1
|
Wu J, Hu Y, Zhao N, Yang W, Chen Z. The active roles of Rhodotorula mucilaginosa ZTHY2 in regulating antioxidant capacity and immune function of Leizhou black ducks. Front Vet Sci 2025; 12:1494892. [PMID: 39950088 PMCID: PMC11821949 DOI: 10.3389/fvets.2025.1494892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Previous studies in mice have demonstrated that Rhodotorula mucilaginosa ZTHY2 can promote animal growth, enhance antioxidant and immune functions, and regulate intestinal flora in our laboratory. This study focuses on the Leizhou black duck, a local breed in Zhanjiang, to evaluate the effects of Rhodotorula mucilaginosa ZTHY2 on its growth, antioxidant capacity, and immune function. A total of 150 1-day-old male Leizhou black ducks, of similar size and healthy, were selected for this study and randomly assigned to five treatment groups. Each group contained three replicates with ten birds each. The control group (Control) was given a standard basal diet, while the RM group received a diet supplemented with ZTHY2 at concentrations of 2 × 107 (RM1), 2 × 108(RM2), or 2 × 109(RM3) CFU/kg, respectively. The LA group was supplemented with 2 × 109 CFU/kg of Lactobacillus acidophilus in addition to the basal diet. The feeding trial lasted 42 days. The analysis revealed significant improvements in the average body weight for the RM2 and RM3 groups, which were significantly higher than that of the control group (p < 0.05 and p < 0.01). Treatment with ZTHY2 induced a dose-dependent elevation in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and SOD activities, and a reduction in malondialdehyde (MDA) content in the serum at 42 days. The serum levels of complement components C3 and C4, immunoglobulin IgG, and cytokines IFN-γ, IL-2, IL-4, IL-6, and TNF-α were significantly increased in Leizhou black ducks treated with ZTHY2 at 42-days post-treatment, with the therapeutic effect becoming more pronounced as the duration of the experiment prolonged. The greatest impact was observed at a dosage of 2 × 109 CFU/kg of ZTHY2. Moreover, ZTHY2 modulated the mRNA expression profiles of these cytokines in the thymus, spleen, and bursa, thereby sustaining the balance of immune dynamics. In summary, the supplementation of Rhodotorula mucilaginosa ZTHY2 at a dosage of 2 × 109 CFU/kg had been found to most effectively enhance the growth performance of Leizhou black ducks by optimizing their immune function and antioxidant capacity.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yingxin Hu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Namula Zhao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Wei Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhibao Chen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center Zhanjiang, Zhanjiang, China
| |
Collapse
|
2
|
Zhang M, Wang C, Pan J, Cui H, Zhao X. Advancing novel veterinary vaccines: From comprehensive antigen and adjuvant design to preparation process optimization. Int Immunopharmacol 2025; 145:113784. [PMID: 39672026 DOI: 10.1016/j.intimp.2024.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Vaccination stands as the paramount and cost-effective strategy for the prevention and management of animal infectious diseases. With the advances in biological technology, materials science and industrial optimization, substantial progress has been made in the development of innovative veterinary vaccines. A majority of the novel vaccines under current investigation tend to stimulate multiple immune pathways and to achieve long-term resistance against infectious diseases, yet it remains imperative to concentrate research efforts on the efficient utilization of vaccines, mitigating toxic side effects, and ensuring safe production processes. This article presents an overview of research progress in veterinary vaccines, encompassing comprehensive antigen design, adjuvant formulation advancements, preparation process optimization, and rigorous immune efficacy evaluation. It summarizes cutting-edge vaccines derived from in vitro synthesis and in vivo application, emphasizing immunogenic components and immune response mechanisms. It also highlights novel biological adjuvants that enhance immune efficacy, diversify raw materials, and possess targeted functions, while comprehensively exploring advancements in production methodologies and compatible vaccine products. By establishing a foundation for the integrated use of these innovative veterinary vaccines, this work facilitates future interdisciplinary cooperation in their advancement, aiming to accelerate the achievement of herd immunity through concerted efforts.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junqian Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Alsakini KAMH, Sanci E, Buhur A, Yavasoglu A, Karabay Yavasoglu NÜ, Nalbantsoy A. Single and repeat-dose toxicity and local tolerance assessment of newly developed oil emulsion adjuvant formulations for veterinary purposes. Drug Chem Toxicol 2024; 47:827-838. [PMID: 38093608 DOI: 10.1080/01480545.2023.2291985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/21/2023] [Indexed: 11/21/2024]
