1
|
Pan M, Colpo RA, Roussou S, Ding C, Lindblad P, Krömer JO. Engineering a Photoautotrophic Microbial Coculture toward Enhanced Biohydrogen Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:337-348. [PMID: 39668362 PMCID: PMC11741097 DOI: 10.1021/acs.est.4c08629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
The application of synthetic phototrophic microbial consortia holds promise for sustainable bioenergy production. Nevertheless, strategies for the efficient construction and regulation of such consortia remain challenging. Applying tools of genetic engineering, this study successfully constructed a synthetic community of phototrophs using Rhodopseudomonas palustris (R. palustris) and an engineered strain of Synechocystis sp PCC6803 for acetate production (Synechocystis_acs), enabling the production of biohydrogen and fatty acids during nitrogen and carbon dioxide fixation. Elemental balance confirmed carbon capture and nitrogen fixation into the consortium. The strategy of circadian illumination effectively limited oxygen levels in the system, ensuring the activity of the nitrogenase in R. palustris, despite oxygenic photosynthesis happening in Synechocystis. When infrared light was introduced into the circadian illumination, the production of H2 (9.70 μmol mg-1) and fatty acids (especially C16 and C18) was significantly enhanced. Proteomic analysis indicated acetate exchange and light-dependent regulation of metabolic activities. Infrared illumination significantly stimulated the expression of proteins coding for nitrogen fixation, carbohydrate metabolism, and transporters in R. palustris, while constant white light led to the most upregulation of photosynthesis-related proteins in Synechocystis_acs. This study demonstrated the successful construction and light regulation of a phototrophic community, enabling H2 and fatty acid production through carbon and nitrogen fixation.
Collapse
Affiliation(s)
- Minmin Pan
- Department
of Microbial Biotechnology, Helmholtz Centre
for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Rodrigo Amarante Colpo
- Department
of Microbial Biotechnology, Helmholtz Centre
for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Stamatina Roussou
- Microbial
Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, Uppsala 75120, Sweden
| | - Chang Ding
- Department
of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Peter Lindblad
- Microbial
Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, Uppsala 75120, Sweden
| | - Jens O. Krömer
- Department
of Microbial Biotechnology, Helmholtz Centre
for Environmental Research - UFZ, Leipzig 04318, Germany
| |
Collapse
|
2
|
Lee M, Noh H, Kim Y. Diamidocarbene-derived palladium and nickel-sulfur clusters. Chem Commun (Camb) 2024; 60:13867-13870. [PMID: 39463347 DOI: 10.1039/d4cc04582c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Novel palladium and nickel-sulfur clusters were synthesized using a diamidocarbene-derived carbon disulfide ligand. Structural characterization revealed a tetranuclear metal-sulfur cluster geometry with each metal center exhibiting square-planar coordination. The ligand was redox-active, accommodating oxidation states ranging from 0 to -2.
Collapse
Affiliation(s)
- Minji Lee
- Department of Chemistry, Pusan National University, Busan, Republic of Korea.
- Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Hyunju Noh
- Department of Chemistry, Pusan National University, Busan, Republic of Korea.
- Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Youngsuk Kim
- Department of Chemistry, Pusan National University, Busan, Republic of Korea.
- Institute for Future Earth, Pusan National University, Busan, Republic of Korea
- Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
3
|
Liu W, Zhang K, Liu J, Wang Y, Zhang M, Cui H, Sun J, Zhang L. Bioelectrocatalytic carbon dioxide reduction by an engineered formate dehydrogenase from Thermoanaerobacter kivui. Nat Commun 2024; 15:9962. [PMID: 39551789 PMCID: PMC11570645 DOI: 10.1038/s41467-024-53946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
Electrocatalytic carbon dioxide (CO2) reduction by CO2 reductases is a promising approach for biomanufacturing. Among all known biological or chemical catalysts, hydrogen-dependent carbon dioxide reductase from Thermoanaerobacter kivui (TkHDCR) possesses the highest activity toward CO2 reduction. Herein, we engineer TkHDCR to generate an electro-responsive carbon dioxide reductase considering the safety and convenience. To achieve this purpose, a recombinant Escherichia coli TkHDCR overexpression system is established. The formate dehydrogenase is obtained via subunit truncation and rational design, which enables direct electron transfer (DET)-type bioelectrocatalysis with a near-zero overpotential. By applying a constant voltage of -500 mV (vs. SHE) to a mediated electrolytic cell, 22.8 ± 1.6 mM formate is synthesized in 16 h with an average production rate of 7.1 ± 0.5 μmol h-1cm-2, a Faradaic efficiency of 98.9% and a half-cell energy efficiency of 94.4%. This study provides an enzyme candidate for high efficient CO2 reduction and opens up a way to develop paradigm for CO2-based bio-manufacturing.
Collapse
Affiliation(s)
- Weisong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Kuncheng Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiang Liu
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuanming Wang
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Meng Zhang
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, 9, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, China
| | - Huijuan Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Junsong Sun
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Lingling Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
4
|
Wheeler TA, Tilley TD. Metal-Metal Redox Exchange to Produce Heterometallic Manganese-Cobalt Oxo Cubanes via a "Dangler" Intermediate. J Am Chem Soc 2024; 146:20279-20290. [PMID: 38978206 PMCID: PMC11273651 DOI: 10.1021/jacs.4c05367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
Pendent metals bound to heterocubanes are components of well-known active sites in enzymes that mediate difficult chemical transformations. Investigations into the specific role of these metal ions, sometimes referred to as "danglers", have been hindered by a paucity of rational synthetic routes to appropriate model structures. To generate pendent metal ions bonded to an oxo cubane through a carboxylate bridge, the cubane Co4(μ3-O)4(OAc)4(t-Bupy)4 (OAc = acetate, t-Bupy = 4-tert-butylpyridine) was exposed to various metal acetate complexes. Reaction with Cu(OAc)2 gave the structurally characterized (by X-ray diffraction) dicopper dangler Cu2Co4(μ4-O)2(μ3-O)2(OAc)6(Cl)2(t-Bupy)4. In contrast, the analogous reaction with Mn(OAc)2 produced the MnIV-containing cubane cation [MnCo3(μ3-O)4(OAc)4(t-Bupy)4]+ by way of a metal-metal exchange that gives Co(OAc)2 and [CoIII(μ-OH)(OAc)]n oligomers as byproducts. Additionally, reaction of the formally CoIV cubane complex [Co4(μ3-O)4(OAc)4(t-Bupy)4][PF6] with Mn(OAc)2 gave the corresponding Mn-containing cubane in 80% yield. A mechanistic examination of the related metal-metal exchange reaction between Co4(μ3-O)4(OBz)4(py)4 (OBz = benzoate) and [Mn(acac)2(py)2][PF6] by ultraviolet-visible (UV-vis) spectroscopy provided support for a process involving rate-determining association of the reactants and electron transfer through a μ-oxo bridge in the adduct intermediate. The rates of exchange correlate with the donor strength of the cubane pyridine and benzoate ligand substituents; more electron-donating pyridine ligands accelerate metal-metal exchange, while both electron-donating and -withdrawing benzoate ligands can accelerate exchange. These experiments suggest that the basicity of the cubane oxo ligands promotes metal-metal exchange reactivity. The redox potentials of the Mn and cubane starting materials and isotopic labeling studies suggest an inner-sphere electron-transfer mechanism in a dangler intermediate.
