1
|
Heddema WA, Hof MAJ, Sosnowski P, Bakker SJL, Hopfgartner G, Klont F. Pharmacometabolomics Detects Various Unreported Metoprolol Metabolites in Urine of (Potential) Living Kidney Donors and Kidney Transplant Recipients. Clin Pharmacokinet 2025; 64:779-789. [PMID: 40285825 PMCID: PMC12064448 DOI: 10.1007/s40262-025-01502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND AND OBJECTIVE Metoprolol is primarily metabolized via the polymorphic cytochrome P450-2D6 (CYP2D6) enzyme, which underlies interindividual variation in conversion rates and may benefit from pharmacogenetics-driven therapy personalization. However, the field relies heavily on knowledge of a drug's metabolism, often originating from early-phase clinical trials with single-dose administration in small samples of healthy volunteers. Pharmacogenetics could thus benefit from real-world drug metabolism studies. METHODS We conducted a real-world drug metabolism study for metoprolol in 18 (potential) living kidney donors and 374 kidney transplant recipients from the Transplant Lines Food and Nutrition Biobank and Cohort Study (NCT02811835) using existing liquid chromatography-high resolution mass spectrometry pharmacometabolomic data. RESULTS In both groups, we confirmed the presence of seven expected metabolites, including the high-abundance substances metoprolol acid and hydroxymetoprolol. We were unable to detect deisopropylmetoprolol and a metabolite known as "H 119/68". However, we did find putative further oxidized forms, namely the expected variant of deisopropylmetoprolol in which the primary amine is removed and the leftover methyl group is oxidized into a carboxylic acid ("H 104/83") and an unknown/unreported metoprolol metabolite that we refer to as "metoprolol benzoic acid". Moreover, we found nine other previously unknown/unreported metabolites, putatively reflecting N-glucuronidated metoprolol, four glucuronidated versions of hydroxymetoprolol, and a formylated, a glucuronidated, and two hydroxylated versions of metoprolol acid. Interestingly, the same metabolites were detected in potential living kidney donors and kidney transplant recipients, and metabolite profiles did not differ between both groups in principal component analysis. CONCLUSION We found more metoprolol metabolites than previously reported, calling for replication studies and evaluation of pharmacogenetic testing approaches to realize safer, more effective metoprolol therapy.
Collapse
Affiliation(s)
- Wietske A Heddema
- Unit of Pharmacotherapy, Epidemiology and Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marieke A J Hof
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gérard Hopfgartner
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| | - Frank Klont
- Unit of Pharmacotherapy, Epidemiology and Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
2
|
Muttiah B, Hanafiah A. Gut Microbiota and Cardiovascular Diseases: Unraveling the Role of Dysbiosis and Microbial Metabolites. Int J Mol Sci 2025; 26:4264. [PMID: 40362500 PMCID: PMC12072866 DOI: 10.3390/ijms26094264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Cardiovascular diseases (CVDs), including heart failure (HF), hypertension, myocardial infarction (MI), and atherosclerosis, are increasingly linked to gut microbiota dysbiosis and its metabolic byproducts. HF, affecting over 64 million individuals globally, is associated with systemic inflammation and gut barrier dysfunction, exacerbating disease progression. Similarly, hypertension and MI correlate with reduced microbial diversity and an abundance of pro-inflammatory bacteria, contributing to vascular inflammation and increased cardiovascular risk. Atherosclerosis is also influenced by gut dysbiosis, with key microbial metabolites such as trimethylamine-N-oxide (TMAO) and short-chain fatty acids (SCFAs) playing crucial roles in disease pathogenesis. Emerging evidence highlights the therapeutic potential of natural compounds, including flavonoids, omega-3 fatty acids, resveratrol, curcumin, and marine-derived bioactives, which modulate the gut microbiota and confer cardioprotective effects. These insights underscore the gut microbiota as a critical regulator of cardiovascular health, suggesting that targeting dysbiosis may offer novel preventive and therapeutic strategies. Further research is needed to elucidate underlying mechanisms and optimize microbiome-based interventions for improved cardiovascular outcomes.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- GUT Research Group, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Zhou M, Hou P, Liang Y, Tao W, Guo Z, Zhang B, Lu Y, Chu G, Li P. Comparison of Platelet Function Tests for Long-Term Cardiovascular Events after Percutaneous Coronary Interventions. Semin Thromb Hemost 2025. [PMID: 40280166 DOI: 10.1055/a-2570-4538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Patients with high on-treatment platelet reactivity (HTPR) undergoing percutaneous coronary intervention (PCI) for acute coronary syndrome (ACS) face increased risks of major adverse cardiovascular events (MACEs). Although platelet function tests like thrombelastography (TEG), vasodilator-stimulated phosphoprotein (VASP), PL-11, and VerifyNow have been described, the correlation between them and their prognostic implications remains uncertain. This prospective study aims to evaluate the consistency and effectiveness of four platelet function detection methods in predicting long-term MACEs in patients with ACS. All 98 ACS patients undergoing PCI with clopidogrel were assessed for HTPR using four platelet function detection methods. The endpoint was the occurrence of MACEs, including cardiac death, nonfatal myocardial infarction (MI), and target vessel revascularization (TVR). Among 98 patients enrolled from April 1, 2014 to June 30, 2014, 27 (27.6%) patients with VerifyNow-detected HTPR (P2Y12 reaction units [PRUs] >240). The incidence of HTPR was 58.2% for TEG, 52% for VASP, and 13.3% for PL-11. VerifyNow and TEG showed the highest consistency in detecting HTPR (kappa = 0.201, p = 0.015). During a median follow-up of 6.1 years, 29 MACEs occurred, including 24 TVRs, 3 cardiovascular deaths, and 2 nonfatal MIs. VerifyNow-detected HTPR independently predicted long-term MACEs (hazard ratio: 5.73, 95% confidence interval: 2.04-16.09, p = 0.001), even after adjusting for traditional risk factors (TRFs). Receiver operating characteristic (ROC) analysis indicated that the model incorporating TRFs and VerifyNow-detected HTPR had superior predictive discrimination for MACEs (area under ROC curve = 0.889). VerifyNow-detected HTPR independently emerges as a robust predictor for long-term MACEs, demonstrating superior predictive discrimination compared with other platelet function tests.
Collapse
Affiliation(s)
- Mingyao Zhou
- Department of Cardiology, Changhai Hospital, Shanghai, People's Republic of China
| | - Pan Hou
- Department of Cardiology, Changhai Hospital, Shanghai, People's Republic of China
- Department of Cardiology, General Hospital of the PLA Central Theater Command, Wuhan, People's Republic of China
| | - Ying Liang
- Department of Cardiology, Changhai Hospital, Shanghai, People's Republic of China
| | - Wenqi Tao
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Zhifu Guo
- Department of Cardiology, Changhai Hospital, Shanghai, People's Republic of China
| | - Bili Zhang
- Department of Cardiology, Changhai Hospital, Shanghai, People's Republic of China
| | - Yang Lu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Guojun Chu
- Department of Cardiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Pan Li
- Department of Cardiology, Changhai Hospital, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Zhao C, Fu J, Wang Y, Zhou Y. Latest Evidence and Perspectives of Panax Notoginseng Extracts and Preparations for the Treatment of Cardiovascular Diseases. J Cardiovasc Pharmacol 2025; 85:248-260. [PMID: 39903802 DOI: 10.1097/fjc.0000000000001670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/11/2025] [Indexed: 02/06/2025]
Abstract
ABSTRACT Cardiovascular diseases are a major cause of death worldwide, and their high incidence poses a significant threat to human health and public health systems. Panax notoginseng , a traditional Chinese medicinal herb with a long history, has shown promise in treating cardiovascular diseases. This review examines the diverse mechanisms through which Panax notoginseng addresses cardiovascular diseases, including anti-inflammatory, antiplatelet aggregation, anticoagulation, anti-oxidative stress, regulation of angiogenesis, antiatherosclerosis, improvement of microcirculatory disorders, and protection against myocardial ischemia-reperfusion injury, highlighting saponins as the principal active components. It also summarizes studies involving Panax notoginseng preparations like Xueshuantong and Xuesaitong in treating coronary heart disease and myocardial infarction, and discusses the safety, limitations, and future research directions of these extracts. In conclusion, the cardiovascular protective mechanism of Panax notoginseng is multitargeted and multipathways, and its clinical application is relatively safe, with rare and mild adverse drug reactions, suggesting a promising therapeutic potential.
Collapse
Affiliation(s)
- Chenyu Zhao
- The First Clinical Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | | | | | | |
Collapse
|
5
|
Wu A, Raack EJ, Ross CJD, Carleton BC. Implementation and Evaluation Strategies for Pharmacogenetic Testing in Hospital Settings: A Scoping Review. Ther Drug Monit 2025; 47:211-247. [PMID: 39264345 DOI: 10.1097/ftd.0000000000001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/01/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Pharmacogenetic testing in clinical settings has improved the safety and efficacy of drug treatment. There is a growing number of studies evaluating pharmacogenetic implementation and identifying barriers and facilitators. However, no review has focused on bridging the gap between identifying barriers and facilitators of testing and the clinical strategies adopted in response. This review was conducted to understand the implementation and evaluation strategies of pharmacogenetic testing programs. METHODS A PRISMA-compliant scoping review was conducted. The included studies discussed pharmacogenetic testing programs implemented in a hospital setting. Quantitative, qualitative, and mixed design methods were included. RESULTS A total of 232 of the 7043 articles that described clinical pharmacogenetic programs were included. The most common specialties that described pharmacogenetic implementation were psychiatry (26%) and oncology (16%), although many studies described institutional programs implemented across multiple specialties (19%). Different specialties reported different clinical outcomes, but all reported similar program performance indicators, such as test uptake and the number of times the test recommendations were followed. There were benefits and drawbacks to delivering test results through research personnel, pharmacists, and electronic alerts, but active engagement of physicians was necessary for the incorporation of pharmacogenetic results into clinical decision making. CONCLUSIONS Further research is required on the maintenance and sustainability of pharmacogenetic testing initiatives. These findings provide an overview of the implementation and evaluation strategies of different specialties that can be used to improve pharmacogenetic testing.
Collapse
Affiliation(s)
- Angela Wu
- Department of Experimental Medicine, University of British Columbia
- BC Children's Hospital Research Institute
| | - Edward J Raack
- BC Children's Hospital Research Institute
- Department of Medical Genetics, University of British Columbia
| | - Colin J D Ross
- BC Children's Hospital Research Institute
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia; and
| | - Bruce C Carleton
- BC Children's Hospital Research Institute
- Department of Medical Genetics, University of British Columbia
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia; and
- Therapeutic Evaluation Unit, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Akkaif MA, Daud NAA, Noor DAM, Sha'aban A, Kader MASA, Ibrahim B. The Impact of CYP2C19 Genotype on the Platelet Reactivity Index (PRI) among Chronic Coronary Syndromes (CCS) Patients Undergoing Percutaneous Coronary Intervention (PCI): Affectability of Rapid Genetic Testing. Cardiovasc Drugs Ther 2025; 39:347-356. [PMID: 38224415 DOI: 10.1007/s10557-024-07544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND In the Asian population, the presence of the CYP2C19 loss-of-function (LOF) allele is a known genetic variation. This allele is associated with a reduced capacity to metabolize clopidogrel into its active forms through the CYP2C19 enzyme, resulting in diminished platelet inhibition and an elevated risk of recurrent cardiovascular events. Regulatory authorities have recommended an alternative P2Y12 inhibitor, ticagrelor, for individuals carrying the LOF allele. Consequently, this study seeks to assess the impact of the CYP2C19 genotype on the Platelet reactivity index (PRI) using a rapid genetic testing approach in Asian patients with chronic coronary syndromes (CCS) who undergo percutaneous coronary intervention (PCI). METHODS This prospective study employed a parallel design, single-center design, and randomized approach. Genotyping for the CYP2C19*2 and *3 polymorphisms was conducted using the Nested Allele-Specific Multiplex PCR (NASM-PCR) technique. Patients meeting the inclusion criteria underwent genotyping for CYP2C19 polymorphisms. Following PCI, patients were randomly assigned to receive either ticagrelor or clopidogrel. PRI assessments were performed four hours after loading dose administration. The trial was registered with ClinicalTrials.gov under the identifier NCT05516784. RESULTS Among the 94 patients recruited for the study, 40 (42.55%) were identified as carriers of the LOF allele for CYP2C19*2 and *3 (*1/*2, *2/*2, *1/*3). Out of the 84 patients evaluated for PRI (44 receiving clopidogrel and 40 receiving ticagrelor), 21 (47.7%) of the clopidogrel group and 39 (97.5%) of the ticagrelor group exhibited a favorable response to antiplatelet therapy (PRI < 50). Patients treated with ticagrelor demonstrated superior antiplatelet responses compared to those receiving clopidogrel, regardless of LOF carrier status (P = 0.005 and < 0.001 for non-LOF and LOF carriers, respectively). CONCLUSION NASM-PCR as a rapid genetic test holds promise for personalizing antiplatelet therapy in Asian CCS patients.
