1
|
Rong G, Liu J, Yang Y, Wang S, Cao W. Skullcapflavone II induces G2/M phase arrest in hepatic stellate cells and suppresses hepatic fibrosis. Eur J Pharmacol 2025; 998:177522. [PMID: 40113067 DOI: 10.1016/j.ejphar.2025.177522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
RESEARCH PURPOSE This investigation explored the therapeutic effects and mechanisms of Skullcapflavone II in hepatic fibrosis (HF). MATERIALS AND METHODS The optimal concentration of Skullcapflavone II for LX2 hepatic stellate cells was determined using the CCK8 assay. EdU staining and flow cytometry were utilised to assess cell proliferation and G2/M phase arrest. Mice with carbon tetrachloride-triggered HF were administered Skullcapflavone II at low (15 mg/day), medium (30 mg/day), and high (60 mg/day) doses. Subsequently, hepatic damage and fibrosis were assessed via body weight, liver index, biochemical markers, and histopathological staining. Immunohistochemistry for Collagen I and α-SMA were utilised to examine hepatic stellate cell (HSC) activation. RNA sequencing was utilised to ascertain differentially expressed genes. Molecular docking simulated interactions among Skullcapflavone II and target proteins as well as outcomes were validated by implementing western blotting, immunohistochemistry, and RT-qPCR. RESULTS Skullcapflavone II inhibited LX2 cell proliferation and triggered G2/M phase arrest. Its optimal intervention concentration was 160 μM. In vivo, it ameliorated hepatic function, diminished serum indicators of fibrosis, and suppressed HSC activation. Diminished collagen sediment was validated utilising histopathological examination, whereas immunohistochemistry indicated decreased expression of Collagen I and α-SMA. Additionally, molecular docking showed strong binding of Skullcapflavone II to DNA replication-related proteins. Western blotting and RT-qPCR implied that Skullcapflavone II disrupted DNA replication, which triggered G2/M arrest and hindered HSCs activation and proliferation. CONCLUSION The abovementioned mechanisms of action of Skullcapflavone II substantiate its prospective clinical application against HF.
Collapse
Affiliation(s)
- Guoyi Rong
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401331, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Jun Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; Department of Rehabilitation Medicine of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing, 401151, China
| | - Yunheng Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401331, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Shang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401331, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Wenfu Cao
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Cui J, Wang G, Yip LX, Dong M, Mu M, Tian L, Gao Y, Fan Q, Zhu Q, Zhao X, Xu X, Leong DT, Sun X. Enhanced Ferritin‐Manganese Interaction by Nanoplatinum Growth Enabling Liver Fibrosis 3D Magnetic Resonance Visualization and Synergistic Therapy with Real‐Time Monitoring. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 04/09/2025]
Abstract
AbstractEarly detection and timely intervention are essential to prevent liver fibrosis from progressing to cirrhosis or hepatocellular carcinoma. Herein, utilizing the enhanced ferritin‐manganese interaction by nanoplatinum growth, a novel ferritin‐platinum‐manganese magnetic resonance nanoplatform with RGD grafting and metformin loading (FNMMR) is developed. RGD can enhance the targeting ability of the nanoplatform toward integrin αVβ3 on activated hepatic stellate cells (aHSCs) in liver fibrosis. Systemic delivery of FNMMR shows clear degree‐dependent magnetic resonance contrast enhancement in liver fibrosis. 3D reconstruction techniques and histogram‐based features are achieved to qualitatively and quantitatively analyze the inhomogeneous liver fibrosis areas. FNMMR with catalase‐like activity can catalyze the generation of O2 to alleviate the liver fibrosis hypoxia and inhibit the expression of HIF‐1α, blocking the TGF‐β1/Smad signaling pathway. In addition, metformin shows synergy with HIF‐1α reduction in blocking the TGF‐β1/Smad pathway, effectively inhibiting the activation of HSCs and reducing collagen formation. Furthermore, FNMMR can achieve real‐time anti‐fibrotic therapy monitoring by magnetic resonance imaging. Importantly, no obvious side effects can be observed in both histological and hematology examinations. Therefore, this work presents a novel nanoplatform for accurate liver fibrosis diagnosis and synergistic anti‐fibrotic therapy with real‐time monitoring.
