1
|
Peshkar-Kulkarni S, Chung DD, Aldave AJ. Antioxidant MitoQ increases viability of human corneal endothelial cells with congenital hereditary endothelial dystrophy-associated SLC4A11 mutations. Ophthalmic Genet 2025; 46:166-173. [PMID: 39834031 PMCID: PMC12003074 DOI: 10.1080/13816810.2025.2450455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE To assess the impact of MitoQ, a mitochondria-targeted antioxidant, on viability of human corneal endothelial cell (hCEnC) lines expressing SLC4A11 mutations associated with congenital hereditary endothelial dystrophy (CHED) and Fuchs endothelial corneal dystrophy type 4 (FECD4). METHODS SLC4A11 wildtype (SLC4A11WT) and mutant (SLC4A11MU) hCEnC lines were created to express either SLC4A11 variant 2 (V2) or variant 3 (V3) by stable transduction of SLC4A11-/- hCEnC-21T with lentiviruses containing either SLC4A11WT or one of the following mutations: V2 (V3) mutants c.374 G>A (c.326 G>A) (CHED), c.1813C>T (c.1765C>T) (CHED), c.2263C>T (c.2215C>T) (CHED), or c.2224 G>A (c.2176 G>A) (FECD4). A SLC4A11-/- empty hCEnC line was created by stable transduction of SLC4A11-/- hCEnC-21T with an empty lentiviral plasmid. Cell viability was measured by exposing MitoQ treated and untreated cells to oxidative stress agent tert-butyl hydroperoxide (tBH) followed by performing XTT assays and spectrophotometry. RESULTS SLC4A11-/- empty, SLC4A11 V2WT, and SLC4A11 V3WT hCEnC exposed to ≤0.01 μM MitoQ retained over 90% of the viability of untreated SLC4A11-/- empty hCEnC. When treated with MitoQ, SLC4A11-/- empty was able to demonstrate partial restoration of cell viability. All CHED-associated mutant hCEnC lines treated with 0.01 μM MitoQ demonstrated increased viability compared to untreated following exposure to tBH. The FECD4-associated mutant hCEnC line treated with 0.01 μM MitoQ showed no significant increase in cell viability compared to untreated following exposure to tBH. CONCLUSIONS Media supplementation with antioxidant MitoQ has beneficial effects on cell viability in hCEnC harboring CHED-associated SLC4A11 mutations following exposure to tBH-induced oxidative stress.
Collapse
Affiliation(s)
| | - Doug D Chung
- Department of Ophthalmology, Stein Eye Institute at UCLA, Los Angeles, California, USA
| | - Anthony J Aldave
- Department of Ophthalmology, Stein Eye Institute at UCLA, Los Angeles, California, USA
| |
Collapse
|
2
|
Wu K, Li G, Gao J, Tian Y, Wei D, Wu C, Ding J, Zhu J, Luo H, Sun J, Ramakrishna S, Fan H. Glycerol Modulated Collagen Fibril Evolution and Lamellar Organization for Biomimetic Corneal Substitutes Construction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407606. [PMID: 39686763 DOI: 10.1002/smll.202407606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Collagen as the main structural component of the cornea exhibits unique and highly organized fibril lamellae, which contribute to the maintenance of corneal structure and transparency. Nevertheless, collagen assembly in vitro to create ideal artificial corneal substitutes with human cornea comparable thickness and optics is still limited. Here, glycerol as a regulator can reconcile collagen thickness, transparency, and permeability, a conflicting goal by current keratoprosthesis strategies. Structure analysis reveals that glycerol treatment induces collagen hydrogels to undergo a sequential three-step multiscale structural evolution: weakened collagen crystallization at the molecular level, followed by ordered and distanced microfibril packaging at the nanoscale, and ultimately lamellar structure as well as fibril diameter and spacing-dependent optics at a macroscopic level. Such ultrastructure is then stabilized by oxazolidine crosslinking to obtain a collagen-based artificial corneal substitute (Col-Gly-OX) with optimal integration of optical clarity, mechanical robustness, high permeability, manufacturability, easy preservation and in vitro biocompatibility. Further in vivo study demonstrates that Col-Gly-OX displays excellent tissue integration, epithelialization, and stromal remodeling in a rabbit lamellar keratectomy. Overall, this work illustrates the potential of glycerol regulator to mediate the multiscale structural organization of collagen, providing a green, simple and effective strategy for the development of bionic artificial cornea.
Collapse
Affiliation(s)
- Kai Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Gaowei Li
- Department of Neurosurgery, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiaze Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yuan Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610065, China
| | - Jie Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jing Zhu
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
3
|
Al-Sharify NT, Yussof S, Ghaeb NH, Al-Sharify ZT, Naser HY, Ahmed SM, See OH, Weng LY. Advances in Corneal Diagnostics Using Machine Learning. Bioengineering (Basel) 2024; 11:1198. [PMID: 39768016 PMCID: PMC11726986 DOI: 10.3390/bioengineering11121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
This paper provides comprehensive insights into the cornea and its diseases, with a particular focus on keratoconus. This paper explores the cornea's function in maintaining ocular health, detailing its anatomy, pathological conditions, and the latest developments in diagnostic techniques. Keratoconus is discussed extensively, covering its subtypes, etiology, clinical manifestations, and the application of the Q-value for quantification. Several diagnostic techniques, such as corneal topography, are crucial points of discussion. This paper also examines the use of machine learning models, specifically Decision Tree and Nearest Neighbor Analysis, which enhance the accuracy of diagnosing based on topographical corneal parameters from corneal topography. These models provide valuable insights into disease progression and aid in clinical decision making. Integrating these technologies in medical research opens promising avenues for enhanced disease detection. Our findings demonstrate the effectiveness of Decision Tree and Nearest Neighbor Analysis in classifying and predicting conditions based on corneal parameters. The Decision Tree achieved classification accuracy of 62% for training and 65.7% for testing, while Nearest Neighbor Analysis yielded 65.4% for training and 62.6% for holdout samples. These models offer valuable insights into the progression and severity of keratoconus, aiding clinicians in treatment and management decisions.
Collapse
Affiliation(s)
- Noor T. Al-Sharify
- Department of Electrical & Electronic Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (N.T.A.-S.); (H.Y.N.); (S.M.A.); (O.H.S.); ywle (L.Y.W.)
