1
|
Lu P, Shen R, Yang J, Wu L, Wang R. Dynamic regulation and targeted interventions of macrophages in ischemia-reperfusion injury. J Adv Res 2025:S2090-1232(25)00298-X. [PMID: 40348125 DOI: 10.1016/j.jare.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/03/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Ischemia-Reperfusion Injury (IRI) is a complex pathophysiological process characterized by oxidative stress and inflammatory responses during tissue reperfusion, leading to severe organ dysfunction. Macrophages, as key immune cells, play a pivotal role in the pathogenesis of IRI, exhibiting dynamic functions that influence both tissue damage and repair. Despite extensive research, the precise mechanisms underlying macrophage-mediated IRI remain incompletely understood, necessitating a comprehensive review to explore their multifaceted roles and potential therapeutic targets. AIM OF REVIEW This review aims to elucidate the diverse roles of macrophages in IRI, focusing on their involvement in programmed cell death mechanisms, communication with other immune cells, and regulatory effects on key organs affected by IRI. The review also explores potential therapeutic strategies targeting macrophages to mitigate IRI-induced injury. Key Scientific Concepts of Review: This article reviews the multifaceted roles of macrophages in IRI and explores various modes of macrophage programmed cell death induced by IRI, including gasdermin D-mediated pyroptosis, lipid peroxidation-associated ferroptosis, PARP-1-mediated PAR-dependent cell death, PANoptosis regulated by the PANoptosome, and the formation of macrophage extracellular traps (METs) induced by both reactive oxygen species-dependent and -independent pathways. Additionally, it discusses intercellular communication between macrophages and other immune cells in IRI, focusing on the bidirectional regulatory effects between macrophages and neutrophils, as well as their synergistic role in resolving inflammation. Moreover, the regulatory mechanisms of macrophages in IRI affecting key organs, such as the brain, lung, heart, kidneys and liver, have been systematically summarized. Finally, innovative therapeutic strategies targeting macrophages, including precise approaches such as regulating cell polarization, inhibiting excessive METs formation, and utilizing nano-drug delivery systems, are thoroughly analyzed. This review provides a significant theoretical foundation for clinical translational research on IRI.
Collapse
Affiliation(s)
- Ping Lu
- The Gastroenterology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, China
| | - Ruotong Shen
- The Gastroenterology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, China
| | - Jingjing Yang
- The Gastroenterology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, China
| | - Longlong Wu
- The Gastroenterology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, China.
| | - Rong Wang
- The Gastroenterology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, China.
| |
Collapse
|
2
|
CD248 + fibroblasts drive cardiac fibrosis by interacting with immune cells. NATURE CARDIOVASCULAR RESEARCH 2025; 4:358-359. [PMID: 40148544 DOI: 10.1038/s44161-025-00625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
|
3
|
Li G, Ni C, Wang J, Zhang F, Fu Z, Wang L, Wang B, Liu Y, Zhao J, Li M, Lin H, Liao F, Ye S, Zhang Y, Cai J, Shi S, Zhong Z, Shi Y, He J, Xiong X, Xu Y, Chen J, Zhu W, Wang Y, Wang J, Hu X. Dynamic molecular atlas of cardiac fibrosis at single-cell resolution shows CD248 in cardiac fibroblasts orchestrates interactions with immune cells. NATURE CARDIOVASCULAR RESEARCH 2025; 4:380-396. [PMID: 40148545 DOI: 10.1038/s44161-025-00617-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/30/2025] [Indexed: 03/29/2025]
Abstract
Post-injury remodeling is a complex process involving temporal specific cellular interactions in the injured tissue where the resident fibroblasts play multiple roles. Here, we performed single-cell and spatial transcriptome analysis in human and mouse infarcted hearts to dissect the molecular basis of these interactions. We identified a unique fibroblast subset with high CD248 expression, strongly associated with extracellular matrix remodeling. Genetic Cd248 deletion in fibroblasts mitigated cardiac fibrosis and dysfunction following ischemia/reperfusion. Mechanistically, CD248 stabilizes type I transforming growth factor beta receptor and thus upregulates fibroblast ACKR3 expression, leading to enhanced T cell retention. This CD248-mediated fibroblast-T cell interaction is required to sustain fibroblast activation and scar expansion. Disrupting this interaction using monoclonal antibody or chimeric antigen receptor T cell reduces T cell infiltration and consequently ameliorates cardiac fibrosis and dysfunction. Our findings reveal a CD248+ fibroblast subpopulation as a key regulator of immune-fibroblast cross-talk and a potential therapy to treat tissue fibrosis.
Collapse
Affiliation(s)
- Guohua Li
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Cheng Ni
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jiacheng Wang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Feimu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Zaiyang Fu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Lingjun Wang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Biqing Wang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Ye Liu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jing Zhao
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Mo Li
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Hao Lin
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Fei Liao
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Shuchang Ye
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jiayue Cai
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Shaohui Shi
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Zhiwei Zhong
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yanna Shi
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Junhua He
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Xushen Xiong
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jinghai Chen
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yibin Wang
- Programme in Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Xinyang Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China.
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Zhang H, Qu P, Liu J, Cheng P, Lei Q. Application of human cardiac organoids in cardiovascular disease research. Front Cell Dev Biol 2025; 13:1564889. [PMID: 40230411 PMCID: PMC11994664 DOI: 10.3389/fcell.2025.1564889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
With the progression of cardiovascular disease (CVD) treatment technologies, conventional animal models face limitations in clinical translation due to interspecies variations. Recently, human cardiac organoids (hCOs) have emerged as an innovative platform for CVD research. This review provides a comprehensive overview of the definition, characteristics, classifications, application and development of hCOs. Furthermore, this review examines the application of hCOs in models of myocardial infarction, heart failure, arrhythmias, and congenital heart diseases, highlighting their significance in replicating disease mechanisms and pathophysiological processes. It also explores their potential utility in drug screening and the development of therapeutic strategies. Although challenges persist regarding technical complexity and the standardization of models, the integration of multi-omics and artificial intelligence (AI) technologies offers a promising avenue for the clinical translation of hCOs.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Anesthesiology, Chengdu Wenjiang District People’s Hospital, Chengdu, China
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Qu
- Institute of Cardiovascular Diseases and Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Institute of Cardiovascular Diseases and Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases and Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
5
|
Cimini M, Hansmann UHE, Gonzalez C, Chesney AD, Truongcao MM, Gao E, Wang T, Roy R, Forte E, Mallaredy V, Thej C, Magadum A, Joladarashi D, Benedict C, Koch WJ, Tükel Ç, Kishore R. Podoplanin-positive cell-derived small extracellular vesicles contribute to cardiac amyloidosis after myocardial infarction. Cell Rep 2025; 44:115408. [PMID: 40056419 PMCID: PMC12019684 DOI: 10.1016/j.celrep.2025.115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/26/2024] [Accepted: 02/17/2025] [Indexed: 03/10/2025] Open
Abstract
Cardiac amyloidosis is a secondary phenomenon of an already pre-existing chronic condition. Whether cardiac amyloidosis represents one of the complications post myocardial infarction (MI) has yet to be fully understood. Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived serum amyloid A 3 (SAA3) monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from cardiac stromal cells (CSCs), which, in response to MI, activate the expression of a platelet aggregation-inducing type I transmembrane glycoprotein, Podoplanin (PDPN). CSCPDPN+-derived small extracellular vesicles (sEVs) are enriched in SAA3, and exosomal SAA3 engages with macrophage by Toll-like receptor 2, triggering overproduction with consequent impaired clearance and aggregation of SAA3 monomers into rigid fibers. SAA3 amyloid deposits reduce cardiac contractility and increase scar stiffness. Inhibition of SAA3 aggregation by retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils and improves heart function post MI.
Collapse
Affiliation(s)
- Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5251, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andrew D Chesney
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5251, USA
| | - May M Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tao Wang
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rajika Roy
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Water J Koch
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Çağla Tükel
- Center for Microbiology & Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
6
|
Ding C, Tang G, Sun Y, Fu X, Tian Y, Zhan J, Zhang S, Xing X, Liu J, Qiu X, Wang L. A functional cardiac patch promotes cardiac repair by modulating the CCR2 - cardiac-resident macrophage niche and their cell crosstalk. Cell Rep Med 2025; 6:101932. [PMID: 39879993 PMCID: PMC11866506 DOI: 10.1016/j.xcrm.2025.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/23/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
C-C chemokine receptor type 2 (CCR2-) cardiac-resident macrophages (CCR2- cRMs) are known to promote cardiac repair after myocardial infarction (MI). However, the substantial depletion and slow recovery of CCR2- cRMs pose significant barriers in cardiac recovery. Here, we construct a functional conductive cardiac patch (CCP) that can provide exogenously elastic conductive microenvironment and induce endogenously reparative microenvironment mediated by CCR2- cRMs for MI repair. This CCP exhibits suitable mechanical properties, conductivity, and high water retention, reminiscent of natural myocardium, which can actively engage in modulating CCR2- cRM renewal and their cell crosstalk. The functional CCP can promote the expression of Connexin43 between CCR2- cRMs and cardiomyocytes (CMs) and regulate paracrine signaling to activate epicardial cell epithelial-to-mesenchymal transition (EMT) toward endothelial cells using rat and Wt1CreERT2 transgenic lineage tracing mice. Overall, this study provides a promising strategy to construct a synergistic reparative microenvironment for MI repair.
Collapse
Affiliation(s)
- Chengbin Ding
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guofeng Tang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yan Sun
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaodong Fu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Ye Tian
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jiamian Zhan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Songtao Zhang
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Xianglong Xing
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jianing Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Leyu Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China.
| |
Collapse
|
7
|
Zhao D, Zhuang J, Wang L, Wu L, Xu W, Zhao L, Hong J, Jin W, Miao C. Unveiling Key Biomarkers and Mechanisms in Septic Cardiomyopathy: A Comprehensive Transcriptome Analysis. J Inflamm Res 2024; 17:11451-11467. [PMID: 39735900 PMCID: PMC11675370 DOI: 10.2147/jir.s486763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/14/2024] [Indexed: 12/31/2024] Open
Abstract
Purpose Septic cardiomyopathy (SCM) is a significant global public health concern characterized by substantial morbidity and mortality, which has not been improved for decades due to lack of early diagnosis and effective therapies. This study aimed to identify hub biomarkers in SCM and explore their potential mechanisms. Methods We utilized the GSE53007 and GSE207363 datasets for transcriptome analysis of normal and SCM mice. Hub biomarkers were identified through a protein-protein interaction (PPI) network and validated using LPS-treated C57/BL6 mice. Functional enrichment analysis was performed to uncover relevant signaling pathways, while single-cell RNA sequencing was used to examine key genes and regulatory mechanisms associated with SCM. Results A total of 374 differentially expressed genes (DEGs) were identified, with 268 genes up-regulated and 106 genes down-regulated. Functional enrichment highlighted chemokine activity and receptor binding, with KEGG pathways revealing significant involvement of the TNF and IL-7 signaling pathways. Deterioration of cardiac function, elevated inflammatory markers such as IL-1β, IL-6, and increased cardiac injury biomarkers such as cTnI indicated the successful establishment of our SCM model. Subsequently, qPCR was conducted to validate the expression of the top 10 genes, through which we identified Cd40, Tlr2, Cxcl10, Ccl5, Cxcl1, Cd14, Gbp2, Ifit2, and Vegfa as key biomarkers. Single-cell sequencing indicated increased neutrophil and macrophage populations, with decreased B cells and cardiomyocytes. Additionally, transcription regulators Irf1 and Stat1 were found to potentially regulate the expression of Gbp2, Cxcl10, Ccl5, and Cd40, linking SCM to immune response, ferroptosis, pyroptosis, cuproptosis, and m6A RNA methylation modification. Conclusion This study identified nine hub biomarkers and two transcription regulators associated with SCM. Exploring the connections between SCM and immunity, ferroptosis, pyroptosis, cuproptosis, and m6A RNA methylation might provide insights into the underlying mechanisms. These findings enhanced our understanding of SCM's underlying mechanisms and might pave the way for novel therapeutic strategies to improve clinical outcomes.