Collapse
Affiliation(s)
- Jin Cui
- Department of Radiology Shandong Provincial Hospital affiliated to Shandong First Medical University China 250021 China
| | - Gongzheng Wang
- Department of Radiology Shandong Provincial Hospital affiliated to Shandong First Medical University China 250021 China
| | - Li Xian Yip
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Mengzhen Dong
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| | - Mengyao Mu
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| | - Liya Tian
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| | - Yuan Gao
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| | - Qing Fan
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| | - Qiang Zhu
- Department of Radiology Shandong Provincial Hospital affiliated to Shandong First Medical University China 250021 China
| | - Xinya Zhao
- Department of Radiology Shandong Provincial Hospital affiliated to Shandong First Medical University China 250021 China
| | - Xueli Xu
- School of Science Shandong Jianzhu University Jinan 250101 China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Xiao Sun
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| |
Collapse
|
3
|
Sun Z, Chen G. Impact of heterogeneity in liver matrix and intrahepatic cells on the progression of hepatic fibrosis. Tissue Cell 2024; 91:102559. [PMID: 39293139 DOI: 10.1016/j.tice.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Liver fibrosis is a disease with a high prevalence worldwide. The development of hepatic fibrosis results from a combination of factors within the liver, such as extracellular matrix (ECM) deposition, hepatic stellate cells (HSCs) activation, collagen cross-linking, and inflammatory response. Heterogeneity in fibrotic liver is the result of a combination of heterogeneity in the intrahepatic microenvironment as well as heterogeneous expression of fibrosis-associated enzymes and cells, complicating the study of the mechanisms underlying the progression of liver fibrosis. The role of this heterogeneity on the crosstalk between cells and matrix and on the fibrotic process is worth exploring. In this paper, we will describe the phenomenon and mechanism of heterogeneity of liver matrix and intrahepatic cells in the process of hepatic fibrosis and discuss the crosstalk between heterogeneous factors on the development of fibrosis. The elucidation of heterogeneity is important for a deeper understanding of the pathological mechanisms of liver fibrosis as well as for clinical diagnosis and targeted therapies.
Collapse
Affiliation(s)
- Zhongtao Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
4
|
Gao J, Wang Y, Meng X, Wang X, Han F, Xing H, Lv G, Zhang L, Wu S, Jiang X, Yao Z, Fang X, Zhang J, Bu W. A FAPα-activated MRI nanoprobe for precise grading diagnosis of clinical liver fibrosis. Nat Commun 2024; 15:8036. [PMID: 39271701 PMCID: PMC11399433 DOI: 10.1038/s41467-024-52308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Molecular imaging holds the potential for noninvasive and accurate grading of liver fibrosis. It is limited by the lack of biomarkers that strongly correlate with liver fibrosis grade. Here, we discover the grading potential of fibroblast activation protein alpha (FAPα) for liver fibrosis through transcriptional analysis and biological assays on clinical liver samples. The protein and mRNA expression of FAPα are linearly correlated with fibrosis grade (R2 = 0.89 and 0.91, respectively). A FAPα-responsive MRI molecular nanoprobe is prepared for quantitatively grading liver fibrosis. The nanoprobe is composed of superparamagnetic amorphous iron nanoparticles (AFeNPs) and paramagnetic gadoteric acid (Gd-DOTA) connected by FAPα-responsive peptide chains (ASGPAGPA). As liver fibrosis worsens, the increased FAPα cut off more ASGPAGPA, restoring a higher T1-MRI signal of Gd-DOTA. Otherwise, the signal remains quenched due to the distance-dependent magnetic resonance tuning (MRET) effect between AFeNPs and Gd-DOTA. The nanoprobe identifies F1, F2, F3, and F4 fibrosis, with area under the curve of 99.8%, 66.7%, 70.4%, and 96.3% in patients' samples, respectively. This strategy exhibits potential in utilizing molecular imaging for the early detection and grading of liver fibrosis in the clinic.
Collapse
Affiliation(s)
- Jiahao Gao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Ya Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Xianfu Meng
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
- Department of Nuclear Medicine, Changhai Hospital, Navy Medical University, Shanghai, 200433, P. R. China
| | - Xiaoshuang Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Fang Han
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hao Xing
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Guanglei Lv
- Center for Biotechnology and Biomedical Engineering, Yiwu Research Institute of Fudan University, Yiwu, 322000, P. R. China
| | - Li Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Shiman Wu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiangming Fang
- Department of Radiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 2214023, P. R. China.
| | - Jiawen Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China.
| | - Wenbo Bu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China.