- Medical Instrumentation Engineering Department, Al-Esraa University College, Baghdad 10069, Iraq
| | - Salman Yussof
- Institute of Informatics and Computing in Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia;
| | - Nebras H. Ghaeb
- Biomedical Engineering Department, Al Khwarizmi Engineering College, University of Baghdad, Baghdad 10011, Iraq;
| | - Zainab T. Al-Sharify
- Department of Pharmacy, Al Hikma University College, Baghdad 10052, Iraq
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Environmental Engineering Department, Mustansiriyah University, Baghdad 10052, Iraq
| | - Husam Yahya Naser
- Department of Electrical & Electronic Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (N.T.A.-S.); (H.Y.N.); (S.M.A.); (O.H.S.); ywle (L.Y.W.)
| | - Sura M. Ahmed
- Department of Electrical & Electronic Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (N.T.A.-S.); (H.Y.N.); (S.M.A.); (O.H.S.); ywle (L.Y.W.)
| | - Ong Hang See
- Department of Electrical & Electronic Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (N.T.A.-S.); (H.Y.N.); (S.M.A.); (O.H.S.); ywle (L.Y.W.)
| | - Leong Yeng Weng
- Department of Electrical & Electronic Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (N.T.A.-S.); (H.Y.N.); (S.M.A.); (O.H.S.); ywle (L.Y.W.)
| |
Collapse
|
4
|
Berger T, Seitz B, Löw U, Flockerzi F, Schlötzer-Schrehardt U, Daas L. Descemet Membrane Endothelial Keratoplasty (DMEK) for Severe Verrucous Posterior Polymorphous Corneal Dystrophy with Uncommon Clinical and Ultrastructural Findings. Klin Monbl Augenheilkd 2024; 241:1081-1090. [PMID: 35926514 DOI: 10.1055/a-1862-8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE To report a case of severe verrucous posterior polymorphous corneal dystrophy (PPCD) and cataract, which was treated with Descemet membrane endothelial keratoplasty (DMEK) and simultaneous cataract surgery as a triple procedure (Triple-DMEK). METHODS A 62-year-old female patient presented to our department for co-evaluation of advanced PPCD with cataract and progressive light sensitivity in both eyes. The clinical examination demonstrated unusual clinical findings with prominent verrucous lesions on the posterior surface of the cornea without corneal decompensation. We performed a Triple-DMEK in case of simultaneous cataract. The corneal tissue was examined by light and transmission electron microscopy. RESULTS Intraoperatively, it was difficult to remove the verrucous structures completely after classical descemetorhexis. Light microscopic examination demonstrated epithelium-like transformation of the corneal endothelium by immunostaining (cytokeratin AE1/3 staining). Transmission electron microscopy revealed thickening of Descemet's membrane (18.5 to 30.0 µm). The anterior banded layer had a normal structure and was slightly thickened (3.5 to 5.5 µm). A normal posterior non-banded layer (PNBL) was observed but thinned (2.5 to 4.0 µm) or missing. It was followed by an altered PNBL with abnormal fibrillary inclusions, which was strongly and variably thickened (11.0 to 24.5 µm). The corneal endothelium was degenerated, partially absent, and epithelial-like altered. The nodular lesions were found to consist of a few degenerated cells that were embedded in an amorphous extracellular matrix interspersed with collagen fibers, which were not arranged in regular lamellae, forming the corneal stroma. The occurrence of pigment granules among the cellular debris suggested that the cells were endothelial cells. The corrected distance visual acuity improved from 20/50 to 20/30 in the right eye (+ 0.00/- 1.75/157°) and from 20/60 to 20/30 in the left eye (+ 0.00/- 1.75/33°), with significant improvement in light sensitivity. CONCLUSION The clinical and ultrastructural findings seem to be an unusual variant of the typical characteristic appearance of a PPCD. This case demonstrates that Triple-DMEK is feasible even in very advanced dystrophic changes of the posterior corneal surface, with good morphological and functional results.
Collapse
Affiliation(s)
- Tim Berger
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ursula Löw
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Fidelis Flockerzi
- Institute of Pathology, Saarland University Medical Center, Homburg/Saar, Germany
| | | | - Loay Daas
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
5
|
Hashemi A, Hashemi H, Aghamirsalim M, Jamali A, Khabazkhoob M. Prevalence of Certain Corneal Conditions and their Demographic Risk Factors; Tehran Geriatric Eye Study. ARCHIVES OF IRANIAN MEDICINE 2024; 27:414-420. [PMID: 39306712 PMCID: PMC11416701 DOI: 10.34172/aim.28831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/12/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Corneal abnormalities are one of the important reasons for visual impairment. There is little evidence of the prevalence of different types of corneal abnormalities. The aim of this study was to assess the prevalence of various corneal abnormalities and identify the key risk factors associated with these abnormalities in an elderly population residing in Tehran. METHODS The Tehran Geriatric Eye Study (TGES) was conducted as a cross-sectional study, utilizing a population-based approach and employing stratified cluster random sampling. The study focused on individuals aged 60 years and above residing in Tehran. An ophthalmologist performed a slit lamp examination to evaluate the eyelid, cornea, and crystalline lens. RESULTS The prevalence of posterior embryotoxon (PE), punctate epithelial defect (PED), pigment on endothelium (POE), corneal dystrophy (CDys), corneal vascularization (CV), and corneal degeneration (CDeg) were estimated to be 0.08% (95% confidence interval [CI]: 0.02 to 0.40), 8.77% (95% CI: 6.64 to 11.51), 0.57% (95% CI: 0.33 to 0.98), 0.53% (95% CI: 0.33 to 0.82), 0.95% (95% CI: 0.60 to 1.52), and 44.87% (95% CI: 41.80 to 47.98), respectively. Overall, approximately 49.08% of the participants exhibited some form of corneal abnormality in at least one eye. The multiple logistic regression model revealed that increasing age was significantly associated with PED, CV, and CD. Furthermore, illiterate participants had a significantly higher prevalence of PE. CONCLUSION The findings of this study indicate that approximately half of the elderly population aged 60 years and above in Tehran have at least one corneal abnormality, with corneal degeneration being the most prevalent. Age was identified as the primary determinant of corneal abnormalities.
Collapse
Affiliation(s)
- Alireza Hashemi
- Noor Research Center for Ophthalmic Epidemiology, Noor Eye Hospital, Tehran, Iran
| | - Hassan Hashemi
- Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran
| | | | - Alireza Jamali
- Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran
| | - Mehdi Khabazkhoob
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Abusayf MM, Liu YC, Han E, Yu ILX, Riau AK, Mehta JS. One-Step Intraoperative Optical Coherence Tomography Guided Tunnel, Mushroom Femtosecond Laser Big Bubble Deep Anterior Lamellar Keratoplasty. Bioengineering (Basel) 2024; 11:639. [PMID: 39061721 PMCID: PMC11273850 DOI: 10.3390/bioengineering11070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of our study is to investigate the feasibility and outcomes of using a femtosecond laser (FSL) platform (Ziemer LDV Z8) for deep anterior lamellar keratoplasty (DALK), enabling the creation of mushroom-shaped graft-host junctions, lamellar cuts, and intrastromal tunnels, to facilitate the big bubble, in one step. We included wet lab experiments on nine porcine eyes to assess the laser accuracy and cuts depth using an anterior segment (AS) OCT. This was followed by an interventional prospective case series on 10 eyes with variant corneal pathologies. The Z8 system, with in-built intraoperative optical coherence tomography (iOCT), guided corneal scans and directed the cuts. ASOCT showed visible mushroom configurations, lamellar cuts, and tunnels. Deviations from the target were 1.6%, 2.6%, and 3.5%. Anterior lamellar removal was easy in all clinical cases, including corneal scarring. The intrastromal tunnel was found at the preset location and the mushroom configuration was acquired. A big bubble was achieved in all cases. Type 1, 2, and 3 bubbles were formed in eight, one, and one case, respectively. We describe a new approach to DALK in which the in-built iOCT-guided FSL enables safe, precise, controlled, and reproducible desired cuts in one step. The preliminary clinical outcomes were favorable.
