1
|
Liao J, Yang Y, Li J, Liu Z, Song S, Zeng Y, Wang Y. Regulatory B cells, the key regulator to induce immune tolerance in organ transplantation. Front Immunol 2025; 16:1561171. [PMID: 40264774 PMCID: PMC12011811 DOI: 10.3389/fimmu.2025.1561171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
In solid organ transplantation, especially renal transplantation, for the induction of immune tolerance, accumulating evidence has revealed that Regulatory B cells (Breg) play a crucial role in stimulating immune tolerance, alleviating immune responses, and improving graft survival. We describe the heterogeneous nature of Bregs, focusing on their defining surface markers and regulatory functions. Meanwhile, the major cytokine secretion function and the correlation between Breg and Treg or other immune checkpoints to balance the immune responses are addressed. Furthermore, we summarized the intrinsic and extrinsic pathways or costimulatory stimuli for the differentiation from naïve B cells. More importantly, we summarized the progression of the immune tolerance induction role of Breg in solid organ (kidney, liver, heart, lung, and islet) transplantation. This is an up-to-date review from the origin of Breg to the function of Breg in solid organ transplantation and how it induces immune tolerance in both murine models and human solid organ transplantation.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yixin Yang
- Department of Clinical Medicine, The First Clinical Medical College of Norman Bethune University of Medical Sciences, Jilin, China
| | - Jisong Li
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yu Zeng
- Department of Hyperbaric Oxygen, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
2
|
Salby SB, Persson G, Pedersen NH, Turan G, Kimmerslev L, Finne KF, Weisdorf I, Lebech M, Hviid TVF. Reduced expression of programmed cell death protein 1 on peripheral regulatory B cells in pre-eclampsia - Signs of impaired immune suppression. J Reprod Immunol 2025; 168:104426. [PMID: 39823688 DOI: 10.1016/j.jri.2025.104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Immunological changes are believed to be a part of pre-eclampsia etiology. This study investigated the distribution of the specific peripheral B lymphocyte phenotypes in pre-eclampsia cases compared to uncomplicated pregnancies. The study cohort included 29 women with pre-eclampsia and 14 women with uncomplicated pregnancies. Blood samples were collected in the third trimester of primigravidae pregnancies, and immune cells were analyzed using flow cytometry. Cases with pre-eclampsia showed a significantly reduced expression of programmed cell death protein 1 (PD-1) on CD27+CD24hiCD38hi regulatory B cells compared with control pregnancies (p = 0.002; multivariate logistic regression: p = 0.009). Trends for a reduced PD-1 expression on regulatory CD27+CD24hi B cells and on live CD19+ B cells were observed in cases of pre-eclampsia (p = 0.011 and p = 0.035; respectively). No significant differences between pre-eclampsia cases and controls in percentages of B cells, B1a cells, plasmablasts, naïve B cells, transitional/immature B cells, memory B cells, regulatory CD27+CD24hi B cells and regulatory CD27+CD24hiCD38hi B cells were observed. This is the first study to report reduced PD-1 expression on live B cells and regulatory B cells in pre-eclampsia. These results are in line with previous studies of peripheral regulatory T cells and decidual lymphocytes from pre-eclampsia patients. Reduced PD-1 expression on regulatory B cells in pre-eclampsia could indicate that a lack of immune suppression might play a role in the pathophysiology of pre-eclampsia.
Collapse
Affiliation(s)
- Sophie Brondt Salby
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark
| | - Gry Persson
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark
| | - Nanna Heldager Pedersen
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark
| | - Gökmen Turan
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark
| | - Laura Kimmerslev
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark
| | - Katrine Folmann Finne
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark; Department of Obstetrics and Gynaecology, Herlev Hospital, Borgmester Ib Juuls Vej 1, Herlev DK-2730, Denmark
| | - Iben Weisdorf
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark
| | - Morten Lebech
- The ReproHealth Research Consortium, Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark; Department of Obstetrics and Gynaecology, Zealand University Hospital, Sygehusvej 10, DK-4000, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark.
| |
Collapse
|
3
|
Popova A, Slisere B, Racenis K, Kuzema V, Karklins R, Saulite M, Seilis J, Saulite AJ, Vasilvolfa A, Vaivode K, Pjanova D, Kroica J, Cernevskis H, Lejnieks A, Petersons A, Oleinika K. IgA class-switched CD27-CD21+ B cells in IgA nephropathy. Nephrol Dial Transplant 2025; 40:505-515. [PMID: 39020236 PMCID: PMC11879059 DOI: 10.1093/ndt/gfae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is characterized by the production of galactose-deficient IgA1 (GdIgA1) antibodies. As the source of pathogenic antibodies, B cells are central to IgAN pathogenesis, but the B cell activation pathways as well as the potential B cell source of dysregulated IgA secretion remain unknown. METHODS We carried out flow cytometry analysis of peripheral blood B cells in patients with IgAN and control subjects with a focus on IgA-expressing B cells to uncover the pathways of B cell activation in IgAN and how these could give rise to pathogenic GdIgA1 antibodies. RESULTS In addition to global changes in the B cell landscape-expansion of naïve and reduction in memory B cells-IgAN patients present with an increased frequency of IgA-expressing B cells that lack the classical memory marker CD27, but are CD21+. IgAN patients furthermore have an expanded population of IgA+ antibody-secreting cells, which correlate with serum IgA levels. Both IgA+ plasmabalsts and CD27- B cells co-express GdIgA1. Implicating dysregulation at mucosal surfaces as the driver of such B cell differentiation, we found a correlation between lipopolysaccharide in the serum and IgA+CD27- B cell frequency. CONCLUSION We propose that dysregulated immunity in the mucosa may drive de novo B cell activation within germinal centres, giving rise to IgA+CD27- B cells and subsequently IgA-producing plasmablasts. These data integrate B cells into the paradigm of IgAN pathogenesis and allow further investigation of this pathway to uncover biomarkers and develop therapeutic interventions.
Collapse
Affiliation(s)
- Anna Popova
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
- Department of Internal Medicine, University of Latvia, Riga, Latvia
| | - Baiba Slisere
- Joint Laboratory, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Doctoral Studies, Riga Stradins University, Riga, Latvia
| | - Karlis Racenis
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Viktorija Kuzema
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Roberts Karklins
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Mikus Saulite
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Janis Seilis
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Anna Jana Saulite
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Aiga Vasilvolfa
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Internal Medicine, University of Latvia, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Kristine Vaivode
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Dace Pjanova
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
| | - Harijs Cernevskis
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Aivars Lejnieks
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
- Riga East Clinical University Hospital, Riga, Latvia
| | - Aivars Petersons
- Department of Nephrology, Pauls Stradins Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Kristine Oleinika
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical, School, Boston, MA, USA
| |
Collapse
|
4
|
Miguel V, Shaw IW, Kramann R. Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease. Nat Rev Nephrol 2025; 21:39-56. [PMID: 39289568 DOI: 10.1038/s41581-024-00889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
Chronic kidney disease (CKD), defined as persistent (>3 months) kidney functional loss, has a growing prevalence (>10% worldwide population) and limited treatment options. Fibrosis driven by the aberrant accumulation of extracellular matrix is the final common pathway of nearly all types of chronic repetitive injury in the kidney and is considered a hallmark of CKD. Myofibroblasts are key extracellular matrix-producing cells that are activated by crosstalk between damaged tubules and immune cells. Emerging evidence indicates that metabolic alterations are crucial contributors to the pathogenesis of kidney fibrosis by affecting cellular bioenergetics and metabolite signalling. Immune cell functions are intricately connected to their metabolic characteristics, and kidney cells seem to undergo cell-type-specific metabolic shifts in response to damage, all of which can determine injury and repair responses in CKD. A detailed understanding of the heterogeneity in metabolic reprogramming of different kidney cellular subsets is essential to elucidating communication processes between cell types and to enabling the development of metabolism-based innovative therapeutic strategies against CKD.