Collapse
Affiliation(s)
- Dandan Zhao
- Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jinqiang Zhuang
- Department of Emergency Intensive Care Unit (EICU), Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Liping Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Lili Wu
- Department of Cardiology, Shanghai Songjiang District Central Hospital, Shanghai, People’s Republic of China
| | - Wangjie Xu
- Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lu Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jiang Hong
- Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Wei Jin
- Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Congliang Miao
- Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Kostina A, Kiselev A, Huang A, Lankerd H, Caywood S, Jurado-Fernandez A, Volmert B, O'Hern C, Juhong A, Liu Y, Qiu Z, Park S, Aguirre A. Self-organizing human heart assembloids with autologous and developmentally relevant cardiac neural crest-derived tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627627. [PMID: 39713343 PMCID: PMC11661279 DOI: 10.1101/2024.12.11.627627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Neural crest cells (NCCs) are a multipotent embryonic cell population of ectodermal origin that extensively migrate during early development and contribute to the formation of multiple tissues. Cardiac NCCs play a critical role in heart development by orchestrating outflow tract septation, valve formation, aortic arch artery patterning, parasympathetic innervation, and maturation of the cardiac conduction system. Abnormal migration, proliferation, or differentiation of cardiac NCCs can lead to severe congenital cardiovascular malformations. However, the complexity and timing of early embryonic heart development pose significant challenges to studying the molecular mechanisms underlying NCC-related cardiac pathologies. Here, we present a sophisticated functional model of human heart assembloids derived from induced pluripotent stem cells, which, for the first time, recapitulates cardiac NCC integration into the human embryonic heart in vitro . NCCs successfully integrated at developmentally relevant stages into heart organoids, and followed developmental trajectories known to occur in the human heart. They demonstrated extensive migration, differentiated into cholinergic neurons capable of generating nerve impulses, and formed mature glial cells. Additionally, they contributed to the mesenchymal populations of the developing outflow tract. Through transcriptomic analysis, we revealed that NCCs acquire molecular features of their cardiac derivatives as heart assembloids develop. NCC-derived parasympathetic neurons formed functional connections with cardiomyocytes, promoting the maturation of the cardiac conduction system. Leveraging this model's cellular complexity and functional maturity, we uncovered that early exposure of NCCs to antidepressants harms the development of NCC derivatives in the context of the developing heart. The commonly prescribed antidepressant Paroxetine disrupted the expression of a critical early neuronal transcription factor, resulting in impaired parasympathetic innervation and functional deficits in cardiac tissue. This advanced heart assembloid model holds great promise for high-throughput drug screening and unraveling the molecular mechanisms underlying NCC-related cardiac formation and congenital heart defects. IN BRIEF Human neural crest heart assembloids resembling the major directions of neural crest differentiation in the human embryonic heart, including parasympathetic innervation and the mesenchymal component of the outflow tract, provide a human-relevant embryonic platform for studying congenital heart defects and drug safety.
Collapse
|
9
|
Li J, Yao Y, Zhou J, Yang Z, Qiu C, Lu Y, Xie J, Liu J, Jiang T, Kou Y, Ge Z, Liang P, Qiu C, Shen L, Zhu Y, Gao C, Yu L. Epicardial transplantation of antioxidant polyurethane scaffold based human amniotic epithelial stem cell patch for myocardial infarction treatment. Nat Commun 2024; 15:9105. [PMID: 39438477 PMCID: PMC11496666 DOI: 10.1038/s41467-024-53531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of death globally. Stem cell therapy is considered a potential strategy for MI treatment. Transplantation of classic stem cells including embryonic, induced pluripotent and cardiac stem cells exhibited certain repairing effect on MI via supplementing cardiomyocytes, however, their clinical applications were blocked by problems of cell survival, differentiation, functional activity and also biosafety and ethical concerns. Here, we introduced human amniotic epithelial stem cells (hAESCs) featured with immunomodulatory activities, immune-privilege and biosafety, for constructing a stem cell cardiac patch based on porous antioxidant polyurethane (PUR), which demonstrated decent hAESCs compatibility. In rats, the administration of PUR-hAESC patch significantly reduced fibrosis and facilitated vascularization in myocardium after MI and consequently improved cardiac remodeling and function. Mechanistically, the patch provides a beneficial microenvironment for cardiac repair by facilitating a desirable immune response, paracrine modulation and limited oxidative milieu. Our findings may provide a potential therapeutic strategy for MI.
Collapse
Affiliation(s)
- Jinying Li
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiayi Zhou
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhuoheng Yang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen Qiu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuwen Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jia Liu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tuoying Jiang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yaohui Kou
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Ge
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China
| | - Ping Liang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Cong Qiu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zhu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Transvascular Implantation Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Luyang Yu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Lukovic D, Gyöngyösi M, Pavo IJ, Mester-Tonczar J, Einzinger P, Zlabinger K, Kastner N, Spannbauer A, Traxler D, Pavo N, Goliasch G, Pils D, Jakab A, Szankai Z, Michel-Behnke I, Zhang L, Devaux Y, Graf S, Beitzke D, Winkler J. Increased [ 18F]FDG uptake in the infarcted myocardial area displayed by combined PET/CMR correlates with snRNA-seq-detected inflammatory cell invasion. Basic Res Cardiol 2024; 119:807-829. [PMID: 38922408 PMCID: PMC11461641 DOI: 10.1007/s00395-024-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Combined [18F]FDG PET-cardiac MRI imaging (PET/CMR) is a useful tool to assess myocardial viability and cardiac function in patients with acute myocardial infarction (AMI). Here, we evaluated the prognostic value of PET/CMR in a porcine closed-chest reperfused AMI (rAMI) model. Late gadolinium enhancement by PET/CMR imaging displayed tracer uptake defect at the infarction site by 3 days after the rAMI in the majority of the animals (group Match, n = 28). Increased [18F]FDG uptake at the infarcted area (metabolism/contractility mismatch) with reduced tracer uptake in the remote viable myocardium (group Mismatch, n = 12) 3 days after rAMI was observed in the animals with larger infarct size and worse left ventricular ejection fraction (LVEF) (34 ± 8.7 vs 42.0 ± 5.2%), with lower LVEF also at the 1-month follow-up (35.8 ± 9.5 vs 43.0 ± 6.3%). Transcriptome analyses by bulk and single-nuclei RNA sequencing of the infarcted myocardium and border zones (n = 3 of each group, and 3 sham-operated controls) revealed a strong inflammatory response with infiltration of monocytes and macrophages in the infarcted and border areas in Mismatch animals. Our data indicate a high prognostic relevance of combined PET/MRI in the subacute phase of rAMI for subsequent impairment of heart function and underline the adverse effects of an excessive activation of the innate immune system in the initial phase after rAMI.
Collapse
Affiliation(s)
- Dominika Lukovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria.
| | - Imre J Pavo
- Division of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Julia Mester-Tonczar
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Patrick Einzinger
- Institute of Information Systems Engineering, Research Unit of Information and Software Engineering, Vienna University of Technology, 1040, Vienna, Austria
| | - Katrin Zlabinger
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Nina Kastner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Andreas Spannbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Noemi Pavo
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Georg Goliasch
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Andras Jakab
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland
| | | | - Ina Michel-Behnke
- Division of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Lu Zhang
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Senta Graf
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Johannes Winkler
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Le L, Narula N, Zhou F, Smereka P, Ordner J, Theise N, Moore WH, Girvin F, Azour L, Moreira AL, Naidich DP, Ko JP. Diseases Involving the Lung Peribronchovascular Region: A CT Imaging Pathologic Classification. Chest 2024; 166:802-820. [PMID: 38909953 DOI: 10.1016/j.chest.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/12/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
TOPIC IMPORTANCE Chest CT imaging holds a major role in the diagnosis of lung diseases, many of which affect the peribronchovascular region. Identification and categorization of peribronchovascular abnormalities on CT imaging can assist in formulating a differential diagnosis and directing further diagnostic evaluation. REVIEW FINDINGS The peribronchovascular region of the lung encompasses the pulmonary arteries, airways, and lung interstitium. Understanding disease processes associated with structures of the peribronchovascular region and their appearances on CT imaging aids in prompt diagnosis. This article reviews current knowledge in anatomic and pathologic features of the lung interstitium composed of intercommunicating prelymphatic spaces, lymphatics, collagen bundles, lymph nodes, and bronchial arteries; diffuse lung diseases that present in a peribronchovascular distribution; and an approach to classifying diseases according to patterns of imaging presentations. Lung peribronchovascular diseases can appear on CT imaging as diffuse thickening, fibrosis, masses or masslike consolidation, ground-glass or air space consolidation, and cysts, acknowledging that some diseases may have multiple presentations. SUMMARY A category approach to peribronchovascular diseases on CT imaging can be integrated with clinical features as part of a multidisciplinary approach for disease diagnosis.
Collapse
Affiliation(s)
- Linda Le
- Department of Radiology, NYU Langone Health; NYU Grossman School of Medicine, New York, NY
| | - Navneet Narula
- Department of Pathology, NYU Langone Health; NYU Grossman School of Medicine, New York, NY
| | - Fang Zhou
- Department of Pathology, NYU Langone Health; NYU Grossman School of Medicine, New York, NY
| | - Paul Smereka
- Department of Radiology, NYU Langone Health; NYU Grossman School of Medicine, New York, NY
| | - Jeffrey Ordner
- Department of Pathology, NYU Langone Health; NYU Grossman School of Medicine, New York, NY
| | - Neil Theise
- Department of Pathology, NYU Langone Health; NYU Grossman School of Medicine, New York, NY
| | - William H Moore
- Department of Radiology, NYU Langone Health; NYU Grossman School of Medicine, New York, NY
| | - Francis Girvin
- Department of Diagnostic Radiology, Weill Cornell Medicine, New York, NY
| | - Lea Azour
- Department of Radiology, NYU Langone Health; NYU Grossman School of Medicine, New York, NY; Department of Radiological Sciences, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Andre L Moreira
- Department of Pathology, NYU Langone Health; NYU Grossman School of Medicine, New York, NY
| | - David P Naidich
- Department of Radiology, NYU Langone Health; NYU Grossman School of Medicine, New York, NY
| | - Jane P Ko
- Department of Radiology, NYU Langone Health; NYU Grossman School of Medicine, New York, NY.
| |
Collapse
|
12
|
Rayat Pisheh H, Nojabaei FS, Darvishi A, Rayat Pisheh A, Sani M. Cardiac tissue engineering: an emerging approach to the treatment of heart failure. Front Bioeng Biotechnol 2024; 12:1441933. [PMID: 39211011 PMCID: PMC11357970 DOI: 10.3389/fbioe.2024.1441933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Heart failure is a major health problem in which the heart is unable to pump enough blood to meet the body's needs. It is a progressive disease that becomes more severe over time and can be caused by a variety of factors, including heart attack, cardiomyopathy and heart valve disease. There are various methods to cure this disease, which has many complications and risks. The advancement of knowledge and technology has proposed new methods for many diseases. One of the promising new treatments for heart failure is tissue engineering. Tissue engineering is a field of research that aims to create living tissues and organs to replace damaged or diseased tissue. The goal of tissue engineering in heart failure is to improve cardiac function and reduce the need for heart transplantation. This can be done using the three important principles of cells, biomaterials and signals to improve function or replace heart tissue. The techniques for using cells and biomaterials such as electrospinning, hydrogel synthesis, decellularization, etc. are diverse. Treating heart failure through tissue engineering is still under development and research, but it is hoped that there will be no transplants or invasive surgeries in the near future. In this study, based on the most important research in recent years, we will examine the power of tissue engineering in the treatment of heart failure.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Nojabaei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rayat Pisheh
- Department of Biology, Payam Noor University (PUN), Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Yang J, Lei W, Xiao Y, Tan S, Yang J, Lin Y, Yang Z, Zhao D, Zhang C, Shen Z, Hu S. Generation of human vascularized and chambered cardiac organoids for cardiac disease modelling and drug evaluation. Cell Prolif 2024; 57:e13631. [PMID: 38453465 PMCID: PMC11294415 DOI: 10.1111/cpr.13631] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived cardiac organoids (COs) have shown great potential in modelling human heart development and cardiovascular diseases, a leading cause of global death. However, several limitations such as low reproducibility, limited vascularization and difficulty in formation of cardiac chamber were yet to be overcome. We established a new method for robust generation of COs, via combination of methodologies of hiPSC-derived vascular spheres and directly differentiated cardiomyocytes from hiPSCs, and investigated the potential application of human COs in cardiac injury modelling and drug evaluation. The human COs we built displayed a vascularized and chamber-like structure, and hence were named vaschamcardioids (vcCOs). These vcCOs exhibited approximately 90% spontaneous beating ratio. Single-cell transcriptomics identified a total of six cell types in the vcCOs, including cardiomyocytes, cardiac precursor cells, endothelial cells, fibroblasts, etc. We successfully recaptured the processes of cardiac injury and fibrosis in vivo on vcCOs, and showed that the FDA-approved medication captopril significantly attenuated cardiac injury-induced fibrosis and functional disorders. In addition, the human vcCOs exhibited an obvious drug toxicity reaction to doxorubicin in a dose-dependent manner. We developed a three-step method for robust generation of chamber-like and vascularized complex vcCOs, and our data suggested that vcCOs might become a useful model for understanding pathophysiological mechanisms of cardiovascular diseases, developing intervention strategies and screening drugs.