Collapse
Affiliation(s)
- Mohammed M. Abusayf
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia
- Cornea and External Eye Disease Service, Singapore National Eye Center, Singapore 168751, Singapore;
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (E.H.); (A.K.R.)
| | - Yu-Chi Liu
- Cornea and External Eye Disease Service, Singapore National Eye Center, Singapore 168751, Singapore;
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (E.H.); (A.K.R.)
- Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Evelina Han
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (E.H.); (A.K.R.)
| | - Isabelle Lee Xin Yu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (E.H.); (A.K.R.)
| | - Andri K. Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (E.H.); (A.K.R.)
- Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Jodhbir S. Mehta
- Cornea and External Eye Disease Service, Singapore National Eye Center, Singapore 168751, Singapore;
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (E.H.); (A.K.R.)
- Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
7
|
Yu C, Xu J, Heidari G, Jiang H, Shi Y, Wu A, Makvandi P, Neisiany RE, Zare EN, Shao M, Hu L. Injectable hydrogels based on biopolymers for the treatment of ocular diseases. Int J Biol Macromol 2024; 269:132086. [PMID: 38705321 DOI: 10.1016/j.ijbiomac.2024.132086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Injectable hydrogels based on biopolymers, fabricated utilizing diverse chemical and physical methodologies, exhibit exceptional physical, chemical, and biological properties. They have multifaceted applications encompassing wound healing, tissue regeneration, and across diverse scientific realms. This review critically evaluates their largely uncharted potential in ophthalmology, elucidating their diverse applications across an array of ocular diseases. These conditions include glaucoma, cataracts, corneal disorders (spanning from age-related degeneration to trauma, infections, and underlying chronic illnesses), retina-associated ailments (such as diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration (AMD)), eyelid abnormalities, and uveal melanoma (UM). This study provides a thorough analysis of applications of injectable hydrogels based on biopolymers across these ocular disorders. Injectable hydrogels based on biopolymers can be customized to have specific physical, chemical, and biological properties that make them suitable as drug delivery vehicles, tissue scaffolds, and sealants in the eye. For example, they can be engineered to have optimum viscosity to be injected intravitreally and sustain drug release to treat retinal diseases. Their porous structure and biocompatibility promote cellular infiltration to regenerate diseased corneal tissue. By accentuating their indispensable role in ocular disease treatment, this review strives to present innovative and targeted approaches in this domain, thereby advancing ocular therapeutics.
Collapse
Affiliation(s)
- Caiyu Yu
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China; School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahao Xu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Golnaz Heidari
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4410, New Zealand
| | - Huijun Jiang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifeng Shi
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran; Centre of Research Impact and Outreach, Chitkara University, Rajpura 140417, Punjab, India.
| | - Minmin Shao
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China.
| | - Liang Hu
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
8
|
Ni H, Li L, Hu D, Yang M, Wang D, Ma H, Bu W, Yang J, Zhu LE, Zhai D, Song T, Yang S, Lu Q, Li D, Ran J, Liu M. Dynamic changes of endothelial and stromal cilia are required for the maintenance of corneal homeostasis. J Cell Physiol 2024; 239:e31215. [PMID: 38308657 DOI: 10.1002/jcp.31215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Primary cilia are distributed extensively within the corneal epithelium and endothelium. However, the presence of cilia in the corneal stroma and the dynamic changes and roles of endothelial and stromal cilia in corneal homeostasis remain largely unknown. Here, we present compelling evidence for the presence of primary cilia in the corneal stroma, both in vivo and in vitro. We also demonstrate dynamic changes of both endothelial and stromal cilia during corneal development. In addition, our data show that cryoinjury triggers dramatic cilium formation in the corneal endothelium and stroma. Furthermore, depletion of cilia in mutant mice lacking intraflagellar transport protein 88 compromises the corneal endothelial capacity to establish the effective tissue barrier, leading to an upregulation of α-smooth muscle actin within the corneal stroma in response to cryoinjury. These observations underscore the essential involvement of corneal endothelial and stromal cilia in maintaining corneal homeostasis and provide an innovative strategy for the treatment of corneal injuries and diseases.
Collapse
Affiliation(s)
- Hua Ni
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Lamei Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Die Hu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mulin Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Difei Wang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbo Ma
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiwen Bu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jia Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Li-E Zhu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Denghui Zhai
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Song Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quanlong Lu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin, China
| |
Collapse
|
9
|
Said S, Schwotzer R, Muth DR, Fasler K, Barthelmes D, Zweifel S, Blaser F. Monoclonal Gammopathy of Ocular Significance - A Case Report. Klin Monbl Augenheilkd 2024; 241:468-471. [PMID: 38653278 DOI: 10.1055/a-2211-9351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Affiliation(s)
- Sadiq Said
- Department of Ophthalmology, University Hospital Zürich, Zürich, Switzerland
| | - Rahel Schwotzer
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Daniel Rudolf Muth
- Department of Ophthalmology, University Hospital Zürich, Zürich, Switzerland
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Katrin Fasler
- Department of Ophthalmology, University Hospital Zürich, Zürich, Switzerland
| | - Daniel Barthelmes
- Department of Ophthalmology, University Hospital Zürich, Zürich, Switzerland
- Save Sight Institute, University of Sydney CAR, Glebe, Australia
| | - Sandrine Zweifel
- Department of Ophthalmology, University Hospital Zürich, Zürich, Switzerland
| | - Frank Blaser
- Department of Ophthalmology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
Chong YJ, Azzopardi M, Hussain G, Recchioni A, Gandhewar J, Loizou C, Giachos I, Barua A, Ting DSJ. Clinical Applications of Anterior Segment Optical Coherence Tomography: An Updated Review. Diagnostics (Basel) 2024; 14:122. [PMID: 38248000 PMCID: PMC10814678 DOI: 10.3390/diagnostics14020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Since its introduction, optical coherence tomography (OCT) has revolutionized the field of ophthalmology and has now become an indispensable, noninvasive tool in daily practice. Most ophthalmologists are familiar with its use in the assessment and monitoring of retinal and optic nerve diseases. However, it also has important applications in the assessment of anterior segment structures, including the cornea, conjunctiva, sclera, anterior chamber, and iris, and has the potential to transform the clinical examination of these structures. In this review, we aim to provide a comprehensive overview of the potential clinical utility of anterior segment OCT (AS-OCT) for a wide range of anterior segment pathologies, such as conjunctival neoplasia, pterygium, scleritis, keratoconus, corneal dystrophies, and infectious/noninfectious keratitis. In addition, the clinical applications of AS-OCT (including epithelial mapping) in preoperative planning and postoperative monitoring for corneal and refractive surgeries are discussed.
Collapse
Affiliation(s)
- Yu Jeat Chong
- Birmingham and Midland Eye Centre, Birmingham B18 7QH, UK; (A.R.); (I.G.); (A.B.)
- Modality Ophthalmology, Modality Partnership, Birmingham B19 1BP, UK;
| | - Matthew Azzopardi
- Department of Ophthalmology, Royal Free Hospital, London NW3 2QG, UK;
| | - Gulmeena Hussain
- University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK;
| | - Alberto Recchioni
- Birmingham and Midland Eye Centre, Birmingham B18 7QH, UK; (A.R.); (I.G.); (A.B.)
