Bottlebrush Block Copolymers: Enabling Refined Color Calibration for Sustainable Photonic Pigments. Angew Chem Int Ed Engl 2025; 64:e202421315. [PMID: 39833118 DOI: 10.1002/anie.202421315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Self-assembled bottlebrush block copolymers (BBCPs) offer a vibrant, eco-friendly alternative to traditional toxic pigments and dyes, providing vivid structural colors with significantly reduced environmental impact. Scaling up the synthesis of these polymers for practical applications has been challenging with conventional batch methods, which suffer from slow mass and heat transfer, inadequate mixing, and issues with reproducibility. Precise control over molecular weight and dispersity remains a significant challenge for achieving finely tuned color appearances. Here, we present an alternative strategy to overcome the challenges by integrating a rapid continuous flow technique with an in-line self-assembly procedure. This strategy enables the rapid, stable and large-scale synthesis of narrow-dispersed BBCPs, exceeding 2 kg/day, a significant improvement over conventional gram-scale methods. Furthermore, precise control over the degree of polymerization is achieved with an unprecedented interval accuracy of four repeat units. This level of precision enables refined color calibration in the resulting photonic pigments, effectively eliminating the need for labor-intensive and costly multiple batch syntheses.
Collapse
Affiliation(s)
- Bangbang Wang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Kunyu Zhang
- Advanced Materials Research Center, Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206, China
| | - Li Pan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
3
|
Han B, Song Y, Wang S, Yang T, Sun Z, Wang A, Jin M, Yang Z, Wang X, Liang F. Biomimetic Janus Particles Induced In Situ Interfacial Remineralization for Dentin Hypersensitivity. ADVANCED FUNCTIONAL MATERIALS 2025; 35. [DOI: 10.1002/adfm.202412954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Indexed: 02/03/2025]
Abstract
AbstractDentin hypersensitivity (DH), caused by the exposure of dentin tubules, is a common complaint of dental patients. Although occlusion of the exposed tubules is the primary treatment approach, the complex oral environment, and multiple simultaneous requirements often hinder its implementation. In this study, strawberry‐shaped hemispheric Janus particles (JPs) are synthesized, and their use in the treatment of DH is evaluated in vitro and in an animal model. The hemispheric side of the JPs is modified with polymers of quaternary ammonium salts (QASs) to form a superhydrophobic coating with antibiofilm properties, while the flat side is modified with catechol groups able to form strong bonds with dentin. Even after 1 h of ultrasonication or 1000 rounds of thermal cycling, the dentin tubules are completely occluded by the JPs. Moreover, biofilm formation is not observed, and the area of living bacteria is less than 1% compared to the blank control and sodium fluoride (NaF)‐treated groups. In a rat model, the dentin tubules in the fixed specimens are completely occluded at day 3, much earlier than the occlusion obtained with commonly used NaF. These results demonstrate that JPs can provide a novel approach to the treatment of DH.
Collapse
Affiliation(s)
- Bing Han
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Yilin Song
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Shi Wang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Tiantian Yang
- School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang 110870 P. R. China
| | - Zetao Sun
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Aijing Wang
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Moran Jin
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
4
|
Sun Z, Liu B, Ma M, Alexander-Katz A, Ross CA, Johnson JA. ROMP of Macromonomers Prepared by ROMP: Expanding Access to Complex, Functional Bottlebrush Polymers. J Am Chem Soc 2025; 147:3855-3865. [PMID: 39808775 DOI: 10.1021/jacs.4c17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Graft-through ring-opening metathesis polymerization (ROMP) of norbornene-terminated macromonomers (MMs) prepared using various polymerization methods has been extensively used for the synthesis of bottlebrush (co)polymers, yet the potential of ROMP for the synthesis of MMs that can subsequently be polymerized by graft-through ROMP to produce new bottlebrush compositions remains untapped. Here, we report an efficient "ROMP-of-ROMP" method that involves the synthesis of norbornene-terminated poly(norbornene imide) (PNI)-based MMs that, following ROMP, provide new families of bottlebrush (co)polymers and "brush-on-brush" hierarchical architectures. In the bulk state, the organization of the PNI pendants drives bottlebrush backbone extension to enable rapid assembly of asymmetric lamellar morphologies with large asymmetry factors. Overall, this work expands the scope of complex macromolecular architectures and provides insights into the interplay of backbone rigidity and self-assembly that will guide future nanolithography applications.