Abstract
Adjuvants are components of vaccines that boost the intensity, duration, and breadth of the immune response. Insight into the mechanisms responsible for the immunotoxicity of both local and systemic adverse reactions following the use of adjuvants has been gained through research over the past twenty years. In the present study, single and repeated-dose toxicity and local tolerance of newly developed Water-in-Oil (W/O) and Water-in-Oil-in-Water (W/O/W) Emulsion adjuvants (Coralvac RZ 528, Coralvac RZ 506, Coralvac AT 318, Coralvac AT 318 SIS and Coralvac 252) by Coral Biotechnology Industry and Trade Incorporated Company were demonstrated after intramuscular injection in mice. In both toxicity studies, no adverse reactions such as death, general appearance, behavior, or weight loss were observed in the mice in the experimental groups. The results indicate that clinical chemistry parameters demonstrated normal function of the major organs and no irreversible damage to the mice in all adjuvant groups compared to the control group. In histopathologic investigation of single dose toxicity study, inflammation, edema, and large amounts of lipid droplets were observed on the 7th day in all experimental groups. On the 14th day, when the control group and the experimental groups were compared, it was seen that inflammation and edema had decreased considerably. Similarly, repeated dose toxicity study showed mild inflammation and edema in the control group, while quite widespread and severe inflammation, edema, and diffuse lipid droplets of varying sizes were observed in all adjuvant groups compared to the control group. These observations would be useful for the future development of oil-based adjuvants and their use in veterinary inactive vaccines.
Collapse
Affiliation(s)
| | - Ebru Sanci
- Center for Drug Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey
| | - Aylin Buhur
- Department of Histology and Embryology, Ege University, Izmir, Turkey
| | - Altuğ Yavasoglu
- Department of Histology and Embryology, Ege University, Izmir, Turkey
| | | | | |
Collapse
|
4
|
Banico EC, Sira EMJS, Fajardo LE, Dulay ANG, Odchimar NMO, Simbulan AM, Orosco FL. Advancing one health vaccination: In silico design and evaluation of a multi-epitope subunit vaccine against Nipah virus for cross-species immunization using immunoinformatics and molecular modeling. PLoS One 2024; 19:e0310703. [PMID: 39325755 PMCID: PMC11426463 DOI: 10.1371/journal.pone.0310703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
The resurgence of the Nipah virus (NiV) in 2023 has raised concerns for another potentially severe pandemic, given its history of high mortality from previous outbreaks. Unfortunately, no therapeutics and vaccines have been available for the virus. This study used immunoinformatics and molecular modeling to design and evaluate a multi-epitope subunit vaccine targeting NiV. The designed vaccine construct aims to stimulate immune responses in humans and two other intermediate animal hosts of the virus-swine and equine. Using several epitope prediction tools, ten peptides that induced B-lymphocyte responses, 17 peptides that induced cytotoxic T-lymphocyte (CTL) responses, and 12 peptides that induced helper T-lymphocyte (HTL) responses were mapped from nine NiV protein sequences. However, the CTL and HTL-inducing peptides were reduced to ten and eight, respectively, following molecular docking and dynamics. These screened peptides exhibited stability with 30 common major histocompatibility complex (MHC) receptors found in humans, swine, and equine. All peptides were linked using peptide linkers to form the multi-epitope construct and various adjuvants were tested to enhance its immunogenicity. The vaccine construct with resuscitation-promoting factor E (RpfE) adjuvant was selected as the final design based on its favorable physicochemical properties and superior immune response profile. Molecular docking was used to visualize the interaction of the vaccine to toll-like receptor 4 (TLR4), while molecular dynamics confirmed the structural stability of this interaction. Physicochemical property evaluation and computational simulations showed that the designed vaccine construct exhibited favorable properties and elicited higher antibody titers than the six multi-epitope NiV vaccine designs available in the literature. Further in vivo and in vitro experiments are necessary to validate the immunogenicity conferred by the designed vaccine construct and its epitope components. This study demonstrates the capability of computational methodologies in rational vaccine design and highlights the potential of cross-species vaccination strategies for mitigating potential NiV threats.