Collapse
Affiliation(s)
- Jingsi Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical College, Soochow UniversitySuzhouChina
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical College, Soochow UniversitySuzhouChina
| | - Yang Xiao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical College, Soochow UniversitySuzhouChina
| | - Shuai Tan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical College, Soochow UniversitySuzhouChina
| | - Jiani Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical College, Soochow UniversitySuzhouChina
| | - Yingjiong Lin
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical College, Soochow UniversitySuzhouChina
| | - Zhuangzhuang Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical College, Soochow UniversitySuzhouChina
| | - Dandan Zhao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical College, Soochow UniversitySuzhouChina
| | - Chunxiang Zhang
- Department of Cardiology, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, the Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical College, Soochow UniversitySuzhouChina
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical College, Soochow UniversitySuzhouChina
| |
Collapse
|
14
|
Cimini M, Hansmann UHE, Gonzalez C, Chesney AD, Truongcao MM, Gao E, Wang T, Roy R, Forte E, Mallaredy V, Thej C, Magadum A, Joladarashi D, Benedict C, Koch WJ, Tükel Ç, Kishore R. Podoplanin Positive Cell-derived Extracellular Vesicles Contribute to Cardiac Amyloidosis After Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601297. [PMID: 39005419 PMCID: PMC11244852 DOI: 10.1101/2024.06.28.601297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Amyloidosis is a major long-term complication of chronic disease; however, whether it represents one of the complications of post-myocardial infarction (MI) is yet to be fully understood. Methods Using wild-type and knocked-out MI mouse models and characterizing in vitro the exosomal communication between bone marrow-derived macrophages and activated mesenchymal stromal cells (MSC) isolated after MI, we investigated the mechanism behind Serum Amyloid A 3 (SAA3) protein overproduction in injured hearts. Results Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived SAA3 monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from a subset of activated MSC, which, in response to MI, acquire the expression of a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin (PDPN). Cardiac MSC PDPN+ communicate with and activate macrophages through their extracellular vesicles or exosomes. Specifically, MSC PDPN+ derived exosomes (MSC PDPN+ Exosomes) are enriched in SAA3 and exosomal SAA3 protein engages with Toll-like receptor 2 (TRL2) on macrophages, triggering an overproduction and impaired clearance of SAA3 proteins, resulting in aggregation of SAA3 monomers as rigid amyloid deposits in the extracellular space. The onset of amyloid fibers deposition alongside extra-cellular-matrix (ECM) proteins in the ischemic heart exacerbates the rigidity and stiffness of the scar, hindering the contractility of viable myocardium and overall impairing organ function. Using SAA3 and TLR2 deficient mouse models, we show that SAA3 delivered by MSC PDPN+ exosomes promotes post-MI amyloidosis. Inhibition of SAA3 aggregation via administration of a retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils, positively modulates the scar formation, and improves heart function post-MI. Conclusion Overall, our findings provide mechanistic insights into post-MI amyloidosis and suggest that SAA3 may be an attractive target for effective scar reversal after ischemic injury and a potential target in multiple diseases characterized by a similar pattern of inflammation and amyloid deposition. NOVELTY AND SIGNIFICANCE What is known? Accumulation of rigid amyloid structures in the left ventricular wall impairs ventricle contractility.After myocardial infarction cardiac Mesenchymal Stromal Cells (MSC) acquire Podoplanin (PDPN) to better interact with immune cells.Amyloid structures can accumulate in the heart after chronic inflammatory conditions. What information does this article contribute? Whether accumulation of cumbersome amyloid structures in the ischemic scar impairs left ventricle contractility, and scar reversal after myocardial infarction (MI) has never been investigated.The pathophysiological relevance of PDPN acquirement by MSC and the functional role of their secreted exosomes in the context of post-MI cardiac remodeling has not been investigated.Amyloid structures are present in the scar after ischemia and are composed of macrophage-derived Serum Amyloid A (SAA) 3 monomers, although mechanisms of SAA3 overproduction is not established. SUMMARY OF NOVELTY AND SIGNIFICANCE Here, we report that amyloidosis, a secondary phenomenon of an already preexisting and prolonged chronic inflammatory condition, occurs after MI and that amyloid structures are composed of macrophage-derived SAA3 monomers. Frequently studied cardiac amyloidosis are caused by aggregation of immunoglobulin light chains, transthyretin, fibrinogen, and apolipoprotein in a healthy heart as a consequence of systemic chronic inflammation leading to congestive heart failure with various types of arrhythmias and tissue stiffness. Although chronic MI is considered a systemic inflammatory condition, studies regarding the possible accumulation of amyloidogenic proteins after MI and the mechanisms involved in that process are yet to be reported. Here, we show that SAA3 overproduction in macrophages is triggered in a Toll-like Receptor 2 (TLR2)-p38MAP Kinase-dependent manner by exosomal communication from a subset of activated MSC, which, in response to MI, express a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin. We provide the full mechanism of this phenomenon in murine models and confirm SAA3 amyloidosis in failing human heart samples. Moreover, we developed a retro-inverso D-peptide therapeutic approach, "DRI-R5S," specifically designed to bind SAA3 monomers and prevent post-MI aggregation and deposition of SAA3 amyloid fibrils without interfering with the innate immune response.
Collapse
|
15
|
Poto R, Marone G, Galli SJ, Varricchi G. Mast cells: a novel therapeutic avenue for cardiovascular diseases? Cardiovasc Res 2024; 120:681-698. [PMID: 38630620 PMCID: PMC11135650 DOI: 10.1093/cvr/cvae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| |
Collapse
|
16
|
Vargas Aguilar S, Cui M, Tan W, Sanchez-Ortiz E, Bassel-Duby R, Liu N, Olson EN. The PD-1-PD-L1 pathway maintains an immunosuppressive environment essential for neonatal heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:389-402. [PMID: 38737787 PMCID: PMC11086661 DOI: 10.1038/s44161-024-00447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/05/2024] [Indexed: 05/14/2024]
Abstract
The adult mouse heart responds to injury by scarring with consequent loss of contractile function, whereas the neonatal heart possesses the ability to regenerate. Activation of the immune system is among the first events upon tissue injury. It has been shown that immune response kinetics differ between regeneration and pathological remodeling, yet the underlying mechanisms of the distinct immune reactions during tissue healing remain unclear. Here we show that the immunomodulatory PD-1-PD-L1 pathway is highly active in regenerative neonatal hearts but rapidly silenced later in life. Deletion of the PD-1 receptor or inactivation of its ligand PD-L1 prevented regeneration of neonatal hearts after injury. Disruption of the pathway during neonatal cardiac injury led to increased inflammation and aberrant T cell activation, which ultimately impaired cardiac regeneration. Our findings reveal an immunomodulatory and cardioprotective role for the PD-1-PD-L1 pathway in heart regeneration and offer potential avenues for the control of adult tissue regeneration.
Collapse
Affiliation(s)
- Stephanie Vargas Aguilar
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- These authors contributed equally: Stephanie Vargas Aguilar, Miao Cui
| | - Miao Cui
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cardiology, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Stephanie Vargas Aguilar, Miao Cui
| | - Wei Tan
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ning Liu
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Picchio V, Gaetani R, Pagano F, Derevyanchuk Y, Pagliarosi O, Floris E, Cozzolino C, Bernava G, Bordin A, Rocha F, Pereira ARS, Ministro A, Pinto AT, De Falco E, Serino G, Massai D, Tamarat R, Pesce M, Santos SCR, Messina E, Chimenti I. Early Impairment of Paracrine and Phenotypic Features in Resident Cardiac Mesenchymal Stromal Cells after Thoracic Radiotherapy. Int J Mol Sci 2024; 25:2873. [PMID: 38474123 PMCID: PMC10932029 DOI: 10.3390/ijms25052873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Radiotherapy-induced cardiac toxicity and consequent diseases still represent potential severe late complications for many cancer survivors who undergo therapeutic thoracic irradiation. We aimed to assess the phenotypic and paracrine features of resident cardiac mesenchymal stromal cells (CMSCs) at early follow-up after the end of thoracic irradiation of the heart as an early sign and/or mechanism of cardiac toxicity anticipating late organ dysfunction. Resident CMSCs were isolated from a rat model of fractionated thoracic irradiation with accurate and clinically relevant heart dosimetry that developed delayed dose-dependent cardiac dysfunction after 1 year. Cells were isolated 6 and 12 weeks after the end of radiotherapy and fully characterized at the transcriptional, paracrine, and functional levels. CMSCs displayed several altered features in a dose- and time-dependent trend, with the most impaired characteristics observed in those exposed in situ to the highest radiation dose with time. In particular, altered features included impaired cell migration and 3D growth and a and significant association of transcriptomic data with GO terms related to altered cytokine and growth factor signaling. Indeed, the altered paracrine profile of CMSCs derived from the group at the highest dose at the 12-week follow-up gave significantly reduced angiogenic support to endothelial cells and polarized macrophages toward a pro-inflammatory profile. Data collected in a clinically relevant rat model of heart irradiation simulating thoracic radiotherapy suggest that early paracrine and transcriptional alterations of the cardiac stroma may represent a dose- and time-dependent biological substrate for the delayed cardiac dysfunction phenotype observed in vivo.
Collapse
Affiliation(s)
- Vittorio Picchio
- Department of Angio Cardio Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Roberto Gaetani
- Department of Molecular Medicine, Sapienza University, 00161 Roma, Italy; (R.G.); (Y.D.); (O.P.)
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), 00015 Monterotondo, Italy;
| | - Yuriy Derevyanchuk
- Department of Molecular Medicine, Sapienza University, 00161 Roma, Italy; (R.G.); (Y.D.); (O.P.)
| | - Olivia Pagliarosi
- Department of Molecular Medicine, Sapienza University, 00161 Roma, Italy; (R.G.); (Y.D.); (O.P.)
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (E.F.); (C.C.); (A.B.); (E.D.F.)
| | - Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (E.F.); (C.C.); (A.B.); (E.D.F.)
| | - Giacomo Bernava
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (G.B.); (M.P.)
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (E.F.); (C.C.); (A.B.); (E.D.F.)
| | - Filipe Rocha
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Lisbon School of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.R.); (A.R.S.P.); (A.M.); (A.T.P.); (S.C.R.S.)
| | - Ana Rita Simões Pereira
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Lisbon School of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.R.); (A.R.S.P.); (A.M.); (A.T.P.); (S.C.R.S.)
| | - Augusto Ministro
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Lisbon School of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.R.); (A.R.S.P.); (A.M.); (A.T.P.); (S.C.R.S.)
| | - Ana Teresa Pinto
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Lisbon School of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.R.); (A.R.S.P.); (A.M.); (A.T.P.); (S.C.R.S.)
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (E.F.); (C.C.); (A.B.); (E.D.F.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Gianpaolo Serino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (G.S.); (D.M.)
| | - Diana Massai
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (G.S.); (D.M.)
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Torino, Italy
| | - Radia Tamarat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92260 Fontenay-aux-Roses, France;
| | - Maurizio Pesce
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (G.B.); (M.P.)
| | - Susana Constantino Rosa Santos
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Lisbon School of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.R.); (A.R.S.P.); (A.M.); (A.T.P.); (S.C.R.S.)
| | - Elisa Messina
- Department of Molecular Medicine, Sapienza University, 00161 Roma, Italy; (R.G.); (Y.D.); (O.P.)