Collapse
Affiliation(s)
- Mohammed Ahmed Akkaif
- Department of Cardiology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China.
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia.
| | | | | | - Abubakar Sha'aban
- School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4YS, UK
| | | | - Baharudin Ibrahim
- Faculty of Pharmacy, University of Malaya, Federal Territory Malaysia, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
7
|
Williams JC, Rogers K, Coulson K, Hughes DM, Hughes M, Zhao SS. Association between beta-1-adrenoceptor blockade and risk of Raynaud's phenomenon: Mendelian randomisation study. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2025:23971983241312543. [PMID: 40160309 PMCID: PMC11948267 DOI: 10.1177/23971983241312543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/21/2024] [Indexed: 04/02/2025]
Abstract
Introduction/Objectives Raynaud's phenomenon is a common vasospastic disorder associated with reduced health-related quality of life and, occasionally, ischaemic tissue damage depending on aetiology. The effect of beta-1-adrenoceptor blockers (e.g. bisoprolol, atenolol) on Raynaud's phenomenon remains unclear. We aimed to assess the association between genetically mimicked beta-1-adrenoceptor blockade and the risk of Raynaud's phenomenon. Methods We used two protein-coding single nucleotide polymorphisms in the ADRB1 gene, rs1801252 (A > G; Ser49Gly) and rs1801253 (G > C; Arg389Gly), to derive an unweighted allele count as the instrumental variable, using individual-level UK Biobank data. Raynaud's phenomenon was defined using International Classification of Diseases or Read codes. We used the ratio method and analysis was performed separately using systolic and diastolic blood pressure as the biomarker. To examine the validity of this approach and the Raynaud's phenomenon case definition, we also tested the known association between phosphodiesterase-5 inhibition and Raynaud's phenomenon risk. Results Analysis included 4743 individuals with Raynaud's phenomenon (mean age 58 years, 68% female) and 403,762 controls. There was no evidence of an effect of genetically mimicked beta-1-adrenoreceptor blockade on the risk of Raynaud's phenomenon, using systolic blood pressure (odds ratio = 0.93 per mmHg reduction; 95% confidence interval = [0.83, 1.04]; p = 0.19) or diastolic blood pressure (odds ratio = 0.91 per mmHg reduction; 95% confidence interval = [0.78, 1.05]; p = 0.19). The positive control exposure phosphodiesterase-5 inhibition was associated with reduced Raynaud's phenomenon risk. Conclusions We found no genetic evidence to support a causal association between beta-1-adrenoceptor blockade and Raynaud's phenomenon risk in either direction. Randomised controlled trials are required to confirm the safety of beta-1-adrenoceptor blockers in people with Raynaud's phenomenon.
Collapse
Affiliation(s)
- Jacob C Williams
- St James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Kira Rogers
- Manchester Medical School, The University of Manchester, Manchester, UK
| | - Kathryn Coulson
- Manchester Medical School, The University of Manchester, Manchester, UK
| | - David M Hughes
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Michael Hughes
- Department of Rheumatology, Northern Care Alliance NHS Foundation Trust, Salford Care Organisation, Salford, UK
- Division of Musculoskeletal and Dermatological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Sizheng Steven Zhao
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Science, School of Biological Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Bauer KL, Afifi AM, Nazzal M. Updates in Arterial Ulcers. Nurs Clin North Am 2025; 60:57-75. [PMID: 39884796 DOI: 10.1016/j.cnur.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Arterial ulcers are a clinical symptom of a complex array of underlying comorbid factors, namely peripheral artery disease (PAD). Chronic limb-threatening ischemia is representative of end-stage PAD. Ulcers of other etiologies can carry an arterial component, mandating recognition of risk factors, a comprehensive history and physical examination, and appropriate diagnostic testing in lower extremity ulcers. The primary therapy for arterial ulcers is re-establishment of in-line arterial flow, achieved by endovascular therapy or open revascularization. Medical management is essential to slow disease progression, and topical therapies are crucial to promote rapid ulcer closure and reduce infection risk.
Collapse
Affiliation(s)
- Karen L Bauer
- Division of Vascular, Endovascular and Wound Surgery, University of Toledo, Mail Stop 1095, 3000 Arlington Avenue, Toledo, OH 43614-2598, USA
| | - Ahmed M Afifi
- Division of Vascular, Endovascular and Wound Surgery, University of Toledo, Mail Stop 1095, 3000 Arlington Avenue, Toledo, OH 43614-2598, USA
| | - Munier Nazzal
- Division of Vascular, Endovascular, and Wound Surgery, Department of Surgery and Medical Education, University of Toledo, Mail Stop 1095, 3000 Arlington Avenue, Toledo, OH 43614-2598, USA.
| |
Collapse
|
9
|
Raal FJ, Mehta V, Kayikcioglu M, Blom D, Gupta P, Elis A, Turner T, Daniels C, Vest J, Mitchell T, Caldwell K, Bahassi EM, Kallend D, Stein EA. Lerodalcibep and evolocumab for the treatment of homozygous familial hypercholesterolaemia with PCSK9 inhibition (LIBerate-HoFH): a phase 3, randomised, open-label, crossover, non-inferiority trial. Lancet Diabetes Endocrinol 2025; 13:178-187. [PMID: 39870096 DOI: 10.1016/s2213-8587(24)00313-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Lerodalcibep, a small binding anti-PCSK9 protein (adnectin), showed effective LDL cholesterol reduction in heterozygous familial hypercholesterolaemia. We aimed to assess the safety and efficacy of lerodalcibep and evolocumab in a globally diverse homozygous familial hypercholesterolaemia population. METHODS This phase 3, randomised, open-label, crossover, non-inferiority study consisted of two 24-week treatment periods separated by an 8-week washout. The study was conducted in 12 lipid clinics in six countries (India, Israel, Norway, South Africa, Türkiye, and the USA). Patients aged 10 years or older with genetically confirmed homozygous familial hypercholesterolaemia were randomly assigned by computer-generated randomisation scheme performed centrally via interactive response technology to either monthly lerodalcibep 300 mg (1·2 mL subcutaneous injection) or monthly evolocumab 420 mg (subcutaneous 9 min infusion of 3·5 mL) for 24 weeks (period A) followed by an 8-week washout and then crossed over to the alternate therapy for the next 24 weeks (period B). The trial was open label, but all efficacy parameters were masked to patients, study staff, and the sponsor from randomisation. The primary efficacy endpoint was the percent change from baseline (day 1 of period A) in LDL cholesterol concentration to week 24 for period A and B. The intention-to-treat (ITT) population, defined as all randomly assigned patients, was used for the primary analysis. The safety population included all patients who received any study medication. The margin used to establish non-inferiority was 6%. The trial is registered with ClinicalTrials.gov (NCT04034485) and EudraCT (2019-003611-62), and has now finished. FINDINGS Patients were enrolled from Nov 11, 2019, to July 2, 2021, and the final study visit took place on Aug 8, 2022. Of 82 patients screened, 66 entered period A (ITT population). The mean age was 28·7 years (SD 15·2); 20 (30%) of 66 were paediatric patients; 36 (55%) of 66 were female and 30 (45%) of 66 were male; and the mean baseline LDL cholesterol was 10·59 mmol/L (SD 4·37). Mean LDL cholesterol reduction by ITT analysis at week 24 was -4·9% (SE 3·5) on lerodalcibep compared with -10·3% (3·5) on evolocumab; the mean difference between treatments was 5·4% (95% CI -0·2 to 11·1), which did not show non-inferiority at the prespecified 6% margin. LDL cholesterol response varied considerably across the patient population but was generally similar in the same patients with both lerodalcibep and evolocumab. When averaged across all monthly visits, LDL cholesterol response was -9·1% (SE 3·2) on lerodalcibep and -10·8% (3·2) on evolocumab. Importantly, genotyping and free PCSK9 suppression were not predictive of response. Both drugs were well tolerated, with no treatment-related serious adverse events. Injection site reactions were reported in one (2%) of 65 patients on lerodalcibep and 15 (24%) of 62 patients on evolocumab. INTERPRETATION The LDL cholesterol response was highly variable, but generally similar in patients treated with both lerodalcibep and evolocumab. Importantly, the study showed the inability to predict response based on genotyping, reinforcing the rationale for PCSK9 inhibition in all patients with homozygous familial hypercholesterolemia and continuing its use in responders. FUNDING LIB Therapeutics.
Collapse
Affiliation(s)
- Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Department of Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Vimal Mehta
- Department of Cardiology, GB Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Meral Kayikcioglu
- Department of Cardiology, Ege University Medical School, Izmir, Türkiye
| | - Dirk Blom
- Division of Lipidology and Cape Heart Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Preeti Gupta
- Vardhman Mahavir Medical College, New Delhi, India
| | - Avishay Elis
- Internal Medicine, Rabin Medical Center, Petah Tikva, Israel
| | - Traci Turner
- Metabolic and Atherosclerosis Research Center, Cincinnati, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wani AA, Abeer F. Application of machine learning techniques for warfarin dosage prediction: a case study on the MIMIC-III dataset. PeerJ Comput Sci 2025; 11:e2612. [PMID: 39896040 PMCID: PMC11784795 DOI: 10.7717/peerj-cs.2612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/25/2024] [Indexed: 02/04/2025]
Abstract
Warfarin, a commonly prescribed anticoagulant, poses significant dosing challenges due to its narrow therapeutic range and high variability in patient responses. This study applies advanced machine learning techniques to improve the accuracy of international normalized ratio (INR) predictions using the MIMIC-III dataset, addressing the critical issue of missing data. By leveraging dimensionality reduction methods such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), and advanced imputation techniques including denoising autoencoders (DAE) and generative adversarial networks (GAN), we achieved significant improvements in predictive accuracy. The integration of these methods substantially reduced prediction errors compared to traditional approaches. This research demonstrates the potential of machine learning (ML) models to provide more personalized and precise dosing strategies that reduce the risks of adverse drug events. Our method could integrate into clinical workflows to enhance anticoagulation therapy in cases of missing data, with potential applications in other complex medical treatments.
Collapse
Affiliation(s)
- Aasim Ayaz Wani
- School of Engineering, Cornell University, Ithaca, New York, United States
| | - Fatima Abeer
- Jahurul Islam Medical College, University of Dhaka, Bhagalpur, Bangladesh
| |
Collapse
|
11
|
Tremmel R, Hübschmann D, Schaeffeler E, Pirmann S, Fröhling S, Schwab M. Innovation in cancer pharmacotherapy through integrative consideration of germline and tumor genomes. Pharmacol Rev 2025; 77:100014. [PMID: 39952686 DOI: 10.1124/pharmrev.124.001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 01/22/2025] Open
Abstract
Precision cancer medicine is widely established, and numerous molecularly targeted drugs for various tumor entities are approved or are in development. Personalized pharmacotherapy in oncology has so far been based primarily on tumor characteristics, for example, somatic mutations. However, the response to drug treatment also depends on pharmacological processes summarized under the term ADME (absorption, distribution, metabolism, and excretion). Variations in ADME genes have been the subject of intensive research for >5 decades, considering individual patients' genetic makeup, referred to as pharmacogenomics (PGx). The combined impact of a patient's tumor and germline genome is only partially understood and often not adequately considered in cancer therapy. This may be attributed, in part, to the lack of methods for combined analysis of both data layers. Optimized personalized cancer therapies should, therefore, aim to integrate molecular information, which derives from both the tumor and the germline genome, and taking into account existing PGx guidelines for drug therapy. Moreover, such strategies should provide the opportunity to consider genetic variants of previously unknown functional significance. Bioinformatic analysis methods and corresponding algorithms for data interpretation need to be developed to integrate PGx data in cancer therapy with a special meaning for interdisciplinary molecular tumor boards, in which cancer patients are discussed to provide evidence-based recommendations for clinical management based on individual tumor profiles. SIGNIFICANCE STATEMENT: The era of personalized oncology has seen the emergence of drugs tailored to genetic variants associated with cancer biology. However, the full potential of targeted therapy remains untapped owing to the predominant focus on acquired tumor-specific alterations. Optimized cancer care must integrate tumor and patient genomes, guided by pharmacogenomic principles. An essential prerequisite for realizing truly personalized drug treatment of cancer patients is the development of bioinformatic tools for comprehensive analysis of all data layers generated in modern precision oncology programs.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany
| | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between the German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Innovation and Service Unit for Bioinformatics and Precision Medicine, DKFZ, Heidelberg, Germany; Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Sebastian Pirmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between the German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany; Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany; DKTK, DKFZ, Partner Site Tuebingen, Tuebingen, Germany; NCT SouthWest, a partnership between DKFZ and University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
12
|
Keat K, Venkatesh R, Huang Y, Kumar R, Tuteja S, Sangkuhl K, Li B, Gong L, Whirl-Carrillo M, Klein TE, Ritchie MD, Kim D. PGxQA: A Resource for Evaluating LLM Performance for Pharmacogenomic QA Tasks. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2025; 30:229-246. [PMID: 39670373 PMCID: PMC11734741 DOI: 10.1142/9789819807024_0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Pharmacogenetics represents one of the most promising areas of precision medicine, with several guidelines for genetics-guided treatment ready for clinical use. Despite this, implementation has been slow, with few health systems incorporating the technology into their standard of care. One major barrier to uptake is the lack of education and awareness of pharmacogenetics among clinicians and patients. The introduction of large language models (LLMs) like GPT-4 has raised the possibility of medical chatbots that deliver timely information to clinicians, patients, and researchers with a simple interface. Although state-of-the-art LLMs have shown impressive performance at advanced tasks like medical licensing exams, in practice they still often provide false information, which is particularly hazardous in a clinical context. To quantify the extent of this issue, we developed a series of automated and expert-scored tests to evaluate the performance of chatbots in answering pharmacogenetics questions from the perspective of clinicians, patients, and researchers. We applied this benchmark to state-of-the-art LLMs and found that newer models like GPT-4o greatly outperform their predecessors, but still fall short of the standards required for clinical use. Our benchmark will be a valuable public resource for subsequent developments in this space as we work towards better clinical AI for pharmacogenetics.