Collapse
Affiliation(s)
- Edward Coralde Banico
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Development Technology Institute, Taguig City, Metro Manila, Philippines
| | - Ella Mae Joy Sinco Sira
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Development Technology Institute, Taguig City, Metro Manila, Philippines
| | - Lauren Emily Fajardo
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Development Technology Institute, Taguig City, Metro Manila, Philippines
| | - Albert Neil Gura Dulay
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Development Technology Institute, Taguig City, Metro Manila, Philippines
| | - Nyzar Mabeth Obenio Odchimar
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Development Technology Institute, Taguig City, Metro Manila, Philippines
| | - Alea Maurice Simbulan
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Development Technology Institute, Taguig City, Metro Manila, Philippines
| | - Fredmoore Legaspi Orosco
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Development Technology Institute, Taguig City, Metro Manila, Philippines
- Department of Science and Technology, S&T Fellows Program, Taguig City, Metro Manila, Philippines
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila City, Metro Manila, Philippines
| |
Collapse
|
5
|
Jadeja N, Omumbo J, Adelekan I, Rees H, Bonfoh B, Kariuki T, Tufet Bayona M. Climate and health strategies must take vaccination into account. Nat Microbiol 2023; 8:2215-2216. [PMID: 38030902 DOI: 10.1038/s41564-023-01537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Affiliation(s)
| | - Judy Omumbo
- Science for Africa Foundation, Nairobi, Kenya
| | - Ibidun Adelekan
- Department of Geography, University of Ibadan, Ibadan, Nigeria
| | - Helen Rees
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | | | | |
Collapse
|
6
|
Jenkin D, Wright D, Folegatti PM, Platt A, Poulton I, Lawrie A, Tran N, Boyd A, Turner C, Gitonga JN, Karanja HK, Mugo D, Ewer KJ, Bowden TA, Gilbert SC, Charleston B, Kaleebu P, Hill AVS, Warimwe GM. Safety and immunogenicity of a ChAdOx1 vaccine against Rift Valley fever in UK adults: an open-label, non-randomised, first-in-human phase 1 clinical trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:956-964. [PMID: 37060917 PMCID: PMC7614834 DOI: 10.1016/s1473-3099(23)00068-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Rift Valley fever is a viral epidemic illness prevalent in Africa that can be fatal or result in debilitating sequelae in humans. No vaccines are available for human use. We aimed to evaluate the safety and immunogenicity of a non-replicating simian adenovirus-vectored Rift Valley fever (ChAdOx1 RVF) vaccine in humans. METHODS We conducted a phase 1, first-in-human, open-label, dose-escalation trial in healthy adults aged 18-50 years at the Centre for Clinical Vaccinology and Tropical Medicine, Oxford, UK. Participants were required to have no serious comorbidities or previous history of receiving an adenovirus-based vaccine before enrolment. Participants were non-randomly allocated to receive a single ChAdOx1 RVF dose of either 5 × 109 virus particles (vp), 2·5 × 1010 vp, or 5 × 1010 vp administered intramuscularly into the deltoid of their non-dominant arm; enrolment was sequential and administration was staggered to allow for safety to be assessed before progression to the next dose. Primary outcome measures were assessment of adverse events and secondary outcome measures were Rift Valley fever neutralising antibody titres, Rift Valley fever GnGc-binding antibody titres (ELISA), and cellular response (ELISpot), analysed in all participants who received a vaccine. This trial is registered with ClinicalTrials.gov (NCT04754776). FINDINGS Between June 11, 2021, and Jan 13, 2022, 15 volunteers received a single dose of either 5 × 109 vp (n=3), 2·5 × 1010 vp (n=6), or 5 × 1010 vp (n=6) ChAdOx1 RVF. Nine participants were female and six were male. 14 (93%) of 15 participants reported solicited local adverse reactions; injection-site pain was the most frequent (13 [87%] of 15). Ten (67%) of 15 participants (from the 2·5 × 1010 vp and 5 × 1010 vp groups only) reported systemic