Collapse
Affiliation(s)
- T. Alexander Wheeler
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - T. Don Tilley
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Shomar H, Bokinsky G. Harnessing iron‑sulfur enzymes for synthetic biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119718. [PMID: 38574823 DOI: 10.1016/j.bbamcr.2024.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Reactions catalysed by iron-sulfur (Fe-S) enzymes appear in a variety of biosynthetic pathways that produce valuable natural products. Harnessing these biosynthetic pathways by expression in microbial cell factories grown on an industrial scale would yield enormous economic and environmental benefits. However, Fe-S enzymes often become bottlenecks that limits the productivity of engineered pathways. As a consequence, achieving the production metrics required for industrial application remains a distant goal for Fe-S enzyme-dependent pathways. Here, we identify and review three core challenges in harnessing Fe-S enzyme activity, which all stem from the properties of Fe-S clusters: 1) limited Fe-S cluster supply within the host cell, 2) Fe-S cluster instability, and 3) lack of specialized reducing cofactor proteins often required for Fe-S enzyme activity, such as enzyme-specific flavodoxins and ferredoxins. We highlight successful methods developed for a variety of Fe-S enzymes and electron carriers for overcoming these difficulties. We use heterologous nitrogenase expression as a grand case study demonstrating how each of these challenges can be addressed. We predict that recent breakthroughs in protein structure prediction and design will prove well-suited to addressing each of these challenges. A reliable toolkit for harnessing Fe-S enzymes in engineered metabolic pathways will accelerate the development of industry-ready Fe-S enzyme-dependent biosynthesis pathways.
Collapse
Affiliation(s)
- Helena Shomar
- Institut Pasteur, université Paris Cité, Inserm U1284, Diversité moléculaire des microbes (Molecular Diversity of Microbes lab), 75015 Paris, France
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
6
|
Barco RA, Merino N, Lam B, Budnik B, Kaplan M, Wu F, Amend JP, Nealson KH, Emerson D. Comparative proteomics of a versatile, marine, iron-oxidizing chemolithoautotroph. Environ Microbiol 2024; 26:e16632. [PMID: 38861374 DOI: 10.1111/1462-2920.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/20/2024] [Indexed: 06/13/2024]
Abstract
This study conducted a comparative proteomic analysis to identify potential genetic markers for the biological function of chemolithoautotrophic iron oxidation in the marine bacterium Ghiorsea bivora. To date, this is the only characterized species in the class Zetaproteobacteria that is not an obligate iron-oxidizer, providing a unique opportunity to investigate differential protein expression to identify key genes involved in iron-oxidation at circumneutral pH. Over 1000 proteins were identified under both iron- and hydrogen-oxidizing conditions, with differentially expressed proteins found in both treatments. Notably, a gene cluster upregulated during iron oxidation was identified. This cluster contains genes encoding for cytochromes that share sequence similarity with the known iron-oxidase, Cyc2. Interestingly, these cytochromes, conserved in both Bacteria and Archaea, do not exhibit the typical β-barrel structure of Cyc2. This cluster potentially encodes a biological nanowire-like transmembrane complex containing multiple redox proteins spanning the inner membrane, periplasm, outer membrane, and extracellular space. The upregulation of key genes associated with this complex during iron-oxidizing conditions was confirmed by quantitative reverse transcription-PCR. These findings were further supported by electromicrobiological methods, which demonstrated negative current production by G. bivora in a three-electrode system poised at a cathodic potential. This research provides significant insights into the biological function of chemolithoautotrophic iron oxidation.
Collapse
Affiliation(s)
- Roman A Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - N Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Lawrence Livermore National Lab, Biosciences and Biotechnology Division, Livermore, California, USA
| | - B Lam
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - B Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, Massachusetts, USA
| | - M Kaplan
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - F Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, China
| | - J P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - K H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - D Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| |
Collapse
|
7
|
Yu X, Rao G, Britt RD, Rauchfuss TB. Final Stages in the Biosynthesis of the [FeFe]-Hydrogenase Active Site. Angew Chem Int Ed Engl 2024; 63:e202404044. [PMID: 38551577 PMCID: PMC11253240 DOI: 10.1002/anie.202404044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 04/19/2024]
Abstract
The paper aims to elucidate the final stages in the biosynthesis of the [2Fe]H active site of the [FeFe]-hydrogenases. The recently hypothesized intermediate [Fe2(SCH2NH2)2(CN)2(CO)4]2- ([1]2-) was prepared by a multistep route from [Fe2(S2)(CN)(CO)5]-. The following synthetic intermediates were characterized in order: [Fe2(SCH2NHFmoc)2(CNBEt3)(CO)5]-, [Fe2(SCH2NHFmoc)2(CN)-(CO)5]-, and [Fe2(SCH2NHFmoc)2(CN)2(CO)4]2-, where Fmoc is fluorenylmethoxycarbonyl). Derivatives of these anions include [K(18-crown-6)]+, PPh4 + and PPN+ salts as well as the 13CD2-isotopologues. These Fe2 species exist as a mixture of two isomers attributed to diequatorial (ee) and axial-equatorial (ae) stereochemistry at sulfur. In vitro experiments demonstrate that [1]2- maturates HydA1 in the presence of HydF and a cocktail of reagents. HydA1 can also be maturated using a highly simplified cocktail, omitting HydF and other proteins. This result is consistent with HydA1 participating in the maturation process and refines the roles of HydF.