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (E.F.); (C.C.); (A.B.); (E.D.F.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| |
Collapse
|
18
|
Heusch G. Myocardial ischemia/reperfusion: Translational pathophysiology of ischemic heart disease. MED 2024; 5:10-31. [PMID: 38218174 DOI: 10.1016/j.medj.2023.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Ischemic heart disease is the greatest health burden and most frequent cause of death worldwide. Myocardial ischemia/reperfusion is the pathophysiological substrate of ischemic heart disease. Improvements in prevention and treatment of ischemic heart disease have reduced mortality in developed countries over the last decades, but further progress is now stagnant, and morbidity and mortality from ischemic heart disease in developing countries are increasing. Significant problems remain to be resolved and require a better pathophysiological understanding. The present review attempts to briefly summarize the state of the art in myocardial ischemia/reperfusion research, with a view on both its coronary vascular and myocardial aspects, and to define the cutting edges where further mechanistic knowledge is needed to facilitate translation to clinical practice.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
19
|
Qiao B, Liu X, Wang B, Wei S. The role of periostin in cardiac fibrosis. Heart Fail Rev 2024; 29:191-206. [PMID: 37870704 DOI: 10.1007/s10741-023-10361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Cardiac fibrosis, which is the buildup of proteins in the connective tissues of the heart, can lead to end-stage extracellular matrix (ECM) remodeling and ultimately heart failure. Cardiac remodeling involves changes in gene expression in cardiac cells and ECM, which significantly leads to the morbidity and mortality in heart failure. However, despite extensive research, the elusive intricacies underlying cardiac fibrosis remain unidentified. Periostin, an extracellular matrix (ECM) protein of the fasciclin superfamily, acts as a scaffold for building complex architectures in the ECM, which improves intermolecular interactions and augments the mechanical properties of connective tissues. Recent research has shown that periostin not only contributes to normal ECM homeostasis in a healthy heart but also serves as a potent inducible regulator of cellular reorganization in cardiac fibrosis. Here, we reviewed the constitutive domain of periostin and its interaction with other ECM proteins. We have also discussed the critical pathophysiological functions of periostin in cardiac remodeling mechanisms, including two distinct yet potentially intertwined mechanisms. Furthermore, we will focus on the intrinsic complexities within periostin research, particularly surrounding the contentious issues observed in experimental findings.
Collapse
Affiliation(s)
- Bao Qiao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xuehao Liu
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
20
|
Kourampi I, Katsioupa M, Oikonomou E, Tsigkou V, Marinos G, Goliopoulou A, Katsarou O, Kalogeras K, Theofilis P, Tsatsaragkou A, Siasos G, Tousoulis D, Vavuranakis M. The Role of Ranolazine in Heart Failure-Current Concepts. Am J Cardiol 2023; 209:92-103. [PMID: 37844876 DOI: 10.1016/j.amjcard.2023.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Heart failure is a complex clinical syndrome with a detrimental impact on mortality and morbidity. Energy substrate utilization and myocardial ion channel regulation have gained research interest especially after the introduction of sodium-glucose co-transporter 2 inhibitors in the treatment of heart failure. Ranolazine or N-(2,6-dimethylphenyl)-2-(4-[2-hydroxy-3-(2-methoxyphenoxy) propyl] piperazin-1-yl) acetamide hydrochloride is an active piperazine derivative which inhibits late sodium current thus minimizing calcium overload in the ischemic cardiomyocytes. Ranolazine also prevents fatty acid oxidation and favors glycose utilization ameliorating the "energy starvation" of the failing heart. Heart failure with preserved ejection fraction is characterized by diastolic impairment; according to the literature ranolazine could be beneficial in the management of increased left ventricular end-diastolic pressure, right ventricular systolic dysfunction and wall shear stress which is reflected by the high natriuretic peptides. Fewer data is evident regarding the effects of ranolazine in heart failure with reduced ejection fraction and mainly support the control of the sodium-calcium exchanger and function of sarcoendoplasmic reticulum calcium adenosine triphosphatase. Ranolazine's therapeutic mechanisms in myocardial ion channels and energy utilization are documented in patients with chronic coronary syndromes. Nevertheless, ranolazine might have a broader effect in the therapy of heart failure and further mechanistic research is required.
Collapse
Affiliation(s)
- Islam Kourampi
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria Katsioupa
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Vasiliki Tsigkou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Georgios Marinos
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Athina Goliopoulou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Ourania Katsarou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Aikaterini Tsatsaragkou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston Massachusetts
| | - Dimitris Tousoulis
- 1st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
21
|
Volmert B, Kiselev A, Juhong A, Wang F, Riggs A, Kostina A, O'Hern C, Muniyandi P, Wasserman A, Huang A, Lewis-Israeli Y, Panda V, Bhattacharya S, Lauver A, Park S, Qiu Z, Zhou C, Aguirre A. A patterned human primitive heart organoid model generated by pluripotent stem cell self-organization. Nat Commun 2023; 14:8245. [PMID: 38086920 PMCID: PMC10716495 DOI: 10.1038/s41467-023-43999-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Pluripotent stem cell-derived organoids can recapitulate significant features of organ development in vitro. We hypothesized that creating human heart organoids by mimicking aspects of in utero gestation (e.g., addition of metabolic and hormonal factors) would lead to higher physiological and anatomical relevance. We find that heart organoids produced using this self-organization-driven developmental induction strategy are remarkably similar transcriptionally and morphologically to age-matched human embryonic hearts. We also show that they recapitulate several aspects of cardiac development, including large atrial and ventricular chambers, proepicardial organ formation, and retinoic acid-mediated anterior-posterior patterning, mimicking the developmental processes found in the post-heart tube stage primitive heart. Moreover, we provide proof-of-concept demonstration of the value of this system for disease modeling by exploring the effects of ondansetron, a drug administered to pregnant women and associated with congenital heart defects. These findings constitute a significant technical advance for synthetic heart development and provide a powerful tool for cardiac disease modeling.
Collapse
Affiliation(s)
- Brett Volmert
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Artem Kiselev
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Aniwat Juhong
- Institute for Quantitative Health Science and Engineering, Division of Biomedical Devices, Michigan State University, East Lansing, MI, USA
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Ashlin Riggs
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Aleksandra Kostina
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Colin O'Hern
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Priyadharshni Muniyandi
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Aaron Wasserman
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Amanda Huang
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Yonatan Lewis-Israeli
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Vishal Panda
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI, USA
| | - Sudin Bhattacharya
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI, USA
| | - Adam Lauver
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Sangbum Park
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Zhen Qiu
- Institute for Quantitative Health Science and Engineering, Division of Biomedical Devices, Michigan State University, East Lansing, MI, USA
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
22
|
Hardy SA, Liesinger L, Patrick R, Poettler M, Rech L, Gindlhuber J, Mabotuwana NS, Ashour D, Stangl V, Bigland M, Murtha LA, Starkey MR, Scherr D, Hansbro PM, Hoefler G, Campos Ramos G, Cochain C, Harvey RP, Birner-Gruenberger R, Boyle AJ, Rainer PP. Extracellular Matrix Protein-1 as a Mediator of Inflammation-Induced Fibrosis After Myocardial Infarction. JACC Basic Transl Sci 2023; 8:1539-1554. [PMID: 38205347 PMCID: PMC10774582 DOI: 10.1016/j.jacbts.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 01/12/2024]
Abstract
Irreversible fibrosis is a hallmark of myocardial infarction (MI) and heart failure. Extracellular matrix protein-1 (ECM-1) is up-regulated in these hearts, localized to fibrotic, inflammatory, and perivascular areas. ECM-1 originates predominantly from fibroblasts, macrophages, and pericytes/vascular cells in uninjured human and mouse hearts, and from M1 and M2 macrophages and myofibroblasts after MI. ECM-1 stimulates fibroblast-to-myofibroblast transition, up-regulates key fibrotic and inflammatory pathways, and inhibits cardiac fibroblast migration. ECM-1 binds HuCFb cell surface receptor LRP1, and LRP1 inhibition blocks ECM-1 from stimulating fibroblast-to-myofibroblast transition, confirming a novel ECM-1-LRP1 fibrotic signaling axis. ECM-1 may represent a novel mechanism facilitating inflammation-fibrosis crosstalk.
Collapse
Affiliation(s)
- Sean A. Hardy
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Laura Liesinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytical Chemistry, Technische Universität Wien, Vienna, Austria
| | - Ralph Patrick
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Maria Poettler
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lavinia Rech
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Nishani S. Mabotuwana
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - DiyaaEldin Ashour
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Verena Stangl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Mark Bigland
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lucy A. Murtha
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Malcolm R. Starkey
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Daniel Scherr
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute, and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gustavo Campos Ramos
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine 1, University Hospital of Würzburg, Würzburg, Germany
| | - Clement Cochain
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Richard P. Harvey
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, Australia
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytical Chemistry, Technische Universität Wien, Vienna, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrew J. Boyle
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Peter P. Rainer
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Department of Medicine, St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| |
Collapse
|
23
|
Miquelestorena-Standley E, da Silva AVV, Monnier M, Chadet S, Piollet M, Héraud A, Lemoine R, Bochaton T, Derumeaux G, Roger S, Ivanes F, Angoulvant D. Human peripheral blood mononuclear cells display a temporal evolving inflammatory profile after myocardial infarction and modify myocardial fibroblasts phenotype. Sci Rep 2023; 13:16745. [PMID: 37798364 PMCID: PMC10556078 DOI: 10.1038/s41598-023-44036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Pathophysiological response after acute myocardial infarction (AMI) is described as a three-stage model involving temporal phenotypic modifications of both immune cells and fibroblasts: a primary inflammatory phase, followed by a reparative phase and a fibrous scar maturation phase. Purinergic receptors, particularly the P2Y11 receptor, have been reported to be involved in the regulation of inflammation after ischemia and could act for the resolution of inflammation after AMI. For the first time, we characterized the immuno-inflammatory and P2Y11 expression profiles of peripheral blood mononuclear cells (PBMC) from AMI patients and analyzed the consequences of presenting these cells to cardiac fibroblasts in vitro. PBMC from 178 patients were collected at various times after reperfused ST-segment elevation AMI, from H0 to M12. Expression level of P2RY11 and genes involved in tolerogenic profile of dendritic cells and T cell polarization were evaluated by RT-PCR. P2Y11 protein expression was assessed by flow cytometry. PBMC and human cardiac fibroblasts (HCF) were cocultured and α-SMA/vimentin ratio was analyzed by flow cytometry. Within the first 48 h after AMI, expression levels of HMOX1, STAT3 and CD4 increased while IDO1 and TBX21/GATA3 ratio decreased. Concomitantly, the expression of P2RY11 increased in both T and B cells. In vitro, PBMC collected at H48 after AMI induced an increase in α-SMA/vimentin ratio in HCF. Our results suggest that human PBMC display an evolving inflammatory profile with reparative characteristics the first two days after AMI and secrete soluble mediators leading to the fibroblastic proteins modification, thus participating to myocardial fibrosis.
Collapse
Affiliation(s)
- Elodie Miquelestorena-Standley
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France.