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Jaishree Gandhewar
- New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton WV10 0QP, UK;
| | | | - Ioannis Giachos
- Birmingham and Midland Eye Centre, Birmingham B18 7QH, UK; (A.R.); (I.G.); (A.B.)
| | - Ankur Barua
- Birmingham and Midland Eye Centre, Birmingham B18 7QH, UK; (A.R.); (I.G.); (A.B.)
| | - Darren S. J. Ting
- Birmingham and Midland Eye Centre, Birmingham B18 7QH, UK; (A.R.); (I.G.); (A.B.)
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
11
|
Huang X, Li L, Chen Z, Yu H, You X, Kong N, Tao W, Zhou X, Huang J. Nanomedicine for the Detection and Treatment of Ocular Bacterial Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302431. [PMID: 37231939 DOI: 10.1002/adma.202302431] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Ocular bacterial infection is a prevalent cause of blindness worldwide, with substantial consequences for normal human life. Traditional treatments for ocular bacterial infections areless effective, necessitating the development of novel techniques to enable accurate diagnosis, precise drug delivery, and effective treatment alternatives. With the rapid advancement of nanoscience and biomedicine, increasing emphasis has been placed on multifunctional nanosystems to overcome the challenges posed by ocular bacterial infections. Given the advantages of nanotechnology in the biomedical industry, it can be utilized to diagnose ocular bacterial infections, administer medications, and treat them. In this review, the recent advancements in nanosystems for the detection and treatment of ocular bacterial infections are discussed; this includes the latest application scenarios of nanomaterials for ocular bacterial infections, in addition to the impact of their essential characteristics on bioavailability, tissue permeability, and inflammatory microenvironment. Through an in-depth investigation into the effect of sophisticated ocular barriers, antibacterial drug formulations, and ocular metabolism on drug delivery systems, this review highlights the challenges faced by ophthalmic medicine and encourages basic research and future clinical transformation based on ophthalmic antibacterial nanomedicine.
Collapse
Affiliation(s)
- Xiaomin Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Luoyuan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518033, P. R. China
| | - Zhongxing Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Haoyu Yu
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518033, P. R. China
| | - Xinru You
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| |
Collapse
|
12
|
Ng XY, Peh GSL, Yam GHF, Tay HG, Mehta JS. Corneal Endothelial-like Cells Derived from Induced Pluripotent Stem Cells for Cell Therapy. Int J Mol Sci 2023; 24:12433. [PMID: 37569804 PMCID: PMC10418878 DOI: 10.3390/ijms241512433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Corneal endothelial dysfunction is one of the leading causes of corneal blindness, and the current conventional treatment option is corneal transplantation using a cadaveric donor cornea. However, there is a global shortage of suitable donor graft material, necessitating the exploration of novel therapeutic approaches. A stem cell-based regenerative medicine approach using induced pluripotent stem cells (iPSCs) offers a promising solution, as they possess self-renewal capabilities, can be derived from adult somatic cells, and can be differentiated into all cell types including corneal endothelial cells (CECs). This review discusses the progress and challenges in developing protocols to induce iPSCs into CECs, focusing on the different media formulations used to differentiate iPSCs to neural crest cells (NCCs) and subsequently to CECs, as well as the characterization methods and markers that define iPSC-derived CECs. The hurdles and solutions for the clinical application of iPSC-derived cell therapy are also addressed, including the establishment of protocols that adhere to good manufacturing practice (GMP) guidelines. The potential risks of genetic mutations in iPSC-derived CECs associated with long-term in vitro culture and the danger of potential tumorigenicity following transplantation are evaluated. In all, this review provides insights into the advancement and obstacles of using iPSC in the treatment of corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Xiao Yu Ng
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
| | - Gary S. L. Peh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Gary Hin-Fai Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, 6614, Pittsburgh, PA 15260, USA
| | - Hwee Goon Tay
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
- Centre for Vision Research, DUKE-NUS Medical School, Singapore 169857, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
- Centre for Vision Research, DUKE-NUS Medical School, Singapore 169857, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore 168751, Singapore
| |
Collapse
|
13
|
Li X, Chen K, Wang Z, Li J, Wang X, Xie C, Tong J, Shen Y. The mTOR signalling in corneal diseases: A recent update. Biochem Pharmacol 2023; 213:115620. [PMID: 37217140 DOI: 10.1016/j.bcp.2023.115620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Corneal diseases affect 4.2 million people worldwide and are a leading cause of vision impairment and blindness. Current treatments for corneal diseases, such as antibiotics, steroids, and surgical interventions, have numerous disadvantages and challenges. Thus, there is an urgent need for more effective therapies. Although the pathogenesis of corneal diseases is not fully understood, it is known that injury caused by various stresses and postinjury healing, such as epithelial renewal, inflammation, stromal fibrosis, and neovascularization, are highly involved. Mammalian target of rapamycin (mTOR) is a key regulator of cell growth, metabolism, and the immune response. Recent studies have revealed that activation of mTOR signalling extensively contributes to the pathogenesis of various corneal diseases, and inhibition of mTOR with rapamycin achieves promising outcomes, supporting the potential of mTOR as a therapeutic target. In this review, we detail the function of mTOR in corneal diseases and how these characteristics contribute to disease treatment using mTOR-targeted drugs.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kuangqi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zixi Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiayuan Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiawei Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chen Xie
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Jianping Tong
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
14
|
Vottonen L, Koskela A, Felszeghy S, Wylegala A, Kryszan K, Gurubaran IS, Kaarniranta K, Wylegala E. Oxidative Stress and Cellular Protein Accumulation Are Present in Keratoconus, Macular Corneal Dystrophy, and Fuchs Endothelial Corneal Dystrophy. J Clin Med 2023; 12:4332. [PMID: 37445366 DOI: 10.3390/jcm12134332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the study was to investigate oxidative stress as well as cellular protein accumulation in corneal diseases including keratoconus (KC), macular corneal dystrophy (MCD), and Fuchs endothelial corneal dystrophy (FECD) at their primary affecting sites. Corneal buttons from KC, MCD, and FECD patients, as well as healthy controls, were analyzed immunohistochemically to evaluate the presence of oxidative stress and the function of the proteostasis network. 4-Fydroxynonenal (4-HNE) was used as a marker of oxidative stress, whereas the levels of catalase and heat-shock protein 70 (HSP70) were analyzed to evaluate the response of the antioxidant defense system and molecular chaperones, respectively. Sequestosome 1 (SQSTM1) levels were determined to assess protein aggregation and the functionality of autophagic degradation. Basal epithelial cells of the KC samples showed increased levels of oxidative stress marker 4-HNE and antioxidant enzyme catalase together with elevated levels of HSP70 and accumulation of SQSTM1. Corneal stromal cells and endothelial cells from MCD and FECD samples, respectively, showed similarly increased levels of these markers. All corneal diseases showed the presence of oxidative stress and activation of the molecular chaperone response to sustain protein homeostasis. However, the accumulation of protein aggregates suggests insufficient function of the protective mechanisms to limit the oxidative damage and removal of protein aggregates via autophagy. These results suggest that oxidative stress has a role in KC, MCD, and FECD at the cellular level as a secondary outcome. Thus, antioxidant- and autophagy-targeted therapies could be included as supporting care when treating KC or corneal dystrophies.