Collapse
Affiliation(s)
- Zehao Sun
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bin Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingchao Ma
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Cetindag S, Bellini B, Li R, Tsai EHR, Nykypanchuk D, Doerk GS. On-Demand Selection of the Latent Domain Orientation in Spray-Deposited Block Copolymer Thin Films. ACS NANO 2025; 19:3726-3739. [PMID: 39794154 DOI: 10.1021/acsnano.4c14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
With their ability to self-assemble spontaneously into well-defined nanoscale morphologies, block copolymer (BCP) thin films are a versatile platform to fabricate functional nanomaterials. An important challenge to wider deployment of BCPs in nanofabrication is combining precise control over the nanoscale domain orientation in BCP assemblies with scalable deposition techniques that are applicable to large-area, curved, and flexible substrates. Here, we show that spray-deposited smooth films of a nominally disordered BCP exhibit latent orientations, which can be prescriptively selected by controlling solvent evaporation during spray casting. Subsequent solvent vapor annealing triggers assembly toward highly ordered cylindrical morphologies along the pathway determined by solvent evaporation in the prior spray deposition stage. Faster evaporation promotes assembly of vertically oriented cylinders spanning the entire film thickness (100-300 nm). In comparison, slow solvent evaporation permits intermicellar aggregation and incipient cylinder formation in solution, which induces horizontal cylinder assembly upon annealing. The evaporatively controlled latent orientation mechanism presented herein elucidates how nonequilibrium phenomena during casting govern successive self-assembly pathways and facilitates a versatile method to dictate the domain orientation of BCP thin films on demand on flexible and highly curved substrates or in distinct pattern areas on the same substrate.
Collapse
Affiliation(s)
- Semih Cetindag
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Beatrice Bellini
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Gregory S Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
6
|
Deng Q, Han S, Wu Y, Chen Y, Zhang Y, Zhao Y, Chen S, Zhu J. Robust and Reversible Thermal/Electro-Responsive Supramolecular Polymeric Adhesives via Synergistic Hydrogen-Bonds and Ionic Junctions. Angew Chem Int Ed Engl 2025; 64:e202415386. [PMID: 39450609 DOI: 10.1002/anie.202415386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 10/26/2024]
Abstract
Adhesive conducting elastomers are rising materials towards cutting-edge applications in wearable and implantable soft electronics. Yet, engineering the conductive adhesives with robust and tunable interfacial bonding strength is still in its infancy stage. We herein identify a structurally novel supramolecular polymer scaffold, characterized by synergistic coexistence of hydrogen-bonding (H-bonding) interactions and electrostatic ionic junctions, endowing the robust and tunable elastic conducting adhesives with remarkable thermal/electro-responsive performance. H-bonding association and electrostatic interaction play orthogonal yet synergistic roles in the strong supramolecular adhesive formation, serving as the leveraging forces for opposing both cohesion and adhesion energy. To do so, six-arm star-shaped random copolymers P1, and P2 are strategically designed, bearing H-bonding PDAP (poly(diaminopyridine acrylamide)) and PThy (poly(thymine)) segments, which can form hetero-complementary DAP/Thy H-bonding association, along with ionic conductive poly(ionic liquid)s segment: PMBT, (poly(1-[2-methacryloylethyl]-3-methylimidazolium bis(trifluoromethane)-sulfonamide)). DAP/Thy H-bonding association, along with electrostatic ionic interaction, can yield dual supramolecular forces crosslinked polymeric networks with robust cohesion energy. Moreover, coexistence of poly(ionic liquid)s can impact and interfere the configuration of H-bonding association, liberate more free DAP and Thy motifs to form H-bonds towards substrate, affording strong surface adhesion in a synergistic manner. This work demonstrates a significant forward step towards potential adhesives devoted to hybrid electronic devices.