- Service d'Anatomie et Cytologie Pathologiques, CHRU de Tours, Tours, France.
| | - Ana Valéria Vinhais da Silva
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Marina Monnier
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Stéphanie Chadet
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Marie Piollet
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Audrey Héraud
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Roxane Lemoine
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Thomas Bochaton
- Service de Cardiologie, Hospices Civils de Lyon, Lyon, France
| | - Geneviève Derumeaux
- Service de Physiologie, Hôpital Henri Mondor, AP-HP, Université Paris-Est Créteil, INSERM U955, Créteil, France
| | - Sébastien Roger
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Fabrice Ivanes
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
- Service de Cardiologie, CHRU de Tours, Tours, France
| | - Denis Angoulvant
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
- Service de Cardiologie, CHRU de Tours, Tours, France
| |
Collapse
|
24
|
Hulsmans M, Schloss MJ, Lee IH, Bapat A, Iwamoto Y, Vinegoni C, Paccalet A, Yamazoe M, Grune J, Pabel S, Momin N, Seung H, Kumowski N, Pulous FE, Keller D, Bening C, Green U, Lennerz JK, Mitchell RN, Lewis A, Casadei B, Iborra-Egea O, Bayes-Genis A, Sossalla S, Ong CS, Pierson RN, Aster JC, Rohde D, Wojtkiewicz GR, Weissleder R, Swirski FK, Tellides G, Tolis G, Melnitchouk S, Milan DJ, Ellinor PT, Naxerova K, Nahrendorf M. Recruited macrophages elicit atrial fibrillation. Science 2023; 381:231-239. [PMID: 37440641 PMCID: PMC10448807 DOI: 10.1126/science.abq3061] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2023] [Indexed: 07/15/2023]
Abstract
Atrial fibrillation disrupts contraction of the atria, leading to stroke and heart failure. We deciphered how immune and stromal cells contribute to atrial fibrillation. Single-cell transcriptomes from human atria documented inflammatory monocyte and SPP1+ macrophage expansion in atrial fibrillation. Combining hypertension, obesity, and mitral valve regurgitation (HOMER) in mice elicited enlarged, fibrosed, and fibrillation-prone atria. Single-cell transcriptomes from HOMER mouse atria recapitulated cell composition and transcriptome changes observed in patients. Inhibiting monocyte migration reduced arrhythmia in Ccr2-∕- HOMER mice. Cell-cell interaction analysis identified SPP1 as a pleiotropic signal that promotes atrial fibrillation through cross-talk with local immune and stromal cells. Deleting Spp1 reduced atrial fibrillation in HOMER mice. These results identify SPP1+ macrophages as targets for immunotherapy in atrial fibrillation.
Collapse
Affiliation(s)
- Maarten Hulsmans
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maximilian J. Schloss
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - I-Hsiu Lee
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Claudio Vinegoni
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandre Paccalet
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Masahiro Yamazoe
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jana Grune
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steffen Pabel
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Noor Momin
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hana Seung
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nina Kumowski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fadi E. Pulous
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel Keller
- Department of Thoracic and Cardiovascular Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Constanze Bening
- Department of Thoracic and Cardiovascular Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jochen K. Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard N. Mitchell
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew Lewis
- Radcliffe Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Barbara Casadei
- Radcliffe Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Oriol Iborra-Egea
- Institut del Cor Germans Trias i Pujol, CIBERCV, Badalona, Barcelona, Spain
| | - Antoni Bayes-Genis
- Institut del Cor Germans Trias i Pujol, CIBERCV, Badalona, Barcelona, Spain
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
- Department of Cardiology and Angiology, University of Giessen/DZHK, Partner Site Rhein-Main, Germany
| | - Chin Siang Ong
- Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Richard N. Pierson
- Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jon C. Aster
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - David Rohde
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory R. Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Filip K. Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - George Tolis
- Department of Cardiac Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Serguei Melnitchouk
- Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Kamila Naxerova
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
25
|
Chimenti I, Gaetani R, Pagano F. Editorial: The cardiac stroma in homeostasis and disease. Front Cardiovasc Med 2023; 10:1248750. [PMID: 37492159 PMCID: PMC10364592 DOI: 10.3389/fcvm.2023.1248750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/27/2023] Open
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Roberto Gaetani
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, CA, United States
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), Monterotondo, Italy
| |
Collapse
|
26
|
Chowkwale M, Lindsey ML, Saucerman JJ. Intercellular model predicts mechanisms of inflammation-fibrosis coupling after myocardial infarction. J Physiol 2023; 601:2635-2654. [PMID: 35862254 PMCID: PMC9859968 DOI: 10.1113/jp283346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/18/2022] [Indexed: 01/25/2023] Open
Abstract
After myocardial infarction (MI), cardiac cells work together to regulate wound healing of the infarct. The pathological response to MI yields cardiac remodelling comprising inflammatory and fibrosis phases, and the interplay of cellular dynamics that underlies these phases has not been elucidated. This study developed a computational model to identify cytokine and cellular dynamics post-MI to predict mechanisms driving post-MI inflammation, resolution of inflammation, and scar formation. Additionally, this study evaluated the interdependence between inflammation and fibrosis. Our model bypassed limitations of in vivo approaches in achieving cellular specificity and performing specific perturbations such as global knockouts of chemical factors. The model predicted that inflammation is a graded response to initial infarct size that is amplified by a positive feedback loop between neutrophils and interleukin 1β (IL-1β). Resolution of inflammation was driven by degradation of IL-1β, matrix metalloproteinase 9, and transforming growth factor β (TGF-β), as well as apoptosis of neutrophils. Inflammation regulated TGFβ secretion directly through immune cell recruitment and indirectly through upregulation of macrophage phagocytosis. Lastly, we found that mature collagen deposition was an ultrasensitive switch in response to inflammation, which was amplified primarily by cardiac fibroblast proliferation. These findings describe the relationship between inflammation and fibrosis and highlight how the two responses work together post-MI. This model revealed that post-MI inflammation and fibrosis are dynamically coupled, which provides rationale for designing novel anti-inflammatory, pro-resolving or anti-fibrotic therapies that may improve the response to MI. KEY POINTS: Inflammation and matrix remodelling are two processes involved in wound healing after a heart attack. Cardiac cells work together to facilitate these processes; this is done by secreting cytokines that then regulate the cells themselves or other cells surrounding them. This study developed a computational model of the dynamics of cardiac cells and cytokines to predict mechanisms through which inflammation and matrix remodelling is regulated. We show the roles of various cytokines and signalling motifs in driving inflammation, resolution of inflammation and fibrosis. The novel concept of inflammation-fibrosis coupling, based on the model prediction that inflammation and fibrosis are dynamically coupled, provides rationale for future studies and for designing therapeutics to improve the response after a heart attack.
Collapse
Affiliation(s)
- Mukti Chowkwale
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Merry L. Lindsey
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN
- Research Service, Nashville VA Medical Center, Nashville, TN
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA
| |
Collapse
|
27
|
Bracco Gartner TCL, Wang Y, Leiteris L, van Adrichem I, Marsman J, Goumans MJ, Bouten CVC, Sluijter JPG, den Toonder JMJ, Suyker WJL, Hjortnaes J. Cyclic strain has antifibrotic effects on the human cardiac fibroblast transcriptome in a human cardiac fibrosis-on-a-chip platform. J Mech Behav Biomed Mater 2023; 144:105980. [PMID: 37399762 DOI: 10.1016/j.jmbbm.2023.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
In cardiac fibrosis, in response to stress or injury, cardiac fibroblasts deposit excessive amounts of collagens which contribute to the development of heart failure. The biochemical stimuli in this process have been extensively studied, but the influence of cyclic deformation on the fibrogenic behavior of cardiac fibroblasts in the ever-beating heart is not fully understood. In fact, most investigated mechanotransduction pathways in cardiac fibroblasts seem to ultimately have profibrotic effects, which leaves an important question in cardiac fibrosis research unanswered: how do cardiac fibroblasts stay quiescent in the ever-beating human heart? In this study, we developed a human cardiac fibrosis-on-a-chip platform and utilized it to investigate if and how cyclic strain affects fibrogenic signaling. The pneumatically actuated platform can expose engineered tissues to controlled strain magnitudes of 0-25% - which covers the entire physiological and pathological strain range in the human heart - and to biochemical stimuli and enables high-throughput screening of multiple samples. Microtissues of human fetal cardiac fibroblasts (hfCF) embedded in gelatin methacryloyl (GelMA) were 3D-cultured on this platform and exposed to strain conditions which mimic the healthy human heart. The results provide evidence of an antifibrotic effect of the applied strain conditions on cardiac fibroblast behavior, emphasizing the influence of biomechanical stimuli on the fibrogenic process and giving a detailed overview of the mechanosensitive pathways and genes involved, which can be used in the development of novel therapies against cardiac fibrosis.
Collapse
Affiliation(s)
- Tom C L Bracco Gartner
- Department of Cardiothoracic Surgery, UMC Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Experimental Cardiology Laboratory, Department of Cardiology, UMC Utrecht, Utrecht, the Netherlands
| | - Ye Wang
- Department of Cardiothoracic Surgery, UMC Utrecht, Utrecht, the Netherlands; Department of Mechanical Engineering, Technical University Eindhoven, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Laurynas Leiteris
- Department of Cardiothoracic Surgery, UMC Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Experimental Cardiology Laboratory, Department of Cardiology, UMC Utrecht, Utrecht, the Netherlands
| | - Iris van Adrichem
- Department of Cardiothoracic Surgery, UMC Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Experimental Cardiology Laboratory, Department of Cardiology, UMC Utrecht, Utrecht, the Netherlands
| | - Judith Marsman
- Central Diagnostics Laboratory, UMC Utrecht, Utrecht, the Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Carlijn V C Bouten
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Joost P G Sluijter
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Experimental Cardiology Laboratory, Department of Cardiology, UMC Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Jaap M J den Toonder
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Willem J L Suyker
- Department of Cardiothoracic Surgery, UMC Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery, UMC Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
28
|
Brusini R, Tran NLL, Cailleau C, Domergue V, Nicolas V, Dormont F, Calet S, Cajot C, Jouran A, Lepetre-Mouelhi S, Laloy J, Couvreur P, Varna M. Assessment of Squalene-Adenosine Nanoparticles in Two Rodent Models of Cardiac Ischemia-Reperfusion. Pharmaceutics 2023; 15:1790. [PMID: 37513977 PMCID: PMC10384353 DOI: 10.3390/pharmaceutics15071790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Reperfusion injuries after a period of cardiac ischemia are known to lead to pathological modifications or even death. Among the different therapeutic options proposed, adenosine, a small molecule with platelet anti-aggregate and anti-inflammatory properties, has shown encouraging results in clinical trials. However, its clinical use is severely limited because of its very short half-life in the bloodstream. To overcome this limitation, we have proposed a strategy to encapsulate adenosine in squalene-based nanoparticles (NPs), a biocompatible and biodegradable lipid. Thus, the aim of this study was to assess, whether squalene-based nanoparticles loaded with adenosine (SQAd NPs) were cardioprotective in a preclinical cardiac ischemia/reperfusion model. Obtained SQAd NPs were characterized in depth and further evaluated in vitro. The NPs were formulated with a size of about 90 nm and remained stable up to 14 days at both 4 °C and room temperature. Moreover, these NPs did not show any signs of toxicity, neither on HL-1, H9c2 cardiac cell lines, nor on human PBMC and, further retained their inhibitory platelet aggregation properties. In a mouse model with experimental cardiac ischemia-reperfusion, treatment with SQAd NPs showed a reduction of the area at risk, as well as of the infarct area, although not statistically significant. However, we noted a significant reduction of apoptotic cells on cardiac tissue from animals treated with the NPs. Further studies would be interesting to understand how and through which mechanisms these nanoparticles act on cardiac cells.
Collapse
Affiliation(s)
- Romain Brusini
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Natalie Lan Linh Tran
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Catherine Cailleau
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Valérie Domergue
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, ANIMEX, 17 Avenue des Sciences, 91400 Orsay, France
| | - Valérie Nicolas
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, MIPSIT, 17 Avenue des Sciences, 91400 Orsay, France
| | - Flavio Dormont
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Serge Calet
- Holochem, Rue du Moulin de la Canne, 45300 Pithiviers, France
| | - Caroline Cajot
- Quality Assistance S.A, Technoparc de Thudinie 2, 6536 Thuin, Belgium
| | - Albin Jouran
- Quality Assistance S.A, Technoparc de Thudinie 2, 6536 Thuin, Belgium
| | - Sinda Lepetre-Mouelhi
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Julie Laloy
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Patrick Couvreur
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| | - Mariana Varna
- Université Paris-Saclay, Institut Galien Paris-Saclay, CNRS UMR 8612, Pole Biologie-Pharmacie-Chimie, Bâtiment Henri Moissan, 6 Rue d'Arsonval, 91400 Orsay, France
| |
Collapse
|
29
|
Xu X, Hua X, Mo H, Hu S, Song J. Single-cell RNA sequencing to identify cellular heterogeneity and targets in cardiovascular diseases: from bench to bedside. Basic Res Cardiol 2023; 118:7. [PMID: 36750503 DOI: 10.1007/s00395-022-00972-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 02/09/2023]
Abstract
The mechanisms of cardiovascular diseases (CVDs) remain incompletely elucidated. Single-cell RNA sequencing (scRNA-seq) has enabled the profiling of single-cell transcriptomes at unprecedented resolution and throughput, which is critical for deciphering cardiovascular cellular heterogeneity and underlying disease mechanisms, thereby facilitating the development of therapeutic strategies. In this review, we summarize cellular heterogeneity in cardiovascular homeostasis and diseases as well as the discovery of potential disease targets based on scRNA-seq, and yield new insights into the promise of scRNA-seq technology in precision medicine and clinical application.