Collapse
Affiliation(s)
- Karl Keat
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Rasika Venkatesh
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Yidi Huang
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachit Kumar
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Sony Tuteja
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Binglan Li
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Li Gong
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA4Department of Medicine (BMIR), Stanford University, Stanford, CA, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA,
| | - Dokyoon Kim
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA,
| |
Collapse
|
13
|
Paparodis RD, Bantouna D, Livadas S, Angelopoulos N. Statin therapy in primary and secondary cardiovascular disease prevention. Curr Atheroscler Rep 2024; 27:21. [PMID: 39738779 DOI: 10.1007/s11883-024-01265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
PURPOSE OF REVIEW Atherosclerotic cardiovascular disease (ASCVD) is one of the most common causes of death globally and the leading one in the US. Elevated low-density lipoprotein (LDL) cholesterol is one of the main modifiable disease risk factors and statin therapies have been extensively studied in that regard. The present work presents the clinical trials derived evidence supporting the use of statins in primary and secondary cardiovascular disease prevention. RECENT FINDINGS Statins are a major moderator of hepatic LDL cholesterol output, effectively reducing serum LDL cholesterol concentrations, in a dose-dependent manner. Their use as a single agent or in combination with other treatment modalities (ezetimibe, PCSK9 inhibitors etc.) has been proven to prevent ASCVD events and reduce cardiovascular disease incidence and mortality substantially. Their use is warranted as a first line agent in all secondary prevention patients, as well as those in primary prevention at high or very high risk for ASCVD events and based on the presence of specific modifiers, even in selected cases at moderate ASCVD risk. Their potency and dose should be tailored to the individual's cardiovascular risk and the tolerance to their potential adverse effects in order to achieve the guidelines-directed LDL goals. Statin therapies are the mainstay of therapy for ASCVD risk reduction and should be initiated in all patients at high enough of a risk, to reduce event rates, morbidity and mortality.
Collapse
Affiliation(s)
- Rodis D Paparodis
- Hellenic Endocrine Network, 6, Ermou St, Athens, Greece.
- Endocrinology, Diabetes and Metabolism Clinics, Private Practice, 24, Gerokostopoulou St. King George I Sq, Patras, Greece.
- Division of Endocrinology, Diabetes and Metabolism, Loyola University Medical Center, Maywood, IL, USA.
- Division of Endocrinology, Diabetes and Metabolism, Edward Hines Jr VA Hospital, Hines, IL, USA.
| | | | - Sarantis Livadas
- Hellenic Endocrine Network, 6, Ermou St, Athens, Greece
- Endocrinology, Diabetes and Metabolism Clinics, Private Practice, Athens, Greece
| | - Nicholas Angelopoulos
- Hellenic Endocrine Network, 6, Ermou St, Athens, Greece
- Endocrinology, Diabetes and Metabolism Clinics, Private Practice, Kavala, Greece
| |
Collapse
|
14
|
Angiolillo DJ, Galli M, Alexopoulos D, Aradi D, Bhatt DL, Bonello L, Capodanno D, Cavallari LH, Collet JP, Cuisset T, Ferreiro JL, Franchi F, Geisler T, Gibson CM, Gorog DA, Gurbel PA, Jeong YH, Marcucci R, Siller-Matula JM, Mehran R, Neumann FJ, Pereira NL, Rizas KD, Rollini F, So DYF, Stone GW, Storey RF, Tantry US, Berg JT, Trenk D, Valgimigli M, Waksman R, Sibbing D. International Consensus Statement on Platelet Function and Genetic Testing in Percutaneous Coronary Intervention: 2024 Update. JACC Cardiovasc Interv 2024; 17:2639-2663. [PMID: 39603778 DOI: 10.1016/j.jcin.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 11/29/2024]
Abstract
Current evidence indicates that dual antiplatelet therapy with aspirin plus a P2Y12 inhibitor is essential for the prevention of thrombotic events after percutaneous coronary interventions. However, dual antiplatelet therapy is associated with increased bleeding which may outweigh the benefits. This has set the foundations for customizing antiplatelet treatments to the individual patient. However, bleeding and ischemic risks are often present in the same patient, making it difficult to achieve this balance. The fact that oral P2Y12 inhibitors (clopidogrel, prasugrel, and ticagrelor) have diverse pharmacodynamic profiles that affect clinical outcomes supports the rationale for using platelet function and genetic testing to individualize antiplatelet treatment regimens. Indeed, up to one-third of patients treated with clopidogrel, but a minority of those treated with prasugrel or ticagrelor, exhibit high residual platelet reactivity resulting in an increased thrombotic risk. On the other hand, prasugrel and ticagrelor are frequently associated with low platelet reactivity and increased bleeding risk compared with clopidogrel without providing any additional reduction in ischemic events compared with patients who adequately respond to clopidogrel. The use of platelet function and genetic testing may allow for a guided selection of oral P2Y12 inhibitors. However, the nonuniform results of randomized controlled trials have led guidelines to provide limited recommendations on the implementation of these tests in patients undergoing percutaneous coronary intervention. In light of recent advancements in the field, this consensus document by a panel of international experts fills in the guideline gap by providing updates on the latest evidence in the field as well as recommendations for clinical practice.
Collapse
Affiliation(s)
- Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, Florida, USA.
| | - Mattia Galli
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Dimitrios Alexopoulos
- 7th Department of Cardiology, Hygeia Hospital, Athens, Greece; State Hospital for Cardiology, Balatonfüred, Hungary
| | - Daniel Aradi
- State Hospital for Cardiology, Balatonfüred, Hungary; Hungary and Heart and Vascular Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Laurent Bonello
- Intensive Care Unit, Hopital Universitaire Nord, Aix-Marseille University, Marseille, France
| | - Davide Capodanno
- Azienda Ospedaliero-Universitaria Policlinico G. Rodolico-San Marco, University of Catania, Catania, Italy
| | - Larisa H Cavallari
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - Jean-Philippe Collet
- ACTION Study Group, INSERM UMRS 1166, Institut de Cardiologie, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Thomas Cuisset
- Department of Cardiology, La Timone Hospital, Marseille, France
| | - Jose Luis Ferreiro
- Department of Cardiology, Joan XXIII University Hospital, IISPV, Rovira i Virgili University, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Tarragona, Spain
| | - Francesco Franchi
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Tobias Geisler
- Department of Cardiology and Angiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - C Michael Gibson
- Baim Institute of Clinical Research, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Diana A Gorog
- Cardiovascular Division, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Centre for Health Services and Clinical Research, Postgraduate Medical School, University of Hertfordshire, Hertfordshire, United Kingdom
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, Baltimore, Maryland, USA
| | - Young-Hoon Jeong
- CAU Thrombosis and Biomarker Center, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, South Korea; Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Rossella Marcucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Jolanta M Siller-Matula
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Roxana Mehran
- Center for Interventional Cardiovascular Research and Clinical Trials, Icahn School Medicine at Mount Sinai, New York, New York, USA
| | - Franz-Josef Neumann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Konstantinos D Rizas
- Medizinische Klinik und Poliklinik I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany; German Center for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Fabiana Rollini
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Derek Y F So
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Gregg W Stone
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert F Storey
- Cardiovascular Research Unit, Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, Baltimore, Maryland, USA
| | - Jurrien Ten Berg
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, the Netherlands; Department of Cardiology, University Medical Center Maastricht, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Dietmar Trenk
- Clinical Pharmacology, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Valgimigli
- Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano, Switzerland; Department of Biomedical Sciences, University of Italian Switzerland, Lugano, Switzerland; University of Bern, Bern, Switzerland
| | - Ron Waksman
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Dirk Sibbing
- Medizinische Klinik und Poliklinik I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany; Privatklinik Lauterbacher Mühle am Ostsee, Seeshaupt, Germany
| |
Collapse
|
15
|
Al-Shammari AS, Ibrahim A, Shalabi L, Khan M, Rafiqul Islam M, Alsawadi RA, Almansouri NE, Hasan MT, Hassan IA, Sakini ASA, Kanagala SG, Nada SA, Wssawi AFA. Comparison between mono vs dual vs triple antiplatelet therapy in patients with ischemic heart disease undergoing PCI, a network meta-analysis. Curr Probl Cardiol 2024; 49:102755. [PMID: 39079620 DOI: 10.1016/j.cpcardiol.2024.102755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024]
Abstract
AIMS We aim to research the efficacy and safety of single(SAPT), dual(DAPT), and triple(TAPT) antiplatelets approaches across IHD patients undergoing PCI. METHODS AND RESULTS A network meta-analysis was conducted until April 1st, 2024, using the netmeta package in R studio 4.3.3. Primary outcomes were cardiac death, myocardial infarction(MI), stent thrombosis, stroke, and major bleeding(BARC 3-5). From 25 studies, a total of 65115 patients were included. For cardiac death, TAPT had no different risk than DAPT compared to SAPT [RR = 0.74; 95%CI (0.40 to 1.35); p-value = 0.33], [RR = 1.01, 95%CI (0.84 to 1.19); p-value = 0.87] respectively. For MI, TAPT had no different risk than DAPT compared to SAPT [RR = 0.77; 95%CI (0.51 to 1.16); p-value = 0.2047], [RR = 0.81, 95%CI (0.64 to 1.03); p-value = 0.0850] respectively. For stent thrombosis, DAPT had no different risk than TAPT compared to SAPT [RR = 0.74; 95%CI (0.45 to 1.21); p-value = 0.2284], [RR = 0.84, 95%CI (0.27 to 2.59); p-value = 0.7630] respectively. For stroke, DAPT had no different risk than TAPT in comparison to SAPT [RR = 0.91; 95%CI (0.75 to 1.10); p-value = 0.3209], and [RR = 0.87, 95%CI (0.43 to 1.76); p-value=0.6937], respectively. For Major bleeding(BARC 3-5), DAPT and TAPT increased major bleeding compared to SAPT, with only DAPT showing statistical significance. [RR = 1.43; 95%CI (1.09 to 1.88); p-value = 0.0107], and [RR = 2.78, 95%CI (0.90 to 4.78); p-value = 0.0852], respectively. CONCLUSION DAPT and TAPT increased the risk of bleeding events compared to SAPT. However, we found no significant differences between these regimens for the other primary outcomes.
Collapse
Affiliation(s)
| | - Ahmed Ibrahim
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Laila Shalabi
- Faculty of Medicine, Gharyan University, Gharyan, Libya
| | - Misha Khan
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - M Rafiqul Islam
- Department of Medicine, Chattogram Medical College Hospital, Chattogram, Bangladesh
| | | | | | | | | | | | | | - Sarah A Nada
- Menoufia University Faculty of Medicine, Menoufia, Egypt
| | | |
Collapse
|
16
|
Khan Y, Shanmugar SB, Ahmad UF, Mansoor A, Gbamgbola TA, Farooq W, Anene JI, Bedros AWS, Gulfam M. The Implementation and Outcomes of Personalized Antihypertensive Therapy Based on Pharmacogenetic Testing: A Retrospective Study Examining Blood Pressure Control and Medication Tolerability. Cureus 2024; 16:e74288. [PMID: 39717305 PMCID: PMC11664490 DOI: 10.7759/cureus.74288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Hypertension management typically relies on standardized treatment regimens, which may not account for individual genetic variations that affect drug metabolism and response. OBJECTIVE The objective of this study was to evaluate the effectiveness of personalized antihypertensive therapy, guided by pharmacogenetic testing, in terms of blood pressure (BP) control and medication tolerability. MATERIALS AND METHODS A retrospective cohort study was conducted at Jinnah Postgraduate Medical Centre, Karachi, from January 2023 to December 2023. The study included 330 hypertensive patients who received either conventional care (n = 165) or personalized therapy directed by pharmacogenetic testing (n = 165). Data on patient demographics, genetic test results, antihypertensive drug prescriptions, and blood pressure readings at baseline, three months, and six months were extracted from electronic health records. Reports of adverse effects were used to assess medication tolerability. Independent t-tests were employed for statistical analysis (SPSS version 25 (IBM Corp., Armonk, NY)) to evaluate changes in blood pressure and adverse effects between the two groups, with a significance level set at p < 0.05. RESULTS Among the 330 hypertensive patients, the Personalized Therapy group (n = 165) showed a significant reduction in systolic blood pressure by 17.8 mmHg (±6.4) and diastolic blood pressure by 11.3 mmHg (±5.7) over six months, compared to reductions of 8.7 mmHg (±6.7) and 5.7 mmHg (±4.8), respectively, in the Standard Therapy group (n = 165) (p < 0.001). Additionally, the Personalized Therapy group experienced fewer adverse effects, with 15 patients reporting dizziness and five reporting gastrointestinal issues, compared to 30 patients with dizziness and 10 with gastrointestinal issues in the Standard Therapy group. CONCLUSION Personalized antihypertensive therapy based on pharmacogenetic testing significantly improves blood pressure control and medication tolerability compared to standard treatment, supporting its broader implementation in hypertension management.