Collapse
Affiliation(s)
- Verónica Miguel
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Isaac W Shaw
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
6
|
Feng C, Chen X, Wang X, Guo M, Guo Z. Efficacy and safety of glucocorticoid combined with cyclophosphamide therapy on membranous nephropathy: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1480638. [PMID: 39664513 PMCID: PMC11631627 DOI: 10.3389/fphar.2024.1480638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND This review systematically evaluates the efficacy and safety of the combined treatment of glucocorticoids (GC) and cyclophosphamide (CTX) in patients with membranous nephropathy (MN). METHODS As of June 2024, a comprehensive literature search was performed utilizing several reputable databases, including PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure (CNKI), and Wanfang. A meta-analysis was then carried out using Review Manager 5.4 and STATA/SE-15 software. RESULTS This research evaluated a total of 22 articles involving 1,971 patients. The findings revealed that patients with MN receiving combined GC and CTX therapy had significantly higher complete remission rates (odds ratio = 1.78, p = 0.02) and total remission rates (odds ratio = 2.14, p = 0.01) when the follow-up period exceeded 12 months. Additionally, this treatment demonstrated greater efficacy in lowering serum creatinine levels compared to the control group (standardized mean difference = -0.19, p = 0.04), while its relapse rate was also lower than that of the control group (odds ratio = 0.51, p = 0.009). However, it has a high incidence of serious adverse effects (odds ratio = 2.32, p = 0.03). CONCLUSION Our systematic review highlights that the combination of GC and CTX demonstrates superior long-term effectiveness and reduced relapse rates in managing membranous nephropathy (MN). Furthermore, this drug combination is considered the optimal choice for normalizing serum creatinine levels. Data on the effectiveness and safety of glucocorticoids alone versus other drugs alone, and the treatment of secondary membranous nephropathy (SMN), are limited. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=566477, identifier CRD42024566477.
Collapse
Affiliation(s)
- Chengcheng Feng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xuexun Chen
- Department of Nephrology, School of Clinical Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, China
| | - Xiangming Wang
- Department of Nephrology, School of Clinical Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, China
| | - Min Guo
- Department of Nephrology, School of Clinical Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, China
| | - Zhentao Guo
- Department of Nephrology, School of Clinical Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, China
| |
Collapse
|
7
|
Pogorelov D, Bode SFN, He X, Ramiro-Garcia J, Hedin F, Ammerlaan W, Konstantinou M, Capelle CM, Zeng N, Poli A, Domingues O, Montamat G, Hunewald O, Ciré S, Baron A, Longworth J, Demczuk A, Bazon ML, Casper I, Klimek L, Neuberger-Castillo L, Revets D, Guyonnet L, Delhalle S, Zimmer J, Benes V, Codreanu-Morel F, Lehners-Weber C, Weets I, Alper P, Brenner D, Gutermuth J, Guerin C, Morisset M, Hentges F, Schneider R, Shamji MH, Betsou F, Wilmes P, Glaab E, Cosma A, Goncalves J, Hefeng FQ, Ollert M. Multiomics approaches disclose very-early molecular and cellular switches during insect-venom allergen-specific immunotherapy: an observational study. Nat Commun 2024; 15:10266. [PMID: 39592626 PMCID: PMC11599746 DOI: 10.1038/s41467-024-54684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Allergen-specific immunotherapy (AIT) induces immune tolerance, showing the highest success rate (>95%) for insect venom while a much lower chance for pollen allergy. However, the molecular switches leading to successful durable tolerance restoration remain elusive. The primary outcome of this observational study is the comprehensive immunological cellular characterization during the AIT initiation phase, whereas the secondary outcomes are the serological and Th2-cell-type-specific transcriptomic analyses. Here we apply a multilayer-omics approach to reveal dynamic peripheral immune landscapes during the AIT-initiation phase in venom allergy patients (VAP) versus pollen-allergic and healthy controls. Already at baseline, VAP exhibit altered abundances of several cell types, including classical monocytes (cMono), CD4+ hybrid type 1-type 17 cells (Th1-Th17 or Th1/17) and CD8+ counterparts (Tc1-Tc17 or Tc1/17). At 8-24 h following AIT launch in VAP, we identify a uniform AIT-elicited pulse of late-transitional/IL-10-producing B cells, IL-6 signaling within Th2 cells and non-inflammatory serum-IL-6 levels. Sequential induction of activation and survival protein markers also immediately occur. A disequilibrium between serum IL-6 and cMono in VAP baseline is restored at day seven following AIT launch. Our longitudinal analysis discovers molecular switches during initiation-phase insect-venom AIT that secure long-term outcomes. Trial number: NCT02931955.
Collapse
Affiliation(s)
- Dimitrii Pogorelov
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Center of Allergy & Environment, Technical University of Munich, Munich, Germany
| | - Sebastian Felix Nepomuk Bode
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Xin He
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Javier Ramiro-Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Fanny Hedin
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Wim Ammerlaan
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
| | - Maria Konstantinou
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Christophe M Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Guillem Montamat
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Séverine Ciré
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Alexandre Baron
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Agnieszka Demczuk
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Murilo Luiz Bazon
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Ingrid Casper
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | | | - Dominique Revets
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Lea Guyonnet
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Cytometry Platform, Institut Curie; Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, France
| | - Sylvie Delhalle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Françoise Codreanu-Morel
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Christiane Lehners-Weber
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Ilse Weets
- Department of Clinical Biology/ Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Pinar Alper
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Jan Gutermuth
- Department of Dermatology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Coralie Guerin
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Cytometry Platform, Institut Curie; Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, France
| | - Martine Morisset
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
- Allergy Unit, Angers University Hospital, Angers, France
| | - François Hentges
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, Imperial College London, London, UK
| | - Fay Betsou
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
- CRBIP, Institut Pasteur, Université Paris Cité, Paris, France
| | - Paul Wilmes
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jorge Goncalves
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Feng Q Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
8
|
Petrovic A, Samuelsen VM, Davies R, Aarebrot AK, Holmes T, Sarkar I, Bergum B, Jonsson R, Sandvik LF, Solberg SM, Appel S. Immune cell activity during anti-TNF treatment in patients with psoriasis and psoriatic arthritis. Clin Exp Immunol 2024; 218:329-340. [PMID: 39121030 PMCID: PMC11557139 DOI: 10.1093/cei/uxae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/27/2024] [Accepted: 08/08/2024] [Indexed: 08/11/2024] Open
Abstract
Psoriasis is a chronic, inflammatory skin disease characterized by a dysregulated immune response and systemic inflammation. Up to one-third of patients with psoriasis have psoriatic arthritis (PsA). Targeted treatment with antibodies neutralizing tumor necrosis factor can ameliorate both diseases. We here explored the impact of long-term infliximab treatment on the composition and activity status of circulating immune cells involved in chronic skin and joint inflammation. Immune cells were analyzed by multicolor flow cytometry. We measured markers of immune activation in peripheral blood mononuclear cell populations in 24 infliximab-treated patients with psoriasis/PsA compared to 32 healthy controls. We observed a significant decrease in the frequency of both peripheral natural killer (NK) cells and their subset CD56dimCD16+ NK cells in PsA compared to healthy controls and patients with psoriasis. The latter had a strong-positive correlation with psoriasis area severity index (PASI) in these patients, while CD56brightCD16- NK cells were negatively correlated with PASI. In addition, we observed an upregulation of CD69+ intermediate CD14+CD16+ and CD69+ classical CD14+CD16- monocytes in PsA and increased activity of CD38+ intermediate CD14+CD16+ monocytes in patients with psoriasis. Compared to healthy controls, psoriasis patients demonstrated shifts of the three B-cell subsets with a decrease in transitional CD27-CD38high B cells. Our exploratory study indicates a preserved pathophysiological process including continuous systemic inflammation despite clinical stability of the patients treated with infliximab.
Collapse
Affiliation(s)
- Aleksandra Petrovic
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Victoria Marie Samuelsen
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Richard Davies
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders K Aarebrot
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Timothy Holmes
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Irene Sarkar
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Brith Bergum
- Flow Cytometry Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lene F Sandvik
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Silje M Solberg
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Flow Cytometry Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Arnaud L, Chasset F, Martin T. Immunopathogenesis of systemic lupus erythematosus: An update. Autoimmun Rev 2024; 23:103648. [PMID: 39343084 DOI: 10.1016/j.autrev.2024.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by dysregulated immune responses leading to widespread inflammation and damage in various organs. Environmental factors such as infections, hormonal influences and exposure to ultraviolet light can trigger the disease in genetically predisposed individuals. Genome-wide association studies have identified over 100 susceptibility loci linked to immune regulation, interferon (IFN) signaling and antigen presentation in SLE. In addition, rare cases of monogenic lupus have been instrumental in understanding critical underlying disease mechanisms. Several immunological abnormalities contribute to the loss of self-tolerance and the perpetuation of autoimmune responses in SLE. In particular, defective clearance of apoptotic cells due to defective phagocytosis and complement activation leads to accumulation of self-antigens. Dysregulated innate immune responses activate the adaptive immune system, amplifying the inflammatory response with an important role for type I IFNs. Abnormalities in B cell development and activation lead to the production of autoreactive antibodies, forming immune complexes that cause tissue damage. Similarly, disturbances in T-cell compartments, altered regulatory T-cell functions and altered cytokine production, particularly IFN-α, contribute to tissue damage. Understanding of the immunopathogenesis of SLE is evolving rapidly, with ongoing research identifying new molecular pathways and potential therapeutic targets. Future classifications of SLE are likely to be based on underlying biological pathways rather than clinical and serological signs alone. This review aims to provide a detailed update on the most recent findings regarding the immunopathogenesis of SLE, focusing on the variability of biological pathways and the implications for future therapeutic strategies, in particular chimeric antigen receptor T (CAR T) cells.