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.
| |
Collapse
|
5
|
Magnus L, Schwein A, Chinnadurai P, Fontaine K, Autry K, Shah DJ, Grande-Allen KJ, Chakfé N, Bismuth J. Experimental multiparametric magnetic resonance imaging characterization of iliocaval venous thrombosis pathological changes. J Vasc Surg Venous Lymphat Disord 2024; 12:101895. [PMID: 38679142 PMCID: PMC11523379 DOI: 10.1016/j.jvsv.2024.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Iliocaval thrombotic obstruction is a challenging condition, especially because thrombus age and corresponding pathological remodeling at presentation are unknown, which directly impacts management. Our aim was to assess the ability of magnetic resonance imaging (MRI) in determining age thresholds of experimentally created inferior vena cava (IVC) thrombosis in pigs. METHODS We used a previously described swine model of IVC thrombosis. The animals underwent MRI at baseline, immediately after thrombosis creation, and after a follow-up period extending from 2 to 28 days. Thirteen pigs were divided into three groups according to disease chronicity: acute group (AG; n = 5), subacute group (SAG; n = 4), and chronic group (CG; n = 4), with a mean thrombosis age of 6.4 ± 2.5 days, 15.7 ± 2.8 days, and 28 ± 5.7 days, respectively. A T1-weighted volumetric interpolated breath-hold examination sequence was used to anatomically delineate IVC thrombus as a region of interest. Three other MRI sequences were used to assess the thrombus signal. RESULTS The Kruskal-Wallis test showed a statistically significant difference in T1 relaxation times after contrast injection (P = .026) between the three groups of chronicity. The AG (360.2 ± 102.5 ms) was significantly different from the CG (336.7 ± 55.2 ms; P = .003), and the SAG (354.1 ± 89.7 ms) was significantly different from the AG (P = .027). There was a statistically significant difference in native T2 relaxation times (P = .038) between the three groups. The AG (160 ± 86.7 ms) was significantly different from the SAG (142.3 ± 55.4 ms; P = .027), and the SAG was significantly different from the CG (178.4 ± 11.7 ms; P = .004). CONCLUSIONS This study highlighted MRI characteristics in a swine model that might have the potential to significantly differentiate subacute and chronic stages from an acute stage of deep vein thrombosis in humans. Further clinical studies in humans are warranted. CLINICAL RELEVANCE In addition to providing a better understanding of venous thrombosis remodeling over time, magnetic resonance imaging has the potential to be a tool that could allow us to characterize the composition of venous thrombus over an interval, allowing for a refined analysis of the local evolution of venous thrombosis. We propose a noninvasive and innovative method to characterize different thresholds of chronicity with magnetic resonance imaging features of central deep vein thrombosis of the inferior vena cava experimentally obtained using a totally endovascular in vivo swine model, mimicking human pathophysiology. Being able to determine these features noninvasively is critical for vascular specialists when it comes to choosing between fibrinolytic therapy, percutaneous thrombectomy, or surgical management.
Collapse
Affiliation(s)
- Louis Magnus
- Department of Vascular and Endovascular Surgery, Gabriel Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France.