Collapse
Affiliation(s)
- Youksal Khan
- Oncology Department, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | | | - Amna Mansoor
- Internal Medicine Department, Central Park Teaching Hospital, Lahore, PAK
| | - Taiwo Asanat Gbamgbola
- Epidemiology and Public Health Department, International University of the Health Sciences, St. Kitts, KNA
| | - Waqas Farooq
- Internal Medicine Department, King Fahad Armed Forces Hospital, Jeddah, SAU
| | - Jennifer Ifeoma Anene
- Medicine Department, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, UKR
| | | | - Muhammad Gulfam
- Medicine Department, Khyber Medical University, Peshawar, PAK
| |
Collapse
|
17
|
Strehlow M, Alvarez A, Blomkalns AL, Caretta-Wyer H, Gharahbaghian L, Imler D, Khan A, Lee M, Lobo V, Newberry JA, Ribeira R, Sebok-Syer SS, Shen S, Gisondi MA. Precision emergency medicine. Acad Emerg Med 2024; 31:1150-1164. [PMID: 38940478 DOI: 10.1111/acem.14962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/13/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Precision health is a burgeoning scientific discipline that aims to incorporate individual variability in biological, behavioral, and social factors to develop personalized health solutions. To date, emergency medicine has not deeply engaged in the precision health movement. However, rapid advances in health technology, data science, and medical informatics offer new opportunities for emergency medicine to realize the promises of precision health. METHODS In this article, we conceptualize precision emergency medicine as an emerging paradigm and identify key drivers of its implementation into current and future clinical practice. We acknowledge important obstacles to the specialty-wide adoption of precision emergency medicine and offer solutions that conceive a successful path forward. RESULTS Precision emergency medicine is defined as the use of information and technology to deliver acute care effectively, efficiently, and authentically to individual patients and their communities. Key drivers and opportunities include leveraging human data, capitalizing on technology and digital tools, providing deliberate access to care, advancing population health, and reimagining provider education and roles. Overcoming challenges in equity, privacy, and cost is essential for success. We close with a call to action to proactively incorporate precision health into the clinical practice of emergency medicine, the training of future emergency physicians, and the research agenda of the specialty. CONCLUSIONS Precision emergency medicine leverages new technology and data-driven artificial intelligence to advance diagnostic testing, individualize patient care plans and therapeutics, and strategically refine the convergence of the health system and the community.
Collapse
Affiliation(s)
- Matthew Strehlow
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Al'ai Alvarez
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Andra L Blomkalns
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Holly Caretta-Wyer
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Laleh Gharahbaghian
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Imler
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Ayesha Khan
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Moon Lee
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Viveta Lobo
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer A Newberry
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Ryan Ribeira
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Stefanie S Sebok-Syer
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Sam Shen
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michael A Gisondi
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
18
|
Zhang S, Lv C, Dong L, Wu Y, Yin T. Drug-gene interactions in older patients with coronary artery disease. BMC Geriatr 2024; 24:881. [PMID: 39462319 PMCID: PMC11515805 DOI: 10.1186/s12877-024-05471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Older patients with coronary artery disease (CAD) are particularly vulnerable to the efficacy and adverse drug reactions, and may therefore particularly benefit from personalized medication. Drug-gene interactions (DGIs) occur when an individual's genotype affects the pharmacokinetics and/or pharmacodynamics of a victim drug. OBJECTIVES This study aimed to investigate the impact of cardiovascular-related DGIs on the clinical efficacy and safety outcomes in older patients with CAD. METHODS Hospitalized older patients (≥ 65 years old) with CAD were consecutively recruited from August 2018 to May 2022. Eligible patients were genotyped for the actionable pharmacogenetic variants of CYP2C9, CYP2C19, CYP2D6, CYP3A5, and SLCO1B1, which had clinical annotations or implementation guidelines for cardiovascular drugs. Allele frequencies and DGIs were determined in the cohort for the 5 actionable PGx genes and the prescribed cardiovascular drugs. All patients were followed up for at least 1 year. The influence of DGIs on the cardiovascular drug-related efficacy outcomes (all-cause mortality and/or major cardiovascular events, MACEs) and drug response phenotypes of "drug-stop" and "dose-decrease" were evaluated. RESULTS A total of 1,017 eligible older patients with CAD were included, among whom 63.2% were male, with an average age of 80.8 years old, and 87.6% were administrated with polypharmacy (≥ 5 medications). After genotyping, we found that 96.0% of the older patients with CAD patients had at least one allele of the 5 pharmacogenes associated with a therapeutic change, indicating a need for a therapeutic change in a mean of 1.32 drugs of the 19 cardiovascular-related drugs. We also identified that 79.5% of the patients had at least one DGI (range 0-6). The median follow-up interval was 39 months. Independent of age, negative association could be found between the number of DGIs and all-cause mortality (adjusted HR: 0.84, 95% CI: 0.73-0.96, P = 0.008), and MACEs (adjusted HR: 0.84, 95% CI: 0.72-0.98, P = 0.023), but positive association could be found between the number of DGIs and drug response phenotypes (adjusted OR: 1.24, 95% CI: 1.05-1.45, P = 0.011) in the elderly patients with CAD. CONCLUSIONS The association between cardiovascular DGIs and the clinical outcomes emphasized the necessity for the integration of genetic and clinical data to enhance the optimization of cardiovascular polypharmacy in older patients with CAD. The causal relationship between DGIs and the clinical outcomes should be established in the large scale prospectively designed cohort study.
Collapse
Affiliation(s)
- Shizhao Zhang
- Institute of Geriatrics, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Second Medical Center of Chinese PLA General Hospital, No.28 Fu Xing Road, Beijing, 100853, China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Chao Lv
- Institute of Geriatrics, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Second Medical Center of Chinese PLA General Hospital, No.28 Fu Xing Road, Beijing, 100853, China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Lisha Dong
- Institute of Geriatrics, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Second Medical Center of Chinese PLA General Hospital, No.28 Fu Xing Road, Beijing, 100853, China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Yangxun Wu
- Institute of Geriatrics, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Second Medical Center of Chinese PLA General Hospital, No.28 Fu Xing Road, Beijing, 100853, China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Tong Yin
- Institute of Geriatrics, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Second Medical Center of Chinese PLA General Hospital, No.28 Fu Xing Road, Beijing, 100853, China.
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
19
|
Agostini LDC, Silva NNT, Belo VDA, Luizon MR, Lima AA, da Silva GN. Pharmacogenetics of angiotensin-converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) in cardiovascular diseases. Eur J Pharmacol 2024; 981:176907. [PMID: 39154825 DOI: 10.1016/j.ejphar.2024.176907] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Cardiovascular diseases (CVDs) have a high mortality rate, and despite the several available therapeutic targets, non-response to antihypertensives remains a common problem. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are important classes of drugs recommended as first-line therapy for several CVDs. However, response to ACEIs and ARBs varies among treated patients. Pharmacogenomics assesses how an individual's genetic characteristics affect their likely response to drug therapy. Currently, numerous studies suggest that genetic polymorphisms may contribute to variability in drug response. Moreover, further studies evaluating gene-gene interactions within signaling pathways in response to antihypertensives might help to unravel potential genetic predictors for antihypertensive response. This review summarizes the pharmacogenetic data for ACEIs and ARBs in patients with CVD, and discusses the potential pharmacogenetics of these classes of antihypertensives in clinical practice. However, replication studies in different populations are needed. In addition, studies that evaluate gene-gene interactions that share signaling pathways in the response to antihypertensive drugs might facilitate the discovery of genetic predictors for antihypertensive response.
Collapse
Affiliation(s)
- Lívia da Cunha Agostini
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Nayara Nascimento Toledo Silva
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Vanessa de Almeida Belo
- Departamento de Farmácia (DEFAR), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Angelica Alves Lima
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Glenda Nicioli da Silva
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
20
|
Chinni BK, Manlhiot C. Emerging Analytical Approaches for Personalized Medicine Using Machine Learning In Pediatric and Congenital Heart Disease. Can J Cardiol 2024; 40:1880-1896. [PMID: 39097187 DOI: 10.1016/j.cjca.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
Precision and personalized medicine, the process by which patient management is tailored to individual circumstances, are now terms that are familiar to cardiologists, despite it still being an emerging field. Although precision medicine relies most often on the underlying biology and pathophysiology of a patient's condition, personalized medicine relies on digital biomarkers generated through algorithms. Given the complexity of the underlying data, these digital biomarkers are most often generated through machine-learning algorithms. There are a number of analytic considerations regarding the creation of digital biomarkers that are discussed in this review, including data preprocessing, time dependency and gating, dimensionality reduction, and novel methods, both in the realm of supervised and unsupervised machine learning. Some of these considerations, such as sample size requirements and measurements of model performance, are particularly challenging in small and heterogeneous populations with rare outcomes such as children with congenital heart disease. Finally, we review analytic considerations for the deployment of digital biomarkers in clinical settings, including the emerging field of clinical artificial intelligence (AI) operations, computational needs for deployment, efforts to increase the explainability of AI, algorithmic drift, and the needs for distributed surveillance and federated learning. We conclude this review by discussing a recent simulation study that shows that, despite these analytic challenges and complications, the use of digital biomarkers in managing clinical care might have substantial benefits regarding individual patient outcomes.
Collapse
Affiliation(s)
- Bhargava K Chinni
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cedric Manlhiot
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Research Institute, SickKids Hospital, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Zhang F, Armando I, Jose PA, Zeng C, Yang J. G protein-coupled receptor kinases in hypertension: physiology, pathogenesis, and therapeutic targets. Hypertens Res 2024; 47:2317-2336. [PMID: 38961282 PMCID: PMC11374685 DOI: 10.1038/s41440-024-01763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
G protein-coupled receptors (GPCRs) mediate cellular responses to a myriad of hormones and neurotransmitters that play vital roles in the regulation of physiological processes such as blood pressure. In organs such as the artery and kidney, hormones or neurotransmitters, such as angiotensin II (Ang II), dopamine, epinephrine, and norepinephrine exert their functions via their receptors, with the ultimate effect of keeping normal vascular reactivity, normal body sodium, and normal blood pressure. GPCR kinases (GRKs) exert their biological functions, by mediating the regulation of agonist-occupied GPCRs, non-GPCRs, or non-receptor substrates. In particular, increasing number of studies show that aberrant expression and activity of GRKs in the cardiovascular system and kidney inhibit or stimulate GPCRs (e.g., dopamine receptors, Ang II receptors, and α- and β-adrenergic receptors), resulting in hypertension. Current studies focus on the effect of selective GRK inhibitors in cardiovascular diseases, including hypertension. Moreover, genetic studies show that GRK gene variants are associated with essential hypertension, blood pressure response to antihypertensive medicines, and adverse cardiovascular outcomes of antihypertensive treatment. In this review, we present a comprehensive overview of GRK-mediated regulation of blood pressure, role of GRKs in the pathogenesis of hypertension, and highlight potential strategies for the treatment of hypertension. Schematic representation of GPCR desensitization process. Activation of GPCRs begins with the binding of an agonist to its corresponding receptor. Then G proteins activate downstream effectors that are mediated by various signaling pathways. GPCR signaling is halted by GRK-mediated receptor phosphorylation, which causes receptor internalization through β-arrestin.