Collapse
Affiliation(s)
- Laurent Arnaud
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des Maladies Systémiques Auto-immunes Rares Est Sud-Ouest, INSERM UMRS-1109, Université de Strasbourg, Strasbourg, France.
| | - François Chasset
- Sorbonne Université, Faculté de Médecine, AP-HP, Service de Dermatologie et Allergologie, Hôpital Tenon, INSERM U1135, CIMI, Paris, France
| | - Thierry Martin
- Service d'immunologie Clinique et de médecine interne, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des Maladies Systémiques Auto-immunes Rares, Strasbourg, France
| |
Collapse
|
10
|
Zhang D, Sun D. Current progress in CAR-based therapy for kidney disease. Front Immunol 2024; 15:1408718. [PMID: 39234257 PMCID: PMC11372788 DOI: 10.3389/fimmu.2024.1408718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Despite significant breakthroughs in the understanding of immunological and pathophysiological features for immune-mediated kidney diseases, a proportion of patients exhibit poor responses to current therapies or have been categorized as refractory renal disease. Engineered T cells have emerged as a focal point of interest as a potential treatment strategy for kidney diseases. By genetically modifying T cells and arming them with chimeric antigen receptors (CARs), effectively targeting autoreactive immune cells, such as B cells or antibody-secreting plasma cells, has become feasible. The emergence of CAR T-cell therapy has shown promising potential in directing effector and regulatory T cells (Tregs) to the site of autoimmunity, paving the way for effective migration, proliferation, and execution of suppressive functions. Genetically modified T-cells equipped with artificial receptors have become a novel approach for alleviating autoimmune manifestations and reducing autoinflammatory events in the context of kidney diseases. Here, we review the latest developments in basic, translational, and clinical studies of CAR-based therapies for immune-mediated kidney diseases, highlighting their potential as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
- Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Perezpayá I, Garcia SG, Clos-Sansalvador M, Sanroque-Muñoz M, Font-Morón M, Rodríguez-Martínez P, Vila-Santandreu A, Bover J, Borràs FE, Cañas L, Franquesa M. Molecular screening of transitional B cells as a prognostic marker of improved graft outcome and reduced rejection risk in kidney transplant. Front Immunol 2024; 15:1433832. [PMID: 39192987 PMCID: PMC11348389 DOI: 10.3389/fimmu.2024.1433832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Understanding immune cell dynamics in kidney transplantation may provide insight into the mechanisms of rejection and improve patient management. B cells have gained interest with a special relevance of the "regulatory" subsets and their graft outcome prognostic value. In this study, we aimed to prove that the direct immunophenotyping and target gene expression analysis of kidney transplant patients' fresh whole blood will help to identify graft rejection risk and assist in the monitoring of kidney transplanted patients. Methods We employed flow cytometry and qPCR techniques to characterize B and T cell subsets within fresh whole blood samples, with particular emphasis on transitional B cells (TrB) identified as CD19+CD24hiCD38hi. TrB are a relevant population in the context of kidney transplantation and are closely associated with regulatory B cells (Bregs) in humans. Patients were monitored, tracking pertinent clinical parameters and kidney-related events, including alterations in graft function and episodes of biopsy proven rejection. Results Higher percentages of TrB cells at 3 months after transplantation were positively associated with better graft outcomes and lower biopsy-proven acute rejection risk. Furthermore, a novel panel of B cell regulatory associated genes was validated at 3 months post-transplantation by qPCR analysis of peripheral blood mononuclear cell (PBMC) mRNA, showing high predictive power of graft events and prognostic value. Discussion These findings suggest that monitoring TrB may provide interesting patient management information, improve transplant outcomes, and allow for personalized drug regimens to minimize clinical complications.
Collapse
Affiliation(s)
- Inés Perezpayá
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Sergio G. Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Marta Clos-Sansalvador
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Marta Sanroque-Muñoz
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Miriam Font-Morón
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Paula Rodríguez-Martínez
- Pathology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Anna Vila-Santandreu
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Jordi Bover
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Francesc E. Borràs
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology, and Immunology, Universitat de Barcelona (UB), Barcelona, Spain
| | - Laura Cañas
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Tutunea-Fatan E, Arumugarajah S, Suri RS, Edgar CR, Hon I, Dikeakos JD, Gunaratnam L. Sensing Dying Cells in Health and Disease: The Importance of Kidney Injury Molecule-1. J Am Soc Nephrol 2024; 35:795-808. [PMID: 38353655 PMCID: PMC11164124 DOI: 10.1681/asn.0000000000000334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Shabitha Arumugarajah
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rita S. Suri
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Nephrology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cassandra R. Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ingrid Hon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
13
|
Fouza A, Fylaktou A, Tagkouta A, Daoudaki M, Vagiotas L, Kasimatis E, Stangou M, Xochelli A, Nikolaidou V, Katsanos G, Tsoulfas G, Skoura L, Papagianni A, Antoniadis N. Evaluation of Regulatory B Cell Subpopulations CD24++CD38++, CD24++CD27+, Plasmablasts and Their Correlation with T Regs CD3+CD4+CD25+FOXP3+ in Dialysis Patients and Early Post-Transplant Rejection-Free Kidney Recipients. J Clin Med 2024; 13:3080. [PMID: 38892795 PMCID: PMC11173263 DOI: 10.3390/jcm13113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Background: B and T regulatory cells, also known as Bregs and Tregs, are involved in kidney transplantation. The purpose of this study is to monitor changes in the frequency and absolute numbers of Tregs (CD3+CD4+CD25+FoxP3+), transitional Bregs (tBregs) (CD24++CD38++), memory Bregs (mBregs) (CD24++CD27+), and plasmablasts before (T0) and six months (T6) after transplantation. Additionally, we aim to investigate any correlation between Tregs and tBregs, mBregs, or plasmablasts and their relationship with graft function. Methods: Flow cytometry was used to immunophenotype cells from 50 kidney recipients who did not experience rejection. Renal function was assessed using the estimated glomerular filtration rate (eGFR). Results: At T6, there was a significant decrease in the frequency of Tregs, plasmablasts, and tBregs, as well as in the absolute number of tBregs. The frequency of mBregs, however, remained unchanged. Graft function was found to have a positive correlation with the frequency of tBregs and plasmablasts. A significant correlation was observed between the frequency and absolute number of tBregs only when the eGFR was greater than 60 but not at lower values. At an eGFR greater than 60, there was a positive correlation between the absolute numbers of Tregs and mBregs but not between Tregs and tBregs. No correlation was observed for any cell population in dialysis patients. Conclusions: The data show a correlation between the frequency and absolute number of tBregs and the absolute number of Tregs and mBregs with good renal function in the early post-transplant period.
Collapse
Affiliation(s)
- Ariadni Fouza
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| | - Asimina Fylaktou
- National Peripheral Histocompatibility Center, Department of Immunology, Ippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Anneta Tagkouta
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Daoudaki
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Lampros Vagiotas
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| | - Efstratios Kasimatis
- 1st Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, Ippokration General Hospital, 54642 Thessaloniki, Greece; (E.K.); (M.S.); (A.P.)
| | - Maria Stangou
- 1st Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, Ippokration General Hospital, 54642 Thessaloniki, Greece; (E.K.); (M.S.); (A.P.)
| | - Aliki Xochelli
- National Peripheral Histocompatibility Center, Department of Immunology, Ippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Vasiliki Nikolaidou
- National Peripheral Histocompatibility Center, Department of Immunology, Ippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Georgios Katsanos
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| | - Georgios Tsoulfas
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| | - Lemonia Skoura
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece;
| | - Aikaterini Papagianni
- 1st Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, Ippokration General Hospital, 54642 Thessaloniki, Greece; (E.K.); (M.S.); (A.P.)
| | - Nikolaos Antoniadis
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| |
Collapse
|
14
|
Li Q, Yang C, Liu C, Zhang Y, An N, Ma X, Zheng Y, Cui X, Li Q. The circulating IL-35 + regulatory B cells are associated with thyroid associated opthalmopathy. Immun Inflamm Dis 2024; 12:e1304. [PMID: 38804861 PMCID: PMC11131934 DOI: 10.1002/iid3.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Thyroid-associated ophthalmopathy (TAO) is the most common orbital disease in adults, potentially leading to disfigurement and visual impairment. However, the causes of TAO are not fully understood. IL-35+B cells are a newly identified regulatory B cells (Bregs) in maintaining immune balance in various autoimmune diseases. Yet, the influence of IL-35+Bregs in TAO remains unexplored. METHODS This study enrolled 36 healthy individuals and 14 TAO patients. We isolated peripheral blood mononuclear cells and stimulated them with IL-35 and CpG for 48 h. Flow cytometry was used to measure the percentages of IL-35+Bregs. RESULTS The percentage of circulating IL-35+Bregs was higher in TAO patients, and this increase correlated positively with disease activity. IL-35 significantly increased the generation of IL-35+Bregs in healthy individuals. However, B cells from TAO patients exhibited potential impairment in transitioning into IL-35+Breg phenotype under IL-35 stimulation. CONCLUSIONS Our results suggest a potential role of IL-35+Bregs in the development of TAO, opening new avenues for understanding disease mechanisms and developing therapeutic approaches.