Collapse
Affiliation(s)
- Xin Yu
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guodong Rao
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - R. David Britt
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Vallières C, Benoit O, Guittet O, Huang ME, Lepoivre M, Golinelli-Cohen MP, Vernis L. Iron-sulfur protein odyssey: exploring their cluster functional versatility and challenging identification. Metallomics 2024; 16:mfae025. [PMID: 38744662 PMCID: PMC11138216 DOI: 10.1093/mtomcs/mfae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Iron-sulfur (Fe-S) clusters are an essential and ubiquitous class of protein-bound prosthetic centers that are involved in a broad range of biological processes (e.g. respiration, photosynthesis, DNA replication and repair and gene regulation) performing a wide range of functions including electron transfer, enzyme catalysis, and sensing. In a general manner, Fe-S clusters can gain or lose electrons through redox reactions, and are highly sensitive to oxidation, notably by small molecules such as oxygen and nitric oxide. The [2Fe-2S] and [4Fe-4S] clusters, the most common Fe-S cofactors, are typically coordinated by four amino acid side chains from the protein, usually cysteine thiolates, but other residues (e.g. histidine, aspartic acid) can also be found. While diversity in cluster coordination ensures the functional variety of the Fe-S clusters, the lack of conserved motifs makes new Fe-S protein identification challenging especially when the Fe-S cluster is also shared between two proteins as observed in several dimeric transcriptional regulators and in the mitoribosome. Thanks to the recent development of in cellulo, in vitro, and in silico approaches, new Fe-S proteins are still regularly identified, highlighting the functional diversity of this class of proteins. In this review, we will present three main functions of the Fe-S clusters and explain the difficulties encountered to identify Fe-S proteins and methods that have been employed to overcome these issues.
Collapse
Affiliation(s)
- Cindy Vallières
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Orane Benoit
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Olivier Guittet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Meng-Er Huang
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Michel Lepoivre
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Marie-Pierre Golinelli-Cohen
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Laurence Vernis
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| |
Collapse
|
9
|
Brabender M, Henriques Pereira DP, Mrnjavac N, Schlikker ML, Kimura ZI, Sucharitakul J, Kleinermanns K, Tüysüz H, Buckel W, Preiner M, Martin WF. Ferredoxin reduction by hydrogen with iron functions as an evolutionary precursor of flavin-based electron bifurcation. Proc Natl Acad Sci U S A 2024; 121:e2318969121. [PMID: 38513105 PMCID: PMC7615787 DOI: 10.1073/pnas.2318969121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Autotrophic theories for the origin of metabolism posit that the first cells satisfied their carbon needs from CO2 and were chemolithoautotrophs that obtained their energy and electrons from H2. The acetyl-CoA pathway of CO2 fixation is central to that view because of its antiquity: Among known CO2 fixing pathways it is the only one that is i) exergonic, ii) occurs in both bacteria and archaea, and iii) can be functionally replaced in full by single transition metal catalysts in vitro. In order to operate in cells at a pH close to 7, however, the acetyl-CoA pathway requires complex multi-enzyme systems capable of flavin-based electron bifurcation that reduce low potential ferredoxin-the physiological donor of electrons in the acetyl-CoA pathway-with electrons from H2. How can the acetyl-CoA pathway be primordial if it requires flavin-based electron bifurcation? Here, we show that native iron (Fe0), but not Ni0, Co0, Mo0, NiFe, Ni2Fe, Ni3Fe, or Fe3O4, promotes the H2-dependent reduction of aqueous Clostridium pasteurianum ferredoxin at pH 8.5 or higher within a few hours at 40 °C, providing the physiological function of flavin-based electron bifurcation, but without the help of enzymes or organic redox cofactors. H2-dependent ferredoxin reduction by iron ties primordial ferredoxin reduction and early metabolic evolution to a chemical process in the Earth's crust promoted by solid-state iron, a metal that is still deposited in serpentinizing hydrothermal vents today.
Collapse
Affiliation(s)
- Max Brabender
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Delfina P. Henriques Pereira
- Microcosm Earth Center, Research Group for Geochemical Protozymes, Max Planck Institute for Terrestrial Microbiology and Philipps University, Marburg35032, Germany
| | - Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Manon Laura Schlikker
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Zen-Ichiro Kimura
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
- Department of Civil and Environmental Engineering, National Institute of Technology, Kure College, Kure, Hiroshima737-8506, Japan
| | - Jeerus Sucharitakul
- Department of Biochemistry, Chulalongkorn University, Patumwan, Bangkok10330, Thailand
| | - Karl Kleinermanns
- Institute for Physical Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Harun Tüysüz
- Max Planck Institute for Coal Research, Department of Heterogeneous Catalysis, Mülheim an der Ruhr45470, Germany
| | - Wolfgang Buckel
- Max Planck Institute for Terrestrial Microbiology, Marburg35043, Germany
- Laboratory for Microbiology, Department of Biology, Philipps University, Marburg35043, Germany
- Center for Synthetic Microbiology SYNMIKRO, Philipps University, Marburg35043, Germany
| | - Martina Preiner
- Microcosm Earth Center, Research Group for Geochemical Protozymes, Max Planck Institute for Terrestrial Microbiology and Philipps University, Marburg35032, Germany
| | - William F. Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| |
Collapse
|
10
|
Wilson DWN, Fataftah MS, Mathe Z, Mercado BQ, DeBeer S, Holland PL. Three-Coordinate Nickel and Metal-Metal Interactions in a Heterometallic Iron-Sulfur Cluster. J Am Chem Soc 2024; 146:4013-4025. [PMID: 38308743 PMCID: PMC10993082 DOI: 10.1021/jacs.3c12157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Biological multielectron reactions often are performed by metalloenzymes with heterometallic sites, such as anaerobic carbon monoxide dehydrogenase (CODH), which has a nickel-iron-sulfide cubane with a possible three-coordinate nickel site. Here, we isolate the first synthetic iron-sulfur clusters having a nickel atom with only three donors, showing that this structural feature is feasible. These have a core with two tetrahedral irons, one octahedral tungsten, and a three-coordinate nickel connected by sulfide and thiolate bridges. Electron paramagnetic resonance (EPR), Mössbauer, and superconducting quantum interference device (SQUID) data are combined with density functional theory (DFT) computations to show how the electronic structure of the cluster arises from strong magnetic coupling between the Ni, Fe, and W sites. X-ray absorption spectroscopy, together with spectroscopically validated DFT analysis, suggests that the electronic structure can be described with a formal Ni1+ atom participating in a nonpolar Ni-W σ-bond. This metal-metal bond, which minimizes spin density at Ni1+, is conserved in two cluster oxidation states. Fe-W bonding is found in all clusters, in one case stabilizing a local non-Hund state at tungsten. Based on these results, we compare different M-M interactions and speculate that other heterometallic clusters, including metalloenzyme active sites, could likewise store redox equivalents and stabilize low-valent metal centers through metal-metal bonding.