Collapse
Affiliation(s)
- Fuwei Zhang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ines Armando
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
22
|
Delabays B, Trajanoska K, Walonoski J, Mooser V. Cardiovascular Pharmacogenetics: From Discovery of Genetic Association to Clinical Adoption of Derived Test. Pharmacol Rev 2024; 76:791-827. [PMID: 39122647 DOI: 10.1124/pharmrev.123.000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 08/12/2024] Open
Abstract
Recent breakthroughs in human genetics and in information technologies have markedly expanded our understanding at the molecular level of the response to drugs, i.e., pharmacogenetics (PGx), across therapy areas. This review is restricted to PGx for cardiovascular (CV) drugs. First, we examined the PGx information in the labels approved by regulatory agencies in Europe, Japan, and North America and related recommendations from expert panels. Out of 221 marketed CV drugs, 36 had PGx information in their labels approved by one or more agencies. The level of annotations and recommendations varied markedly between agencies and expert panels. Clopidogrel is the only CV drug with consistent PGx recommendation (i.e., "actionable"). This situation prompted us to dissect the steps from discovery of a PGx association to clinical translation. We found 101 genome-wide association studies that investigated the response to CV drugs or drug classes. These studies reported significant associations for 48 PGx traits mapping to 306 genes. Six of these 306 genes are mentioned in the corresponding PGx labels or recommendations for CV drugs. Genomic analyses also highlighted the wide between-population differences in risk allele frequencies and the individual load of actionable PGx variants. Given the high attrition rate and the long road to clinical translation, additional work is warranted to identify and validate PGx variants for more CV drugs across diverse populations and to demonstrate the utility of PGx testing. To that end, pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond. SIGNIFICANCE STATEMENT: Despite spectacular breakthroughs in human molecular genetics and information technologies, consistent evidence supporting PGx testing in the cardiovascular area is limited to a few drugs. Additional work is warranted to discover and validate new PGx markers and demonstrate their utility. Pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond.
Collapse
Affiliation(s)
- Benoît Delabays
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Katerina Trajanoska
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Joshua Walonoski
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Vincent Mooser
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| |
Collapse
|
23
|
Elgarhy FM, Borham A, Alziny N, AbdElaal KR, Shuaib M, Musaibah AS, Hussein MA, Abdelnaser A. From Drug Discovery to Drug Approval: A Comprehensive Review of the Pharmacogenomics Status Quo with a Special Focus on Egypt. Pharmaceuticals (Basel) 2024; 17:881. [PMID: 39065732 PMCID: PMC11279872 DOI: 10.3390/ph17070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Pharmacogenomics (PGx) is the hope for the full optimization of drug therapy while minimizing the accompanying adverse drug events that cost billions of dollars annually. Since years before the century, it has been known that inter-individual variations contribute to differences in specific drug responses. It is the bridge to what is well-known today as "personalized medicine". Addressing the drug's pharmacokinetics and pharmacodynamics is one of the features of this science, owing to patient characteristics that vary on so many occasions. Mainly in the liver parenchymal cells, intricate interactions between the drug molecules and enzymes family of so-called "Cytochrome P450" occur which hugely affects how the body will react to the drug in terms of metabolism, efficacy, and safety. Single nucleotide polymorphisms, once validated for a transparent and credible clinical utility, can be used to guide and ensure the succession of the pharmacotherapy plan. Novel tools of pharmacoeconomics science are utilized extensively to assess cost-effective pharmacogenes preceding the translation to the bedside. Drug development and discovery incorporate a drug-gene perspective and save more resources. Regulations and laws shaping the clinical PGx practice can be misconceived; however, these pre-/post approval processes ensure the product's safety and efficacy. National and international regulatory agencies seek guidance on maintaining conduct in PGx practice. In this patient-centric era, social and legal considerations manifest in a way that makes them unavoidable, involving patients and other stakeholders in a deliberate journey toward utmost patient well-being. In this comprehensive review, we contemporarily addressed the scientific leaps in PGx, along with various challenges that face the proper implementation of personalized medicine in Egypt. These informative insights were drawn to serve what the Egyptian population, in particular, would benefit from in terms of knowledge and know-how while maintaining the latest global trends. Moreover, this review is the first to discuss various modalities and challenges faced in Egypt regarding PGx, which we believe could be used as a pilot piece of literature for future studies locally, regionally, and internationally.
Collapse
Affiliation(s)
- Fadya M. Elgarhy
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 4435121, Egypt
| | - Abdallah Borham
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Noha Alziny
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Khlood R. AbdElaal
- Graduate Program of Biotechnology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt;
| | - Mahmoud Shuaib
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Abobaker Salem Musaibah
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| |
Collapse
|
24
|
Liu Q, Guo S, Wang N, Wang K, Mo S, Li X, Zhang Y, He H, Wang S, Wu J. Model based on single-nucleotide polymorphism to discriminate aspirin resistance patients. Stroke Vasc Neurol 2024; 9:212-220. [PMID: 37586776 PMCID: PMC11221311 DOI: 10.1136/svn-2022-002228] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/30/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Aspirin is widely used for preventing ischaemic events. About 20%-40% of patients have aspirin resistance (ASR), which prevents them from benefiting from aspirin medication. This study aimed to develop and validate a model based on single-nucleotide polymorphism (SNP) to distinguish ASR patients. METHODS We included patients with spontaneous intracerebral haemorrhage and continuing antiplatelet therapy from a multicentre, prospective cohort study as the derivation cohort. Thromboelastography (inhibition of arachidonic acid channel<50%) was used to identify ASR. Genotyping was performed to identify the ASR-related SNP. Based on the result of the logistic analysis, the aspirin resistance in the Chinese population score (ASR-CN score) was established, and its accuracy was evaluated using the area under the curve (AUC). Patients receiving dual antiplatelet therapy for unruptured intracranial aneurysm embolism were prospectively included in the validation cohort. After embolism, 30-day ischaemic events, including ischaemic stroke, new or more frequent transient ischaemic attack, stent thrombosis and cerebrovascular death, were recorded. RESULTS The derivation cohort included 212 patients (155 male patients and the median age as 59). 87 (41.0%) individuals were identified with ASR. The multivariate logistic analysis demonstrated six SNPs of GP1BA, TBXA2R, PTGS2 and NOS3 as risk factors related to ASR. The ASR-CN score integrating these SNPs performed well to discriminate ASR patients from non-ASR patients (AUC as 0.77). Based on the validation cohort of 372 patients receiving antiplatelet therapy after embolism (including 130 ASR patients), the ASR-CN score continued to distinguish ASR patients with good accuracy (AUC as 0.80). Patients with high a ASR-CN score were more likely to suffer from 30-day ischaemic events after embolism (OR, 1.28; 95% CI, 1.10 to 1.50; p=0.002). CONCLUSION GP1BA, TBXA2R, PTGS2 and NOS3 were SNPs related to ASR. The ASR-CN score is an effective tool to discriminate ASR patients, which may guide antiplatelet therapy. CLINICAL TRIAL REGISTRATION Surgical Treatments of Antiplatelet Intracerebral Hemorrhage cohort (unique identifier: ChiCTR1900024406, http://www.chictr.org.cn/edit.aspx?pid=40640&htm=4).
Collapse
Affiliation(s)
- Qingyuan Liu
- Department of Neurosurgery and China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Shuaiwei Guo
- Department of Neurosurgery and China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Nuochuan Wang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Beijing, China
| | - Kaiwen Wang
- Department of Neurosurgery and China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Shaohua Mo
- Department of Neurosurgery and China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Xiong Li
- Department of Neurosurgery, Beijing Chao-Yang Hospital Capital Medical University, Beijing, China
| | - Yanan Zhang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Beijing, China
| | - Hongwei He
- Department of Neurosurgery and China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
- Beijing Neurosurgical institution, Capital Medical University, Beijing, China
| | - Shuo Wang
- Beijing Neurosurgical institution, Capital Medical University, Beijing, China
| | - Jun Wu
- Department of Neurosurgery and China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| |
Collapse
|
25
|
Ingelman-Sundberg M, Lauschke VM. Individualized Pharmacotherapy Utilizing Genetic Biomarkers and Novel In Vitro Systems As Predictive Tools for Optimal Drug Development and Treatment. Drug Metab Dispos 2024; 52:467-475. [PMID: 38575185 DOI: 10.1124/dmd.123.001302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
In the area of drug development and clinical pharmacotherapy, a profound understanding of the pharmacokinetics and potential adverse reactions associated with the drug under investigation is paramount. Essential to this endeavor is a comprehensive understanding about interindividual variations in absorption, distribution, metabolism, and excretion (ADME) genetics and the predictive capabilities of in vitro systems, shedding light on metabolite formation and the risk of adverse drug reactions (ADRs). Both the domains of pharmacogenomics and the advancement of in vitro systems are experiencing rapid expansion. Here we present an update on these burgeoning fields, providing an overview of their current status and illuminating potential future directions. SIGNIFICANCE STATEMENT: There is very rapid development in the area of pharmacogenomics and in vitro systems for predicting drug pharmacokinetics and risk for adverse drug reactions. We provide an update of the current status of pharmacogenomics and developed in vitro systems on these aspects aimed to achieve a better personalized pharmacotherapy.
Collapse
Affiliation(s)
- Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.I.-S., V.M.L.); Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.I.-S., V.M.L.); Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| |
Collapse
|
26
|
Ingelman-Sundberg M, Pirmohamed M. Precision medicine in cardiovascular therapeutics: Evaluating the role of pharmacogenetic analysis prior to drug treatment. J Intern Med 2024; 295:583-598. [PMID: 38343077 DOI: 10.1111/joim.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Pharmacogenomics is the examination of how genetic variation influences drug metabolism and response, in terms of both efficacy and safety. In cardiovascular disease, patient-specific diplotypes determine phenotypes, thereby influencing the efficacy and safety of drug treatments, including statins, antiarrhythmics, anticoagulants and antiplatelets. Notably, polymorphisms in key genes, such as CYP2C9, CYP2C19, VKORC1 and SLCO1B1, significantly impact the outcomes of treatment with clopidogrel, warfarin and simvastatin. Furthermore, the CYP2C19 polymorphism influences the pharmacokinetics and safety of the novel hypertrophic cardiomyopathy inhibitor, mavacamten. In this review, we critically assess the clinical application of pharmacogenomics in cardiovascular disease and delineate present and future utilization of pharmacogenomics. This includes insights into identifying missing heritability, the integration of whole genome sequencing and the application of polygenic risk scores to enhance the precision of personalized drug therapy. Our discussion encompasses health economic analyses that underscore the cost benefits associated with pre-emptive genotyping for warfarin and clopidogrel treatments, albeit acknowledging the need for further research in this area. In summary, we contend that cardiovascular pharmacogenomic analyses are underpinned by a wealth of evidence, and implementation is already occurring for some of these gene-drug pairs, but as with any area of medicine, we need to continually gather more information to optimize the use of pharmacogenomics in clinical practice.
Collapse
Affiliation(s)
- Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, Stockholm, Sweden
| | - Munir Pirmohamed
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| |
Collapse
|
27
|
Shen Q, Song G, Lin H, Bai H, Huang Y, Lv F, Wang S. Sensing, Imaging, and Therapeutic Strategies Endowing by Conjugate Polymers for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310032. [PMID: 38316396 DOI: 10.1002/adma.202310032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Conjugated polymers (CPs) have promising applications in biomedical fields, such as disease monitoring, real-time imaging diagnosis, and disease treatment. As a promising luminescent material with tunable emission, high brightness and excellent stability, CPs are widely used as fluorescent probes in biological detection and imaging. Rational molecular design and structural optimization have broadened absorption/emission range of CPs, which are more conductive for disease diagnosis and precision therapy. This review provides a comprehensive overview of recent advances in the application of CPs, aiming to elucidate their structural and functional relationships. The fluorescence properties of CPs and the mechanism of detection signal amplification are first discussed, followed by an elucidation of their emerging applications in biological detection. Subsequently, CPs-based imaging systems and therapeutic strategies are illustrated systematically. Finally, recent advancements in utilizing CPs as electroactive materials for bioelectronic devices are also investigated. Moreover, the challenges and outlooks of CPs for precision medicine are discussed. Through this systematic review, it is hoped to highlight the frontier progress of CPs and promote new breakthroughs in fundamental research and clinical transformation.