Collapse
Affiliation(s)
- Qian Li
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Cuixia Yang
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Cheng Liu
- Medical Science Research Institution of Ningxia Hui Autonomous RegionMedical Sci‐Tech Research Center of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Yuehui Zhang
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Ningyu An
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Xiumei Ma
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Yang Zheng
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Xiaomin Cui
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Qian Li
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| |
Collapse
|
15
|
Pernes JI, Alsayah A, Tucci F, Bashford-Rogers RJM. Unravelling B cell heterogeneity: insights into flow cytometry-gated B cells from single-cell multi-omics data. Front Immunol 2024; 15:1380386. [PMID: 38707902 PMCID: PMC11067501 DOI: 10.3389/fimmu.2024.1380386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction B cells play a pivotal role in adaptive immunity which has been extensively characterised primarily via flow cytometry-based gating strategies. This study addresses the discrepancies between flow cytometry-defined B cell subsets and their high-confidence molecular signatures using single-cell multi-omics approaches. Methods By analysing multi-omics single-cell data from healthy individuals and patients across diseases, we characterised the level and nature of cellular contamination within standard flow cytometric-based gating, resolved some of the ambiguities in the literature surrounding unconventional B cell subsets, and demonstrated the variable effects of flow cytometric-based gating cellular heterogeneity across diseases. Results We showed that flow cytometric-defined B cell populations are heterogenous, and the composition varies significantly between disease states thus affecting the implications of functional studies performed on these populations. Importantly, this paper draws caution on findings about B cell selection and function of flow cytometric-sorted populations, and their roles in disease. As a solution, we developed a simple tool to identify additional markers that can be used to increase the purity of flow-cytometric gated immune cell populations based on multi-omics data (AlliGateR). Here, we demonstrate that additional non-linear CD20, CD21 and CD24 gating can increase the purity of both naïve and memory populations. Discussion These findings underscore the need to reconsider B cell subset definitions within the literature and propose leveraging single-cell multi-omics data for refined characterisation. We show that single-cell multi-omics technologies represent a powerful tool to bridge the gap between surface marker-based annotations and the intricate molecular characteristics of B cell subsets.
Collapse
Affiliation(s)
- Jane I. Pernes
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Atheer Alsayah
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Applied Genomic Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Felicia Tucci
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Oxford Cancer Centre, University of Oxford, Oxford, United Kingdom
| | - Rachael J. M. Bashford-Rogers
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Oxford Cancer Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Sengupta S, Goswami D, Chakraborty B, Chaudhuri SJ, Ghosh MK, Chatterjee M. Status of B-Lymphocyte Subsets and Their Homing Markers in Patients With Post-Kala-Azar Dermal Leishmaniasis. Parasite Immunol 2024; 46:e13031. [PMID: 38527908 DOI: 10.1111/pim.13031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/27/2024]
Abstract
In visceral leishmaniasis, the Type II helper T cell predominance results in B cell modulation and enhancement of anti-leishmanial IgG. However, information regarding its dermal sequel, post-kala-azar dermal leishmaniasis (PKDL), remains limited. Accordingly, this study aimed to elucidate the B cell-mediated antibody-dependent/independent immune profiles of PKDL patients. In the peripheral blood of PKDL patients, immunophenotyping of B cell subsets was performed by flow cytometry and by immunohistochemistry at lesional sites. The functionality of B cells was assessed in terms of skin IgG by immunofluorescence, while the circulating levels of B cell chemoattractants (CCL20, CXCL13, CCL17, CCL22, CCL19, CCL27, CXCL9, CXCL10 and CXCL11) were evaluated by a multiplex assay. In patients with PKDL as compared with healthy controls, there was a significant decrease in pan CD19+ B cells. However, within the CD19+ B cell population, there was a significantly raised proportion of switched memory B cells (CD19+IgD-CD27+) and plasma cells (CD19+IgD-CD38+CD27+). This was corroborated at lesional sites where a higher expression of CD20+ B cells and CD138+ plasma cells was evident; they were Ki67 negative and demonstrated a raised IgG. The circulating levels of B cell chemoattractants were raised and correlated positively with lesional CD20+ B cells. The increased levels of B cell homing markers possibly accounted for their enhanced presence at the lesional sites. There was a high proportion of plasma cells, which accounted for the increased presence of IgG that possibly facilitated parasite persistence and disease progression.
Collapse
Affiliation(s)
- Shilpa Sengupta
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Deep Goswami
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Bidhan Chakraborty
- Multidisciplinary Research Unit (MRU), Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Surya Jyati Chaudhuri
- Department of Microbiology, Sarat Chandra Chattopadhyay Govt. Medical College and Hospital, Uluberia, Howrah, India
| | - Manab K Ghosh
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| |
Collapse
|
17
|
Ma K, Luo L, Yang M, Meng Y. The suppression of sepsis-induced kidney injury via the knockout of T lymphocytes. Heliyon 2024; 10:e23311. [PMID: 38283245 PMCID: PMC10818183 DOI: 10.1016/j.heliyon.2023.e23311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024] Open
Abstract
Patients with sepsis always have a high mortality rate, and acute kidney injury (AKI) is the main cause of death. It seems obvious that the immune response is involved in this process, but the specific mechanism is unknown, especially the pathogenic role of T cells and B cells needs to be further clarified. Acute kidney injury models induced by lipopolysaccharide were established using T-cell, B-cell, and T&B cell knockout mice to elucidate the role of immune cells in sepsis. Flow cytometry was used to validate the mouse models, and the pathology can confirm renal tubular injury. LPS-induced sepsis caused significant renal pathological damage, Second-generation gene sequencing showed T cells-associated pathway was enriched in sepsis. The renal tubular injury was significantly reduced in T cell and T&B cell knockout mice (BALB/c-nu, Rag1-/-), especially in BALB/c-nu mice, with a decrease in the secretion of inflammatory cytokines in the renal tissue after LPS injection. LPS injection did not produce the same effect after the knockout of B cells. We found that blocking T cells could alleviate inflammation and renal injury caused by sepsis, providing a promising strategy for controlling renal injury.
Collapse
Affiliation(s)
- Ke Ma
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Liang Luo
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University), Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Meixiang Yang
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University), Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Yu Meng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
- Department of Nephrology, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Heyuan, 517000, China
| |
Collapse
|
18
|
Feng X, Chen Q, Zhong J, Yu S, Wang Y, Jiang Y, Wan J, Li L, Jiang H, Peng L, Wang A, Zhang G, Wang M, Yang H, Li Q. Molecular characteristics of circulating B cells and kidney cells at the single-cell level in special types of primary membranous nephropathy. Clin Kidney J 2023; 16:2639-2651. [PMID: 38046035 PMCID: PMC10689139 DOI: 10.1093/ckj/sfad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 12/05/2023] Open
Abstract
Background Although primary membranous nephropathy (pMN) associated with podocyte autoantibodies (POS) is becoming well-known, the molecular characteristics of the specific type of pMN that is negative for podocyte autoantibodies (NEG) is still unclear. Methods We performed single-cell transcriptome sequencing and single-cell B cell receptor sequencing on circulating CD19+ cells and kidney cells of a NEG paediatric patient with pMN. The single-cell datasets of POS patients and healthy control individuals were included for integrative analysis. Results The gene expression characteristics and clonal expansion of naïve and memory B cells in the NEG patient changed significantly. We found that a group of CD38+ naïve B cells expanded in the NEG patient, which had the functional characteristics of cell activation. In addition, the conversion between immunoglobulin M (IgM)/IgD and IgG1 in the NEG patient was increased. Parietal epithelial cells (PECs) and podocytes shared similar signature genes (WT1, CLIC5), and new candidate marker genes for PECs, such as NID2, CAV1 and THY1, might contribute to the definition of cell subsets. PECs might have undergone significant changes in the disease, mainly manifested by changes in the expression of CCN2, PLAAT4 and SEPTIN2. The scores of gene sets related to extracellular matrix, cell adhesion and calcium channel in podocytes of the NEG patient was significantly increased. The gene expression of sodium transporter in a group of proximal tubule cells in the disease was significantly increased, especially SLC5A12, which might be related to the oedema of patients. Conclusions Our research demonstrated the cell type-specific molecular features in the circulation and kidney of the NEG pMN patient.