Collapse
Affiliation(s)
- Qizhe Deng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Shengli Han
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Hubei Huitian New Materials Co., Ltd., No.1, Guanyu Road, Xiangyang, 441057, China
| | - Yanggui Wu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yiwen Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yinhua Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Hubei Huitian New Materials Co., Ltd., No.1, Guanyu Road, Xiangyang, 441057, China
| | - Yonggang Zhao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Hubei Huitian New Materials Co., Ltd., No.1, Guanyu Road, Xiangyang, 441057, China
| | - Senbin Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
7
|
Cui S, Murphy EA, Santra S, Bates FS, Lodge TP. Mesoscopic Morphologies in Frustrated ABC Bottlebrush Block Terpolymers. ACS NANO 2025; 19:1211-1221. [PMID: 39760286 DOI: 10.1021/acsnano.4c13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Bottlebrush block polymers, characterized by densely grafted side chains extending from a backbone, have recently garnered significant attention. A particularly attractive feature is the accessibility of ordered morphologies with domain spacings exceeding several hundred nanometers, a capability that is challenging to achieve with linear polymers. These large morphologies make bottlebrush block polymers promising for various applications, such as photonic crystals. However, the structures observed in AB diblock bottlebrushes are generally limited to simple lamellae and cylindrical phases, which restricts their use in many applications. In this study, we synthesized a library of 50 ABC bottlebrush triblock terpolymers, poly(DL-lactide)-b-poly(ethylene-alt-propylene)-b-polystyrene (PLA-PEP-PS), spanning a wide range of compositions using ring-opening metathesis polymerization (ROMP) of norbornene-functionalized macromonomers. This constitutes a frustrated system, in that the mandatory internal interfaces (PLA/PEP and PEP/PS) have larger interfacial energies than PLA/PS. We systematically explored phase behavior using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Morphological characterization revealed a series of intriguing mesoscopic structures, including layered microstructures, core-shell hexagonally packed cylinders (CSHEX, plane group p6mm), alternating tetragonally packed cylinders (ATET, plane group p4mm), and rectangular centered cylinders-in-undulating-lamellae (RCCUL, plane group c2mm). Adjustments in molecular weight resulted in a wide range of unit cell dimensions (exemplified by RCCUL), from 40 nm to over 130 nm. This work demonstrates that multiblock bottlebrushes offer promising opportunities for developing materials with diverse structures and a broad range of domain dimensions.
Collapse
Affiliation(s)
- Shuquan Cui
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth A Murphy
- Materials Research Laboratory and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Subrata Santra
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Gu S, Chen B, Xu X, Han F, Chen S. 3D Nanofabrication via Directed Material Assembly: Mechanism, Method, and Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312915. [PMID: 39623887 PMCID: PMC11733727 DOI: 10.1002/adma.202312915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/27/2024] [Indexed: 01/16/2025]
Abstract
Fabrication of complex three-dimensional (3D) structures at nanoscale is the core of nanotechnology, as it enables the creation of various micro-/nano-devices such as micro-robots, metamaterials, sensors, photonic devices, etc. Among most 3D nanofabrication strategies, the guided material assembly, an efficient bottom-up approach capable of directly constructing designed structures from precise integration of material building blocks, possesses compelling advantages in diverse material compatibility, sufficient driving forces, facile processing steps, and nanoscale resolution. In this review, we focus on assembly-based fabrication methods capable of creating complex 3D nanostructures (instead of periodic or 2.5D-only structures). Recent advances are classified based on the different assembly mechanisms, i.e., assembly driven by chemical reactions, physical interactions, and the synergy of multiple microscopic interactions. The design principles of representative fabrication strategies with an emphasis on their respective advantages, e.g., structural design flexibility, material compatibility, resolution, or applications are analyzed. In the summary and outlook, existing challenges, as well as possible paths to solutions for future development are reviewed. We believe that with recent advances in assembly-based nanofabrication strategies, 3D nanofabrication has achieved tremendous progress in resolution, material generality, and manufacturing cost, for it to make a greater impact in the near future.