symptoms, which were mostly mild in intensity, the most common being headache (nine [60%] of 15) and fatigue (seven [47%]). All unsolicited adverse events reported within 28 days were either mild or moderate in severity; gastrointestinal symptoms were the most common reaction (at least possibly related to vaccination), occurring in four (27%) of 15 participants. Transient decreases in total white cell, lymphocyte, or neutrophil counts occurred at day 2 in some participants in the intermediate-dose and high-dose groups. Lymphopenia graded as severe occurred in two participants in the 5 × 1010 vp group at a single timepoint, but resolved at the subsequent follow-up visit. No serious adverse events occurred. Rift Valley fever neutralising antibodies were detectable across all dose groups, with all participants in the 5 × 1010 vp dose group having high neutralising antibody titres that peaked at day 28 after vaccination and persisted through the 3-month follow-up. High titres of binding IgG targeting Gc glycoprotein were detected whereas those targeting Gn were comparatively low. IFNγ cellular responses against Rift Valley fever Gn and Gc glycoproteins were observed in all participants except one in the 5 × 1010 vp dose group. These IFNγ responses peaked at 2 weeks after vaccination, were highest in the 5 × 1010 vp dose group, and tended to be more frequent against the Gn glycoprotein. INTERPRETATION ChAdOx1 RVF was safe, well tolerated, and immunogenic when administered as a single dose in this study population. The data support further clinical development of ChAdOx1 RVF for human use. FUNDING UK Department of Health and Social Care through the UK Vaccines Network, Oak Foundation, and the Wellcome Trust. TRANSLATION For the Swahili translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Daniel Jenkin
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Daniel Wright
- The Jenner Institute, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Abigail Platt
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Ian Poulton
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Alison Lawrie
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Nguyen Tran
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Amy Boyd
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Cheryl Turner
- The Jenner Institute, University of Oxford, Oxford, UK
| | - John N Gitonga
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Henry K Karanja
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Daisy Mugo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Katie J Ewer
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Thomas A Bowden
- Wellcome Centre for Human Genetics, Division of Structural Biology, University of Oxford, Oxford, UK
| | - Sarah C Gilbert
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK; Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | | | - Pontiano Kaleebu
- Medical Research Council-Uganda Virus Research Institute and The London School of Hygiene & Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | | | - George M Warimwe
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.
| |
Collapse
|
7
|
Yang Y, Guo L, Lu H. Emerging infectious diseases never end: The fight continues. Biosci Trends 2023:2023.01104. [PMID: 37331800 DOI: 10.5582/bst.2023.01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Emerging infectious diseases have accompanied the development of human society while causing great harm to humans, and SARS-CoV-2 was only one in the long list of microbial threats. Many viruses have existed in their natural reservoirs for a very long time, and the spillover of viruses from natural hosts to humans via interspecies transmission serves as the main source of emerging infectious diseases. Widely existing viruses capable of utilizing human receptors to infect human cells in animals signal the possible outbreak of another viral infection in the near future. Extensive and close collaborative surveillance across nations, more effective wildlife trade legislation, and robust investment into applied and basic research will help to combat the possible pandemics of new emerging infectious diseases in the future.