Collapse
Affiliation(s)
- Daniel W. N. Wilson
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| | - Majed S. Fataftah
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| | - Zachary Mathe
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Patrick L. Holland
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| |
Collapse
|
11
|
Kim SM, Kang SH, Jeon BW, Kim YH. Tunnel engineering of gas-converting enzymes for inhibitor retardation and substrate acceleration. BIORESOURCE TECHNOLOGY 2024; 394:130248. [PMID: 38158090 DOI: 10.1016/j.biortech.2023.130248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Carbon monoxide dehydrogenase (CODH), formate dehydrogenase (FDH), hydrogenase (H2ase), and nitrogenase (N2ase) are crucial enzymatic catalysts that facilitate the conversion of industrially significant gases such as CO, CO2, H2, and N2. The tunnels in the gas-converting enzymes serve as conduits for these low molecular weight gases to access deeply buried catalytic sites. The identification of the substrate tunnels is imperative for comprehending the substrate selectivity mechanism underlying these gas-converting enzymes. This knowledge also holds substantial value for industrial applications, particularly in addressing the challenges associated with separation and utilization of byproduct gases. In this comprehensive review, we delve into the emerging field of tunnel engineering, presenting a range of approaches and analyses. Additionally, we propose methodologies for the systematic design of enzymes, with the ultimate goal of advancing protein engineering strategies.
Collapse
Affiliation(s)
- Suk Min Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Sung Heuck Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Byoung Wook Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
12
|
Rao G, Yu X, Zhang Y, Rauchfuss TB, Britt RD. Fully Refined Semisynthesis of the [FeFe] Hydrogenase H-Cluster. Biochemistry 2023; 62:2868-2877. [PMID: 37691492 DOI: 10.1021/acs.biochem.3c00393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
[FeFe] hydrogenases contain a 6-Fe cofactor that serves as the active site for efficient redox interconversion between H2 and protons. The biosynthesis of the so-called H-cluster involves unusual enzymatic reactions that synthesize organometallic Fe complexes containing azadithiolate, CO, and CN- ligands. We have previously demonstrated that specific synthetic [Fe(CO)x(CN)y] complexes can be used to functionally replace proposed Fe intermediates in the maturation reaction. Here, we report the results from performing such cluster semisynthesis in the context of a recent fully defined cluster maturation procedure, which eliminates unknown components previously employed from Escherichia coli cell lysate and demonstrate this provides a concise route to H-cluster synthesis. We show that formaldehyde can be used as a simple reagent as the carbon source of the bridging adt ligand of H-cluster in lieu of serine/serine hydroxymethyltransferase. In addition to the actual H-cluster, we observe the formation of several H-cluster-like species, the identities of which are probed by cryogenic photolysis combined with EPR/ENDOR spectroscopy.
Collapse
Affiliation(s)
- Guodong Rao
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Xin Yu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Yu Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Thomas B Rauchfuss
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
- Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Duan J, Shabbir H, Chen Z, Bi W, Liu Q, Sui J, Đorđević L, Stupp SI, Chapman KW, Martinson ABF, Li A, Schaller RD, Goswami S, Getman RB, Hupp JT. Synthetic Access to a Framework-Stabilized and Fully Sulfided Analogue of an Anderson Polyoxometalate that is Catalytically Competent for Reduction Reactions. J Am Chem Soc 2023; 145:7268-7277. [PMID: 36947559 DOI: 10.1021/jacs.2c12992] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Polyoxometalates (POMs) featuring 7, 12, 18, or more redox-accessible transition metal ions are ubiquitous as selective catalysts, especially for oxidation reactions. The corresponding synthetic and catalytic chemistry of stable, discrete, capping-ligand-free polythiometalates (PTMs), which could be especially attractive for reduction reactions, is much less well developed. Among the challenges are the propensity of PTMs to agglomerate and the tendency for agglomeration to block reactant access of catalyst active sites. Nevertheless, the pervasive presence of transition metal sulfur clusters metalloenzymes or cofactors that catalyze reduction reactions and the justifiable proliferation of studies of two-dimensional (2D) metal-chalcogenides as reduction catalysts point to the promise of well-defined and controllable PTMs as reduction catalysts. Here, we report the fabrication of agglomeration-immune, reactant-accessible, capping-ligand-free CoIIMo6IVS24n- clusters as periodic arrays in a water-stable, hierarchically porous Zr-metal-organic framework (MOF; NU1K) by first installing a disk-like Anderson polyoxometalate, CoIIIMo6VIO24m-, in size-matched micropores where the siting is established via difference electron density (DED) X-ray diffraction (XRD) experiments. Flowing H2S, while heating, reduces molybdenum(VI) ions to Mo(IV) and quantitatively replaces oxygen anions with sulfur anions (S2-, HS-, S22-). DED maps show that MOF-templated POM-to-PTM conversion leaves clusters individually isolated in open-channel-connected micropores. The structure of the immobilized cluster as determined, in part, by X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS) analysis, and pair distribution function (PDF) analysis of total X-ray scattering agrees well with the theoretically simulated structure. PTM@MOF displays both electrocatalytic and photocatalytic competency for hydrogen evolution. Nevertheless, the initially installed PTM appears to be a precatalyst, gaining competency only after the loss of ∼3 to 6 sulfurs and exposure to hydride-forming metal ions.