Collapse
Affiliation(s)
- Xiaoqian Feng
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qilin Chen
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jinjie Zhong
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Sijie Yu
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yue Wang
- Nanjing Jiangbei New Area Biopharmaceutical Public Service Platform, Nanjing, Jiangsu, China
| | - Yaru Jiang
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Junli Wan
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Longfei Li
- Nanjing Jiangbei New Area Biopharmaceutical Public Service Platform, Nanjing, Jiangsu, China
| | - Huimin Jiang
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Liping Peng
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Anshuo Wang
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Gaofu Zhang
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mo Wang
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Haiping Yang
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qiu Li
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
19
|
Bao J, Betzler AC, Hess J, Brunner C. Exploring the dual role of B cells in solid tumors: implications for head and neck squamous cell carcinoma. Front Immunol 2023; 14:1233085. [PMID: 37868967 PMCID: PMC10586314 DOI: 10.3389/fimmu.2023.1233085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
In the tumor milieu of head and neck squamous cell carcinoma (HNSCC), distinct B cell subpopulations are present, which exert either pro- or anti-tumor activities. Multiple factors, including hypoxia, cytokines, interactions with tumor cells, and other immune infiltrating lymphocytes (TILs), alter the equilibrium between the dual roles of B cells leading to cancerogenesis. Certain B cell subsets in the tumor microenvironment (TME) exhibit immunosuppressive function. These cells are known as regulatory B (Breg) cells. Breg cells suppress immune responses by secreting a series of immunosuppressive cytokines, including IL-10, IL-35, TGF-β, granzyme B, and adenosine or dampen effector TILs by intercellular contacts. Multiple Breg phenotypes have been discovered in human and mouse cancer models. However, when compartmentalized within a tertiary lymphoid structure (TLS), B cells predominantly play anti-tumor effects. A mature TLS contains a CD20+ B cell zone with several important types of B cells, including germinal-center like B cells, antibody-secreting plasma cells, and memory B cells. They kill tumor cells via antibody-dependent cytotoxicity and phagocytosis, and local complement activation effects. TLSs are also privileged sites for local T and B cell coordination and activation. Nonetheless, in some cases, TLSs may serve as a niche for hidden tumor cells and indicate a bad prognosis. Thus, TIL-B cells exhibit bidirectional immune-modulatory activity and are responsive to a variety of immunotherapies. In this review, we discuss the functional distinctions between immunosuppressive Breg cells and immunogenic effector B cells that mature within TLSs with the focus on tumors of HNSCC patients. Additionally, we review contemporary immunotherapies that aim to target TIL-B cells. For the development of innovative therapeutic approaches to complement T-cell-based immunotherapy, a full understanding of either effector B cells or Breg cells is necessary.
Collapse
Affiliation(s)
- Jiantong Bao
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
- School of Medicine, Southeast University, Nanjing, China
| | - Annika C. Betzler
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| |
Collapse
|
20
|
Tsai YG, Liao PF, Hsiao KH, Wu HM, Lin CY, Yang KD. Pathogenesis and novel therapeutics of regulatory T cell subsets and interleukin-2 therapy in systemic lupus erythematosus. Front Immunol 2023; 14:1230264. [PMID: 37771588 PMCID: PMC10522836 DOI: 10.3389/fimmu.2023.1230264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous multisystem inflammatory disease with wide variability in clinical manifestations. Natural arising CD4+ regulatory T cells (Tregs) play a critical role in maintaining peripheral tolerance by suppressing inflammation and preventing autoimmune responses in SLE. Additionally, CD8+ regulatory T cells, type 1 regulatory T cells (Tr1), and B regulatory cells also have a less well-defined role in the pathogenesis of SLE. Elucidation of the roles of various Treg subsets dedicated to immune homeostasis will provide a novel therapeutic approach that governs immune tolerance for the remission of active lupus. Diminished interleukin (IL)-2 production is associated with a depleted Treg cell population, and its reversibility by IL-2 therapy provides important reasons for the treatment of lupus. This review focuses on the pathogenesis and new therapeutics of human Treg subsets and low-dose IL-2 therapy in clinical benefits with SLE.
Collapse
Affiliation(s)
- Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children’s Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Pei-Fen Liao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kai-Hung Hsiao
- Department of Allergy, Immunology and Rheumatology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hung-Ming Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Yuang Lin
- Division of Pediatric Nephrology, Children’s Hospital, China Medical University Hospital, Taichung, Taiwan
| | - Kuender D. Yang
- Department of Pediatrics, Mackay Memorial Hospital, New Taipei City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
21
|
Deng B, Deng L, Liu M, Zhao Z, Huang H, Tu X, Liang E, Tian R, Wang X, Wang R, Lin H, Yu Y, Peng A, Xu P, Bao K, He M. Elevated circulating CD19 +CD24 hiCD38 hi B cells display pro-inflammatory phenotype in idiopathic membranous nephropathy. Immunol Lett 2023; 261:58-65. [PMID: 37553031 DOI: 10.1016/j.imlet.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
CD19+CD24hiCD38hi regulatory B cells exert immunosuppressive functions by producing IL-10, but their role in idiopathic membranous nephropathy (IMN) remains elusive. Here, we investigated the frequency and functional changes of circulating CD19+CD24hiCD38hi B cells and evaluated the correlation of CD19+CD24hiCD38hi B cells with clinical features and T helper cell subsets in IMN patients. Compared with healthy controls (HCs), IMN patients showed an increased frequency of CD19+CD24hiCD38hi B cells, but a significant reduction in the percentage of CD19+CD24hiCD38hi B cells was observed 4 weeks after cyclophosphamide treatment. The frequency of CD19+CD24hiCD38hi B cells was positively correlated with the levels of 24h urinary protein, but negatively correlated with serum total protein and serum albumin, respectively. CD19+CD24hiCD38hi B cells in IMN patients displayed a skewed pro-inflammatory cytokine profile with a higher level of IL-6 and IL-12, but a lower concentration of IL-10 than their healthy counterparts. Accompanied by upregulation of Th2 and Th17 cells in IMN patients, the percentage of CD19+CD24hiCD38hi B cell subset was positively associated with Th17 cell frequency. In conclusion, CD19+CD24hiCD38hi B cells were expanded but functionally impaired in IMN patients. Their altered pro-inflammatory cytokine profile may contribute to the pathogenesis of IMN.
Collapse
Affiliation(s)
- Bishun Deng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Deng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Liu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziling Zhao
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijie Huang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxin Tu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Enyu Liang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruimin Tian
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaowan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongrong Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibiao Lin
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongyi Yu
- Department of Laboratory Medicine, Kaiping Central Hospital, JiangMen, China
| | - Anping Peng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kun Bao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Min He
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
22
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
23
|
Londoño AC, Mora CA. Continued dysregulation of the B cell lineage promotes multiple sclerosis activity despite disease modifying therapies. F1000Res 2023; 10:1305. [PMID: 37655229 PMCID: PMC10467621 DOI: 10.12688/f1000research.74506.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
A clear understanding of the origin and role of the different subtypes of the B cell lineage involved in the activity or remission of multiple sclerosis (MS) is important for the treatment and follow-up of patients living with this disease. B cells, however, are dynamic and can play an anti-inflammatory or pro-inflammatory role, depending on their milieu. Depletion of B cells has been effective in controlling the progression of MS, but it can have adverse side effects. A better understanding of the role of the B cell subtypes, through the use of surface biomarkers of cellular activity with special attention to the function of memory and other regulatory B cells (Bregs), will be necessary in order to offer specific treatments without inducing undesirable effects.