Collapse
Affiliation(s)
- Yang Yang
- National Clinical Research Center for Infectious Diseases, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, China
| | - Liping Guo
- National Clinical Research Center for Infectious Diseases, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, China
| | - Hongzhou Lu
- National Clinical Research Center for Infectious Diseases, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
8
|
Friedman Y. Who is the biological patient? A new gradational and dynamic model for one health medicine. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:61. [PMID: 36357618 PMCID: PMC9649009 DOI: 10.1007/s40656-022-00540-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
One Health medicine aims to improve health by focusing on the relations between the health of humans, animals, and the environment. However, One Health does not provide a clear idea of these relations, which are still represented as conceptually separated and not as one health, as the name implies. Inspired by holobiont research, I suggest a new model and conceptual framework for One Health that expands the notion of the biological patient by providing a gradational and dynamic understanding of environments, patients, and their relations. This new model conceptualizes humans and non-humans, individual organisms, and collectives, as belonging to one system that allows for more or less inclusive understandings of patients. As such, it resolves the conceptual tensions of different One Health approaches and supports the implementation of One Health as an interdisciplinary research field.
Collapse
Affiliation(s)
- Yael Friedman
- Centre for Philosophy and the Sciences (CPS), Department of Philosophy, Classics, History of Art and Ideas, University of Oslo, Oslo, Norway.
| |
Collapse
|
9
|
Bilyk V, Dimitrova A, Havrychenko D, Stelmakhivska V, Vorontsova T. THE MAIN ASPECTS OF COUNTERING PANDEMIC INFECTIOUS DISEASES THROUGH VACCINATION IN THE CONTEXT OF PROTECTING HEALTH AND OVERCOMING PSYCHOLOGICAL BARRIERS. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2785-2790. [PMID: 36591769 DOI: 10.36740/wlek202211212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim: Study of opinions and attitudes of citizens towards vaccination, identification of the reasons for the refusal of vaccination, the main psychological barriers. PATIENTS AND METHODS Materials and methods: As a result of the analysis the main reasons for the refusal of vaccination were systematized into 5 groups. For practical clarification of the main reasons for the refusal of vaccination, we conducted a survey of citizens of the family medicine outpatient clinic in one of the Ukrainian cities. A total of 30 respondents took part in the survey. RESULTS Results: The results of the survey were systematized, according to which it was found that today there is still a negative attitude towards vaccination, although some of the respondents who have a positive attitude towards vaccination are much larger in the context of today's pandemic realities. The main reason for not vaccinating is a lack of trust and confidence in vaccine safety. CONCLUSION Conclusions: To date, vaccination, including against COVID-19, is the only method of combating the pandemic. The identified reasons for the refusal of vaccination, according to the authors, are due to the lack of proper informatization of the population and the low level of trust in global and national medical institutions.
Collapse
Affiliation(s)
| | | | - Dmytro Havrychenko
- ODESA MEDICAL INSTITUTE OF THE INTERNATIONAL HUMANITARIAN UNIVERSITY, ODESA, UKRAINE
| | | | | |
Collapse
|
10
|
Sevilla JP. The value of vaccines. Curr Opin Immunol 2022; 78:102243. [PMID: 36156412 DOI: 10.1016/j.coi.2022.102243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/24/2022] [Accepted: 08/11/2022] [Indexed: 01/28/2023]
Abstract
Optimizing vaccine spending depends on recognizing the full value of vaccination (VoV). Existing taxonomies of such value are not comprehensive because they are not guided by general theories. I rely on two such theories: subjective-value theory claims that what has value is determined by what people actually or ideally want in life. A welfarist theory of government states that a fundamental objective of government is to promote social value (or social welfare). These jointly imply that any aspect of life that individuals actually or ideally value and that could be negatively affected by vaccine-preventable diseases (and therefore positively affected by preventive vaccines) is an element of VoV. I build a more comprehensive-value taxonomy than currently exists based on this implication.