Collapse
Affiliation(s)
- Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
28
|
Zhang X, Wang C, Min R, Zhou Q, Qi Y, Fan J. Cardamom consumption may improve cardiovascular metabolic biomarkers in adults: A systematic review and meta-analysis of randomized controlled trials. Nutr Res 2024; 125:101-112. [PMID: 38593657 DOI: 10.1016/j.nutres.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
The bioactive compounds in cardamom have been found to enhance cardiovascular health by improving blood lipids and inflammation. We hypothesized that cardamom consumption might ameliorate cardiovascular metabolic biomarkers in adults; however, there is still debate regarding its impact on cardiac metabolism. This research was therefore designed to determine if cardamom consumption had a favorable impact on lipid profiles, inflammatory markers, and oxidative stress indices as they related to cardiovascular diseases. A comprehensive search was conducted through PubMed, Scopus, Embase, Web of Science, and the Cochrane Library on July 4, 2023. Using a random-effects model pooled the weighted mean difference (WMD) and 95% confidence interval (CI). The final 12 trials containing 989 participants were included. The results illustrated that cardamom consumption could improve total cholesterol (WMD = -8.56 mg/dL; 95% CI, -14.90 to -2.22), triglycerides (WMD = -14.09 mg/dL; 95% CI, -24.01 to -4.17), high-sensitivity C-reactive protein (WMD = -1.01 ng/mL; 95% CI, -1.81 to -0.22), and interleukin-6 (WMD = -1.81 pg/mL; 95% CI, -3.06 to -0.56). However, it did not have significant influences on high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and some indicators of oxidative stress. In conclusion, cardamom consumption can improve specific cardiovascular metabolic biomarkers and potentially confer protective effects on cardiovascular health. However, more large-scale clinical research with better designs would further validate the findings, which will offer substantial evidence of cardamom as nutritional and functional products.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Caixia Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ruixue Min
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qilun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yue Qi
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jianming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
29
|
Wang X, Chen T, Ping Y, Dai Y, Yu P, Xie Y, Liu Z, Sun B, Duan X, Tao Z. Sequence-Guided Localization of DNA Hybridization Enables Highly Selective and Robust Genotyping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307985. [PMID: 38084466 DOI: 10.1002/smll.202307985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/28/2023] [Indexed: 05/18/2024]
Abstract
Genetic variations are always related to human diseases or susceptibility to therapies. Nucleic acid probes that precisely distinguish closely related sequences become an indispensable requisite both in research and clinical applications. Here, a Sequence-guided DNA LOCalization for leaKless DNA detection (SeqLOCK) is introduced as a technique for DNA hybridization, where the intended targets carrying distinct "guiding sequences" act selectively on the probes. In silicon modeling, experimental results reveal considerable agreement (R2 = 0.9228) that SeqLOCK is capable of preserving high discrimination capacity at an extraordinarily wide range of target concentrations. Furthermore, SeqLOCK reveals high robustness to various solution conditions and can be directly adapted to nucleic acid amplification techniques (e.g., polymerase chain reaction) without the need for laborious pre-treatments. Benefiting from the low hybridization leakage of SeqLOCK, three distinct variations with a clinically relevant mutation frequency under the background of genomic DNA can be discriminated simultaneously. This work establishes a reliable nucleic acid hybridization strategy that offers great potential for constructing robust and programmable systems for molecular sensing and computing.
Collapse
Affiliation(s)
- Xuchu Wang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, China
| | - Tao Chen
- Department of Blood Transfusion, Zhejiang Hospital, Hangzhou, 310052, China
| | - Ying Ping
- Department of Laboratory Medicine, the Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, China
| | - Yibei Dai
- Department of Laboratory Medicine, the Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, China
| | - Pan Yu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, China
| | - Yiyi Xie
- Department of Laboratory Medicine, the Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, China
| | - Zhenping Liu
- Department of Laboratory Medicine, Yuhang Branch of the Second Affiliated Hospital of Zhejiang University, Hangzhou, 310058, China
| | - Bohao Sun
- Department of Pathology, the Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, the Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, China
| | - Zhihua Tao
- Department of Laboratory Medicine, the Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, China
| |
Collapse
|
30
|
Sayed A, Munir M, Poliner M, Sughra S, Epperla N, Addison D. Response to: Correspondence on 'Cardiovascular toxicities associated with bispecific T-cell engager therapy' by Noguchi et al. J Immunother Cancer 2024; 12:e009300. [PMID: 38649282 PMCID: PMC11043767 DOI: 10.1136/jitc-2024-009300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Ahmed Sayed
- Ain Shams University Faculty of Medicine, Cairo, Egypt
| | - Malak Munir
- Ain Shams University Faculty of Medicine, Cairo, Egypt
| | - Michael Poliner
- The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Sana Sughra
- The Ohio State University Medical Center, Columbus, Ohio, USA
| | | | - Daniel Addison
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cancer Control and Prevention, The Ohio State University James Cancer Hospital, Columbus, Ohio, USA
| |
Collapse
|
31
|
Loftus J, Levy HP, Stevenson JM. Documentation of results and medication prescribing after combinatorial psychiatric pharmacogenetic testing: A case for discrete results. Genet Med 2024; 26:101056. [PMID: 38153010 DOI: 10.1016/j.gim.2023.101056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023] Open
Abstract
PURPOSE Combinatorial pharmacogenetic (PGx) panels intended to aid psychiatric prescribing are available to clinicians. Here, we evaluated the documentation of PGx panel results and subsequent prescribing patterns within a tertiary health care system. METHODS We performed a query of psychiatry service note text in our electronic health record using 71 predefined PGx terms. Patients who underwent combinatorial PGx testing were identified, and documentation of test results was analyzed. Prescription data following testing were examined for the frequency of prescriptions influenced by genes on the panel along with the medical specialties involved. RESULTS A total of 341 patients received combinatorial PGx testing, and documentation of results was found to be absent or incomplete for 198 patients (58%). The predominant method of documentation was through portable document formats uploaded to the electronic health record's "Media" section. Among patients with at least 1 year of follow-up, a large majority (194/228, 85%) received orders for medications affected by the tested genes, including 132 of 228 (58%) patients receiving at least 1 non-psychiatric medication influenced by the test results. CONCLUSION Results from combinatorial PGx testing were poorly documented. Medications affected by these results were often prescribed after testing, highlighting the need for discrete results and clinical decision support.
Collapse
Affiliation(s)
- John Loftus
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Howard P Levy
- Maryland Primary Care Physicians, Hanover, MD; Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - James M Stevenson
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
32
|
Kennedy A, Ma G, Manshaei R, Jobling RK, Kim RH, Lewis T, Cohn I. A call for increased inclusivity and global representation in pharmacogenetic testing. NPJ Genom Med 2024; 9:13. [PMID: 38388691 PMCID: PMC10883987 DOI: 10.1038/s41525-024-00403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Commercial pharmacogenetic testing panels capture a fraction of the genetic variation underlying medication metabolism and predisposition to adverse reactions. In this study we compared variation in six pharmacogenes detected by whole genome sequencing (WGS) to a targeted commercial panel in a cohort of 308 individuals with family history of pediatric heart disease. In 1% of the cohort, WGS identified rare variants that altered the interpretation of metabolizer status and would thus prevent potential errors in gene-based dosing.
Collapse
Affiliation(s)
- April Kennedy
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Gabriel Ma
- University of Toronto, Toronto, ON, Canada
| | - Roozbeh Manshaei
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rebekah K Jobling
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Raymond H Kim
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tamorah Lewis
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Iris Cohn
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
33
|
Pereira L, Haidar CE, Haga SB, Cisler AG, Hall A, Shukla SK, Hebbring SJ, Leary EJW. Assessment of the current status of real-world pharmacogenomic testing: informed consent, patient education, and related practices. Front Pharmacol 2024; 15:1355412. [PMID: 38410134 PMCID: PMC10895424 DOI: 10.3389/fphar.2024.1355412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction: The practice of informed consent (IC) for pharmacogenomic testing in clinical settings varies, and there is currently no consensus on which elements of IC to provide to patients. This study aims to assess current IC practices for pharmacogenomic testing. Methods: An online survey was developed and sent to health providers at institutions that offer clinical germline pharmacogenomic testing to assess current IC practices. Results: Forty-six completed surveys representing 43 clinical institutions offering pharmacogenomic testing were received. Thirty-two (74%) respondents obtain IC from patients with variability in elements incorporated. Results revealed that twenty-nine (67%) institutions discuss the benefits, description, and purpose of pharmacogenomic testing with patients. Less commonly discussed elements included methodology and accuracy of testing, and laboratory storage of samples. Discussion: IC practices varied widely among survey respondents. Most respondents desire the establishment of consensus IC recommendations from a trusted pharmacogenomics organization to help address these disparities.
Collapse
Affiliation(s)
- Lucas Pereira
- Marshfield Clinic Research Institute, Center for Precision Medicine Research, Marshfield Clinic Health Systems, Marshfield, WI, United States
- Division of Genetics and Metabolism, Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Cyrine-Eliana Haidar
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Susanne B. Haga
- Program in Precision Medicine, Department of Medicine, School of Medicine, Duke University, Durham, NC, United States
| | - Anna G. Cisler
- Medical Genetics, Marshfield Clinic Health Systems, Marshfield, WI, United States
| | - April Hall
- Division of Genetics and Metabolism, Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Center for Human Genomics and Precision Medicine, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Sanjay K. Shukla
- Marshfield Clinic Research Institute, Center for Precision Medicine Research, Marshfield Clinic Health Systems, Marshfield, WI, United States
| | - Scott J. Hebbring
- Marshfield Clinic Research Institute, Center for Precision Medicine Research, Marshfield Clinic Health Systems, Marshfield, WI, United States
| | - Emili J. W. Leary
- Marshfield Clinic Research Institute, Center for Precision Medicine Research, Marshfield Clinic Health Systems, Marshfield, WI, United States
| |
Collapse
|
34
|
Zhang K, Loong SSE, Yuen LZH, Venketasubramanian N, Chin HL, Lai PS, Tan BYQ. Genetics in Ischemic Stroke: Current Perspectives and Future Directions. J Cardiovasc Dev Dis 2023; 10:495. [PMID: 38132662 PMCID: PMC10743455 DOI: 10.3390/jcdd10120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Ischemic stroke is a heterogeneous condition influenced by a combination of genetic and environmental factors. Recent advancements have explored genetics in relation to various aspects of ischemic stroke, including the alteration of individual stroke occurrence risk, modulation of treatment response, and effectiveness of post-stroke functional recovery. This article aims to review the recent findings from genetic studies related to various clinical and molecular aspects of ischemic stroke. The potential clinical applications of these genetic insights in stratifying stroke risk, guiding personalized therapy, and identifying new therapeutic targets are discussed herein.
Collapse
Affiliation(s)
- Ka Zhang
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
| | - Shaun S. E. Loong
- Cardiovascular-Metabolic Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Linus Z. H. Yuen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | | | - Hui-Lin Chin
- Khoo Teck Puat National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore;
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| | - Benjamin Y. Q. Tan
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
35
|
Mauriello A, Ascrizzi A, Molinari R, Falco L, Caturano A, D’Andrea A, Russo V. Pharmacogenomics of Cardiovascular Drugs for Atherothrombotic, Thromboembolic and Atherosclerotic Risk. Genes (Basel) 2023; 14:2057. [PMID: 38003001 PMCID: PMC10671139 DOI: 10.3390/genes14112057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE OF REVIEW Advances in pharmacogenomics have paved the way for personalized medicine. Cardiovascular diseases still represent the leading cause of mortality in the world. The aim of this review is to summarize the background, rationale, and evidence of pharmacogenomics in cardiovascular medicine, in particular, the use of antiplatelet drugs, anticoagulants, and drugs used for the treatment of dyslipidemia. RECENT FINDINGS Randomized clinical trials have supported the role of a genotype-guided approach for antiplatelet therapy in patients with coronary heart disease undergoing percutaneous coronary interventions. Numerous studies demonstrate how the risk of ineffectiveness of new oral anticoagulants and vitamin K anticoagulants is linked to various genetic polymorphisms. Furthermore, there is growing evidence to support the association of some genetic variants and poor adherence to statin therapy, for example, due to the appearance of muscular symptoms. There is evidence for resistance to some drugs for the treatment of dyslipidemia, such as anti-PCSK9. SUMMARY Pharmacogenomics has the potential to improve patient care by providing the right drug to the right patient and could guide the identification of new drug therapies for cardiovascular disease. This is very important in cardiovascular diseases, which have high morbidity and mortality. The improvement in therapy could be reflected in the reduction of healthcare costs and patient mortality.
Collapse
Affiliation(s)
- Alfredo Mauriello
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Campania”—Monaldi Hospital, 80126 Naples, Italy; (A.M.); (A.A.); (R.M.); (L.F.); (A.D.)
| | - Antonia Ascrizzi
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Campania”—Monaldi Hospital, 80126 Naples, Italy; (A.M.); (A.A.); (R.M.); (L.F.); (A.D.)
| | - Riccardo Molinari
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Campania”—Monaldi Hospital, 80126 Naples, Italy; (A.M.); (A.A.); (R.M.); (L.F.); (A.D.)
| | - Luigi Falco
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Campania”—Monaldi Hospital, 80126 Naples, Italy; (A.M.); (A.A.); (R.M.); (L.F.); (A.D.)
| | - Alfredo Caturano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80100 Naples, Italy;
| | - Antonello D’Andrea
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Campania”—Monaldi Hospital, 80126 Naples, Italy; (A.M.); (A.A.); (R.M.); (L.F.); (A.D.)
- Unit of Cardiology, “Umberto I” Hospital, Nocera Inferiore, 84014 Salerno, Italy
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Campania”—Monaldi Hospital, 80126 Naples, Italy; (A.M.); (A.A.); (R.M.); (L.F.); (A.D.)
| |
Collapse
|
36
|
Rivas VN, Stern JA, Ueda Y. The Role of Personalized Medicine in Companion Animal Cardiology. Vet Clin North Am Small Anim Pract 2023; 53:1255-1276. [PMID: 37423841 PMCID: PMC11184409 DOI: 10.1016/j.cvsm.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cardiomyopathies remain one of the most common inherited cardiac diseases in both human and veterinary patients. To date, well over 100 mutated genes are known to cause cardiomyopathies in humans with only a handful known in cats and dogs. This review highlights the need and use of personalized one-health approaches to cardiovascular case management and advancement in pharmacogenetic-based therapy in veterinary medicine. Personalized medicine holds promise in understanding the molecular basis of disease and ultimately will unlock the next generation of targeted novel pharmaceuticals and aid in the reversal of detrimental effects at a molecular level.