Collapse
Affiliation(s)
- Songyun Gu
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
| | - Bingxu Chen
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
| | - Xiayi Xu
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou511442P. R. China
| | - Fei Han
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Shih‐Chi Chen
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
| |
Collapse
|
9
|
Dorfman KD. Computational Phase Discovery in Block Polymers. ACS Macro Lett 2024; 13:1612-1619. [PMID: 39531003 DOI: 10.1021/acsmacrolett.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Self-consistent field theory (SCFT), the mean-field theory of polymer thermodynamics, is a powerful tool for understanding ordered state selection in block copolymer melts and blends. However, the nonlinear governing equations pose a significant challenge when SCFT is used for phase discovery because converging an SCFT solution typically requires an initial guess close to the self-consistent solution. This Viewpoint provides a concise overview of recent efforts where machine learning methods (particle swarm optimization, Bayesian optimization, and generative adversarial networks) have been used to make the first strides toward converting SCFT from a primarily explanatory tool into one that can be readily deployed for phase discovery.
Collapse
Affiliation(s)
- Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Zhang K, Wu Y, Chen S, Zhu J. Programmable Reconfiguration of Supramolecular Bottlebrush Block Copolymers: From Solution Self-Assembly to Co-Crystallization-Assistant Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202408730. [PMID: 39106102 DOI: 10.1002/anie.202408730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024]
Abstract
Achieving structural reconfiguration of supramolecular bottlebrush block copolymers toward topological engineering is of particular interest but challenging. Here, we address the creation of supramolecular architectures to discover how assembled topology influences the structured aggregates, combining hydrogen-bonded (H-bonded) bottlebrush block copolymers and electrostatic interaction induced polymer/inorganic eutectics. We first design H-bonding linear-brush block copolymer P(NBDAP-co-NBC)-b-P(NBPEO), bearing linear block P(NBDAP-co-NBC) (poly(norbornene-terminated diaminopyridine-co-norbornene-terminated hexane)) with pendant H-bonding DAP (diaminopyridine) motifs, and PEO (poly(ethylene oxide)) densely grafted P(NBPEO) brush block. Thanks to H-bonding association between DAP and thymine (Thy), incorporation of Thy-functionalized polystyrene (Thy-PS65) enables solution self-assembly and formation of H-bonded bottlebrush block copolymers, generating augmented nanospheres with increasing Thy-PS65 amount. Noteworthy that integration of inorganic cluster silicotungstic acid (STA) to P(NBC-co-NBDAP)-b-P(NBPEO), endows the formation of PEO/STA eutectic core. Therefore, co-crystallization-assistant self-assembly at the interfaces of polymeric, inorganic and supramolecular chemistry is realized, reflecting multi-stage morphology transformation from hexagonal platelets, needle-like, curved rod-like micelles, finally to end-to-end closed rings, by gradually increasing Thy-PS65 while fixing STA content. Interestingly, such solution self-assembly to co-crystallization-assistant self-assembly strategy not only endows unique nanostructure transition, also induce in-to-out reconfiguration of PS domains. These findings clearly provide unique methodology towards programmable fabrication of geometrical objects promising in smart materials.