Collapse
Affiliation(s)
- Linda Vottonen
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Adam Wylegala
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences, Medical University of Silesia, 40-055 Katowice, Poland
- Ophthalmology Department, Railway Hospital, 40-760 Katowice, Poland
| | | | | | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Edward Wylegala
- Ophthalmology Department, Railway Hospital, 40-760 Katowice, Poland
- Clinical Department of Ophthalmology, II School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland
| |
Collapse
|
15
|
Ye M, Lu Q, Zhao D, Zhao B, Zhang S, Liao Y, Liao R. New Endothelial Corneal Dystrophy in a Chinese Family. Cornea 2023; 42:529-535. [PMID: 36796013 PMCID: PMC10060041 DOI: 10.1097/ico.0000000000003209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2022] [Accepted: 11/02/2022] [Indexed: 02/18/2023]
Abstract
PURPOSE The aim of this study was to characterize the clinical presentation of atypical endothelial corneal dystrophy (ECD) and to identify possible associated genetic variants in a Chinese family. METHODS Six affected members, 4 unaffected first-degree relatives, and 3 spouses who were enrolled in this study underwent ophthalmic examinations. Genetic linkage analysis was performed for 4 affected and 2 unaffected members, and whole-exome sequencing (WES) was performed for 2 patients to identify disease-causing variants. Candidate causal variants were verified using Sanger sequencing in family members and 200 healthy controls. RESULTS The mean age at disease onset was 16.5 years. The early phenotype of this atypical ECD was characterized by multiple small white translucent spots located in Descemet membrane of the peripheral cornea. These spots coalesced to form opacities with variable shapes, and eventually merged along the limbus. Subsequently, translucent spots appeared in central Descemet membrane and accumulated, causing diffuse polymorphous opacities over time. Finally, significant endothelial decompensation led to diffuse corneal edema. A heterozygous missense variant in the KIAA1522 gene (c.1331G>A; p.R444Q) was identified by WES, which was present in all 6 patients but was absent in the unaffected members and healthy controls. CONCLUSIONS The clinical features of atypical ECD are unique compared with those of known corneal dystrophies. Moreover, genetic analysis identified the c.1331G>A variant in KIAA1522 , which may be responsible for the pathogenesis of this atypical ECD. Thus, we propose this is a new form of ECD based on our clinical findings.
Collapse
Affiliation(s)
- Minjie Ye
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qinyi Lu
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Duran Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bingying Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengquan Zhang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China; and
| | - Yi Liao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Rongfeng Liao
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Vasan R, Velamakanni GS, Bharadwaj R, K S, Karri ML. Histopathology of the Host Cornea Following Penetrating Keratoplasty. Cureus 2023; 15:e39060. [PMID: 37323319 PMCID: PMC10267423 DOI: 10.7759/cureus.39060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION To study the ultra-structural changes in the diseased corneal cells by histopathology, electron microscopy, and immunohistochemistry using conventional antisera and monoclonal antibodies with the ultimate goal of justifying pre-treatment and post-treatment advice and, if necessary, modifying the post-operative treatment for improved graft survival. METHODS Thirty cases registered for penetrating keratoplasty were worked up for routine systemic and ophthalmic criteria. A full-thickness diseased cornea was subjected to histopathology after suitable staining and fixation, including electron microscopic and immunohistochemical studies where possible. RESULTS The ages ranged from four to 60 years. The majority (26%) were in the age group of 31-40 years. The most frequent causes of corneal pathology that underwent keratoplasty include post-traumatic corneal scarring (40%), followed by pseudophakic bullous keratopathy (16.7%). In almost all cases, the histopathology confirmed the existing clinical diagnosis. Histopathology helped to confirm one doubtful case of Fuchs' dystrophy and to contradict one clinical diagnosis of pseudophakic bullous keratopathy, which turned out to be epithelization of the anterior chamber. CONCLUSION The results underline the significance of the histopathological study of these corneal conditions to increase the post-surgical survival of the corneal graft.
Collapse
Affiliation(s)
- Radha Vasan
- Department of Ophthalmology (Retired), Armed Forces Medical College, Bengaluru, IND
| | | | - Reena Bharadwaj
- Department of Pathology (Retired), Armed Forces Medical College, Pune, IND
| | - Satish K
- Department of Ophthalmology, GSL Medical College, Rajahmundry, IND
| | - Madhuri L Karri
- Department of Ophthalmology, GSL Medical College, Rajahmundry, IND
| |
Collapse
|
17
|
Sarkar S, Panikker P, D’Souza S, Shetty R, Mohan RR, Ghosh A. Corneal Regeneration Using Gene Therapy Approaches. Cells 2023; 12:1280. [PMID: 37174680 PMCID: PMC10177166 DOI: 10.3390/cells12091280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
One of the most remarkable advancements in medical treatments of corneal diseases in recent decades has been corneal transplantation. However, corneal transplants, including lamellar strategies, have their own set of challenges, such as graft rejection, delayed graft failure, shortage of donor corneas, repeated treatments, and post-surgical complications. Corneal defects and diseases are one of the leading causes of blindness globally; therefore, there is a need for gene-based interventions that may mitigate some of these challenges and help reduce the burden of blindness. Corneas being immune-advantaged, uniquely avascular, and transparent is ideal for gene therapy approaches. Well-established corneal surgical techniques as well as their ease of accessibility for examination and manipulation makes corneas suitable for in vivo and ex vivo gene therapy. In this review, we focus on the most recent advances in the area of corneal regeneration using gene therapy and on the strategies involved in the development of such therapies. We also discuss the challenges and potential of gene therapy for the treatment of corneal diseases. Additionally, we discuss the translational aspects of gene therapy, including different types of vectors, particularly focusing on recombinant AAV that may help advance targeted therapeutics for corneal defects and diseases.
Collapse
Affiliation(s)
- Subhradeep Sarkar
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Priyalakshmi Panikker
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
| | - Sharon D’Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore 560010, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore 560010, Karnataka, India
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
| |
Collapse
|
18
|
In situ transduction of cells in human corneal limbus using adeno-associated viruses: an ex vivo study. Sci Rep 2022; 12:22481. [PMID: 36577775 PMCID: PMC9797548 DOI: 10.1038/s41598-022-26926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
This study aimed to evaluate the efficacy of in situ adeno-associated virus (AAV)-mediated gene delivery into the human corneal limbal region via targeted sub-limbal injection technique. Human cadaveric corneal tissues were fixed on an artificial anterior chamber. Feasibility of sub-limbal injection technique was tested using trypan blue and black India ink. An enhanced green fluorescent protein (eGFP) encoding AAV DJ was injected into sub-limbal region. After AAV injection, corneal tissues were incubated in air-lift culture and prepared for immunohistochemical analysis. Cell survivial and expression of eGFP, stem cell markers (p63α and cytokeratin 19 (KRT19)), and differentiation marker cytokeratin 3 (KRT3) were evaluated using confocal microscopy. Both trypan blue and black India ink stained and were retained sub-limbally establishing specificity of the injection technique. Immunohistochemical analysis of corneas injected with AAV DJ-eGFP indicated that AAV-transduced cells in the limbal region co-express eGFP, p63α, and KRT19 and that these transduced cells were capable of differentiating to KRT3 postitive corneal epithelial cells. Our sub-limbal injection technique can target cells in the human limbus in a reproducible and efficient manner. Thus, we demonstrate that in situ injection of corneal limbus may provide a feasible mode of genetic therapy for corneal disorders with an epithelial etiology.