Collapse
Affiliation(s)
- Victor N Rivas
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1038 William Moore Drive, Raleigh, NC 27606, USA
| | - Joshua A Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1038 William Moore Drive, Raleigh, NC 27606, USA
| | - Yu Ueda
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1038 William Moore Drive, Raleigh, NC 27606, USA.
| |
Collapse
|
37
|
Nogueiras-Álvarez R. Pharmacogenomics in clinical trials: an overview. Front Pharmacol 2023; 14:1247088. [PMID: 37927590 PMCID: PMC10625420 DOI: 10.3389/fphar.2023.1247088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
With the trend towards promoting personalised medicine (PM), the application of pharmacogenetics and pharmacogenomics (PGx) is of growing importance. For the purposes of clinical trials, the inclusion of PGx is an additional tool that should be considered for improving our knowledge about the effectiveness and safety of new drugs. A search of available clinical trials containing pharmacogenetic and PGx information was conducted on ClinicalTrials.gov. The results show there has been an increase in the number of trials containing PGx information since the 2000 s, with particular relevance in the areas of Oncology (28.43%) and Mental Health (10.66%). Most of the clinical trials focus on treatment as their primary purpose. In those clinical trials entries where the specific genes considered for study are detailed, the most frequently explored genes are CYP2D6 (especially in Mental Health and Pain), CYP2C9 (in Hematology), CYP2C19 (in Cardiology and Mental Health) and ABCB1 and CYP3A5 (particularly prominent in Transplantation and Cardiology), among others. Researchers and clinicans should be trained in pharmacogenetics and PGx in order to be able to make a proper interpretation of this data, contributing to better prescribing decisions and an improvement in patients' care, which would lead to the performance of PM.
Collapse
|
38
|
Capodanno D, Angiolillo DJ. Personalised antiplatelet therapies for coronary artery disease: what the future holds. Eur Heart J 2023; 44:3059-3072. [PMID: 37345589 DOI: 10.1093/eurheartj/ehad362] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/07/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Coronary artery disease (CAD) is one of the leading causes of death globally, and antiplatelet therapy is crucial for both its prevention and treatment. Antiplatelet drugs such as aspirin and P2Y12 inhibitors are commonly used to reduce the risk of thrombotic events, including myocardial infarction, stroke, and stent thrombosis. However, the benefits associated with the use of antiplatelet drugs also come with a risk of bleeding complications. The ever-growing understanding of the poor prognostic implications associated with bleeding has set the foundations for defining strategies that can mitigate such safety concern without any trade-off in antithrombotic protection. To this extent, personalised antiplatelet therapy has emerged as a paradigm that optimizes the balance between safety and efficacy by customizing treatment to the individual patient's needs and risk profile. Accurate risk stratification for both bleeding and thrombosis can aid in selecting the optimal antiplatelet therapy and prevent serious and life-threatening outcomes. Risk stratification has traditionally included clinical and demographic characteristics and has expanded to incorporate angiographic features and laboratory findings. The availability of bedside platelet function testing as well as rapid genotyping assays has also allowed for a more individualized selection of antiplatelet therapy. This review provides a comprehensive overview of the current state of the art and future trends in personalised antiplatelet therapy for patients with CAD, with emphasis on those presenting with an acute coronary syndrome and undergoing percutaneous coronary revascularization. The aim is to provide clinicians with a comprehensive understanding of personalised antiplatelet therapy and facilitate informed clinical decision-making.
Collapse
Affiliation(s)
- Davide Capodanno
- Division of Cardiology, Azienda Ospedaliero-Universitaria 'G. Rodolico - San Marco', University of Catania, Via Santa Sofia, 78 - 95123 Catania, Italy
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine-Jacksonville, 655 West 8th Street, Jacksonville, FL 32209, USA
| |
Collapse
|
39
|
Rakicevic L. DNA and RNA Molecules as a Foundation of Therapy Strategies for Treatment of Cardiovascular Diseases. Pharmaceutics 2023; 15:2141. [PMID: 37631355 PMCID: PMC10459020 DOI: 10.3390/pharmaceutics15082141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
There has always been a tendency of medicine to take an individualised approach to treating patients, but the most significant advances were achieved through the methods of molecular biology, where the nucleic acids are in the limelight. Decades of research of molecular biology resulted in setting medicine on a completely new platform. The most significant current research is related to the possibilities that DNA and RNA analyses can offer in terms of more precise diagnostics and more subtle stratification of patients in order to identify patients for specific therapy treatments. Additionally, principles of structure and functioning of nucleic acids have become a motive for creating entirely new therapy strategies and an innovative generation of drugs. All this also applies to cardiovascular diseases (CVDs) which are the leading cause of mortality in developed countries. This review considers the most up-to-date achievements related to the use of translatory potential of DNA and RNA in treatment of cardiovascular diseases, and considers the challenges and prospects in this field. The foundations which allow the use of translatory potential are also presented. The first part of this review focuses on the potential of the DNA variants which impact conventional therapies and on the DNA variants which are starting points for designing new pharmacotherapeutics. The second part of this review considers the translatory potential of non-coding RNA molecules which can be used to formulate new generations of therapeutics for CVDs.
Collapse
Affiliation(s)
- Ljiljana Rakicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| |
Collapse
|
40
|
Lemke LK, Alam B, Williams R, Starostik P, Cavallari LH, Cicali EJ, Wiisanen K. Reimbursement of pharmacogenetic tests at a tertiary academic medical center in the United States. Front Pharmacol 2023; 14:1179364. [PMID: 37645439 PMCID: PMC10461057 DOI: 10.3389/fphar.2023.1179364] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/17/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction: Pharmacogenetics (PGx) has the potential to improve health outcomes but cost of testing is a barrier for equitable access. Reimbursement by insurance providers may lessen the financial burden for patients, but the extent to which PGx claims are covered in clinical practice has not been well-characterized in the literature. Methods: A retrospective analysis of outpatient claims submitted to payers for PGx tests from 1/1/2019 through 12/31/2021 was performed. A reimbursement rate was calculated and compared across specific test types (e.g., single genes, panel), payers, indication, and the year the claim was submitted. Results: A total of 1,039 outpatient claims for PGx testing were analyzed. The overall reimbursement rate was 46% and ranged from 36%-48% across payers. PGx panels were reimbursed at a significantly higher rate than single gene tests (74% vs. 43%, p < 0.001). Discussion: Reimbursement of claims for PGx testing is variable based on the test type, indication, year the claim was submitted, number of diagnosis codes submitted, and number of unique diagnosis codes submitted. Due to the highly variable nature of reimbursement, cost and affordability should be discussed with each patient.
Collapse
Affiliation(s)
- Lauren K. Lemke
- Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, United States
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
| | - Benish Alam
- Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, United States
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
| | - Roy Williams
- Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, United States
| | - Petr Starostik
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- UF Health Pathology Laboratories, UF Health, Gainesville, FL, United States
| | - Larisa H. Cavallari
- Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, United States
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
| | - Emily J. Cicali
- Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, United States
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
| | - Kristin Wiisanen
- Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, United States
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
Oni-Orisan A, Tuteja S, Hoffecker G, Smith DM, Castrichini M, Crews KR, Murphy WA, Nguyen NHK, Huang Y, Lteif C, Friede KA, Tantisira K, Aminkeng F, Voora D, Cavallari LH, Whirl-Carrillo M, Duarte JD, Luzum JA. An Introductory Tutorial on Cardiovascular Pharmacogenetics for Healthcare Providers. Clin Pharmacol Ther 2023; 114:275-287. [PMID: 37303270 PMCID: PMC10406163 DOI: 10.1002/cpt.2957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Pharmacogenetics can improve clinical outcomes by reducing adverse drug effects and enhancing therapeutic efficacy for commonly used drugs that treat a wide range of cardiovascular diseases. One of the major barriers to the clinical implementation of cardiovascular pharmacogenetics is limited education on this field for current healthcare providers and students. The abundance of pharmacogenetic literature underscores its promise, but it can also be challenging to learn such a wealth of information. Moreover, current clinical recommendations for cardiovascular pharmacogenetics can be confusing because they are outdated, incomplete, or inconsistent. A myriad of misconceptions about the promise and feasibility of cardiovascular pharmacogenetics among healthcare providers also has halted clinical implementation. Therefore, the main goal of this tutorial is to provide introductory education on the use of cardiovascular pharmacogenetics in clinical practice. The target audience is any healthcare provider (or student) with patients that use or have indications for cardiovascular drugs. This tutorial is organized into the following 6 steps: (1) understand basic concepts in pharmacogenetics; (2) gain foundational knowledge of cardiovascular pharmacogenetics; (3) learn the different organizations that release cardiovascular pharmacogenetic guidelines and recommendations; (4) know the current cardiovascular drugs/drug classes to focus on clinically and the supporting evidence; (5) discuss an example patient case of cardiovascular pharmacogenetics; and (6) develop an appreciation for emerging areas in cardiovascular pharmacogenetics. Ultimately, improved education among healthcare providers on cardiovascular pharmacogenetics will lead to a greater understanding for its potential in improving outcomes for a leading cause of morbidity and mortality.
Collapse
Affiliation(s)
- Akinyemi Oni-Orisan
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Sony Tuteja
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Glenda Hoffecker
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - D. Max Smith
- MedStar Health, Columbia, Maryland, USA
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Matteo Castrichini
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kristine R. Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - William A. Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nam H. K. Nguyen
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Yimei Huang
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Christelle Lteif
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Kevin A. Friede
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kelan Tantisira
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, California, USA
| | - Folefac Aminkeng
- Departments of Medicine and Biomedical Informatics (DBMI), Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Centre for Precision Health (CPH), National University Health System (NUHS), Singapore City, Singapore
| | - Deepak Voora
- Precision Medicine Program, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Larisa H. Cavallari
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Julio D. Duarte
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Jasmine A. Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
- Center for Individualized and Genomic Medicine Research, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
42
|
Liang B, Li R, Lu J, Tian XJ, Gu N. Tongue diagnostic parameters-based diagnostic signature in coronary artery disease patients with clopidogrel resistance after percutaneous coronary intervention. Explore (NY) 2023; 19:528-535. [PMID: 36335058 DOI: 10.1016/j.explore.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/20/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Credible diagnostic stratification remains a challenge for coronary artery disease patients with clopidogrel resistance after percutaneous coronary intervention. Tongue diagnostic parameters-based diagnostic signatures might predict clopidogrel resistance. METHODS Clinical and tongue diagnostic parameters data were obtained from coronary artery disease patients with clopidogrel resistance after percutaneous coronary intervention patients and then analyzed. Tongue diagnostic parameters-based diagnostic signatures were developed through univariate and multivariate logistic regression analysis. The diagnostic prediction was assessed using a receiver operating characteristic curve. RESULTS A total of 101 patients were consecutively identified. Then, tongue diagnostic parameters were identified as significantly associated with clopidogrel resistance diagnosis and were combined with risk factors to develop a model. The receiver operating characteristic curve analysis showed that tongue diagnostic parameters-based diagnostic signatures performed well in diagnosing clopidogrel resistance with an area under the receiver operating characteristic curve value of 0.819. CONCLUSIONS This study identified a novel tongue diagnostic parameters-based diagnostic signature to reliably distinguish clopidogrel resistance diagnosis in coronary artery disease patients undergoing percutaneous coronary intervention. Further larger, multicenter prospective studies are desired to validate this model.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China; Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Li
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Lu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Jie Tian
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
43
|
Luo Y, Xia Y, Zhang H, Lin Y, He L, Gong T, Zhang Z, Deng L. Human Serum Albumin-enriched Clopidogrel Bisulfate Nanoparticle Alleviates Cerebral Ischemia-Reperfusion Injury in Rats. Pharm Res 2023; 40:1821-1833. [PMID: 37291463 DOI: 10.1007/s11095-023-03543-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Cerebral ischemia-reperfusion (I/R) injury remains a leading cause of mobility and mortality among patients with ischemic stroke. This study aims to develop a human serum albumin (HSA)-enriched nanoparticle platform for solubilizing clopidogrel bisulfate (CLP) for intravenous administration, and to explore the protective effect of HSA-enriched nanoparticles loaded with CLP (CLP-ANPs) against cerebral I/R injury in transient middle cerebral artery occlusion (MCAO) rat model. METHODS CLP-ANPs were synthesized via a modified nanoparticle albumin-bound technology, lyophilized, and then characterized by morphology, particle size, zeta potential, drug loading capacity, encapsulation efficiency, stability and in vitro release kinetics. In vivo pharmacokinetic studies were conducted using Sprague-Dawley (SD) rats. Also, an MCAO rat model was established to explore the therapeutic effect of CLP-ANPs on cerebral I/R injury. RESULTS CLP-ANPs remained spherical particles with a layer of proteins forming protein corona. Lyophilized CLP-ANPs after dispersion displayed an average size of about 235.6 ± 6.6 nm (PDI = 0.16 ± 0.08) with a zeta potential of about - 13.5 ± 1.8 mV. CLP-ANPs achieved sustained release for up to 168 h in vitro. Next, a single injection of CLP-ANPs dose-dependently reversed the histopathological changes induced by cerebral I/R injury possibly via attenuating apoptosis and reducing oxidative damages in the brain tissues. CONCLUSIONS CLP-ANPs represent a promising and translatable platform system for the management of cerebral I/R injury during ischemic stroke.