Collapse
Affiliation(s)
- Jiaxin Duan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hafeera Shabbir
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, New York 11794-3400, United States
| | - Wentuan Bi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Qin Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jingyi Sui
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology and Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, New York 11794-3400, United States
| | - Alex B F Martinson
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Alice Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel B Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Wang N, Zhang XP, Han J, Lei H, Zhang Q, Zhang H, Zhang W, Apfel UP, Cao R. Promoting hydrogen evolution reaction with a sulfonic proton relay. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Stepwise assembly of the active site of [NiFe]-hydrogenase. Nat Chem Biol 2023; 19:498-506. [PMID: 36702959 DOI: 10.1038/s41589-022-01226-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/16/2022] [Indexed: 01/27/2023]
Abstract
[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.
Collapse
|
16
|
Wojnar M, Ziller JW, Heyduk AF. Two-Electron Mixed Valency in a Heterotrimetallic Nickel-Vanadium-Nickel Complex. Inorg Chem 2023; 62:1405-1413. [PMID: 36633592 PMCID: PMC9890480 DOI: 10.1021/acs.inorgchem.2c03381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mixed-valence complexes represent an enticing class of coordination compounds to interrogate electron transfer confined within a molecular framework. The diamagnetic heterotrimetallic anion, [V(SNS)2{Ni(dppe)}2]-, was prepared by reducing (dppe)NiCl2 in the presence of the chelating metalloligand [V(SNS)2]- [dppe = bis(diphenylphosphino)ethane; (SNS)3- = bis(2-thiolato-4-methylphenyl)amide]. Vanadium-nickel bonds span the heterotrimetallic core in the structure of [V(SNS)2{Ni(dppe)}2]-, with V-Ni bond lengths of 2.78 and 2.79 Å. One-electron oxidation of monoanionic [V(SNS)2{Ni(dppe)}2]- yielded neutral, paramagnetic V(SNS)2{Ni(dppe)}2. The solid-state structure of V(SNS)2{Ni(dppe)}2 revealed that the two nickel ions occupy unique coordination environments: one nickel is in a square-planar S2P2 coordination environment (τ4 = 0.19), with a long Ni···V distance of 3.45 Å; the other nickel is in a tetrahedral S2P2 coordination environment (τ4 = 0.84) with a short Ni-V distance of 2.60 Å, consistent with a formal metal-metal bond. Continuous-wave X-band electron paramagnetic resonance spectroscopy, electrochemical investigations, and density functional theory computations indicated that the unpaired electron in the neutral V(SNS)2{Ni(dppe)}2 cluster is localized on the bridging [V(SNS)2] metalloligand, and as a result, V(SNS)2{Ni(dppe)}2 is best described as a two-electron mixed-valence complex. These results demonstrate the important role that metal-metal interactions and flexible coordination geometries play in enabling multiple, reversible electron transfer processes in small cluster complexes.
Collapse
|
17
|
Phylogenomic analysis of a metagenome-assembled genome indicates a new taxon of an anoxygenic phototroph bacterium in the family Chromatiaceae and the proposal of “Candidatus Thioaporhodococcus” gen. nov. Arch Microbiol 2022; 204:688. [DOI: 10.1007/s00203-022-03298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
18
|
Grottkau BE, Hui Z, Pang Y. Articular Cartilage Regeneration through Bioassembling Spherical Micro-Cartilage Building Blocks. Cells 2022; 11:cells11203244. [PMID: 36291114 PMCID: PMC9600996 DOI: 10.3390/cells11203244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022] Open
Abstract
Articular cartilage lesions are prevalent and affect one out of seven American adults and many young patients. Cartilage is not capable of regeneration on its own. Existing therapeutic approaches for articular cartilage lesions have limitations. Cartilage tissue engineering is a promising approach for regenerating articular neocartilage. Bioassembly is an emerging technology that uses microtissues or micro-precursor tissues as building blocks to construct a macro-tissue. We summarize and highlight the application of bioassembly technology in regenerating articular cartilage. We discuss the advantages of bioassembly and present two types of building blocks: multiple cellular scaffold-free spheroids and cell-laden polymer or hydrogel microspheres. We present techniques for generating building blocks and bioassembly methods, including bioprinting and non-bioprinting techniques. Using a data set of 5069 articles from the last 28 years of literature, we analyzed seven categories of related research, and the year trends are presented. The limitations and future directions of this technology are also discussed.
Collapse
|
19
|
Genome-Scale Mining of Acetogens of the Genus Clostridium Unveils Distinctive Traits in [FeFe]- and [NiFe]-Hydrogenase Content and Maturation. Microbiol Spectr 2022; 10:e0101922. [PMID: 35735976 PMCID: PMC9431212 DOI: 10.1128/spectrum.01019-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the organizational and functional properties of hydrogen metabolism is pivotal to the construction of a framework supportive of a hydrogen-fueled low-carbon economy. Hydrogen metabolism relies on the mechanism of action of hydrogenases. In this study, we investigated the genomes of several industrially relevant acetogens of the genus Clostridium (C. autoethanogenum, C. ljungdahlii, C. carboxidivorans, C. drakei, C. scatologenes, C. coskatii, C. ragsdalei, C. sp. AWRP) to systematically identify their intriguingly diversified hydrogenases’ repertoire. An entirely computational annotation pipeline unveiled common and strain-specific traits in the functional content of [NiFe]- and [FeFe]-hydrogenases. Hydrogenases were identified and categorized into functionally distinct classes by the combination of sequence homology, with respect to a database of curated nonredundant hydrogenases, with the analysis of sequence patterns characteristic of the mode of action of [FeFe]- and [NiFe]-hydrogenases. The inspection of the genes in the neighborhood of the catalytic subunits unveiled a wide agreement between their genomic arrangement and the gene organization templates previously developed for the predicted hydrogenase classes. Subunits’ characterization of the identified hydrogenases allowed us to glean some insights on the redox cofactor-binding determinants in the diaphorase subunits of the electron-bifurcating [FeFe]-hydrogenases. Finally, the reliability of the inferred hydrogenases was corroborated by the punctual analysis of the maturation proteins necessary for the biosynthesis of [NiFe]- and [FeFe]-hydrogenases. IMPORTANCE Mastering hydrogen metabolism can support a sustainable carbon-neutral economy. Of the many microorganisms metabolizing hydrogen, acetogens of the genus Clostridium are appealing, with some of them already in usage as industrial workhorses. Having provided detailed information on the hydrogenase content of an unprecedented number of clostridial acetogens at the gene level, our study represents a valuable knowledge base to deepen our understanding of hydrogenases’ functional specificity and/or redundancy and to develop a large array of biotechnological processes. We also believe our study could serve as a basis for future strain-engineering approaches, acting at the hydrogenases’ level or at the level of their maturation proteins. On the other side, the wealth of functional elements discussed in relation to the identified hydrogenases is worthy of further investigation by biochemical and structural studies to ultimately lead to the usage of these enzymes as valuable catalysts.