Collapse
Affiliation(s)
- Ana C. Londoño
- Neurologia y Neuroimagen, Instituto Neurologico de Colombia (INDEC), Medellin, Antioquia, Colombia
| | - Carlos A. Mora
- Spine & Brain Institute, Ascension St. Vincent's Riverside Hospital, Jacksonville, FL, 32204, USA
| |
Collapse
|
24
|
May CJ, Chesor M, Hunter SE, Hayes B, Barr R, Roberts T, Barrington FA, Farmer L, Ni L, Jackson M, Snethen H, Tavakolidakhrabadi N, Goldstone M, Gilbert R, Beesley M, Lennon R, Foster R, Coward R, Welsh GI, Saleem MA. Podocyte protease activated receptor 1 stimulation in mice produces focal segmental glomerulosclerosis mirroring human disease signaling events. Kidney Int 2023; 104:265-278. [PMID: 36940798 PMCID: PMC7616342 DOI: 10.1016/j.kint.2023.02.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
About 30% of patients who have a kidney transplant with underlying nephrotic syndrome (NS) experience rapid relapse of disease in their new graft. This is speculated to be due to a host-derived circulating factor acting on podocytes, the target cells in the kidney, leading to focal segmental glomerulosclerosis (FSGS). Our previous work suggests that podocyte membrane protease receptor 1 (PAR-1) is activated by a circulating factor in relapsing FSGS. Here, the role of PAR-1 was studied in human podocytes in vitro, and using a mouse model with developmental or inducible expression of podocyte-specific constitutively active PAR-1, and using biopsies from patients with nephrotic syndrome. In vitro podocyte PAR-1 activation caused a pro-migratory phenotype with phosphorylation of the kinase JNK, VASP protein and docking protein Paxillin. This signaling was mirrored in podocytes exposed to patient relapse-derived NS plasma and in patient disease biopsies. Both developmental and inducible activation of transgenic PAR-1 (NPHS2 Cre PAR-1Active+/-) caused early severe nephrotic syndrome, FSGS, kidney failure and, in the developmental model, premature death. We found that the non-selective cation channel protein TRPC6 could be a key modulator of PAR-1 signaling and TRPC6 knockout in our mouse model significantly improved proteinuria and extended lifespan. Thus, our work implicates podocyte PAR-1 activation as a key initiator of human NS circulating factor and that the PAR-1 signaling effects were partly modulated through TRPC6.
Collapse
Affiliation(s)
- Carl J May
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Bryony Hayes
- Bristol Renal, University of Bristol, Bristol, UK
| | - Rachel Barr
- Bristol Renal, University of Bristol, Bristol, UK
| | - Tim Roberts
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Lan Ni
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | | | | | - Rodney Gilbert
- Renal Medicine and Nephrology, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| | - Matt Beesley
- Pathology Department, Gloucestershire Royal Hospital, Gloucester, UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medical and Health Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | - Richard Coward
- Bristol Renal, University of Bristol, Bristol, UK; Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK
| | | | - Moin A Saleem
- Bristol Renal, University of Bristol, Bristol, UK; Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK.
| |
Collapse
|
25
|
Feng L, Chen X, Huang Y, Zhang X, Zheng S, Xie N. Immunometabolism changes in fibrosis: from mechanisms to therapeutic strategies. Front Pharmacol 2023; 14:1243675. [PMID: 37576819 PMCID: PMC10412938 DOI: 10.3389/fphar.2023.1243675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Immune cells are essential for initiating and developing the fibrotic process by releasing cytokines and growth factors that activate fibroblasts and promote extracellular matrix deposition. Immunometabolism describes how metabolic alterations affect the function of immune cells and how inflammation and immune responses regulate systemic metabolism. The disturbed immune cell function and their interactions with other cells in the tissue microenvironment lead to the origin and advancement of fibrosis. Understanding the dysregulated metabolic alterations and interactions between fibroblasts and the immune cells is critical for providing new therapeutic targets for fibrosis. This review provides an overview of recent advances in the pathophysiology of fibrosis from the immunometabolism aspect, highlighting the altered metabolic pathways in critical immune cell populations and the impact of inflammation on fibroblast metabolism during the development of fibrosis. We also discuss how this knowledge could be leveraged to develop novel therapeutic strategies for treating fibrotic diseases.
Collapse
Affiliation(s)
- Lixiang Feng
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xingyu Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yujing Huang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaodian Zhang
- Hainan Cancer Clinical Medical Center of the First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province and Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shaojiang Zheng
- Hainan Cancer Clinical Medical Center of the First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province and Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Pathology, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
26
|
Li Y, Zhang J, Liu L, Cui S, Sun H, Jiang H, Guo Y, Zhang J, Xie Z, Wang J. The imbalance between Bregs, Tfh, and Tregs in patients with anti-N-methyl-D-aspartate receptor encephalitis. Neurol Sci 2023; 44:2465-2474. [PMID: 36781561 PMCID: PMC10257618 DOI: 10.1007/s10072-023-06624-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/12/2023] [Indexed: 02/15/2023]
Abstract
OBJECTIVE To detect the alteration of regulatory B cells (Bregs), follicular helper T cells (Tfh), and regulatory T cells (Tregs) frequencies in patients with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis. Analyze their association with clinical severity and activity, and explore the effects of different immunotherapies on those immune cell subsets. METHODS We enrolled 21 patients with anti-NMDAR encephalitis, 22 patients with neuromyelitis optica spectrum disorder (NMOSD), 14 patients with idiopathic intracranial hypertension (IIH), and 20 healthy controls (HC) in our study. The frequencies of various immune cell subsets were determined using flow cytometry. RESULTS Compared to patients with IIH and HC, the frequencies of CD24hiCD38hi transitional B cells as well as Tregs were significantly lower while the frequency of Tfh was significantly higher in patients with anti-NMDAR encephalitis. The frequency of CD24hiCD38hi transitional B cells was significantly lower in the acute stage than in the recovery stage, and was negatively correlated with the modified Rankin scale (mRS) and the clinical assessment scale for autoimmune encephalitis (CASE). The frequency of CD24hiCD38hi transitional B cells at the last follow-up after rituximab (RTX) treatment was significantly higher than those treated with oral immunosuppressants or untreated. There was no clear difference between anti-NMDAR encephalitis and NMOSD in the above immune cell subsets. CONCLUSION We suggested that the frequencies of CD24hiCD38hi transitional B cells and Tregs were decreased while the frequency of Tfh was increased in patients with anti-NMDAR encephalitis. CD24hiCD38hi transitional B cells frequency may be a potential indicator to estimate the disease activity and severity.
Collapse
Affiliation(s)
- Yatong Li
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Clinical Research Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lei Liu
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shilei Cui
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Houliang Sun
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hanqiu Jiang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yanjun Guo
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jingxiao Zhang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhuxiao Xie
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
27
|
Qu L, Jiao B. The Interplay between Immune and Metabolic Pathways in Kidney Disease. Cells 2023; 12:1584. [PMID: 37371054 PMCID: PMC10296595 DOI: 10.3390/cells12121584] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney disease is a significant health problem worldwide, affecting an estimated 10% of the global population. Kidney disease encompasses a diverse group of disorders that vary in their underlying pathophysiology, clinical presentation, and outcomes. These disorders include acute kidney injury (AKI), chronic kidney disease (CKD), glomerulonephritis, nephrotic syndrome, polycystic kidney disease, diabetic kidney disease, and many others. Despite their distinct etiologies, these disorders share a common feature of immune system dysregulation and metabolic disturbances. The immune system and metabolic pathways are intimately connected and interact to modulate the pathogenesis of kidney diseases. The dysregulation of immune responses in kidney diseases includes a complex interplay between various immune cell types, including resident and infiltrating immune cells, cytokines, chemokines, and complement factors. These immune factors can trigger and perpetuate kidney inflammation, causing renal tissue injury and progressive fibrosis. In addition, metabolic pathways play critical roles in the pathogenesis of kidney diseases, including glucose and lipid metabolism, oxidative stress, mitochondrial dysfunction, and altered nutrient sensing. Dysregulation of these metabolic pathways contributes to the progression of kidney disease by inducing renal tubular injury, apoptosis, and fibrosis. Recent studies have provided insights into the intricate interplay between immune and metabolic pathways in kidney diseases, revealing novel therapeutic targets for the prevention and treatment of kidney diseases. Potential therapeutic strategies include modulating immune responses through targeting key immune factors or inhibiting pro-inflammatory signaling pathways, improving mitochondrial function, and targeting nutrient-sensing pathways, such as mTOR, AMPK, and SIRT1. This review highlights the importance of the interplay between immune and metabolic pathways in kidney diseases and the potential therapeutic implications of targeting these pathways.