| | - Adeline Schwein
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia; Heart and Vascular Research Institute, Harry Perkins Medical Research Institute, Perth, Western Australia, Australia
| | | | - Killian Fontaine
- Department of Vascular and Endovascular Surgery, Gabriel Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Kyle Autry
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX
| | - Dipan J Shah
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX
| | | | - Nabil Chakfé
- Department of Vascular Surgery, Kidney Transplantation and Innovation, University Hospital of Strasbourg, Strasbourg, France; GEPROMED, Strasbourg, France
| | - Jean Bismuth
- Division of Vascular Surgery, USF Health Morsani School of Medicine, Tampa, FL
| |
Collapse
|
6
|
Li D, Kirberger M, Qiao J, Gui Z, Xue S, Pu F, Jiang J, Xu Y, Tan S, Salarian M, Ibhagui O, Hekmatyar K, Yang JJ. Protein MRI Contrast Agents as an Effective Approach for Precision Molecular Imaging. Invest Radiol 2024; 59:170-186. [PMID: 38180819 DOI: 10.1097/rli.0000000000001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
ABSTRACT Cancer and other acute and chronic diseases are results of perturbations of common molecular determinants in key biological and signaling processes. Imaging is critical for characterizing dynamic changes in tumors and metastases, the tumor microenvironment, tumor-stroma interactions, and drug targets, at multiscale levels. Magnetic resonance imaging (MRI) has emerged to be a primary imaging modality for both clinical and preclinical applications due to its advantages over other modalities, including sensitivity to soft tissues, nondepth limitations, and the use of nonionizing radiation. However, extending the application of MRI to achieve both qualitative and quantitative precise molecular imaging with the capability to quantify molecular biomarkers for early detection, staging, and monitoring therapeutic treatment requires the capacity to overcome several major challenges including the trade-off between metal-binding affinity and relaxivity, which is an issue frequently associated with small chelator contrast agents. In this review, we will introduce the criteria of ideal contrast agents for precision molecular imaging and discuss the relaxivity of current contrast agents with defined first shell coordination water molecules. We will then report our advances in creating a new class of protein-targeted MRI contrast agents (ProCAs) with contributions to relaxivity largely derived from the secondary sphere and correlation time. We will summarize our rationale, design strategy, and approaches to the development and optimization of our pioneering ProCAs with desired high relaxivity, metal stability, and molecular biomarker-targeting capability, for precision MRI. From first generation (ProCA1) to third generation (ProCA32), we have achieved dual high r1 and r2 values that are 6- to 10-fold higher than clinically approved contrast agents at magnetic fields of 1.5 T, and their relaxivity values at high field are also significantly higher, which enables high resolution during small animal imaging. Further engineering of multiple targeting moieties enables ProCA32 agents that have strong biomarker-binding affinity and specificity for an array of key molecular biomarkers associated with various chronic diseases, while maintaining relaxation and exceptional metal-binding and selectivity, serum stability, and resistance to transmetallation, which are critical in mitigating risks associated with metal toxicity. Our leading product ProCA32.collagen has enabled the first early detection of liver metastasis from multiple cancers at early stages by mapping the tumor environment and early stage of fibrosis from liver and lung in vivo, with strong translational potential to extend to precision MRI for preclinical and clinical applications for precision diagnosis and treatment.
Collapse
Affiliation(s)
- Dongjun Li
- From the Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Department of Chemistry, Georgia State University, Atlanta, GA (D.L., M.K., J.Q., Z.G., S.X., P.F., J.J., S.T., M.S., O.I., K.H., J.J.Y.); and InLighta BioSciences, LLC, Marietta, GA (Y.X., J.J.Y)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Qu R, Zhang W, Ma Z, Ma Q, Chen M, Lan T, Zhou L, Hu X. Glaucocalyxin A attenuates carbon tetrachloride-induced liver fibrosis and improves the associated gut microbiota imbalance. Chem Biol Drug Des 2023; 102:51-64. [PMID: 37060267 DOI: 10.1111/cbdd.14241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Liver fibrosis refers to the pathophysiological process of dysplasia on the connective tissue of the liver, caused by a variety of pathogenic factors. Glaucocalyxin A (GLA) has anticoagulation, antibacterial, anti-inflammation, antioxidant and antitumour properties. However, whether GLA ameliorates liver fibrosis or not is still unclear. In this study, a liver fibrosis model was established using male C57BL/6 mice. The mice were treated with 5 and 10 mg/kg GLA via intraperitoneal injection, respectively. The ones that were treated with 5 mg/kg OCA were used as the positive control group. The levels of liver function, liver fibrosis biomarkers and liver pathological changes were then evaluated. We also explored the effects of GLA on inflammatory response and liver cell apoptosis. In addition, we investigated the gut microbiota mechanisms of GLA on liver fibrosis. The results from this study that GLA could significantly decrease the level of liver function (AST, ALT, TBA) and liver fibrosis (HA, LN, PC-III, IV-C). On the other hand, a significant decrease in inflammation levels (IL-1β, TNF-α) were also noted. GLA also improves CCl4-induced pathological liver injuries and collagen deposition, in addition to decreasing apoptosis levels. In addition, an increase in the ratio of Bacteroidetes and Firmicutes in liver disease was also observed. GLA also improves the gut microbiota. In conclusion, GLA attenuates CCl4-induced liver fibrosis and improves the associated gut microbiota imbalance.