Collapse
|
19
|
Weiss JS, Willoughby CE, Abad-Morales V, Turunen JA, Lisch W. Update on the Corneal Dystrophies-Genetic Testing and Therapy. Cornea 2022; 41:1337-1344. [PMID: 36219210 DOI: 10.1097/ico.0000000000002857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT One major purpose of the IC3D Corneal Dystrophy Nomenclature Revision was to include genetic information with a goal of facilitating investigation into the pathogenesis, treatment, and perhaps even prevention of the corneal dystrophies, an ambitious goal. Over a decade has passed since the first publication of the IC3D Corneal Dystrophy Nomenclature Revision. Gene therapy is available for an early-onset form of inherited retinal degeneration called Leber congenital amaurosis, but not yet for corneal degenerations. We review the current state of affairs regarding our original ambitious goal. We discuss genetic testing, gene therapy [RNA interference (RNAi) and genome editing], and ocular delivery of corneal gene therapy for the corneal dystrophies. Why have gene therapy techniques not yet been introduced for the corneal dystrophies?
Collapse
Affiliation(s)
- Jayne S Weiss
- Department of Ophthalmology, Pathology and Pharmacology, Louisiana State University School of Medicine, New Orleans, LA
| | - Colin E Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Víctor Abad-Morales
- Fundació de Recerca de l'Institut de Microcirurgia Ocular, Barcelona, Spain
- Department of Genetics, Institut de Microcirurgia Ocular (IMO), Barcelona, Spain; Dr. Abad-Morales is now with the SpliceBio, Barcelona, Spain, Barcelona, Spain
| | - Joni A Turunen
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland; and
| | - Walter Lisch
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| |
Collapse
|
20
|
Abe Y, Omoto T, Kitamoto K, Toyono T, Yoshida J, Asaoka R, Yamagami S, Miyai T, Usui T. Corneal irregularity and visual function using anterior segment optical coherence tomography in TGFBI corneal dystrophy. Sci Rep 2022; 12:13759. [PMID: 35962009 PMCID: PMC9374664 DOI: 10.1038/s41598-022-17738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/29/2022] [Indexed: 11/09/2022] Open
Abstract
The purpose of this study was to evaluate corneal irregular astigmatism of patients with granular and lattice corneal dystrophy (GCD and LCD). 70 GCD, 35 LCD, and 81 control eyes were included. Anterior and posterior corneal topographic data obtained from anterior segment optical coherence tomography were expanded into four components via Fourier harmonic analysis. These components were compared with healthy eyes and the association between each component and best-corrected visual acuity (BCVA) was investigated. Anterior and posterior components increased in both GCD and LCD eyes. Anterior and posterior components of GCD2, anterior of LCD type 1 (LCD1), posterior of LCD type IIIA (LCD 3A), and type IV (LCD4) significantly increased. BCVA was significantly associated with anterior and posterior components in LCD eyes but not in GCD. The anterior components of LCD1, anterior and posterior of LCD3A, and posterior of LCD4 , were positively correlated with BCVA. As conclusions, in GCD eyes, anterior and posterior components differed from those of the control but BCVA was not significantly associated with them. In LCD eyes, the anterior and posterior components increased, and BCVA was significantly associated with the anterior and posterior components.
Collapse
Affiliation(s)
- Yuito Abe
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Ophthalmology, Kanto Central Hospital for Public School Teachers, 6-25-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8531, Japan
| | - Takashi Omoto
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Kohdai Kitamoto
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tetsuya Toyono
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Junko Yoshida
- Department of Ophthalmology, International University of Health and Welfare, 852 Hatakeda, Narita-shi, Chiba, 286-0124, Japan
| | - Ryo Asaoka
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-ku, Hamamatsu-shi, Shizuoka, 430-8558, Japan
| | - Satoru Yamagami
- Department of Ophthalmology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Takashi Miyai
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomohiko Usui
- Department of Ophthalmology, International University of Health and Welfare, 852 Hatakeda, Narita-shi, Chiba, 286-0124, Japan
| |
Collapse
|
21
|
Alginate-Based Composites for Corneal Regeneration: The Optimization of a Biomaterial to Overcome Its Limits. Gels 2022; 8:gels8070431. [PMID: 35877516 PMCID: PMC9316786 DOI: 10.3390/gels8070431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
For many years, corneal transplantation has been the first-choice treatment for irreversible damage affecting the anterior part of the eye. However, the low number of cornea donors and cases of graft rejection highlighted the need to replace donor corneas with new biomaterials. Tissue engineering plays a fundamental role in achieving this goal through challenging research into a construct that must reflect all the properties of the cornea that are essential to ensure correct vision. In this review, the anatomy and physiology of the cornea are described to point out the main roles of the corneal layers to be compensated and all the requirements expected from the material to be manufactured. Then, a deep investigation of alginate as a suitable alternative to donor tissue was conducted. Thanks to its adaptability, transparency and low immunogenicity, alginate has emerged as a promising candidate for the realization of bioengineered materials for corneal regeneration. Chemical modifications and the blending of alginate with other functional compounds allow the control of its mechanical, degradation and cell-proliferation features, enabling it to go beyond its limits, improving its functionality in the field of corneal tissue engineering and regenerative medicine.
Collapse
|
22
|
Salman M, Verma A, Singh VK, Jaffet J, Chaurasia S, Sahel DK, Ramappa M, Singh V. New Frontier in the Management of Corneal Dystrophies: Basics, Development, and Challenges in Corneal Gene Therapy and Gene Editing. Asia Pac J Ophthalmol (Phila) 2022; 11:346-359. [PMID: 36041149 DOI: 10.1097/apo.0000000000000443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT Corneal dystrophies represent a group of heterogeneous hereditary disorders causing progressive corneal opacification and blindness. Current corneal transplant management for corneal dystrophies faces the challenges of repeated treatments, complex surgical procedures, shortage of appropriate donor cornea, and, more importantly, graft rejection. Genetic medicine could be an alternative treatment regime to overcome such challenges. Cornea carries promising scope for a gene-based therapy involving gene supplementation, gene silencing, and gene editing in both ex vivo and in vivo platforms. In the cornea, ex vivo gene therapeutic strategies were attempted for corneal graft survival, and in vivo gene augmentation therapies aimed to prevent herpes stromal keratitis, neovascularization, corneal clouding, and wound healing. However, none of these studies followed a clinical trial-based successful outcome. CRISPR/Cas system offers a broad scope of gene editing and engineering to correct underlying genetic causes in corneal dystrophies. Corneal tissue--specific gene correction in vitro with minimal off-target effects and optimal gene correction efficiency followed by their successful surgical implantation, or in vivo CRISPR administration targeting pathogenic genes finds a way to explore therapeutic intervention for corneal dystrophies. However, there are many limitations associated with such CRISPR-based corneal treatment management. This review will look into the development of corneal gene therapy and CRISPR-based study in corneal dystrophies, associated challenges, potential approaches, and future directions.