Collapse
Affiliation(s)
- Lili Qu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| | - Baihai Jiao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| |
Collapse
|
28
|
McDaniels JM, Shetty AC, Kuscu C, Kuscu C, Bardhi E, Rousselle T, Drachenberg C, Talwar M, Eason JD, Muthukumar T, Maluf DG, Mas VR. Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis. Kidney Int 2023; 103:1077-1092. [PMID: 36863444 PMCID: PMC10200746 DOI: 10.1016/j.kint.2023.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 03/04/2023]
Abstract
Chronic allograft dysfunction (CAD), characterized histologically by interstitial fibrosis and tubular atrophy, is the major cause of kidney allograft loss. Here, using single nuclei RNA sequencing and transcriptome analysis, we identified the origin, functional heterogeneity, and regulation of fibrosis-forming cells in kidney allografts with CAD. A robust technique was used to isolate individual nuclei from kidney allograft biopsies and successfully profiled 23,980 nuclei from five kidney transplant recipients with CAD and 17,913 nuclei from three patients with normal allograft function. Our analysis revealed two distinct states of fibrosis in CAD; low and high extracellular matrix (ECM) with distinct kidney cell subclusters, immune cell types, and transcriptional profiles. Imaging mass cytometry analysis confirmed increased ECM deposition at the protein level. Proximal tubular cells transitioned to an injured mixed tubular (MT1) phenotype comprised of activated fibroblasts and myofibroblast markers, generated provisional ECM which recruited inflammatory cells, and served as the main driver of fibrosis. MT1 cells in the high ECM state achieved replicative repair evidenced by dedifferentiation and nephrogenic transcriptional signatures. MT1 in the low ECM state showed decreased apoptosis, decreased cycling tubular cells, and severe metabolic dysfunction, limiting the potential for repair. Activated B, T and plasma cells were increased in the high ECM state, while macrophage subtypes were increased in the low ECM state. Intercellular communication between kidney parenchymal cells and donor-derived macrophages, detected several years post-transplantation, played a key role in injury propagation. Thus, our study identified novel molecular targets for interventions aimed to ameliorate or prevent allograft fibrogenesis in kidney transplant recipients.
Collapse
Affiliation(s)
- Jennifer M McDaniels
- Division of Surgical Sciences, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cem Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Canan Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Elissa Bardhi
- Division of Surgical Sciences, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Thomas Rousselle
- Division of Surgical Sciences, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cinthia Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Manish Talwar
- Transplant Research Institute, James D. Eason Transplant Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - James D Eason
- Transplant Research Institute, James D. Eason Transplant Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Daniel G Maluf
- Division of Surgical Sciences, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; Program in Transplantation, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Valeria R Mas
- Division of Surgical Sciences, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
29
|
Stojanovic B, Jovanovic IP, Stojanovic MD, Jovanovic M, Vekic B, Milosevic B, Cvetkovic A, Spasic M, Stojanovic BS. The Emerging Roles of the Adaptive Immune Response in Acute Pancreatitis. Cells 2023; 12:1495. [PMID: 37296616 PMCID: PMC10253175 DOI: 10.3390/cells12111495] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Acute pancreatitis (AP) is an abrupt, variable inflammatory condition of the pancreas, potentially escalating to severe systemic inflammation, rampant pancreatic necrosis, and multi-organ failure. Its complex pathogenesis involves an intricate immune response, with different T cell subsets (Th1, Th2, Th9, Th17, Th22, TFH, Treg, and CD8+ T cells) and B cells playing pivotal roles. Early T cell activation initiates the AP development, triggering cytokines associated with the Th1 response, which stimulate macrophages and neutrophils. Other T cell phenotypes contribute to AP's pathogenesis, and the balance between pro-inflammatory and anti-inflammatory cytokines influences its progression. Regulatory T and B cells are crucial for moderating the inflammatory response and promoting immune tolerance. B cells further contribute through antibody production, antigen presentation, and cytokine secretion. Understanding these immune cells' roles in AP could aid in developing new immunotherapies to enhance patient outcomes. However, further research is required to define these cells' precise roles in AP and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Ivan P. Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | | | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Berislav Vekic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Bojan Milosevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Aleksandar Cvetkovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Marko Spasic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Bojana S. Stojanovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
30
|
Oshima K, Hinoki A, Uchida H, Tanaka Y, Okuno Y, Go Y, Shirota C, Tainaka T, Sumida W, Yokota K, Makita S, Takimoto A, Kano Y, Sawa S. Single-cell RNA sequencing of intestinal immune cells in neonatal necrotizing enterocolitis. Pediatr Surg Int 2023; 39:179. [PMID: 37041419 DOI: 10.1007/s00383-023-05461-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/13/2023]
Abstract
PURPOSE Necrotizing enterocolitis (NEC) causes fatal intestinal necrosis in neonates, but its etiology is unknown. We analyzed the intestinal immune response to NEC. METHODS Using single-cell RNA sequencing (scRNA-seq), we analyzed the gene expression profiles of intestinal immune cells from four neonates with intestinal perforation (two with NEC and two without NEC). Target mononuclear cells were extracted from the lamina propria of the resected intestines. RESULTS In all four cases, major immune cells, such as T cells (15.1-47.7%), B cells (3.1-19.0%), monocytes (16.5-31.2%), macrophages (1.6-17.4%), dendritic cells (2.4-12.2%), and natural killer cells (7.5-12.8%), were present in similar proportions to those in the neonatal cord blood. Gene set enrichment analysis showed that the MTOR, TNF-α, and MYC signaling pathways were enriched in T cells of the NEC patients, suggesting upregulated immune responses related to inflammation and cell proliferation. In addition, all four cases exhibited a bias toward cell-mediated inflammation, based on the predominance of T helper 1 cells. CONCLUSION Intestinal immunity in NEC subjects exhibited stronger inflammatory responses compared to non-NEC subjects. Further scRNA-seq and cellular analysis may improve our understanding of the pathogenesis of NEC.
Collapse
Affiliation(s)
- Kazuo Oshima
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pediatric Surgery, Saitama Medical University, Saitama, Japan
| | - Akinari Hinoki
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroo Uchida
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yujiro Tanaka
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pediatric Surgery, Saitama Medical University, Saitama, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- Department of System Neuroscience, National Institute for Physiological Science, Okazaki, Japan
- Department of Physiological Science, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Chiyoe Shirota
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahisa Tainaka
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wataru Sumida
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuki Yokota
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Makita
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aitaro Takimoto
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoko Kano
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichiro Sawa
- Division of Mucosal Immunology, Research Center for Systems Immunology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
31
|
Laumont CM, Nelson BH. B cells in the tumor microenvironment: Multi-faceted organizers, regulators, and effectors of anti-tumor immunity. Cancer Cell 2023; 41:466-489. [PMID: 36917951 DOI: 10.1016/j.ccell.2023.02.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 03/14/2023]
Abstract
Our understanding of tumor-infiltrating lymphocytes (TILs) is rapidly expanding beyond T cell-centric perspectives to include B cells and plasma cells, collectively referred to as TIL-Bs. In many cancers, TIL-Bs carry strong prognostic significance and are emerging as key predictors of response to immune checkpoint inhibitors. TIL-Bs can perform multiple functions, including antigen presentation and antibody production, which allow them to focus immune responses on cognate antigen to support both T cell responses and innate mechanisms involving complement, macrophages, and natural killer cells. In the stroma of the most immunologically "hot" tumors, TIL-Bs are prominent components of tertiary lymphoid structures, which resemble lymph nodes structurally and functionally. Additionally, TIL-Bs participate in a variety of other lympho-myeloid aggregates and engage in dynamic interactions with the tumor stroma. Here, we summarize our current understanding of TIL-Bs in human cancer, highlighting the compelling therapeutic opportunities offered by their unique tumor recognition and effector mechanisms.