Collapse
Affiliation(s)
- Ru Qu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wang Zhang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhuang Ma
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianwen Ma
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingju Chen
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tian Lan
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Zhou
- School of Life Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuguang Hu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Gong L, Zhou H, Zhang S, Wang C, Fu K, Ma C, Zhang Y, Peng C, Li Y. CD44-Targeting Drug Delivery System of Exosomes Loading Forsythiaside A Combats Liver Fibrosis via Regulating NLRP3-Mediated Pyroptosis. Adv Healthc Mater 2023; 12:e2202228. [PMID: 36603210 DOI: 10.1002/adhm.202202228] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/26/2022] [Indexed: 01/06/2023]
Abstract
Liver fibrosis is a progressive pathological process induced by various stimuli and may progress to liver cirrhosis and cancer. Forsythiaside A (FA) is an active ingredient extracted from traditional Chinese medicine Forsythiae Fructus and has prominent hepatoprotective activities. However, the unsatisfactory pharmacokinetic properties restrict its clinical application. In this study, the nanocarrier of CD44-specific ligand Hyaluronic acid (HA)-modified milk-derived exosomes (mExo) encapsulated with FA (HA-mExo-FA) is developed. As a result, HA modification could deliver drug-loaded exosomes to the target cells and form a specific ligand-receptor interaction with CD44, thus improving the anti-liver fibrosis effect of FA. In vitro findings indicate that HA-mExo-FA could inhibit TGF-β1-induced LX2 cell proliferation, reduce α-SMA and collagen gene and protein levels, and promote the apoptosis of activated LX2 cells. In vivo results demonstrate that HA-mExo-FA could improve liver morphology and function changes in zebrafish larvae. The anti-liver fibrosis mechanism of HA-mExo-FA may be attributed to the inhibition of NLRP3-mediated pyroptosis. In addition, the effect of HA-mExo-FA on TAA-induced increase in NLRP3 production is attenuated by NLRP3 inhibitor MCC950. Collectively, this study demonstrates the promising application of HA-mExo-FA in drug delivery with high specificity and provides a powerful and novel delivery platform for liver fibrosis therapy.
Collapse
Affiliation(s)
- Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
9
|
Nelson MS, Liu Y, Wilson HM, Li B, Rosado-Mendez IM, Rogers JD, Block WF, Eliceiri KW. Multiscale Label-Free Imaging of Fibrillar Collagen in the Tumor Microenvironment. Methods Mol Biol 2023; 2614:187-235. [PMID: 36587127 DOI: 10.1007/978-1-0716-2914-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With recent advances in cancer therapeutics, there is a great need for improved imaging methods for characterizing cancer onset and progression in a quantitative and actionable way. Collagen, the most abundant extracellular matrix protein in the tumor microenvironment (and the body in general), plays a multifaceted role, both hindering and promoting cancer invasion and progression. Collagen deposition can defend the tumor with immunosuppressive effects, while aligned collagen fiber structures can enable tumor cell migration, aiding invasion and metastasis. Given the complex role of collagen fiber organization and topology, imaging has been a tool of choice to characterize these changes on multiple spatial scales, from the organ and tumor scale to cellular and subcellular level. Macroscale density already aids in the detection and diagnosis of solid cancers, but progress is being made to integrate finer microscale features into the process. Here we review imaging modalities ranging from optical methods of second harmonic generation (SHG), polarized light microscopy (PLM), and optical coherence tomography (OCT) to the medical imaging approaches of ultrasound and magnetic resonance imaging (MRI). These methods have enabled scientists and clinicians to better understand the impact collagen structure has on the tumor environment, at both the bulk scale (density) and microscale (fibrillar structure) levels. We focus on imaging methods with the potential to both examine the collagen structure in as natural a state as possible and still be clinically amenable, with an emphasis on label-free strategies, exploiting intrinsic optical properties of collagen fibers.