Collapse
Affiliation(s)
- J P Sevilla
- Data for Decisions, LLC, Harvard T. H. Chan School of Public Health, USA.
| |
Collapse
|
11
|
Ajose DJ, Abolarinwa TO, Oluwarinde BO, Montso PK, Fayemi OE, Aremu AO, Ateba CN. Application of Plant-Derived Nanoparticles (PDNP) in Food-Producing Animals as a Bio-Control Agent against Antimicrobial-Resistant Pathogens. Biomedicines 2022; 10:2426. [PMID: 36289688 PMCID: PMC9599314 DOI: 10.3390/biomedicines10102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are regularly used in animal husbandry to treat diseases. This practice is beneficial to animals' health and helps ensure food security. However, the misuse of antibiotics, especially in food-producing animals, has resulted in the advent of antimicrobial resistance (AMR) and its dissemination among foodborne pathogens. The occurrence of AMR in bacteria pathogens that cause infections in animals and those associated with food spoilage is now considered a global health concern affecting humans, animals and the environment. The search for alternative antimicrobial agents has kindled the interest of many researchers. Among the alternatives, using plant-derived nanoparticles (PDNPs) for treating microbial dysfunctions in food-producing animals has gained significant attention. In traditional medicine, plant extracts are considered as safe, efficient and natural antibacterial agents for various animal diseases. Given the complexity of the AMR and concerns about issues at the interface of human health, animal health and the environment, it is important to emphasize the role of a One Health approach in addressing this problem. This review examines the potential of PDNPs as bio-control agents in food-producing animals, intending to provide consumers with microbiologically safe food while ensuring food safety and security, better health for animals and humans and a safe environment.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Tesleem Olatunde Abolarinwa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Bukola Opeyemi Oluwarinde
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Adeyemi Oladapo Aremu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Indigenous Knowledge Systems (IKS) Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
12
|
McLean RK, Graham SP. The pig as an amplifying host for new and emerging zoonotic viruses. One Health 2022; 14:100384. [PMID: 35392655 PMCID: PMC8975596 DOI: 10.1016/j.onehlt.2022.100384] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Pig production is a rapidly growing segment of the global livestock sector, especially in Asia and Africa. Expansion and intensification of pig production has resulted in significant changes to traditional pig husbandry practices leading to an environment conducive to increased emergence and spread of infectious diseases. These include a number of zoonotic viruses including influenza, Japanese encephalitis, Nipah and coronaviruses. Pigs are known to independently facilitate the creation of novel reassortant influenza A virus strains, capable of causing pandemics. Moreover, pigs play a role in the amplification of Japanese encephalitis virus, transmitted by mosquito vectors found in areas inhabited by over half the world's human population. Furthermore, pigs acted as an amplifying host in the first and still most severe outbreak of Nipah virus in Malaysia, that necessitated the culling over 1 million pigs. Finally, novel porcine coronaviruses are being discovered in high pig-density countries which have pandemic potential. In this review, we discuss the role that pigs play as intermediate/amplifying hosts for zoonotic viruses with pandemic potential and consider how multivalent vaccination of pigs could in turn safeguard human health.
Collapse
|
13
|
Entrican G, Francis MJ. Applications of platform technologies in veterinary vaccinology and the benefits for one health. Vaccine 2022; 40:2833-2840. [DOI: 10.1016/j.vaccine.2022.03.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
|
14
|
Francis MJ. Considerations for rapid development and licencing of conventional and platform technology veterinary vaccines. Avian Pathol 2022; 51:107-112. [PMID: 35201912 DOI: 10.1080/03079457.2022.2046703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The threat posed by zoonotic diseases and other livestock pathogens has never been greater, and thus we must do all we can to learn from past experience in order to tackle emerging disease threats. The process of developing a new veterinary vaccine involves the generation of a specific set of data in order to meet the strict product licencing requirements of regulatory approval bodies around the globe. As a result, it is important that those embarking on the development of a vaccine using either conventional or novel platform technologies understand these regulations. In addition, there are a number of specific requirements that one needs to take into consideration when developing a product specifically for the commercial poultry market. This paper briefly outlines the veterinary vaccine development process in general and then explores ways in which this process can be accelerated. It also recognises the "one health" lessons that can be learnt from the recent rapid development of vaccines to tackle the COVID-19 pandemic and acknowledges the important measures that regulatory authorities have taken in the creation of an environment to facilitate the licencing of new vaccine platform technologies.