Collapse
Affiliation(s)
- Kaixing Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Yanggui Wu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Senbin Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| |
Collapse
|
11
|
Leo CM, Jang J, Corey EJ, Neary WJ, Bowman JI, Kennemur JG. Comparison of Polypentenamer and Polynorbornene Bottlebrushes in Dilute Solution. ACS POLYMERS AU 2024; 4:235-246. [PMID: 38882033 PMCID: PMC11177302 DOI: 10.1021/acspolymersau.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 06/18/2024]
Abstract
Bottlebrush (BB) polymers were synthesized via grafting-from-atom transfer radical polymerization (ATRP) of styrene on polypentenamer and polynorbornene macroinitiators with matched grafting density (n g = 4) and backbone degrees of polymerization (122 ≥ N bb ≥ 61) to produce a comparative study on their respective dilute solution properties as a function of increasing side chain degree of polymerization (116 ≥ N sc ≥ 5). The grafting-from technique produced near quantitative grafting efficiency and narrow dispersity N sc as evidenced by spectroscopic analysis and ring closing metathesis depolymerization of the polypentenamer BBs. The versatility of this synthetic approach permitted a comprehensive survey of power law expressions that arise from monitoring intrinsic viscosity, hydrodynamic radius, and radius of gyration as a function of increasing the molar mass of the BBs by increasing N sc. These values were compared to a series of linear (nongrafted, N sc = 0) macroinitiators in addition to linear grafts. This unique study allowed elucidation of the onset of bottlebrush behavior for two different types of bottlebrush backbones with identical grafting density but inherently different flexibility. In addition, grafting-from ATRP of methyl acrylate on a polypentenamer macroinitiator allowed the observation of the effects of graft chemistry in comparison to polystyrene. Differences in the observed scaling relationships in dilute solution as a function of each of these synthetic variants are discussed.
Collapse
Affiliation(s)
- Courtney M Leo
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - Jaehoon Jang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - Ethan J Corey
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - William J Neary
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Jared I Bowman
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Justin G Kennemur
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| |
Collapse
|
12
|
Cui S, Murphy EA, Zhang W, Zografos A, Shen L, Bates FS, Lodge TP. Cylinders-in-Undulating-Lamellae Morphology from ABC Bottlebrush Block Terpolymers. J Am Chem Soc 2024; 146:6796-6805. [PMID: 38421320 DOI: 10.1021/jacs.3c13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Block polymer self-assembly affords a versatile bottom-up strategy to develop materials with the desired properties dictated by specific symmetries and dimensions. Owing to distinct properties compared with linear counterparts, bottlebrush block polymers with side chains densely grafted on a backbone have attracted extensive attention. However, the morphologies found in bottlebrush block polymers so far are limited, and only lamellar and cylindrical ordered phases have been reported in diblock bottlebrushes. The absence of complex morphologies, such as networks, might originate from the intrinsically stiff backbone architecture. We experimentally investigated the morphologies of nonfrustrated ABC bottlebrush block terpolymers, based on two chemistries, poly(ethylene-alt-propylene)-b-polystyrene-b-poly(dl-lactic acid) (PEP-PS-PLA) and PEP-b-PS-b-poly(ethylene oxide) (PEP-PS-PEO), synthesized by ring-opening metathesis polymerization of norbornene-terminated macromonomers. Structural characterization based on small-angle X-ray scattering and transmission electron microscopy measurements revealed an unprecedented cylinders-in-undulating-lamellae (CUL) morphology with p2 symmetry for both systems. Additionally, automated liquid chromatography was employed to fractionate the PEP-PS-PLA bottlebrush polymer, leading to fractions with a spectrum of morphologies, including the CUL. These findings underscore the significance of macromolecular dispersity in nominally narrow dispersity bottlebrush polymers while demonstrating the power of this fractionation technique.
Collapse
Affiliation(s)
| | - Elizabeth A Murphy
- Materials Research Laboratory and Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | | | | | | | | | | |
Collapse
|
13
|
Sánchez-Leija R, Mysona JA, de Pablo JJ, Nealey PF. Phase Behavior and Conformational Asymmetry near the Comb-to-Bottlebrush Transition in Linear-Brush Block Copolymers. Macromolecules 2024; 57:2019-2029. [PMID: 38495384 PMCID: PMC10938885 DOI: 10.1021/acs.macromol.3c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
This study explores how conformational asymmetry influences the bulk phase behavior of linear-brush block copolymers. We synthesized 60 diblock copolymers composed of poly(trifluoroethyl methacrylate) as the linear block and poly[oligo(ethylene glycol) methyl ether methacrylate] as the brush block, varying the molecular weight, composition, and side-chain length to introduce different degrees of conformational asymmetry. Using small-angle X-ray scattering, we determined the morphology and phase diagrams for three different side-chain length systems, mainly observing lamellar and cylindrical phases. Increasing the side-chain length of the brush block from three to nine ethylene oxide units introduces sufficient asymmetry between the blocks to alter the phase behavior, shifting the lamellar-to-cylindrical transitions toward lower brush block compositions and transitioning the brush block from the dense comb-like regime to the bottlebrush regime. Coarse-grained simulations support our experimental observations and provide a mapping between the composition and conformational asymmetry. A comparison of our findings to strong stretching theory across multiple phase boundary predictions confirms the transition between the dense comb-like regime and the bottlebrush regime.