Collapse
Affiliation(s)
- Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Han Mo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
30
|
Zhu Y, Li K, Zhang Q, Nie Y, Yan T, Shi X, Han D. High-Strength Injectable Hydrogel into Perivascular Interstitial Space Enhances Arterial Adventitial Stress. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1529-1537. [PMID: 36683534 DOI: 10.1021/acs.langmuir.2c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Injectable hydrogels with strong mechanical properties have significant potential for biomedical applications, including the development of electronic skin, intelligent medical robots, as well as tissue engineering. In this study, we report on an injectable hydrogel with notable tensile strength and adhesion properties, achieved through cross-linking thiol-terminated four-arm poly (ethylene glycol) using silver-doped nano-hydroxyapatite, modified with dopamine. Subsequently, the hydrogel was injected in vivo through the perivascular interstitial space of rats. The hydrogel wrapped around the damaged abdominal aortic adventitia, which greatly increases the stress strength of the arterial adventitia. We found that the hydrogel was characterized by excellent biocompatibility, and it induced little immune response over a span of 21 days post-implantation. This simple and minimally invasive vascular protection strategy appears promising for the treatment of vascular diseases, such as abdominal aortic aneurysm (AAA).
Collapse
Affiliation(s)
- Yuting Zhu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
| | - Kai Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
- College of Life Science, Beijing University of Chinese Medicine, Beijing100029, China
| | - Qiang Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
- Hebei Key Laboratory of Nano-Biotechnology, Yanshan University, Qinhuangdao066004, China
| | - Yifeng Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
| | - Tun Yan
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
- College of Life Science, Beijing University of Chinese Medicine, Beijing100029, China
| | - Xiaoli Shi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing100049, China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
31
|
Harris NR, Bálint L, Dy DM, Nielsen NR, Méndez HG, Aghajanian A, Caron KM. The ebb and flow of cardiac lymphatics: a tidal wave of new discoveries. Physiol Rev 2023; 103:391-432. [PMID: 35953269 PMCID: PMC9576179 DOI: 10.1152/physrev.00052.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022] Open
Abstract
The heart is imbued with a vast lymphatic network that is responsible for fluid homeostasis and immune cell trafficking. Disturbances in the forces that regulate microvascular fluid movement can result in myocardial edema, which has profibrotic and proinflammatory consequences and contributes to cardiovascular dysfunction. This review explores the complex relationship between cardiac lymphatics, myocardial edema, and cardiac disease. It covers the revised paradigm of microvascular forces and fluid movement around the capillary as well as the arsenal of preclinical tools and animal models used to model myocardial edema and cardiac disease. Clinical studies of myocardial edema and their prognostic significance are examined in parallel to the recent elegant animal studies discerning the pathophysiological role and therapeutic potential of cardiac lymphatics in different cardiovascular disease models. This review highlights the outstanding questions of interest to both basic scientists and clinicians regarding the roles of cardiac lymphatics in health and disease.
Collapse
Affiliation(s)
- Natalie R Harris
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - László Bálint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Danielle M Dy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hernán G Méndez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amir Aghajanian
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
32
|
Defining the timeline of periostin upregulation in cardiac fibrosis following acute myocardial infarction in mice. Sci Rep 2022; 12:21863. [PMID: 36529756 PMCID: PMC9760637 DOI: 10.1038/s41598-022-26035-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
After myocardial infarction (MI), the heart's reparative response to the ischemic insult and the related loss of cardiomyocytes involves cardiac fibrosis, in which the damaged tissue is replaced with a fibrous scar. Although the scar is essential to prevent ventricular wall rupture in the infarction zone, it expands over time to remote, non-infarct areas, significantly increasing the extent of fibrosis and markedly altering cardiac structure. Cardiac function in this scenario deteriorates, thereby increasing the probability of heart failure and the risk of death. Recent works have suggested that the matricellular protein periostin, known to be involved in fibrosis, is a candidate therapeutic target for the regulation of MI-induced fibrosis and remodeling. Different strategies for the genetic manipulation of periostin have been proposed previously, yet those works did not properly address the time dependency between periostin activity and cardiac fibrosis. Our study aimed to fill that gap in knowledge and fully elucidate the explicit timing of cellular periostin upregulation in the infarcted heart to enable the safer and more effective post-MI targeting of periostin-producing cells. Surgical MI was performed in C57BL/6J and BALB/c mice by ligation of the left anterior descending coronary artery. Flow cytometry analyses of cells derived from the infarcted hearts and quantitative real-time PCR of the total cellular RNA revealed that periostin expression increased during days 2-7 and peaked on day 7 post-infarct, regardless of mouse strain. The established timeline for cellular periostin expression in the post-MI heart is a significant milestone toward the development of optimal periostin-targeted gene therapy.
Collapse
|
33
|
Zhou X, Zhang C, Wu X, Hu X, Zhang Y, Wang X, Zheng L, Gao P, Du J, Zheng W, Shang H, Hu K, Jiang Z, Nie Y, Hu S, Xiao RP, Zhu X, Xiong JW. Dusp6 deficiency attenuates neutrophil-mediated cardiac damage in the acute inflammatory phase of myocardial infarction. Nat Commun 2022; 13:6672. [PMID: 36335128 PMCID: PMC9637103 DOI: 10.1038/s41467-022-33631-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Dual-specificity phosphatase 6 (DUSP6) serves a specific and conserved function on the dephosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). We previously identified Dusp6 as a regenerative repressor during zebrafish heart regeneration, therefore we propose to investigate the role of this repressor in mammalian cardiac repair. Utilizing a rat strain harboring Dusp6 nonsense mutation, rat neutrophil-cardiomyocyte co-culture, bone marrow transplanted rats and neutrophil-specific Dusp6 knockout mice, we find that Dusp6 deficiency improves cardiac outcomes by predominantly attenuating neutrophil-mediated myocardial damage in acute inflammatory phase after myocardial infarction. Mechanistically, Dusp6 is transcriptionally activated by p38-C/EBPβ signaling and acts as an effector for maintaining p-p38 activity by down-regulating pERK and p38-targeting phosphatases DUSP1/DUSP16. Our findings provide robust animal models and novel insights for neutrophil-mediated cardiac damage and demonstrate the potential of DUSP6 as a therapeutic target for post-MI cardiac remodeling and other relevant inflammatory diseases.
Collapse
Affiliation(s)
- Xiaohai Zhou
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Chenyang Zhang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| | - Xueying Wu
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Xinli Hu
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Yan Zhang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Xuelian Wang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Lixia Zheng
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Peng Gao
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Jianyong Du
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Wen Zheng
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Haibao Shang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Keping Hu
- grid.506261.60000 0001 0706 7839Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 China
| | - Zhengfan Jiang
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, 100871 China
| | - Yu Nie
- grid.506261.60000 0001 0706 7839State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Shengshou Hu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Rui-Ping Xiao
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| | - Xiaojun Zhu
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| | - Jing-Wei Xiong
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| |
Collapse
|
34
|
Biocompatibility and Connectivity of Semiconductor Nanostructures for Cardiac Tissue Engineering Applications. Bioengineering (Basel) 2022; 9:bioengineering9110621. [DOI: 10.3390/bioengineering9110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Nano- or microdevices, enabling simultaneous, long-term, multisite, cellular recording and stimulation from many excitable cells, are expected to make a strategic turn in basic and applied cardiology (particularly tissue engineering) and neuroscience. We propose an innovative approach aiming to elicit bioelectrical information from the cell membrane using an integrated circuit (IC) bearing a coating of nanowires on the chip surface. Nanowires grow directly on the backend of the ICs, thus allowing on-site amplification of bioelectric signals with uniform and controlled morphology and growth of the NWs on templates. To implement this technology, we evaluated the biocompatibility of silicon and zinc oxide nanowires (NWs), used as a seeding substrate for cells in culture, on two different primary cell lines. Human cardiac stromal cells were used to evaluate the effects of ZnO NWs of different lengths on cell behavior, morphology and growth, while BV-2 microglial-like cells and GH4-C1 neuroendocrine-like cell lines were used to evaluate cell membrane–NW interaction and contact when cultured on Si NWs. As the optimization of the contact between integrated microelectronics circuits and cellular membranes represents a long-standing issue, our technological approach may lay the basis for a new era of devices exploiting the microelectronics’ sensitivity and “smartness” to both improve investigation of biological systems and to develop suitable NW-based systems available for tissue engineering and regenerative medicine.
Collapse
|
35
|
Strohm L, Ubbens H, Münzel T, Daiber A, Daub S. Role of CD40(L)-TRAF signaling in inflammation and resolution-a double-edged sword. Front Pharmacol 2022; 13:995061. [PMID: 36267276 PMCID: PMC9577411 DOI: 10.3389/fphar.2022.995061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Cardiovascular diseases (CVD) and cardiovascular risk factors are the leading cause of death in the world today. According to the Global Burden of Disease Study, hypertension together with ischemic heart and cerebrovascular diseases is responsible for approximately 40% of all deaths worldwide. The major pathomechanism underlying almost all CVD is atherosclerosis, an inflammatory disorder of the vascular system. Recent large-scale clinical trials demonstrated that inflammation itself is an independent cardiovascular risk factor. Specific anti-inflammatory therapy could decrease cardiovascular mortality in patients with atherosclerosis (increased markers of inflammation). Inflammation, however, can also be beneficial by conferring so-called resolution, a process that contributes to clearing damaged tissue from cell debris upon cell death and thereby represents an essential step for recovery from, e.g., ischemia/reperfusion damage. Based on these considerations, the present review highlights features of the detrimental inflammatory reactions as well as of the beneficial process of immune cell-triggered resolution. In this context, we discuss the polarization of macrophages to either M1 or M2 phenotype and critically assess the role of the CD40L-CD40-TRAF signaling cascade in atherosclerosis and its potential link to resolution. As CD40L can bind to different cellular receptors, it can initiate a broad range of inflammatory processes that may be detrimental or beneficial. Likewise, the signaling of CD40L downstream of CD40 is mainly determined by activation of TRAF1-6 pathways that again can be detrimental or beneficial. Accordingly, CD40(L)-based therapies may be Janus-faced and require sophisticated fine-tuning in order to promote cardioprotection.
Collapse
Affiliation(s)
- Lea Strohm
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Henning Ubbens
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Steffen Daub
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
36
|
Picchio V, Floris E, Derevyanchuk Y, Cozzolino C, Messina E, Pagano F, Chimenti I, Gaetani R. Multicellular 3D Models for the Study of Cardiac Fibrosis. Int J Mol Sci 2022; 23:ijms231911642. [PMID: 36232943 PMCID: PMC9569892 DOI: 10.3390/ijms231911642] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Ex vivo modelling systems for cardiovascular research are becoming increasingly important in reducing lab animal use and boosting personalized medicine approaches. Integrating multiple cell types in complex setups adds a higher level of significance to the models, simulating the intricate intercellular communication of the microenvironment in vivo. Cardiac fibrosis represents a key pathogenetic step in multiple cardiovascular diseases, such as ischemic and diabetic cardiomyopathies. Indeed, allowing inter-cellular interactions between cardiac stromal cells, endothelial cells, cardiomyocytes, and/or immune cells in dedicated systems could make ex vivo models of cardiac fibrosis even more relevant. Moreover, culture systems with 3D architectures further enrich the physiological significance of such in vitro models. In this review, we provide a summary of the multicellular 3D models for the study of cardiac fibrosis described in the literature, such as spontaneous microtissues, bioprinted constructs, engineered tissues, and organs-on-chip, discussing their advantages and limitations. Important discoveries on the physiopathology of cardiac fibrosis, as well as the screening of novel potential therapeutic molecules, have been reported thanks to these systems. Future developments will certainly increase their translational impact for understanding and modulating mechanisms of cardiac fibrosis even further.