Collapse
|
15
|
Du H, Zhang L, Zhang X, Yun F, Chang Y, Tuersun A, Aisaiti K, Ma Z. Metagenome-Assembled Viral Genomes Analysis Reveals Diversity and Infectivity of the RNA Virome of Gerbillinae Species. Viruses 2022; 14:356. [PMID: 35215951 PMCID: PMC8874536 DOI: 10.3390/v14020356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
Rodents are a known reservoir for extensive zoonotic viruses, and also possess a propensity to roost in human habitation. Therefore, it is necessary to identify and catalogue the potentially emerging zoonotic viruses that are carried by rodents. Here, viral metagenomic sequencing was used for zoonotic virus detection and virome characterization on 32 Great gerbils of Rhombomys opimus, Meriones meridianus, and Meiiones Unguiculataus species in Xinjiang, Northwest China. In total, 1848 viral genomes that are potentially pathogenic to rodents and humans, as well as to other wildlife, were identified namely Retro-, Flavi-, Pneumo-, Picobirna-, Nairo-, Arena-, Hepe-, Phenui-, Rhabdo-, Calici-, Reo-, Corona-, Orthomyxo-, Peribunya-, and Picornaviridae families. In addition, a new genotype of rodent Hepacivirus was identified in heart and lung homogenates of seven viscera pools and phylogenetic analysis revealed the closest relationship to rodent Hepacivirus isolate RtMm-HCV/IM2014 that was previously reported to infect rodents from Inner Mongolia, China. Moreover, nine new genotype viral sequences that corresponded to Picobirnaviruses (PBVs), which have a bi-segmented genome and belong to the family Picobirnaviridae, comprising of three segment I and six segment II sequences, were identified in intestines and liver of seven viscera pools. In the two phylogenetic trees that were constructed using ORF1 and ORF2 of segment I, the three segment I sequences were clustered into distinct clades. Additionally, phylogenetic analysis showed that PBV sequences were distributed in the whole tree that was constructed using the RNA-dependent RNA polymerase (RdRp) gene of segment II with high diversity, sharing 68.42-82.67% nucleotide identities with other genogroup I and genogroup II PBV strains based on the partial RdRp gene. By RNA sequencing, we found a high degree of biodiversity of Retro-, Flavi-, Pneumo-, and Picobirnaridae families and other zoonotic viruses in gerbils, indicating that zoonotic viruses are a common presence in gerbils from Xinjiang, China. Therefore, further research is needed to determine the zoonotic potential of these viruses that are carried by other rodent species from different ecosystems and wildlife in general.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (H.D.); (L.Z.); (X.Z.); (F.Y.); (Y.C.); (A.T.); (K.A.)