Collapse
Affiliation(s)
- Regina
J. Sánchez-Leija
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Joshua A. Mysona
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Paul F. Nealey
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Xue Y, Song Q, Liu Y, Smith D, Li W, Zhong M. Hierarchically Structured Nanocomposites via Mixed-Graft Block Copolymer Templating: Achieving Controlled Nanostructure and Functionality. J Am Chem Soc 2024; 146:567-577. [PMID: 38117946 DOI: 10.1021/jacs.3c10297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Integrating inorganic and polymerized organic functionalities to create composite materials presents an efficient strategy for the discovery and fabrication of multifunctional materials. The characteristics of these composites go beyond a simple sum of individual component properties; they are profoundly influenced by the spatial arrangement of these components and the resulting homo-/hetero-interactions. In this work, we develop a facile and highly adaptable approach for crafting nanostructured polymer-inorganic composites, leveraging hierarchically assembling mixed-graft block copolymers (mGBCPs) as templates. These mGBCPs, composed of diverse polymeric side chains that are covalently tethered with a defined sequence to a linear backbone polymer, self-assemble into ordered hierarchical structures with independently tuned nano- and mesoscale lattice features. Through the coassembly of mGBCPs with diversely sized inorganic fillers such as metal ions (ca. 0.1 nm), metal oxide clusters (0.5-2 nm), and metallic nanoparticles (>2 nm), we create three-dimensional filler arrays with controlled interfiller separation and arrangement. Multiple types of inorganic fillers are simultaneously integrated into the mGBCP matrix by introducing orthogonal interactions between distinct fillers and mGBCP side chains. This results in nanocomposites where each type of filler is selectively segregated into specific nanodomains with matrix-defined orientations. The developed coassembly strategy offers a versatile and scalable pathway for hierarchically structured nanocomposites, unlocking new possibilities for advanced materials in the fields of optoelectronics, sensing, and catalysis.
Collapse
Affiliation(s)
- Yazhen Xue
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Qingliang Song
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuchu Liu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Daniel Smith
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
15
|
Shi Y, Hou W, Li Z, Chen Y. Tailoring the Architecture of Molecular Bottlebrushes via Click Grafting-Onto Strategy. Macromol Rapid Commun 2023; 44:e2300362. [PMID: 37625446 DOI: 10.1002/marc.202300362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Molecular bottlebrush (MBB) refer to a synthetic macromolecule, in which a mass of polymeric side chains (SCs) are covalently connected to a macromolecular backbone densely, representing an important type of unimolecular nanomaterial. The chemical composition, size, shape, and surface property of MBB can be precisely tailored by varying the backbones and SCs as well as the grafting density (Gdst ). Meanwhile, the topological structure of backbones and SCs can also significantly affect the chemical and physical properties of MBBs. For the past few years, by combining the structure features of MBB, the polymers with diverse architectures using MBB as building block are synthesized, including linear, branched, and cyclic MBB etc. These promising architectural features will bring MBBs with diverse architectures and lots of applications in advanced materials. For this reason, this work is interested in giving a briefly summary of the recent progress on tailor of well-defined MBBs with diverse architectures using grafting-onto strategy combined with controlled polymerization technique.