Collapse
Affiliation(s)
- Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy
| | - Yuriy Derevyanchuk
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| | - Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy
| | - Elisa Messina
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), 00015 Monterotondo, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Napoli, Italy
- Correspondence: ; Tel.: +39-077-3175-7234
| | - Roberto Gaetani
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| |
Collapse
|
37
|
Cifarelli V, Kuda O, Yang K, Liu X, Gross RW, Pietka TA, Heo GS, Sultan D, Luehmann H, Lesser J, Ross M, Goldberg IJ, Gropler RJ, Liu Y, Abumrad NA. Cardiac immune cell infiltration associates with abnormal lipid metabolism. Front Cardiovasc Med 2022; 9:948332. [PMID: 36061565 PMCID: PMC9428462 DOI: 10.3389/fcvm.2022.948332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 01/05/2023] Open
Abstract
CD36 mediates the uptake of long-chain fatty acids (FAs), a major energy substrate for the myocardium. Under excessive FA supply, CD36 can cause cardiac lipid accumulation and inflammation while its deletion reduces heart FA uptake and lipid content and increases glucose utilization. As a result, CD36 was proposed as a therapeutic target for obesity-associated heart disease. However, more recent reports have shown that CD36 deficiency suppresses myocardial flexibility in fuel preference between glucose and FAs, impairing tissue energy balance, while CD36 absence in tissue macrophages reduces efferocytosis and myocardial repair after injury. In line with the latter homeostatic functions, we had previously reported that CD36-/- mice have chronic subclinical inflammation. Lipids are important for the maintenance of tissue homeostasis and there is limited information on heart lipid metabolism in CD36 deficiency. Here, we document in the hearts of unchallenged CD36-/- mice abnormalities in the metabolism of triglycerides, plasmalogens, cardiolipins, acylcarnitines, and arachidonic acid, and the altered remodeling of these lipids in response to an overnight fast. The hearts were examined for evidence of inflammation by monitoring the presence of neutrophils and pro-inflammatory monocytes/macrophages using the respective positron emission tomography (PET) tracers, 64Cu-AMD3100 and 68Ga-DOTA-ECL1i. We detected significant immune cell infiltration in unchallenged CD36-/- hearts as compared with controls and immune infiltration was also observed in hearts of mice with cardiomyocyte-specific CD36 deficiency. Together, the data show that the CD36-/- heart is in a non-homeostatic state that could compromise its stress response. Non-invasive immune cell monitoring in humans with partial or total CD36 deficiency could help evaluate the risk of impaired heart remodeling and disease.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States,*Correspondence: Vincenza Cifarelli,
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Kui Yang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States,Division of Complex Drug Analysis, Office of Testing and Research, U.S. Food and Drug Administration, St. Louis, MO, United States
| | - Xinping Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Richard W. Gross
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Terri A. Pietka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Gyu Seong Heo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Deborah Sultan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Josie Lesser
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Morgan Ross
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Ira J. Goldberg
- Division of Endocrinology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Robert J. Gropler
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States,Yongjian Liu,
| | - Nada A. Abumrad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States,Nada A. Abumrad,
| |
Collapse
|
38
|
Garoffolo G, Casaburo M, Amadeo F, Salvi M, Bernava G, Piacentini L, Chimenti I, Zaccagnini G, Milcovich G, Zuccolo E, Agrifoglio M, Ragazzini S, Baasansuren O, Cozzolino C, Chiesa M, Ferrari S, Carbonaro D, Santoro R, Manzoni M, Casalis L, Raucci A, Molinari F, Menicanti L, Pagano F, Ohashi T, Martelli F, Massai D, Colombo GI, Messina E, Morbiducci U, Pesce M. Reduction of Cardiac Fibrosis by Interference With YAP-Dependent Transactivation. Circ Res 2022; 131:239-257. [PMID: 35770662 DOI: 10.1161/circresaha.121.319373] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Conversion of cardiac stromal cells into myofibroblasts is typically associated with hypoxia conditions, metabolic insults, and/or inflammation, all of which are predisposing factors to cardiac fibrosis and heart failure. We hypothesized that this conversion could be also mediated by response of these cells to mechanical cues through activation of the Hippo transcriptional pathway. The objective of the present study was to assess the role of cellular/nuclear straining forces acting in myofibroblast differentiation of cardiac stromal cells under the control of YAP (yes-associated protein) transcription factor and to validate this finding using a pharmacological agent that interferes with the interactions of the YAP/TAZ (transcriptional coactivator with PDZ-binding motif) complex with their cognate transcription factors TEADs (TEA domain transcription factors), under high-strain and profibrotic stimulation. METHODS We employed high content imaging, 2-dimensional/3-dimensional culture, atomic force microscopy mapping, and molecular methods to prove the role of cell/nuclear straining in YAP-dependent fibrotic programming in a mouse model of ischemia-dependent cardiac fibrosis and in human-derived primitive cardiac stromal cells. We also tested treatment of cells with Verteporfin, a drug known to prevent the association of the YAP/TAZ complex with their cognate transcription factors TEADs. RESULTS Our experiments suggested that pharmacologically targeting the YAP-dependent pathway overrides the profibrotic activation of cardiac stromal cells by mechanical cues in vitro, and that this occurs even in the presence of profibrotic signaling mediated by TGF-β1 (transforming growth factor beta-1). In vivo administration of Verteporfin in mice with permanent cardiac ischemia reduced significantly fibrosis and morphometric remodeling but did not improve cardiac performance. CONCLUSIONS Our study indicates that preventing molecular translation of mechanical cues in cardiac stromal cells reduces the impact of cardiac maladaptive remodeling with a positive effect on fibrosis.
Collapse
Affiliation(s)
- Gloria Garoffolo
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Manuel Casaburo
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Francesco Amadeo
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Massimo Salvi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (M.S., D.C., F. Molinari, D.M., U.M.)
| | - Giacomo Bernava
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Luca Piacentini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Isotta Chimenti
- Department of Medical Surgical Science and Biotechnology, Sapienza University of Rome (I.C., C.C.).,Mediterranea Cardiocentro, Napoli (I.C.)
| | | | | | - Estella Zuccolo
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Marco Agrifoglio
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università di Milano, Milan, Italy (M.A.)
| | - Sara Ragazzini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Otgon Baasansuren
- Faculty of Engineering, Hokkaido University, Sapporo, Japan (O.B., T.O.)
| | - Claudia Cozzolino
- Department of Medical Surgical Science and Biotechnology, Sapienza University of Rome (I.C., C.C.)
| | - Mattia Chiesa
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Silvia Ferrari
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Dario Carbonaro
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (M.S., D.C., F. Molinari, D.M., U.M.)
| | - Rosaria Santoro
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Martina Manzoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | | | - Angela Raucci
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Filippo Molinari
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (M.S., D.C., F. Molinari, D.M., U.M.)
| | | | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), Monterotondo, Italy (F.P.)
| | - Toshiro Ohashi
- Faculty of Engineering, Hokkaido University, Sapporo, Japan (O.B., T.O.)
| | | | - Diana Massai
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (M.S., D.C., F. Molinari, D.M., U.M.)
| | - Gualtiero I Colombo
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Elisa Messina
- Department of Pediatrics and Infant Neuropsychiatry. Policlinico Umberto I, Sapienza University of Rome (E.M.)
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (M.S., D.C., F. Molinari, D.M., U.M.)
| | - Maurizio Pesce
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| |
Collapse
|
39
|
Minotti G, Menna P, Camilli M, Salvatorelli E, Levi R. Beyond hypertension: Diastolic dysfunction associated with cancer treatment in the era of cardio-oncology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:365-409. [PMID: 35659376 DOI: 10.1016/bs.apha.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer patients are at an increased risk of cardiovascular events. Both old-generation cytostatics/cytotoxics and new-generation "targeted" drugs can in fact damage cardiomyocytes, endothelial cells of veins and arteries, specialized cells of the conduction system, pericardium, and valves. A new discipline, cardio-oncology, has therefore developed with the aim of protecting cancer patients from cardiovascular events, while also providing them with the best possible oncologic treatment. Anthracyclines have long been known to elicit cardiotoxicity that, depending on treatment- or patient-related factors, may progress with a variable velocity toward cardiomyopathy and systolic heart failure. However, early compromise of diastolic function may precede systolic dysfunction, and a progression of early diastolic dysfunction to diastolic rather than systolic heart failure has been documented in long-term cancer survivors. This chapter first describes general notions about hypertension in the cancer patient and then moves on reviewing the pathophysiology and clinical trajectories of diastolic dysfunction, and the molecular mechanisms of anthracycline-induced diastolic dysfunction. Diastolic dysfunction can in fact be caused and/or aggravated by hypertension. Pharmacologic foundations and therapeutic opportunities to prevent or treat diastolic dysfunction before it progresses toward heart failure are also reviewed, with a special emphasis on the mechanisms of action of drugs that raised hopes to treat diastolic dysfunction in the general population (sacubitril/valsartan, guanylyl cyclase activators, phosphodiesterase inhibitors, ranolazine, inhibitors of type-2 sodium-glucose-inked transporter). Cardio-oncologists will be confronted with the risk:benefit ratio of using these drugs in the cancer patient.
Collapse
Affiliation(s)
- Giorgio Minotti
- Department of Medicine, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy.
| | - Pierantonio Menna
- Department of Health Sciences, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome
| | - Emanuela Salvatorelli
- Department of Medicine, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
40
|
Penna C, Comità S, Tullio F, Alloatti G, Pagliaro P. Challenges facing the clinical translation of cardioprotection: 35 years after the discovery of ischemic preconditioning. Vascul Pharmacol 2022; 144:106995. [PMID: 35470102 DOI: 10.1016/j.vph.2022.106995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/17/2022] [Accepted: 04/16/2022] [Indexed: 12/19/2022]
Abstract
Since coronary reperfusion was introduced into clinical practice in the late 1970s, the further translation of several successful animal experiments on cardioprotection into clinical practice has been disappointing to date. Animal experiments are often performed on young, healthy animals lacking the risk factors, co-morbidities and co-medications characteristic of acute myocardial infarction patients. Many hopes were kindled in 1986 when ischemic preconditioning was discovered. However, it is not yet known how long ischemia can last and what is the best modality for additional cardioprotection through conditioning to obtain benefits. There is a lack of experimental studies on the long-term effects of additional cardioprotection, in addition to the reduction in infarct size; in particular, there is a lack of studies on vessel protection, repair, inflammation, remodeling, and mortality. The reproducibility and robustness of experimental studies are often limited by species differences, the role of co-morbidities, vascular damage, inflammatory processes, and co-medications, which are not adequately considered. In particular, inflammatory processes, including NLRP3 inflammasome, play an important role in the long-term effects. Future studies should focus on interventions/agents with robust preclinical data and should recruit patients who truly have the potential to benefit from further cardioprotection. Here we focus on the main mechanisms and targets of cardioprotection during remote conditioning and their alteration by one of the most common co-morbidities, namely diabetes, in which microvascular lesions and inflammatory processes play extremely important roles.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, TO, Italy; National Institute for Cardiovascular Research (INRC), Bologna, Italy
| | - Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, TO, Italy
| | - Francesca Tullio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, TO, Italy
| | | | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, TO, Italy; National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
41
|
Chimenti I, Picchio V, Pagano F, Schirone L, Schiavon S, D'Ambrosio L, Valenti V, Forte M, di Nonno F, Rubattu S, Peruzzi M, Versaci F, Greco E, Calogero A, De Falco E, Frati G, Sciarretta S. The impact of autophagy modulation on phenotype and survival of cardiac stromal cells under metabolic stress. Cell Death Discov 2022; 8:149. [PMID: 35365624 PMCID: PMC8975847 DOI: 10.1038/s41420-022-00924-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Cardiac stromal cells (CSCs) embrace multiple phenotypes and are a contributory factor in tissue homeostasis and repair. They can be exploited as therapeutic mediators against cardiac fibrosis and remodeling, but their survival and cardioprotective properties can be decreased by microenvironmental cues. We evaluated the impact of autophagy modulation by different pharmacological/genetic approaches on the viability and phenotype of murine CSCs, which had been subjected to nutrient deprivation or hyperglycemia, in order to mimic relevant stress conditions and risk factors of cardiovascular diseases. Our results show that autophagy is activated in CSCs by nutrient deprivation, and that autophagy induction by trehalose or autophagy-related protein 7 (ATG7)-overexpression can significantly preserve CSC viability. Furthermore, autophagy induction is associated with a higher proportion of primitive, non-activated stem cell antigen 1 (Sca1)-positive cells, and with a reduced fibrotic fraction (positive for the discoidin domain-containing receptor 2, DDR2) in the CSC pool after nutrient deprivation. Hyperglycemia, on the other hand, is associated with reduced autophagic flux in CSCs, and with a significant reduction in primitive Sca1+ cells. Autophagy induction by adenoviral-mediated ATG7-overexpression maintains a cardioprotective, anti-inflammatory and pro-angiogenic paracrine profile of CSCs exposed to hyperglycemia for 1 week. Finally, autophagy induction by ATG7-overexpression during hyperglycemia can significantly preserve cell viability in CSCs, which were subsequently exposed to nutrient deprivation, reducing hyperglycemia-induced impairment of cell resistance to stress. In conclusion, our results show that autophagy stimulation preserves CSC viability and function in response to metabolic stressors, suggesting that it may boost the beneficial functions of CSCs in cardiac repair mechanisms.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
- Mediterranea Cardiocentro, Napoli, Italy.