Collapse
Affiliation(s)
- Yiting Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Yunli Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Haonan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yunzhu Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, 610041, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
44
|
Sadee W, Wang D, Hartmann K, Toland AE. Pharmacogenomics: Driving Personalized Medicine. Pharmacol Rev 2023; 75:789-814. [PMID: 36927888 PMCID: PMC10289244 DOI: 10.1124/pharmrev.122.000810] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Personalized medicine tailors therapies, disease prevention, and health maintenance to the individual, with pharmacogenomics serving as a key tool to improve outcomes and prevent adverse effects. Advances in genomics have transformed pharmacogenetics, traditionally focused on single gene-drug pairs, into pharmacogenomics, encompassing all "-omics" fields (e.g., proteomics, transcriptomics, metabolomics, and metagenomics). This review summarizes basic genomics principles relevant to translation into therapies, assessing pharmacogenomics' central role in converging diverse elements of personalized medicine. We discuss genetic variations in pharmacogenes (drug-metabolizing enzymes, drug transporters, and receptors), their clinical relevance as biomarkers, and the legacy of decades of research in pharmacogenetics. All types of therapies, including proteins, nucleic acids, viruses, cells, genes, and irradiation, can benefit from genomics, expanding the role of pharmacogenomics across medicine. Food and Drug Administration approvals of personalized therapeutics involving biomarkers increase rapidly, demonstrating the growing impact of pharmacogenomics. A beacon for all therapeutic approaches, molecularly targeted cancer therapies highlight trends in drug discovery and clinical applications. To account for human complexity, multicomponent biomarker panels encompassing genetic, personal, and environmental factors can guide diagnosis and therapies, increasingly involving artificial intelligence to cope with extreme data complexities. However, clinical application encounters substantial hurdles, such as unknown validity across ethnic groups, underlying bias in health care, and real-world validation. This review address the underlying science and technologies germane to pharmacogenomics and personalized medicine, integrated with economic, ethical, and regulatory issues, providing insights into the current status and future direction of health care. SIGNIFICANCE STATEMENT: Personalized medicine aims to optimize health care for the individual patients with use of predictive biomarkers to improve outcomes and prevent adverse effects. Pharmacogenomics drives biomarker discovery and guides the development of targeted therapeutics. This review addresses basic principles and current trends in pharmacogenomics, with large-scale data repositories accelerating medical advances. The impact of pharmacogenomics is discussed, along with hurdles impeding broad clinical implementation, in the context of clinical care, ethics, economics, and regulatory affairs.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Danxin Wang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Katherine Hartmann
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| |
Collapse
|
45
|
Lee SH, Jeong YH, Hong D, Choi KH, Lee JM, Park TK, Yang JH, Hahn JY, Choi SH, Gwon HC, Jeong MH, Kim BK, Joo HJ, Chang K, Park Y, Ahn SG, Suh JW, Lee SY, Cho JR, Her AY, Kim HS, Kim MH, Lim DS, Shin ES, Song YB. Clinical Impact of CYP2C19 Genotype on Clopidogrel-Based Antiplatelet Therapy After Percutaneous Coronary Intervention. JACC Cardiovasc Interv 2023; 16:829-843. [PMID: 37045504 DOI: 10.1016/j.jcin.2023.01.363] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Although there is a growing body of evidence that CYP2C19 genotyping can be beneficial when considering treatment with clopidogrel after percutaneous coronary intervention (PCI), whether a genotype-guided strategy can be generally adopted in routine practice remains unclear among East Asians. OBJECTIVES This study sought to investigate long-term outcomes of patients undergoing clopidogrel-based antiplatelet therapy after drug-eluting stent (DES) implantation according to CYP2C19 genotypes. METHODS From the nationwide multicenter PTRG-DES (Platelet function and genoType-Related long-term proGnosis in DES-treated patients) consortium, patients who underwent CYP2C19 genotyping were selected and classified according to CYP2C19 loss-of-function allele: rapid metabolizers (RMs) or normal metabolizers (NMs) vs intermediate metabolizers (IMs) or poor metabolizers (PMs). The primary outcome was a composite of cardiac death, myocardial infarction, and stent thrombosis at 5 years after the index procedure. RESULTS Of 8,163 patients with CYP2C19 genotyping, 56.7% presented with acute coronary syndrome. There were 3,098 (37.9%) in the RM or NM group, 3,906 (47.9%) in the IM group, and 1,159 (14.2%) in the PM group. IMs or PMs were associated with an increased risk of 5-year primary outcome compared with RMs or NMs (HRadj: 1.42; 95% CI: 1.01-1.98; P = 0.041), and the effect was more pronounced in the first year (HRadj: 1.67; 95% CI: 1.10-2.55; P = 0.016). The prognostic implication of being an IM and PM was significant in acute coronary syndrome patients (HRadj: 1.88; 95% CI: 1.20-2.93; P = 0.005) but not in those with stable angina (HRadj: 0.92; 95% CI: 0.54-1.55; P = 0.751) (interaction P = 0.028). CONCLUSIONS Among East Asians with clopidogrel-based antiplatelet therapy after DES implantation, CYP2C19 genotyping could stratify patients who were likely to have an increased risk of atherothrombotic events. (Platelet Function and genoType-Related Long-term progGosis in DES-treated Patients: A Consortium From Multi-centered Registries [PTRG-DES]; NCT04734028).
Collapse
|
46
|
Pharmacokinetic Markers of Clinical Outcomes in Severe Mental Illness: A Systematic Review. Int J Mol Sci 2023; 24:ijms24054776. [PMID: 36902205 PMCID: PMC10003720 DOI: 10.3390/ijms24054776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The term severe mental illness (SMI) encompasses those psychiatric disorders exerting the highest clinical burden and socio-economic impact on the affected individuals and their communities. Pharmacogenomic (PGx) approaches hold great promise in personalizing treatment selection and clinical outcomes, possibly reducing the burden of SMI. Here, we sought to review the literature in the field, focusing on PGx testing and particularly on pharmacokinetic markers. We performed a systematic review on PUBMED/Medline, Web of Science, and Scopus. The last search was performed on the 17 September 2022, and further augmented with a comprehensive pearl-growing strategy. In total, 1979 records were screened, and after duplicate removal, 587 unique records were screened by at least 2 independent reviewers. Ultimately, forty-two articles were included in the qualitative analysis, eleven randomized controlled trials and thirty-one nonrandomized studies. The observed lack of standardization in PGx tests, population selection, and tested outcomes limit the overall interpretation of the available evidence. A growing body of evidence suggests that PGx testing might be cost-effective in specific settings and may modestly improve clinical outcomes. More efforts need to be directed toward improving PGx standardization, knowledge for all stakeholders, and clinical practice guidelines for screening recommendations.
Collapse
|
47
|
Zhang X, Jiang S, Xue J, Ding Y, Gu J, Hu L, Xu X, Li Z, Kong Y, Li Y, Zhu X, Yue Y. Personalized antiplatelet therapy guided by clopidogrel pharmacogenomics in acute ischemic stroke and transient ischemic attack: A prospective, randomized controlled trial. Front Pharmacol 2023; 13:931405. [PMID: 36744212 PMCID: PMC9889636 DOI: 10.3389/fphar.2022.931405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/16/2022] [Indexed: 01/20/2023] Open
Abstract
Background: Clopidogrel is frequently used in patients with ischemic stroke or transient ischemic attack (TIA), but its efficacy is hampered by inter-individual variability, due to genetic differences associated with clopidogrel metabolism. We conducted this randomized controlled trial to validate whether the personalized antiplatelet therapy based on clopidogrel pharmacogenomics and clinical characteristics leads to better clinical outcomes compared with standard treatment. Methods: Patients were randomly divided into the standard group or pharmacogenetic group, in which the pharmacogenetic group required the detection of the genotyping of CYP2C19*2, CYP2C19*3, and CYP2C19*17. Patients were followed up for 90 days for the primary efficacy endpoint of new stroke events, secondary efficacy endpoint of individual or composite outcomes of the new clinical vascular events, and the incidence of disability. The primary safety outcome was major bleeding. Results: A total of 650 patients underwent randomization, among which 325 were in the pharmacogenomics group while 325 were in the standard group. Our study found after a 90-day follow-up, the risk of stroke and composite vascular events in the pharmacogenomics group was lower than that in the standard group. The incidence of disability significantly decreased in the pharmacogenomics group. In addition, no statistically significant differences were observed in bleeding events between the two groups. Conclusion: The present study demonstrates that personalized antiplatelet therapy guided by clopidogrel pharmacogenomics and clinical characteristics can significantly improve the net clinical benefit of ischemic stroke or TIA patients during the 90-day treatment period without increasing bleeding risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Youmei Li
- *Correspondence: Youmei Li, ; Xiaoqiong Zhu, ; Yunhua Yue,
| | - Xiaoqiong Zhu
- *Correspondence: Youmei Li, ; Xiaoqiong Zhu, ; Yunhua Yue,
| | - Yunhua Yue
- *Correspondence: Youmei Li, ; Xiaoqiong Zhu, ; Yunhua Yue,
| |
Collapse
|
48
|
Velasquez-Camacho L, Otero M, Basile B, Pijuan J, Corrado G. Current Trends and Perspectives on Predictive Models for Mildew Diseases in Vineyards. Microorganisms 2022; 11:73. [PMID: 36677365 PMCID: PMC9866057 DOI: 10.3390/microorganisms11010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Environmental and economic costs demand a rapid transition to more sustainable farming systems, which are still heavily dependent on chemicals for crop protection. Despite their widespread application, powdery mildew (PM) and downy mildew (DM) continue to generate serious economic penalties for grape and wine production. To reduce these losses and minimize environmental impacts, it is important to predict infections with high confidence and accuracy, allowing timely and efficient intervention. This review provides an appraisal of the predictive tools for PM and DM in a vineyard, a specialized farming system characterized by high crop protection cost and increasing adoption of precision agriculture techniques. Different methodological approaches, from traditional mechanistic or statistic models to machine and deep learning, are outlined with their main features, potential, and constraints. Our analysis indicated that strategies are being continuously developed to achieve the required goals of ease of monitoring and timely prediction of diseases. We also discuss that scientific and technological advances (e.g., in weather data, omics, digital solutions, sensing devices, data science) still need to be fully harnessed, not only for modelling plant-pathogen interaction but also to develop novel, integrated, and robust predictive systems and related applied technologies. We conclude by identifying key challenges and perspectives for predictive modelling of phytopathogenic disease in vineyards.
Collapse
Affiliation(s)
- Luisa Velasquez-Camacho
- Eurecat, Centre Tecnològic de Catalunya, Unit of Applied Artificial Intelligence, 08005 Barcelona, Spain
- Department of Crop and Forest Sciences, University of Lleida, 25199 Lleida, Spain
| | - Marta Otero
- Eurecat, Centre Tecnològic de Catalunya, Unit of Applied Artificial Intelligence, 08005 Barcelona, Spain
| | - Boris Basile
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Josep Pijuan
- Eurecat, Centre Tecnològic de Catalunya, Unit of Applied Artificial Intelligence, 08005 Barcelona, Spain
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
49
|
Djordjevic N. Genotyping genetic variants of CYP2C19 for precision antiplatelet dosing: state of the art and future perspectives. Expert Opin Drug Metab Toxicol 2022; 18:817-830. [PMID: 36606363 DOI: 10.1080/17425255.2022.2166486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Clopidogrel is the only antiplatelet agent whose activity is significantly affected by CYP2C19 polymorphism. AREAS COVERED This review has summarized the available evidence on the clinically significant association between CYP2C19 polymorphism and clopidogrel-based therapy; reviewed the current recommendations for clinical use of CYP2C19 genotype test results in patients on clopidogrel treatment; and discussed possible pitfalls of routine application, and future perspectives of antiplatelets pharmacogenetics. EXPERT OPINION The available body of evidence, reflected in several meta-analyses and high-quality clinical practice guidelines, shows that the presence of CYP2C19 LOF alleles, especially CYP2C19*2, correlates with impaired activation of clopidogrel and variable platelet inhibition, followed by minimal or no antiplatelet effect, and higher risk of treatment failure. In combination with other known risk factors, CYP2C19 genetic testing could be very valuable in predicting low clopidogrel efficacy. At the same time, it could be very successful in selecting patients who will most probably benefit from the clopidogrel-based therapy, thus decreasing the pool of those who might need more expensive and otherwise riskier antiplatelet alternatives.
Collapse
Affiliation(s)
- Natasa Djordjevic
- Faculty of Medical Sciences, Department of Pharmacology and Toxicology, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| |
Collapse
|
50
|
Stone GW, Camaj A. Platelet Reactivity Testing. JACC Cardiovasc Interv 2022; 15:2266-2269. [DOI: 10.1016/j.jcin.2022.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|