Collapse
Affiliation(s)
- Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wangmeng Hou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zheqi Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
16
|
Chen P, Dorfman KD. Gaming self-consistent field theory: Generative block polymer phase discovery. Proc Natl Acad Sci U S A 2023; 120:e2308698120. [PMID: 37922326 PMCID: PMC10636330 DOI: 10.1073/pnas.2308698120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/25/2023] [Indexed: 11/05/2023] Open
Abstract
Block polymers are an attractive platform for uncovering the factors that give rise to self-assembly in soft matter owing to their relatively simple thermodynamic description, as captured in self-consistent field theory (SCFT). SCFT historically has found great success explaining experimental data, allowing one to construct phase diagrams from a set of candidate phases, and there is now strong interest in deploying SCFT as a screening tool to guide experimental design. However, using SCFT for phase discovery leads to a conundrum: How does one discover a new morphology if the set of candidate phases needs to be specified in advance? This long-standing challenge was surmounted by training a deep convolutional generative adversarial network (GAN) with trajectories from converged SCFT solutions, and then deploying the GAN to generate input fields for subsequent SCFT calculations. The power of this approach is demonstrated for network phase formation in neat diblock copolymer melts via SCFT. A training set of only five networks produced 349 candidate phases spanning known and previously unexplored morphologies, including a chiral network. This computational pipeline, constructed here entirely from open-source codes, should find widespread application in block polymer phase discovery and other forms of soft matter.
Collapse
Affiliation(s)
- Pengyu Chen
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN55455
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN55455
| |
Collapse
|
17
|
Nowak SR, Tiwale N, Doerk GS, Nam CY, Black CT, Yager KG. Responsive blends of block copolymers stabilize the hexagonally perforated lamellae morphology. SOFT MATTER 2023; 19:2594-2604. [PMID: 36947412 DOI: 10.1039/d3sm00142c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Blends of block copolymers can form phases and exhibit features distinct from the constituent materials. We study thin film blends of cylinder-forming and lamellar-forming block copolymers across a range of substrate surface energies. Blend materials are responsive to interfacial energy, allowing selection of pure or coexisting phases based on surface chemistry. Blending stabilizes certain motifs that are typically metastable, and can be used to generate pure hexagonally perforated lamellar thin films across a range of film thicknesses and surface energies. This tolerant behavior is ascribed to the ability of blend materials to redistribute chains to stabilize otherwise high-energy defect structures. The blend responsiveness allows the morphology to be spatially defined through multi-tone chemical surface patterns.
Collapse
Affiliation(s)
- Samantha R Nowak
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | - Nikhil Tiwale
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | - Gregory S Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | - Chang-Yong Nam
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | - Charles T Black
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | - Kevin G Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
| |
Collapse
|
18
|
Yager KG. Spontaneous assembly of hierarchical phases. NATURE NANOTECHNOLOGY 2023; 18:223-224. [PMID: 36624205 DOI: 10.1038/s41565-022-01294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Kevin G Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
19
|
Liu R, Sun Z, Huang H, Johnson JA, Alexander-Katz A, Ross CA. Experimental and Computational Evaluation of Self-Assembled Morphologies in Diblock Janus Bottlebrush Copolymers. NANO LETTERS 2023; 23:177-182. [PMID: 36548278 DOI: 10.1021/acs.nanolett.2c03927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Diblock Janus-type "A-branch-B" bottlebrush copolymers (di-JBBCPs) consist of a backbone with alternating A and B side chains, in contrast to the side chain arrangement of conventional bottlebrush copolymers. As a result, A and B blocks of di-JBBCPs can microphase-separate perpendicular to the backbone, which is located at the interface between the two blocks. A reparametrized dissipative particle dynamics (DPD) model is used to theoretically investigate the self-assembly of di-JBBCPs and to compare with the experimental results of a range of polystyrene-branch-polydimethylsiloxane di-JBBCPs. The experimentally formed cylinder, gyroid, and lamellar morphologies showed good correspondence with the model phase diagram, and the effect of changing volume fraction and backbone length is revealed. The DPD model predicts a bulk-stable perforated lamella morphology together with two unconventional spherical phases, the Frank-Kasper A15 spheres and the hexagonally close-packed spheres, indicating the diversity of morphologies available from complex BCP molecular architectures.
Collapse
Affiliation(s)
- Runze Liu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zehao Sun
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hejin Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|