Collapse
Affiliation(s)
- Mohd Salman
- Prof. Brien Holden Eye Research Center, Champalimaud Translational Centre for Eye Research L.V. Prasad Eye Institute, Hyderabad, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anshuman Verma
- Prof. Brien Holden Eye Research Center, Champalimaud Translational Centre for Eye Research L.V. Prasad Eye Institute, Hyderabad, India
- MNR Foundation for Research and Innovations, MNR Medical College, MNR Nagar, Sangareddy, Telangana, India
| | - Vijay Kumar Singh
- Prof. Brien Holden Eye Research Center, Champalimaud Translational Centre for Eye Research L.V. Prasad Eye Institute, Hyderabad, India
| | - Jilu Jaffet
- Prof. Brien Holden Eye Research Center, Champalimaud Translational Centre for Eye Research L.V. Prasad Eye Institute, Hyderabad, India
| | - Sunita Chaurasia
- The Centre of Excellence for Rare Eye Diseases, L. V. Prasad Eye Institute, Hyderabad, India
| | - Deepak Kumar Sahel
- Department of Pharmacy, Birla Institute of Technology and Science - Pilani Campus. Vidya Vihar, Pilani, Rajasthan, India and
| | - Muralidhar Ramappa
- Cornea and Anterior Segment Services, L.V. Prasad Eye Institute, Kallam Anji Reddy Campus, L.V. Prasad Marg, Hyderabad, Telangana, India
| | - Vivek Singh
- Prof. Brien Holden Eye Research Center, Champalimaud Translational Centre for Eye Research L.V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
23
|
Wang L, Zhao C, Zheng T, Zhang Y, Liu H, Wang X, Tang X, Zhao B, Liu P. Torin 1 alleviates impairment of TFEB-mediated lysosomal biogenesis and autophagy in TGFBI (p.G623_H626del)-linked Thiel-Behnke corneal dystrophy. Autophagy 2022; 18:765-782. [PMID: 34403298 PMCID: PMC9037417 DOI: 10.1080/15548627.2021.1955469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/02/2023] Open
Abstract
Thiel-Behnke corneal dystrophy (TBCD) is an epithelial-stromal TGFBI dystrophy caused by mutations in the TGFBI (transforming growth factor beta induced) gene, though the underlying mechanisms and pathogenesis of TBCD are still obscure. The study identifies a novel mutation in the TGFBI gene (p.Gly623_His626del) in a TBCD pedigree. Characteristics of the typical vacuole formation, irregular corneal epithelial thickening and thinning, deposition of eosinophilic substances beneath the epithelium, and involvement of the anterior stroma were observed in this pedigree via transmission electron microscopy (TEM) and histological staining. Tgfbi-p.Gly623_Tyr626del mouse models of TBCD were subsequently generated via CRISPR/Cas9 technology, and the above characteristics were further verified via TEM and histological staining. Lysosomal dysfunction and downregulation of differential expression protein CTSD (cathepsin D) were observed using LysoTracker Green DND-26 and proteomic analysis, respectively. Hence, lysosomal dysfunction probably leads to autophagic flux obstruction in TBCD; this was supported by enhanced LC3-II and SQSTM1 levels and decreased CTSD. TFEB (transcription factor EB) was prominently decreased in TBCD corneal fibroblasts and administration of ATP-competitive MTOR inhibitor torin 1 reversed this decline, resulting in the degradation of accumulated mut-TGFBI (mutant TGFBI protein) via the ameliorative lysosomal function and autophagic flux owing to elevated TFEB activity as measured by western blot, confocal microscopy, and flow cytometry. Transfected HEK 293 cells overexpressing human full-length WT-TGFBI and mut-TGFBI were generated to further verify the results obtained in human corneal fibroblasts. Amelioration of lysosome dysfunction may therefore have therapeutic efficacy in the treatment of TBCD.Abbreviations AS-OCT: anterior segment optical coherence tomography; ATP: adenosine triphosphate; Cas9: CRISPR-associated protein 9; CLEAR: coordinated lysosomal expression and regulation; CRISPR: clustered regularly interspaced short palindromic repeats; CTSB: cathepsin B; CTSD: cathepsin D; CTSF: cathepsin F; CTSL: cathepsin L; DNA: deoxyribonucleic acid; ECM: extracellular matrix; Fas1: fasciclin 1; FC: flow cytometry; GAPDH: glyceraldeyde-3-phosphate dehydrogenase; GCD2: granular corneal dystrophy type 2; HE: hematoxylin and eosin; LAMP2: lysosomal-associated membrane protein; MT: mutation type; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; mut-TGFBI: mutant TGFBI protein; SD: standard deviation; TBCD: Thiel-Behnke corneal dystrophy; TEM: transmission electron microscopy; TFEB: transcription factor EB; TGFBI: transforming growth factor beta induced; WT: wild type.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuchu Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanruo Liu
- The Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xi Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianling Tang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baowen Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ping Liu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Safety, pharmacokinetics, and antitumor activity of the anti-CEACAM5-DM4 antibody-drug conjugate tusamitamab ravtansine (SAR408701) in patients with advanced solid tumors: First-in-human dose-escalation study. Ann Oncol 2022; 33:416-425. [DOI: 10.1016/j.annonc.2021.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
|
25
|
Zhu F, Li M, Zhang C, Chen C, Ying F, Nie D. In vivo confocal microscopy qualitative investigation of the relationships between lattice corneal dystrophy deposition and corneal nerves. BMC Ophthalmol 2021; 21:449. [PMID: 34961485 PMCID: PMC8711164 DOI: 10.1186/s12886-021-02149-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/22/2021] [Indexed: 12/04/2022] Open
Abstract
Background To investigate the corneal neurotropic phenomenon in patients with lattice corneal dystrophy (LCD) with in vivo laser scanning confocal microscopy (IVCM). Methods IVCM was performed on a total of 15 patients (28 eyes) with LCD annually at a follow-up. A collection of the data was acquired to be analyzed. Results As indicated by the analysis, the LCD patients’ normal corneal stromal nerves (Grade 0) presented a decline with the prolongation of the follow-ups, corresponding to a gradual increase in grade I and II involving amyloid-wrapped nerve fibers, which demonstrated that the growing amount of amyloid deposit due to the corneal nerve invasion increased slowly over time. Conclusions The neurotropic phenomenon could increase with its severity in the corneal lesion of the patients with LCD, and also reflect the distribution of the corneal nerves, to some extent. IVCM provides a rapid, noninvasive way to observe the corneal nerves, which can be an efficient means of better understanding the development of LCD. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-021-02149-1.