Collapse
Affiliation(s)
- Michael S Nelson
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuming Liu
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Helen M Wilson
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Bin Li
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Ivan M Rosado-Mendez
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy D Rogers
- Morgridge Institute for Research, Madison, WI, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Walter F Block
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin W Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA. .,Morgridge Institute for Research, Madison, WI, USA. .,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA. .,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Duan N, Chen H, Pi L, Ali Y, Cao Q. Cis-4-[18F]fluoro-L-proline PET/CT molecular imaging quantifying liver collagenogenesis: No existing fibrotic deposition in experimental advanced-stage alcoholic liver fibrosis. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:952943. [PMID: 39354960 PMCID: PMC11440931 DOI: 10.3389/fnume.2022.952943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/12/2022] [Indexed: 10/03/2024]
Abstract
Background and purpose Heavy alcohol drinking-induced alcoholic fatty liver, steatohepatitis, and early-stage alcoholic liver fibrosis may progress to advanced-stage alcoholic liver fibrosis (AALF)/cirrhosis. The lack of non-invasive imaging techniques for the diagnosising collagenogenesis in activated hepatic stellate cells (HSCs) can lead to incurable liver fibrosis at the early reversible stage. Proline has been known as the most abundant amino acid of collagen type 1 synthesized by activated HSC with the transportation of proline transporter. cis-4-[18F]fluoro-L-proline ([18F]proline) was reported as a useful tool to quantify collagenogenesis in experimental alcoholic steatohepatitis. This study aims to use [18F]proline micro PET as non-invasive imaging to quantify liver collagenogenesis in HSC of experimental AALF. Methods AALF model was set up by a modified Lieber-DeCarli liquid ethanol diet for 12 weeks along with intraperitoneal injection (IP) of CCl 4 (0.5 ml/kg) between the 5th and 12th weeks. Controls were fed an isocaloric liquid diet and IP. PBS. In vitro [3H]proline uptake by HSCs isolated from livers was quantified using a liquid scintillation counter. Collagen type 1 production in HSCs culture medium was assayed by ELISA. Ex vivo liver collagen type 1 and proline transporter protein were compared between AALF rats (n = 8) and mice (n = 8). [3H]Proline uptake specificity in ex vivo liver tissues was tested using unlabeled proline and transporter inhibitor benztropine at different doses. Liver H&E, trichrome stain, and blood biochemistry were tested in rats and mice. In vivo, at varying times after instillation, dynamic and static [18F]proline micro PET/CT were done to quantify tracer uptake in AALF mice (n = 3). Correlation among liver collagen, liver SUVmax, normalized liver-to-brain ratio, normalized liver-to-thigh ratio, and fluoro-proline-induced collagen levels in ex vivo liver tissues were analyzed. Results In vitro HSCs study showed significant higher [3H]proline uptake (23007.9 ± 5089.2 vs. 1075.4 ± 119.3 CPM/mg, p < 0.001) in HSCs isolated from AALF rats than controls and so was collagen type 1 production (24.3 ± 5.8 vs. 3.0 ± 0.62 mg/ml, p < 0.001) in HSCs culture medium. Highly positive correlation between [3H]proline uptake and collagen type 1 by HSCs of AALF rats was found (r value = 0.92, p < 0.01). Ex vivo liver tissue study showed no significant difference in collagen type 1 levels between AALF rats (14.83 ± 5.35 mg/g) and AALF mice (12.91 ± 3.62 mg/g, p > 0.05), so was proline transporter expression between AALF rats (7.76 ± 1.92-fold) and AALF mice (6.80 ± 0.97-fold). Unlabeled fluoro-proline induced generation of liver tissue collagen type 1 and [3H]proline uptake were specifically blocked by transporter inhibitor. In vivo [18F]proline micro PET/CT imaging showed higher SUVmax in liver (4.90 ± 0.91 vs. 1.63 ± 0.38, p < 0.01), higher normalized liver/brain ratio (12.54 ± 0.72 vs. 2.33 ± 0.41, p < 0.01), and higher normalized liver/thigh ratio (6.03 ± 0.78 vs. 1.09 ± 0.09, p < 0.01) in AALF mice than controls, which are all positively correlated with fluoro-proline-induced levels of collagen in liver tissue (r value ≥ 0.93, p < 0.01) in AALF mice, but not correlated with existing liver collagen. Liver histology showed increased collagen in the liver of AALF mice. Blood serum ALT and AST levels were remarkably higher in AALF mice than in controls, but there is no significant difference in blood fibrotic parameters HA, A2M, TGFβ1, and MMP1. Conclusions [18F]proline micro PET/CT might be useful to visualize collagenogenesis in activated HSC of experimental AALF but fails to quantify existing liver collagen in AALF mice. [18F]proline has the potential sensitivity to assess the activity and severity of liver fibrosis.