Collapse
|
20
|
Cheruvathoor Poulose A, Zoppellaro G, Konidakis I, Serpetzoglou E, Stratakis E, Tomanec O, Beller M, Bakandritsos A, Zbořil R. Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst. NATURE NANOTECHNOLOGY 2022; 17:485-492. [PMID: 35347273 PMCID: PMC9117130 DOI: 10.1038/s41565-022-01087-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Reduction of nitroaromatics to the corresponding amines is a key process in the fine and bulk chemicals industry to produce polymers, pharmaceuticals, agrochemicals and dyes. However, their effective and selective reduction requires high temperatures and pressurized hydrogen and involves noble metal-based catalysts. Here we report on an earth-abundant, plasmonic nano-photocatalyst, with an excellent reaction rate towards the selective hydrogenation of nitroaromatics. With solar light as the only energy input, the chalcopyrite catalyst operates through the combined action of hot holes and photothermal effects. Ultrafast laser transient absorption and light-induced electron paramagnetic resonance spectroscopies have unveiled the energy matching of the hot holes in the valence band of the catalyst with the frontier orbitals of the hydrogen and electron donor, via a transient coordination intermediate. Consequently, the reusable and sustainable copper-iron-sulfide (CuFeS2) catalyst delivers previously unattainable turnover frequencies, even in large-scale reactions, while the cost-normalized production rate stands an order of magnitude above the state of the art.
Collapse
Affiliation(s)
- Aby Cheruvathoor Poulose
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | - Ioannis Konidakis
- Institute of Electronic Structure and Laser Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Efthymis Serpetzoglou
- Institute of Electronic Structure and Laser Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Ondřej Tomanec
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | | | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
| |
Collapse
|
21
|
Britt RD, Tao L, Rao G, Chen N, Wang LP. Proposed Mechanism for the Biosynthesis of the [FeFe] Hydrogenase H-Cluster: Central Roles for the Radical SAM Enzymes HydG and HydE. ACS BIO & MED CHEM AU 2022; 2:11-21. [PMID: 35187536 PMCID: PMC8855341 DOI: 10.1021/acsbiomedchemau.1c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023]
Abstract
Radical S-adenosylmethionine (radical SAM or rSAM) enzymes use their S-adenosylmethionine cofactor bound to a unique Fe of a [4Fe-4S] cluster to generate the "hot" 5'-deoxyadenosyl radical, which drives highly selective radical reactions via specific interactions with a given rSAM enzyme's substrate. This Perspective focuses on the two rSAM enzymes involved in the biosynthesis of the organometallic H-cluster of [FeFe] hydrogenases. We present here a detailed sequential model initiated by HydG, which lyses a tyrosine substrate via a 5'-deoxyadenosyl H atom abstraction from those amino acid's amino group, initially producing dehydroglycine and an oxidobenzyl radical. In this model, two successive radical cascade reactions lead ultimately to the formation of HydG's product, a mononuclear Fe organometallic complex: [Fe(II)(CN)(CO)2(cysteinate)]-, with the iron originating from a unique "dangler" Fe coordinated by a cysteine ligand providing a sulfur bridge to another [4Fe-4S] auxiliary cluster in the enzyme. In turn, in this model, [Fe(II)(CN)(CO)2(cysteinate)]- is the substrate for HydE, the second rSAM enzyme in the biosynthetic pathway, which activates this mononuclear organometallic unit for dimerization, forming a [Fe2S2(CO)4(CN)2] precursor to the [2Fe] H component of the H-cluster, requiring only the completion of the bridging azadithiolate (SCH2NHCH2S) ligand. This model is built upon a foundation of data that incorporates cell-free synthesis, isotope sensitive spectroscopies, and the selective use of synthetic complexes substituting for intermediates in the enzymatic "assembly line". We discuss controversies pertaining to this model and some remaining open issues to be addressed by future work.
Collapse
Affiliation(s)
- R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Guodong Rao
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Nanhao Chen
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
22
|
Zhang Y, Tao L, Woods TJ, Britt RD, Rauchfuss TB. Organometallic Fe 2(μ-SH) 2(CO) 4(CN) 2 Cluster Allows the Biosynthesis of the [FeFe]-Hydrogenase with Only the HydF Maturase. J Am Chem Soc 2022; 144:1534-1538. [PMID: 35041427 PMCID: PMC9169013 DOI: 10.1021/jacs.1c12506] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The biosynthesis of the active site of the [FeFe]-hydrogenases (HydA1), the H-cluster, is of interest because these enzymes are highly efficient catalysts for the oxidation and production of H2. The biosynthesis of the [2Fe]H subcluster of the H-cluster proceeds from simple precursors, which are processed by three maturases: HydG, HydE, and HydF. Previous studies established that HydG produces an Fe(CO)2(CN) adduct of cysteine, which is the substrate for HydE. In this work, we show that by using the synthetic cluster [Fe2(μ-SH)2(CN)2(CO)4]2- active HydA1 can be biosynthesized without maturases HydG and HydE.