Collapse
Affiliation(s)
- Fengjiao Zhu
- Pudong New Area Eye and Dental Diseases Prevention & Treatment Center, Shanghai, 201399, P. R. China
| | - Ming Li
- Department of Corneal and External Eye Diseases, Shenzhen Eye Hospital, Joint College of Optometry of Shenzhen University (Shenzhen University Health Science Center), Affiliated Shenzhen Eye Hospital of Jinan University, 18#, Zetian Road, Futian District, Shenzhen, 518040, P. R. China.
| | - Chun Zhang
- Department of Corneal and External Eye Diseases, Shenzhen Eye Hospital, Joint College of Optometry of Shenzhen University (Shenzhen University Health Science Center), Affiliated Shenzhen Eye Hospital of Jinan University, 18#, Zetian Road, Futian District, Shenzhen, 518040, P. R. China
| | - Chan Chen
- Department of Corneal and External Eye Diseases, Shenzhen Eye Hospital, Joint College of Optometry of Shenzhen University (Shenzhen University Health Science Center), Affiliated Shenzhen Eye Hospital of Jinan University, 18#, Zetian Road, Futian District, Shenzhen, 518040, P. R. China
| | - Fangwei Ying
- Department of Corneal and External Eye Diseases, Shenzhen Eye Hospital, Joint College of Optometry of Shenzhen University (Shenzhen University Health Science Center), Affiliated Shenzhen Eye Hospital of Jinan University, 18#, Zetian Road, Futian District, Shenzhen, 518040, P. R. China
| | - Danyao Nie
- Department of Corneal and External Eye Diseases, Shenzhen Eye Hospital, Joint College of Optometry of Shenzhen University (Shenzhen University Health Science Center), Affiliated Shenzhen Eye Hospital of Jinan University, 18#, Zetian Road, Futian District, Shenzhen, 518040, P. R. China
| |
Collapse
|
26
|
Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, Sun Y, Manche EE, Ta CN, Flowers CW. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int J Pharm 2021; 607:120924. [PMID: 34324989 PMCID: PMC8579814 DOI: 10.1016/j.ijpharm.2021.120924] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023]
Abstract
Research in the development of ophthalmic drug formulations and innovative technologies over the past few decades has been directed at improving the penetration of medications delivered to the eye. Currently, approximately 90% of all ophthalmic drug formulations (e.g. liposomes, micelles) are applied as eye drops. The major challenge of topical eye drops is low bioavailability, need for frequent instillation due to the short half-life, poor drug solubility, and potential side effects. Recent research has been focused on improving topical drug delivery devices by increasing ocular residence time, overcoming physiological and anatomical barriers, and developing medical devices and drug formulations to increase the duration of action of the active drugs. Researchers have developed innovative technologies and formulations ranging from sub-micron to macroscopic size such as prodrugs, enhancers, mucus-penetrating particles (MPPs), therapeutic contact lenses, and collagen corneal shields. Another approach towards the development of effective topical drug delivery is embedding therapeutic formulations in microdevices designed for sustained release of the active drugs. The goal is to optimize the delivery of ophthalmic medications by achieving high drug concentration with prolonged duration of action that is convenient for patients to administer.
Collapse
Affiliation(s)
| | - Behnam Abdi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, CA, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Farhang Abbasi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Yang Sun
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Edward E Manche
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Christopher N Ta
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Charles W Flowers
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Ligocki AJ, Fury W, Gutierrez C, Adler C, Yang T, Ni M, Bai Y, Wei Y, Lehmann GL, Romano C. Molecular characteristics and spatial distribution of adult human corneal cell subtypes. Sci Rep 2021; 11:16323. [PMID: 34381080 PMCID: PMC8357950 DOI: 10.1038/s41598-021-94933-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Bulk RNA sequencing of a tissue captures the gene expression profile from all cell types combined. Single-cell RNA sequencing identifies discrete cell-signatures based on transcriptomic identities. Six adult human corneas were processed for single-cell RNAseq and 16 cell clusters were bioinformatically identified. Based on their transcriptomic signatures and RNAscope results using representative cluster marker genes on human cornea cross-sections, these clusters were confirmed to be stromal keratocytes, endothelium, several subtypes of corneal epithelium, conjunctival epithelium, and supportive cells in the limbal stem cell niche. The complexity of the epithelial cell layer was captured by eight distinct corneal clusters and three conjunctival clusters. These were further characterized by enriched biological pathways and molecular characteristics which revealed novel groupings related to development, function, and location within the epithelial layer. Moreover, epithelial subtypes were found to reflect their initial generation in the limbal region, differentiation, and migration through to mature epithelial cells. The single-cell map of the human cornea deepens the knowledge of the cellular subsets of the cornea on a whole genome transcriptional level. This information can be applied to better understand normal corneal biology, serve as a reference to understand corneal disease pathology, and provide potential insights into therapeutic approaches.
Collapse
Affiliation(s)
- Ann J Ligocki
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Wen Fury
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | | | - Tao Yang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Yu Bai
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | - Carmelo Romano
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA.
| |
Collapse
|
28
|
Zhang Y, Li C, Zhu Q, Liang R, Xie C, Zhang S, Hong Y, Ouyang H. A long-term retaining molecular coating for corneal regeneration. Bioact Mater 2021; 6:4447-4454. [PMID: 33997518 PMCID: PMC8114076 DOI: 10.1016/j.bioactmat.2021.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Corneal injuries will cause corneal surface diseases that may lead to blindness in millions of people worldwide. There is a tremendous need for biomaterials that can promote corneal regeneration with practical feasibility. Here we demonstrate a strategy of a protein coating for corneal injury regeneration. We synthesize an o-nitrosobenzaldehyde group (NB)-modified gelatin (GelNB), which could adhere directly to the corneal surface with covalent bonding to form a thin molecular coating. The molecular coating could avoid rapid clearance and provide a favorable environment for cell migration, thereby effectively accelerating corneal repair and regeneration. The histological structure of the regenerated cornea is more similar to the native cornea. This molecular coating can be used conveniently as an eye drop solution, which makes it a promising strategy for corneal regeneration. A convenient molecular coating strategy is applied for corneal tissue engineering. The new hydrogel shows controllable integration, short gelling time, and a clear gelling mechanism. Gelatin modified with o-nitrosobenzaldehyde groups could exist on the ocular surface and avoid rapid removal. The hydrogel provides a suitable microenvironment for cell migration and corneal regeneration.
Collapse
Affiliation(s)
- Yi Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenglin Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuwen Zhu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yi Hong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
29
|
Toffoletto N, Saramago B, Serro AP. Therapeutic Ophthalmic Lenses: A Review. Pharmaceutics 2020; 13:36. [PMID: 33379411 PMCID: PMC7824655 DOI: 10.3390/pharmaceutics13010036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
An increasing incidence of eye diseases has been registered in the last decades in developed countries due to the ageing of population, changes in lifestyle, environmental factors, and the presence of concomitant medical conditions. The increase of public awareness on ocular conditions leads to an early diagnosis and treatment, as well as an increased demand for more effective and minimally invasive solutions for the treatment of both the anterior and posterior segments of the eye. Despite being the most common route of ophthalmic drug administration, eye drops are associated with compliance issues, drug wastage by lacrimation, and low bioavailability due to the ocular barriers. In order to overcome these problems, the design of drug-eluting ophthalmic lenses constitutes a non-invasive and patient-friendly approach for the sustained drug delivery to the eye. Several examples of therapeutic contact lenses and intraocular lenses have been developed, by means of different strategies of drug loading, leading to promising results. This review aims to report the recent advances in the development of therapeutic ophthalmic lenses for the treatment and/or prophylaxis of eye pathologies (i.e., glaucoma, cataract, corneal diseases, or posterior segment diseases) and it gives an overview of the future perspectives and challenges in the field.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|