Collapse
Affiliation(s)
- Na Duan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongxia Chen
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liya Pi
- University of Maryland Medical Center, Tulane University, New Orleans, LA, United States
| | - Youssef Ali
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Qi Cao
- School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
11
|
Balachandran YL, Wang W, Yang H, Tong H, Wang L, Liu F, Chen H, Zhong K, Liu Y, Jiang X. Heterogeneous Iron Oxide/Dysprosium Oxide Nanoparticles Target Liver for Precise Magnetic Resonance Imaging of Liver Fibrosis. ACS NANO 2022; 16:5647-5659. [PMID: 35312295 DOI: 10.1021/acsnano.1c10618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Challenges remain in precisely diagnosing the progress of liver fibrosis in a noninvasive way. We here synthesized small (4 nm) heterogeneous iron oxide/dysprosium oxide nanoparticles (IO-DyO NPs) as a contrast agent (CA) for magnetic resonance imaging (MRI) to precisely diagnose liver fibrosis in vivo at both 7.0 and 9.4 T field strength. Our IO-DyO NPs can target the liver and show an increased T2 relaxivity along with an increase of magnetic field strength. At a ultrahigh magnetic field, IO-DyO NPs can significantly improve spatial/temporal image resolution and signal-to-noise ratio of the liver and precisely distinguish the early and moderate liver fibrosis stages. Our IO-DyO NP-based MRI diagnosis can exactly match biopsy (a gold standard for liver fibrosis diagnosis in the clinic) but avoid the invasiveness of biopsy. Moreover, our IO-DyO NPs show satisfactory biosafety in vitro and in vivo. This work illustrates an advanced T2 CA used in ultrahigh-field MRI (UHFMRI) for the precise diagnosis of liver fibrosis via a noninvasive means.
Collapse
Affiliation(s)
- Yekkuni L Balachandran
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Wei Wang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing 100044, China
| | - Hongyi Yang
- High Field Magnetic Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Haiyang Tong
- High Field Magnetic Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lulu Wang
- High Field Magnetic Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Feng Liu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing 100044, China
| | - Hongsong Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing 100044, China
| | - Kai Zhong
- High Field Magnetic Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| |
Collapse
|
12
|
Liu K, Cai Z, Chi X, Kang B, Fu S, Luo X, Lin ZW, Ai H, Gao J, Lin H. Photoinduced Superhydrophilicity of Gd-Doped TiO 2 Ellipsoidal Nanoparticles Boosts T1 Contrast Enhancement for Magnetic Resonance Imaging. NANO LETTERS 2022; 22:3219-3227. [PMID: 35380442 DOI: 10.1021/acs.nanolett.1c04676] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The unsatisfactory performance of current gadolinium chelate based T1 contrast agents (CAs) for magnetic resonance imaging (MRI) stimulates the search for better alternatives. Herein, we report a new strategy to substantially improve the capacity of nanoparticle-based T1 CAs by exploiting the photoinduced superhydrophilic assistance (PISA) effect. As a proof of concept, we synthesized citrate-coated Gd-doped TiO2 ellipsoidal nanoparticles (GdTi-SC NPs), whose r1 increases significantly upon UV irradiation. The reduced water contact angle and the increased number of surface hydroxyl groups substantiate the existence of the PISA effect, which considerably promotes the efficiency of paramagnetic relaxation enhancement (PRE) and thus the imaging performance of GdTi-SC NPs. In vivo MRI of SD rats with GdTi-SC NPs further demonstrates that GdTi-SC NPs could serve as a high-performance CA for sensitive imaging of blood vessels and accurate diagnosis of vascular lesions, indicating the success of our strategy.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Bilun Kang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xiangjie Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi-Wei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.,Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Forsythiaside A Regulates Activation of Hepatic Stellate Cells by Inhibiting NOX4-Dependent ROS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9938392. [PMID: 35035671 PMCID: PMC8754607 DOI: 10.1155/2022/9938392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/27/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