Collapse
Affiliation(s)
- Yu Zhang
- School of Chemical Sciences, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Toby J Woods
- School of Chemical Sciences, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Unusual structures and unknown roles of FeS clusters in metalloenzymes seen from a resonance Raman spectroscopic perspective. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Rao G, Chen N, Marchiori DA, Wang LP, Britt RD. Accumulation and Pulse Electron Paramagnetic Resonance Spectroscopic Investigation of the 4-Oxidobenzyl Radical Generated in the Radical S-Adenosyl-l-methionine Enzyme HydG. Biochemistry 2022; 61:107-116. [PMID: 34989236 DOI: 10.1021/acs.biochem.1c00619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The radical S-adenosyl-l-methionine (SAM) enzyme HydG cleaves tyrosine to generate CO and CN- ligands of the [FeFe] hydrogenase H-cluster, accompanied by the formation of a 4-oxidobenzyl radical (4-OB•), which is the precursor to the HydG p-cresol byproduct. Native HydG only generates a small amount of 4-OB•, limiting detailed electron paramagnetic resonance (EPR) spectral characterization beyond our initial EPR lineshape study employing various tyrosine isotopologues. Here, we show that the concentration of trapped 4-OB• is significantly increased in reactions using HydG variants, in which the "dangler Fe" to which CO and CN- bind is missing or substituted by a redox-inert Zn2+ ion. This allows for the detailed characterization of 4-OB• using high-field EPR and electron nuclear double resonance spectroscopy to extract its g-values and 1H/13C hyperfine couplings. These results are compared to density functional theory-predicted values of several 4-OB• models with different sizes and protonation states, with a best fit to the deprotonated radical anion configuration of 4-OB•. Overall, our results depict a clearer electronic structure of the transient 4-OB• radical and provide new insights into the radical SAM chemistry of HydG.
Collapse
Affiliation(s)
- Guodong Rao
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Nanhao Chen
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - David A Marchiori
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
25
|
Britt RD, Rauchfuss TB. Biosynthesis of the [FeFe] hydrogenase H-cluster via a synthetic [Fe(II)(CN)(CO) 2(cysteinate)] - complex. Dalton Trans 2021; 50:12386-12391. [PMID: 34545884 DOI: 10.1039/d1dt02258j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The H-cluster of [Fe-Fe] hydrogenase consists of a [4Fe]H subcluster linked by the sulfur of a cysteine residue to an organometallic [2Fe]H subcluster that utilizes terminal CO and CN ligands to each Fe along with a bridging CO and a bridging SCH2NHCH2S azadithiolate (adt) to catalyze proton reduction or hydrogen oxidation. Three Fe-S "maturase" proteins, HydE, HydF, and HydG, are responsible for the biosynthesis of the [2Fe]H subcluster and its incorporation into the hydrogenase enzyme to form this catalytically active H-cluster. We have proposed that HydG is a bifunctional enzyme that uses S-adenosylmethione (SAM) bound to a [4Fe-4S] cluster to lyse tyrosine via a transient 5'-deoxyadenosyl radical to produce CO and CN ligands to a unique cysteine-chelated Fe(II) that is linked to a second [4Fe-4S] cluster via the cysteine sulfur. In this "synthon model", after two cycles of tyrosine lysis, the product of HydG is completed: a [Fe(CN)(CO)2(cysteinate)]- organometallic unit that is vectored directly into the synthesis of the [2Fe]H sub-cluster. However our HydG-centric synthon model is not universally accepted, so further validation is important. In this Frontiers article, we discuss recent results using a synthetic "Syn-B" complex that donates [Fe(CN)(CO)2(cysteinate)]- units that match our proposed HydG product. Can Syn-B activate hydrogenase in the absence of HydG and its tyrosine substrate? If so, since Syn-B can be synthesized with specific magnetic nuclear isotopes and with chemical substitutions, its use could allow its enzymatic conversions on the route to the H-cluster to be monitored and modeled in fresh detail.
Collapse
Affiliation(s)
- R David Britt
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA.
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
26
|
Zhang F, Richers CP, Woods TJ, Rauchfuss TB. Surprising Condensation Reactions of the Azadithiolate Cofactor. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fanjun Zhang
- School of Chemical Sciences University of Illinois at Urbana-Champaign 600 S. Goodwin Ave Urbana IL 61801 USA
| | - Casseday P. Richers
- School of Chemical Sciences University of Illinois at Urbana-Champaign 600 S. Goodwin Ave Urbana IL 61801 USA
| | - Toby J. Woods
- School of Chemical Sciences University of Illinois at Urbana-Champaign 600 S. Goodwin Ave Urbana IL 61801 USA
| | - Thomas B. Rauchfuss
- School of Chemical Sciences University of Illinois at Urbana-Champaign 600 S. Goodwin Ave Urbana IL 61801 USA
| |
Collapse
|
27
|
Zhang F, Richers CP, Woods TJ, Rauchfuss TB. Surprising Condensation Reactions of the Azadithiolate Cofactor. Angew Chem Int Ed Engl 2021; 60:20744-20747. [PMID: 34324230 DOI: 10.1002/anie.202108135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 11/10/2022]
Abstract
Azadithiolate, a cofactor found in all [FeFe]-hydrogenases, is shown to undergo acid-catalyzed rearrangement. Fe2 [(SCH2 )2 NH](CO)6 self-condenses to give Fe6 [(SCH2 )3 N]2 (CO)17 . The reaction, which is driven by loss of NH4 + , illustrates the exchange of the amine group. X-ray crystallography reveals that three Fe2 (SR)2 (CO)x butterfly subunits interconnected by the aminotrithiolate [N(CH2 S)3 ]3- . Mechanistic studies reveal that Fe2 [(SCH2 )2 NR](CO)6 participate in a range of amine exchange reactions, enabling new methodologies for modifying the adt cofactor. Ru2 [(SCH2 )2 NH](CO)6 also rearranges, but proceeds further to give derivatives with Ru-alkyl bonds Ru6 [(SCH2 )3 N][(SCH2 )2 NCH2 ]S(CO)17 and [Ru2 [(SCH2 )2 NCH2 ](CO)5 ]2 S.