| |
Collapse
|
16
|
Lin N, Fu H, Pu D, Quan Y, Li Y, Yin X, Wei Y, Wang H, Ma X, Wei X. Criteria for judging the immune markers of COVID-19 disease vaccines. MedComm (Beijing) 2022; 3:1-12. [PMID: 35005708 PMCID: PMC8719528 DOI: 10.1002/mco2.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 02/05/2023] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) sweeping the world, effective and affordable vaccines are in urgent need. A reliable system for the assessment of SARS‐CoV‐2 vaccines would boost the development of vaccines and reduce the research cost. We constructed a logistic regression model and analyzed the relationship between antibody (Ab) level and efficacy of different vaccine types. The relationship between assessment dates and Ab levels was depicted by plotting the mean of Ab levels evolved over time and a fitted cubic polynomial model. Anti‐spike immunoglobulin G (IgG) could best estimate the vaccine efficacy (VE) (adjusted R2 = 0.731) and neutralizing Ab to live SARS‐CoV‐2 also explained a fine relationship (adjusted R2 = 0.577). Neutralizing Abs to live SARS‐CoV‐2 in inactivated virus vaccines reached a peak during days 40–60, and their receptor‐binding domain (RBD)‐IgG peaked during days 40–50. For messenger RNA (mRNA) and viral vector vaccines, their neutralizing Ab to live SARS‐CoV‐2 peaked later than day 40, and for RBD‐IgG during days 30–50. For mRNA and viral vector vaccines, their peak time of Abs was later than that in inactivated virus vaccines. RBD‐IgG peaked earlier than Ab to live SARS‐CoV‐2. Anti‐spike IgG and Ab to live SARS‐CoV‐2 may be good immune markers for VE assessment.
Collapse
Affiliation(s)
- Nan Lin
- West China School of Medicine West China Hospital Sichuan University Chengdu China
| | - Haoxuan Fu
- Department of Statistics University of Illinois at Urbana Champaign Urbana Illinois USA
| | - Dan Pu
- Department of Radiation Oncology Cancer Center, West China Hospital, Sichuan University Chengdu China
| | - Yuxin Quan
- West China School of Medicine West China Hospital Sichuan University Chengdu China
| | - Yueyi Li
- Department of Biotherapy Cancer Center, West China Hospital, Sichuan University Chengdu China
| | - Xiaomeng Yin
- Department of Biotherapy Cancer Center, West China Hospital, Sichuan University Chengdu China
| | - Yuhao Wei
- West China School of Medicine West China Hospital Sichuan University Chengdu China
| | - Hang Wang
- West China School of Medicine West China Hospital Sichuan University Chengdu China
| | - Xuelei Ma
- Department of Biotherapy Cancer Center, West China Hospital, Sichuan University Chengdu China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu China
| |
Collapse
|
17
|
Baradaran Seyed Z. Evidence-Based Approach to One Health Vaccinology. ARCHIVES OF RAZI INSTITUTE 2021; 76:1575-1577. [PMID: 35546983 PMCID: PMC9083875 DOI: 10.22092/ari.2021.357232.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/30/2021] [Indexed: 06/15/2023]
Affiliation(s)
- Z Baradaran Seyed
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
18
|
Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, Manzano-Román R. Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines (Basel) 2021; 9:vaccines9090988. [PMID: 34579225 PMCID: PMC8472905 DOI: 10.3390/vaccines9090988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or emerging/re-emerging pathogens for which no effective vaccines have been developed point out the continuing need for new vaccine alternatives to control outbreaks. Most licensed vaccines have been successfully used for many years now; however, they have intrinsic limitations, such as variable efficacy, adverse effects, and some shortcomings. More effective adjuvants and novel delivery systems may foster real vaccine effectiveness and timely implementation. Emerging vaccine technologies involving nanoparticles such as self-assembling proteins, virus-like particles, liposomes, virosomes, and polymeric nanoparticles offer novel, safe, and high-potential approaches to address many vaccine development-related challenges. Nanotechnology is accelerating the evolution of vaccines because nanomaterials having encapsulation ability and very advantageous properties due to their size and surface area serve as effective vehicles for antigen delivery and immunostimulatory agents. This review discusses the requirements for an effective, broad-coverage-elicited immune response, the main nanoplatforms for producing it, and the latest nanovaccine applications for fighting animal pathogens.
Collapse
Affiliation(s)
- Carmen Teresa Celis-Giraldo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá 110231, Colombia
- Correspondence: (M.A.P.); (R.M.-R.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
- Correspondence: (M.A.P.); (R.M.-R.)
| |
Collapse
|