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Francesca Pagano
- Biochemistry and Cellular Biology Istitute, CNR, Monterotondo, Italy
| | - Leonardo Schirone
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Sonia Schiavon
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Luca D'Ambrosio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Valentina Valenti
- Haemodynamic and Cardiology Unit, "Santa Maria Goretti" Hospital, Latina, Italy
| | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mariangela Peruzzi
- Mediterranea Cardiocentro, Napoli, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Versaci
- Haemodynamic and Cardiology Unit, "Santa Maria Goretti" Hospital, Latina, Italy
- Department of System Medicine, "Tor Vergata" University, Rome, Italy
| | - Ernesto Greco
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Calogero
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
42
|
Forte E, Ramialison M, Nim HT, Mara M, Li JY, Cohn R, Daigle SL, Boyd S, Stanley EG, Elefanty AG, Hinson JT, Costa MW, Rosenthal NA, Furtado MB. Adult mouse fibroblasts retain organ-specific transcriptomic identity. eLife 2022; 11:71008. [PMID: 35293863 PMCID: PMC8959603 DOI: 10.7554/elife.71008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/15/2022] [Indexed: 01/18/2023] Open
Abstract
Organ fibroblasts are essential components of homeostatic and diseased tissues. They participate in sculpting the extracellular matrix, sensing the microenvironment, and communicating with other resident cells. Recent studies have revealed transcriptomic heterogeneity among fibroblasts within and between organs. To dissect the basis of interorgan heterogeneity, we compare the gene expression of murine fibroblasts from different tissues (tail, skin, lung, liver, heart, kidney, and gonads) and show that they display distinct positional and organ-specific transcriptome signatures that reflect their embryonic origins. We demonstrate that expression of genes typically attributed to the surrounding parenchyma by fibroblasts is established in embryonic development and largely maintained in culture, bioengineered tissues and ectopic transplants. Targeted knockdown of key organ-specific transcription factors affects fibroblast functions, in particular genes involved in the modulation of fibrosis and inflammation. In conclusion, our data reveal that adult fibroblasts maintain an embryonic gene expression signature inherited from their organ of origin, thereby increasing our understanding of adult fibroblast heterogeneity. The knowledge of this tissue-specific gene signature may assist in targeting fibrotic diseases in a more precise, organ-specific manner.
Collapse
Affiliation(s)
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Hieu T Nim
- Faculty of Information Technology, Monash University, Clayton, Australia
| | | | - Jacky Y Li
- Murdoch Children's Research Institute, Parkville, Australia
| | - Rachel Cohn
- Jackson Laboratory, Farmington, United States
| | | | - Sarah Boyd
- Centre for Inflammatory Diseases, Monash University, Clayton, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Arslan U, Moruzzi A, Nowacka J, Mummery CL, Eckardt D, Loskill P, Orlova VV. Microphysiological stem cell models of the human heart. Mater Today Bio 2022; 14:100259. [PMID: 35514437 PMCID: PMC9062349 DOI: 10.1016/j.mtbio.2022.100259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
Models of heart disease and drug responses are increasingly based on human pluripotent stem cells (hPSCs) since their ability to capture human heart (dys-)function is often better than animal models. Simple monolayer cultures of hPSC-derived cardiomyocytes, however, have shortcomings. Some of these can be overcome using more complex, multi cell-type models in 3D. Here we review modalities that address this, describe efforts to tailor readouts and sensors for monitoring tissue- and cell physiology (exogenously and in situ) and discuss perspectives for implementation in industry and academia.
Collapse
Affiliation(s)
- Ulgu Arslan
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Alessia Moruzzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Joanna Nowacka
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for in Vitro Models and Alternatives to Animal Testing, Tübingen, Germany
| | - Valeria V. Orlova
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
44
|
Cardiac regeneration following myocardial infarction: the need for regeneration and a review of cardiac stromal cell populations used for transplantation. Biochem Soc Trans 2022; 50:269-281. [PMID: 35129611 PMCID: PMC9042388 DOI: 10.1042/bst20210231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Myocardial infarction is a leading cause of death globally due to the inability of the adult human heart to regenerate after injury. Cell therapy using cardiac-derived progenitor populations emerged about two decades ago with the aim of replacing cells lost after ischaemic injury. Despite early promise from rodent studies, administration of these populations has not translated to the clinic. We will discuss the need for cardiac regeneration and review the debate surrounding how cardiac progenitor populations exert a therapeutic effect following transplantation into the heart, including their ability to form de novo cardiomyocytes and the release of paracrine factors. We will also discuss limitations hindering the cell therapy field, which include the challenges of performing cell-based clinical trials and the low retention of administered cells, and how future research may overcome them.
Collapse
|
45
|
Abstract
The heart is a never-stopping engine that relies on a formidable pool of mitochondria to generate energy and propel pumping. Because dying cardiomyocytes cannot be replaced, this high metabolic rate creates the challenge of preserving organelle fitness and cell function for life. Here, we provide an immunologist's perspective on how the heart solves this challenge, which is in part by incorporating macrophages as an integral component of the myocardium. Cardiac macrophages surround cardiomyocytes and capture dysfunctional mitochondria that these cells eject to the milieu, effectively establishing a client cell-support cell interaction. We refer to this heterologous partnership as heterophagy. Notably, this process shares analogies with other biological systems, is essential for proteostasis and metabolic fitness of cardiomyocytes, and unveils a remarkable degree of dependence of the healthy heart on immune cells for everyday function.
Collapse
Affiliation(s)
- José A Nicolás-Ávila
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Spain (J.A.N.-A., L.P.-C., P.M.-C., A.H.)
| | - Laura Pena-Couso
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Spain (J.A.N.-A., L.P.-C., P.M.-C., A.H.)
| | - Pura Muñoz-Cánoves
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Spain (J.A.N.-A., L.P.-C., P.M.-C., A.H.).,Department of Experimental & Health Sciences, Universitat Pompeu Fabra, CIBERNED, Spain (P.M.-C.).,ICREA, Spain (P.M.-C.)
| | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Spain (J.A.N.-A., L.P.-C., P.M.-C., A.H.)
| |
Collapse
|
46
|
Jayawardena E, Medzikovic L, Ruffenach G, Eghbali M. Role of miRNA-1 and miRNA-21 in Acute Myocardial Ischemia-Reperfusion Injury and Their Potential as Therapeutic Strategy. Int J Mol Sci 2022; 23:ijms23031512. [PMID: 35163436 PMCID: PMC8836257 DOI: 10.3390/ijms23031512] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Coronary artery disease remains the leading cause of death. Acute myocardial infarction (MI) is characterized by decreased blood flow to the coronary arteries, resulting in cardiomyocytes death. The most effective strategy for treating an MI is early and rapid myocardial reperfusion, but restoring blood flow to the ischemic myocardium can induce further damage, known as ischemia-reperfusion (IR) injury. Novel therapeutic strategies are critical to limit myocardial IR injury and improve patient outcomes following reperfusion intervention. miRNAs are small non-coding RNA molecules that have been implicated in attenuating IR injury pathology in pre-clinical rodent models. In this review, we discuss the role of miR-1 and miR-21 in regulating myocardial apoptosis in ischemia-reperfusion injury in the whole heart as well as in different cardiac cell types with special emphasis on cardiomyocytes, fibroblasts, and immune cells. We also examine therapeutic potential of miR-1 and miR-21 in preclinical studies. More research is necessary to understand the cell-specific molecular principles of miRNAs in cardioprotection and application to acute myocardial IR injury.
Collapse
|
47
|
Chimenti I, Sattler S, del Monte-Nieto G, Forte E. Editorial: Fibrosis and Inflammation in Tissue Pathophysiology. Front Physiol 2022; 12:830683. [PMID: 35126187 PMCID: PMC8814660 DOI: 10.3389/fphys.2021.830683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Naples, Italy
- *Correspondence: Isotta Chimenti
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, ME, United States
| |
Collapse
|
48
|
Intrauterine inflammation exacerbates maladaptive remodeling of the immature myocardium after preterm birth in lambs. Pediatr Res 2022; 92:1555-1565. [PMID: 35277596 PMCID: PMC9771797 DOI: 10.1038/s41390-022-01955-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Antenatal conditions that are linked with preterm birth, such as intrauterine inflammation, can influence fetal cardiac development thereby rendering the heart more vulnerable to the effects of prematurity. We aimed to investigate the effect of intrauterine inflammation, consequent to lipopolysaccharide exposure, on postnatal cardiac growth and maturation in preterm lambs. METHODS Preterm lambs (~129 days gestational age) exposed antenatally to lipopolysaccharide or saline were managed according to contemporary neonatal care and studied at postnatal day 7. Age-matched fetal controls were studied at ~136 days gestational age. Cardiac tissue was sampled for molecular analyses and assessment of cardiac structure and cardiomyocyte maturation. RESULTS Lambs delivered preterm showed distinct ventricular differences in cardiomyocyte growth and maturation trajectories as well as remodeling of the left ventricular myocardium compared to fetal controls. Antenatal exposure to lipopolysaccharide resulted in further collagen deposition in the left ventricle and a greater presence of immune cells in the preterm heart. CONCLUSIONS Adverse impacts of preterm birth on cardiac structure and cardiomyocyte growth kinetics within the first week of postnatal life are exacerbated by intrauterine inflammation. The maladaptive remodeling of the cardiac structure and perturbed cardiomyocyte growth likely contribute to the increased vulnerability to cardiac dysfunction following preterm birth. IMPACT Preterm birth induces maladaptive cardiac remodeling and adversely impacts cardiomyocyte growth kinetics within the first week of life in sheep. These effects of prematurity on the heart are exacerbated when preterm birth is preceded by exposure to intrauterine inflammation, a common antecedent of preterm birth. Inflammatory injury to the fetal heart coupled with preterm birth consequently alters neonatal cardiac growth and maturation and thus, may potentially influence long-term cardiac function and health.
Collapse
|
49
|
Buja LM, Mitchell RN. Basic pathobiology of cell-based therapies and cardiac regenerative medicine. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Tombor LS, Dimmeler S. Why is endothelial resilience key to maintain cardiac health? Basic Res Cardiol 2022; 117:35. [PMID: 35834003 PMCID: PMC9283358 DOI: 10.1007/s00395-022-00941-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
Myocardial injury as induced by myocardial infarction results in tissue ischemia, which critically incepts cardiomyocyte death. Endothelial cells play a crucial role in restoring oxygen and nutrient supply to the heart. Latest advances in single-cell multi-omics, together with genetic lineage tracing, reveal a transcriptional and phenotypical adaptation to the injured microenvironment, which includes alterations in metabolic, mesenchymal, hematopoietic and pro-inflammatory signatures. The extent of transition in mesenchymal or hematopoietic cell lineages is still debated, but it is clear that several of the adaptive phenotypical changes are transient and endothelial cells revert back to a naïve cell state after resolution of injury responses. This resilience of endothelial cells to acute stress responses is important for preventing chronic dysfunction. Here, we summarize how endothelial cells adjust to injury and how this dynamic response contributes to repair and regeneration. We will highlight intrinsic and microenvironmental factors that contribute to endothelial cell resilience and may be targetable to maintain a functionally active, healthy microcirculation.
Collapse
Affiliation(s)
- Lukas S. Tombor
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany ,Faculty for Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany ,Faculty for Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|