Hepatic stellate cells (HSCs) activation is an important step in the process of hepatic fibrosis. NOX4 and reactive oxygen species expressed in HSCs play an important role in liver fibrosis. Forsythiaside A (FA), a phenylethanoid glycoside extracted and isolated from Forsythiae Fructus, has significant antioxidant activities. However, it is not clear whether FA can play a role in inhibiting the HSCs activation through regulating NOX4/ROS pathway. Therefore, our purpose is to explore the effect and mechanism of FA on HSCs activation to alleviate liver fibrosis. LX2 cells were activated by TGF-β1 in vitro. MTT assay and Wound Healing assay were used to investigate the effect of FA on TGF-β1-induced LX2 cell proliferation and migration. Elisa kit was used to measure the expression of MMP-1 and TIMP-1. Western blot and RT-qPCR were used to investigate the expression of fibrosis-related COLI, α-SMA, MMP-1 and TIMP-1, and inflammation-related TNF-α, IL-6 and IL-1β. The hydroxyproline content was characterized using a biochemical kit. The mechanism of FA to inhibit HSCs activation and apoptosis was detected by DCF-DA probe, RT-qPCR, western blot and flow cytometry. NOX4 siRNA was used to futher verify the effect of FA on NOX4/ROS pathway. The results showed that FA inhibited the proliferation and migration of LX2 cells and adjusted the expression of MMP-1, TIMP-1, COLI, α-SMA, TNF-α, IL-6 and IL-1β as well as promoted collagen metabolism to show potential in anti-hepatic fibrosis. Mechanically, FA down-regulated NOX4/ROS signaling pathway to improve oxidation imbalances, and subsequently inhibited PI3K/Akt pathway to suppress proliferation. FA also promoted the apoptosis of LX2 cells by Bax/Bcl2 pathway. Furthermore, the effects of FA on TGF-β1-induced increased ROS levels and α-SMA and COLI expression were weaken by silencing NOX4. In conclusion, FA had potential in anti-hepatic fibrosis at least in part by remolding of extracellular matrix and improving oxidation imbalances to inhibit the activation of HSCs and promote HSCs apoptosis.
Collapse
|
14
|
Hu Y, Wang Y, Wen X, Pan Y, Cheng X, An R, Gao G, Chen HY, Ye D. Responsive Trimodal Probes for In Vivo Imaging of Liver Inflammation by Coassembly and GSH-Driven Disassembly. RESEARCH 2020; 2020:4087069. [PMID: 33029587 PMCID: PMC7520820 DOI: 10.34133/2020/4087069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Noninvasive in vivo imaging of hepatic glutathione (GSH) levels is essential to early diagnosis and prognosis of acute hepatitis. Although GSH-responsive fluorescence imaging probes have been reported for evaluation of hepatitis conditions, the low penetration depth of light in liver tissue has impeded reliable GSH visualization in the human liver. We present a liver-targeted and GSH-responsive trimodal probe (GdNPs-Gal) for rapid evaluation of lipopolysaccharide- (LPS-) induced acute liver inflammation via noninvasive, real-time in vivo imaging of hepatic GSH depletion. GdNPs-Gal are formed by molecular coassembly of a GSH-responsive Gd(III)-based MRI probe (1-Gd) and a liver-targeted probe (1-Gal) at a mole ratio of 5/1 (1-Gd/1-Gal), which shows high r 1 relaxivity with low fluorescence and fluorine magnetic resonance spectroscopic (19F-MRS) signals. Upon interaction with GSH, 1-Gd and 1-Gal are cleaved and GdNPs-Gal rapidly disassemble into small molecules 2-Gd, 2-Gal, and 3, producing a substantial decline in r 1 relaxivity with compensatory enhancements in fluorescence and 19F-MRS. By combining in vivo magnetic resonance imaging (1H-MRI) with ex vivo fluorescence imaging and 19F-MRS analysis, GdNPs-Gal efficiently detect hepatic GSH using three independent modalities. We noninvasively visualized LPS-induced liver inflammation and longitudinally monitored its remediation in mice after treatment with an anti-inflammatory drug, dexamethasone (DEX). Findings highlight the potential of GdNPs-Gal for in vivo imaging of liver inflammation by integrating molecular coassembly with GSH-driven disassembly, which can be applied to other responsive molecular probes for improved in vivo imaging.
Collapse
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yifan Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoyang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|