Collapse
Affiliation(s)
- Fanjun Zhang
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Casseday P Richers
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Toby J Woods
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave, Urbana, IL, 61801, USA
| |
Collapse
|
28
|
Salinas O, Xie J, Papoular RJ, Horwitz NE, Elkaim E, Filatov AS, Anderson JS. Steric and electronic effects of ligand substitution on redox-active Fe 4S 4-based coordination polymers. Dalton Trans 2021; 50:10798-10805. [PMID: 34287442 DOI: 10.1039/d1dt01652k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
One of the notable advantages of molecular materials is the ability to precisely tune structure, properties, and function via molecular substitutions. While many studies have demonstrated this principle with classic carboxylate-based coordination polymers, there are comparatively fewer examples where systematic changes to sulfur-based coordination polymers have been investigated. Here we present such a study on 1D coordination chains of redox-active Fe4S4 clusters linked by methylated 1,4-benzene-dithiolates. A series of new Fe4S4-based coordination polymers were synthesized with either 2,5-dimethyl-1,4-benzenedithiol (DMBDT) or 2,3,5,6-tetramethyl-1,4-benzenedithiol (TMBDT). The structures of these compounds have been characterized based on synchrotron X-ray powder diffraction while their chemical and physical properties have been characterized by techniques including X-ray photoelectron spectroscopy, cyclic voltammetry and UV-visible spectroscopy. Methylation results in the general trend of increasing electron-richness in the series, but the tetramethyl version exhibits unexpected properties arising from steric constraints. All these results highlight how substitutions on organic linkers can modulate electronic factors to fine-tune the electronic structures of metal-organic materials.
Collapse
Affiliation(s)
- Omar Salinas
- Chemistry, The University of Chicago, Chicago, Illinois, United States.
| | - Jiaze Xie
- Chemistry, The University of Chicago, Chicago, Illinois, United States.
| | - Robert J Papoular
- Leon Brillouin Laboratory, French Alternative Energies and Atomic Energy Commission Saclay Institute of Matter and Radiation, IRAMIS/CEA-Saclay, Gif-sur-Yvette, Île-de-France, France
| | - Noah E Horwitz
- Chemistry, The University of Chicago, Chicago, Illinois, United States.
| | | | | | - John S Anderson
- Chemistry, The University of Chicago, Chicago, Illinois, United States.
| |
Collapse
|
29
|
Madavi TB, Chauhan S, Jha M, Choi KY, Pamidimarri SDVN. Biohydrogen Machinery: Recent Insights, Genetic Fabrication, and Future Prospects. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tanushree Baldeo Madavi
- Amity University Chhattisgarh Amity Institute of Biotechnology 493225 Raipur, Chhattisgarh India
| | - Sushma Chauhan
- Amity University Chhattisgarh Amity Institute of Biotechnology 493225 Raipur, Chhattisgarh India
| | - Meenakshi Jha
- Amity University Chhattisgarh Amity Institute of Biotechnology 493225 Raipur, Chhattisgarh India
| | - Kwon-Young Choi
- College of Engineering, Ajou University Department of Environmental Engineering Suwon Gyeonggi-do South Korea
| | | |
Collapse
|
30
|
Arrigoni F, Zampella G, Zhang F, Kagalwala HN, Li QL, Woods TJ, Rauchfuss TB. Computational and Experimental Investigations of the Fe 2(μ-S 2)/Fe 2(μ-S) 2 Equilibrium. Inorg Chem 2021; 60:3917-3926. [PMID: 33650855 PMCID: PMC8100967 DOI: 10.1021/acs.inorgchem.0c03709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Density functional theory (DFT) calculations on Fe2S2(CO)6-2n(PMe3)2n for n = 0, 1, and 2 reveal that the most electron-rich derivatives (n = 2) exist as diferrous disulfides lacking an S-S bond. The thermal interconversion of the FeII2(S)2 and FeI2(S2) valence isomers is symmetry-forbidden. Related electron-rich diiron complexes [Fe2S2(CN)2(CO)4]2- of an uncertain structure are implicated in the biosynthesis of [FeFe]-hydrogenases. Several efforts to synthesize electron-rich derivatives of Fe2(μ-S2)(CO)6 (1) are described. First, salts of iron persulfido cyanides [Fe2(μ-S2)(CO)5(CN)]- and [Fe2(μ-S2)(CN)(CO)4(PPh3)]- were prepared by the reactions of NaN(tms)2 with 1 and Fe2(μ-S2)(CO)5(PPh3), respectively. Alternative approaches to electron-rich diiron disulfides targeted Fe2(μ-S2)(CO)4(diphosphine). Whereas the preparation of Fe2(μ-S2)(CO)4(dppbz) was straightforward, that of Fe2(μ-S2)(CO)4(dppv) required an indirect route involving the oxidation of Fe2(μ-SH)2(CO)4(dppv) (dppbz = C6H4-1,2-(PPh2)2, dppv = cis-C2H2(PPh2)2). DFT calculations indicate that the oxidation of Fe2(μ-SH)2(CO)4(dppv) produces singlet diferrous disulfide Fe2(μ-S)2(CO)4(dppv), which is sufficiently long-lived as to be trapped by ethylene. The reaction of 1 and dppv mainly afforded Fe2(μ-SCH=CHPPh2)(μ-SPPh2)(CO)5, implicating a S-centered reaction.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnology and Biosciences University of Milano-Bicocca Piazza della Scienza 2 20126-Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences University of Milano-Bicocca Piazza della Scienza 2 20126-Milan, Italy
| | - Fanjun Zhang
- School of Chemical Sciences University of Illinois Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Husain N Kagalwala
- School of Chemical Sciences University of Illinois Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Qian-Li Li
- School of Chemical Sciences University of Illinois Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Toby J Woods
- School of Chemical Sciences University of Illinois Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences University of Illinois Urbana-Champaign, Champaign, Illinois 61801, United States
| |
Collapse
|
31
|
Abstract
The role of deuterium in disentangling key steps of the mechanisms of H2 activation by mimics of hydrogenases is presented. These studies have allowed to a better understanding of the mode of action of the natural enzymes and their mimics.
Collapse
Affiliation(s)
- Mar Gómez-Gallego
- Departamento de Química Orgánica I and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Facultad de Química
- Universidad Complutense
- 28040-Madrid
- Spain
| | - Miguel A. Sierra
- Departamento de Química Orgánica I and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Facultad de Química
- Universidad Complutense
- 28040-Madrid
- Spain
| |
Collapse
|
32
|
Zhu H, Aarons J, Peng Q. High spin polarized Fe2 cluster combined with vicinal nonmetallic sites for catalytic ammonia synthesis from a theoretical perspective. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01083b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Compared to other Fen (n > 2) clusters, Fe2 cluster catalysts combined with vicinal nonmetallic sites are expected to be an ideal catalyst for ammonia synthesis with a lower N–H formation (0.47 eV) and N–N dissociation (0.50 eV) energy barrier at the same time.
Collapse
Affiliation(s)
- Hongdan Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jolyon Aarons
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|