Collapse
Affiliation(s)
- Céline M Laumont
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada.
| |
Collapse
|
32
|
Soussan S, Sibéril S. [Involvement of regulatory B lymphocytes in susceptibility to autoimmune side effects of cancer immunotherapy]. Med Sci (Paris) 2023; 39:101-104. [PMID: 36799742 DOI: 10.1051/medsci/2023001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Sarah Soussan
- Centre de recherche des Cordeliers, Inserm UMRS1138, Équipe 13 Inflammation, complément et cancer, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sophie Sibéril
- Centre de recherche des Cordeliers, Inserm UMRS1138, Équipe 13 Inflammation, complément et cancer, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
33
|
Ye Q, Li Y, Liu H, Mao J, Jiang H. Machine learning models for predicting steroid-resistant of nephrotic syndrome. Front Immunol 2023; 14:1090241. [PMID: 36776850 PMCID: PMC9911108 DOI: 10.3389/fimmu.2023.1090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Background In the absence of effective measures to predict steroid responsiveness, patients with nonhereditary steroid-resistant nephrotic syndrome (SRNS) have a significantly increased risk of progression to end-stage renal disease. In view of the poor outcomes of SRNS, it is urgent to identify the steroid responsiveness of idiopathic nephrotic syndrome (INS) early. Methods To build a prediction model for SRNS, we collected 91 subjects; 57 of them had steroid-sensitive nephrotic syndrome, and the others had SRNS. For each subject, 87 clinical variables were measured. In general, only a small part of these variables is informative to SRNS. Thus, we proposed a new variable selection framework including a penalized regression approach (named MLR+TLP) to select variables having a linear effect on the SRNS and a nonparametric screening method (MAC) to select variables having a nonlinear marginal (joint) effect on the SRNS. Thereafter, considering the correlation between selected clinical variables, we used a stepwise method to build our final model for predicting SRNS. In addition, a statistical testing procedure is proposed to test the overfitting of the proposed model. Results Twenty-six clinical variables were selected to be informative to SRNS, and an SVM model was built to predict SRNS with a leave-one-out cross-validation (LOO-CV) accuracy of 95.2% (overfitting p value<0.005). To make the model more useful, we incorporate prior medical information into the model and consider the correlation between selected variables. Then, a reduced SVM model including only eight clinical variables (erythrocyte sedimentation rate, urine occult blood, percentage of neutrophils, immunoglobulin A, cholesterol, vinculin autoantibody, aspartate aminotransferase, and prolonged prothrombin time) was built to have a LOO-CV accuracy of 92.8% (overfitting p value<0.005). The validation cohort showed that the reduced model obtained an accuracy of 94.0% (overfitting p value<0.005), with a sensitivity of 90.0% and a specificity of 96.7%. Notably, vinculin autoantibody is the only podocyte autoantibody included in this model. It is linearly related to steroid responsiveness. Finally, our model is freely available as a user-friendly web tool at https://datalinkx.shinyapps.io/srns/. Conclusion The SRNS prediction model constructed in this study comprehensively and objectively evaluates the internal conditions and disease status of INS patients and will provide scientific guidance for selecting treatment methods for children with nonhereditary SRNS.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Yuzhou Li
- Center for Data Science, Zhejiang University, Hangzhou, China.,School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Huihui Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Lv J, Chen L, Zhao L. Renoprotective anti-CD45RB antibody induces B cell production in systemic lupus erythematosus based on single-cell RNA-seq analysis. J Autoimmun 2023; 134:102949. [PMID: 36455384 DOI: 10.1016/j.jaut.2022.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease that commonly affects the kidney. Single-cell RNA sequencing (scRNA-seq) technology is a powerful tool for characterizing individual cells and elucidating biological mechanisms at the cellular level. The purpose of this study was to identify the mechanism underlying kidney injury in SLE using scRNA-seq technology. METHODS scRNA-seq data of peripheral blood mononuclear cells (PBMCs) in SLE were retrieved from the GEO database, followed by batch effect elimination, dimensionality reduction, cluster analysis, cell annotation and enrichment analysis. A model of SLE was developed in NZB/WF1 mice. Effects of anti-CD45RB antibody on the SLE-induced kidney injury were evaluated, and we measured the distribution of regulatory T cells and B cells in mouse spleen and kidney tissues, levels of kidney function-related indexes, deposition of IgG and C3 in the glomeruli, and the levels of inflammatory cytokines. RESULTS CD45RB was a specific marker gene of B cell clusters and had influence on the B cells. anti-CD45RB antibody treatment induced regulatory B cells and consequently arrested the kidney injury caused by SLE. In addition, depletion of regulatory T cells was found to partially undermine the alleviatory effect of anti-CD45RB antibody on SLE-induced kidney injury. CONCLUSION Collectively, our data suggest that anti-CD45RB antibody can prevent the SLE-induced kidney injury, pointing to anti-CD45RB antibody as a potential therapeutic strategy in kidney injury-related disease.
Collapse
Affiliation(s)
- Juan Lv
- Department of Rheumatology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China; Department of Critical Care Medicine, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China.
| | - Lu Chen
- Department of Rheumatology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China.
| | - Ling Zhao
- Department of Rheumatology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
35
|
Nüssing S, Sutton VR, Trapani JA, Parish IA. Beyond target cell death - Granzyme serine proteases in health and disease. Mol Aspects Med 2022; 88:101152. [PMID: 36368281 DOI: 10.1016/j.mam.2022.101152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/06/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Granzymes are a family of small (∼32 kDa) serine proteases with a range of substrate specificities that are stored in, and released from, the cytoplasmic secretory vesicles ('granules') of cytotoxic T lymphocytes and natural killer cells. Granzymes are not digestive proteases but finely tuned processing enzymes that target their substrates in specific ways to activate various signalling pathways, or to inactivate viral proteins and other targets. Great emphasis has been placed on studying the pro-apoptotic functions of granzymes, which largely depend on their synergy with the pore-forming protein perforin, on which they rely for penetration into the target cell cytosol to access their substrates. While a critical role for granzyme B in target cell apoptosis is undisputed, both it and the remaining granzymes also influence a variety of other biological processes (including important immunoregulatory functions), which are discussed in this review. This includes the targeting of many extracellular as well as intracellular substrates, and can also lead to deleterious outcomes for the host if granzyme expression or function are dysregulated or abrogated. A final important consideration is that granzyme repertoire, biochemistry and function vary considerably across species, probably resulting from the pressures applied by viruses and other pathogens across evolutionary time. This has implications for the interpretation of granzyme function in preclinical models of disease.
Collapse
Affiliation(s)
- Simone Nüssing
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Vivien R Sutton
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Ian A Parish
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia; John Curtin School of Medical Research, ANU, ACT, Australia.
| |
Collapse
|
36
|
Aymonnier K, Amsler J, Lamprecht P, Salama A, Witko‐Sarsat V. The neutrophil: A key resourceful agent in immune‐mediated vasculitis. Immunol Rev 2022; 314:326-356. [PMID: 36408947 DOI: 10.1111/imr.13170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The term "vasculitis" refers to a group of rare immune-mediated diseases characterized by the dysregulated immune system attacking blood vessels located in any organ of the body, including the skin, lungs, and kidneys. Vasculitides are classified according to the size of the vessel that is affected. Although this observation is not specific to small-, medium-, or large-vessel vasculitides, patients show a high circulating neutrophil-to-lymphocyte ratio, suggesting the direct or indirect involvement of neutrophils in these diseases. As first responders to infection or inflammation, neutrophils release cytotoxic mediators, including reactive oxygen species, proteases, and neutrophil extracellular traps. If not controlled, this dangerous arsenal can injure the vascular system, which acts as the main transport route for neutrophils, thereby amplifying the initial inflammatory stimulus and the recruitment of immune cells. This review highlights the ability of neutrophils to "set the tone" for immune cells and other cells in the vessel wall. Considering both their long-established and newly described roles, we extend their functions far beyond their direct host-damaging potential. We also review the roles of neutrophils in various types of primary vasculitis, including immune complex vasculitis, anti-neutrophil cytoplasmic antibody-associated vasculitis, polyarteritis nodosa, Kawasaki disease, giant cell arteritis, Takayasu arteritis, and Behçet's disease.
Collapse
Affiliation(s)
- Karen Aymonnier
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Jennifer Amsler
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology University of Lübeck Lübeck Germany
| | - Alan Salama
- Department of Renal Medicine, Royal Free Hospital University College London London UK
| | | |
Collapse
|
37
|
Ma C, Liu H, Yang S, Li H, Liao X, Kang Y. The emerging roles and therapeutic potential of B cells in sepsis. Front Pharmacol 2022; 13:1034667. [PMID: 36425582 PMCID: PMC9679374 DOI: 10.3389/fphar.2022.1034667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/26/2022] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a life-threatening syndrome caused by anomalous host response to infection. The pathogenesis of sepsis is complex, and immune dysfunction is the central link in its occurrence and development. The sepsis immune response is not a local and transient process but a complex and continuous process involving all major cell types of innate and adaptive immunity. B cells are traditionally studied for their ability to produce antibodies in the context of mediating humoral immunity. However, over the past few years, B cells have been increasingly recognized as key modulators of adaptive and innate immunity, and they can participate in immune responses by presenting antigens, producing cytokines, and modulating other immune cells. Recently, increasing evidence links B-cell dysfunction to mechanisms of immune derangement in sepsis, which has drawn attention to the powerful properties of this unique immune cell type in sepsis. Here, we reviewed the dynamic alterations of B cells and their novel roles in animal models and patients with sepsis, and provided new perspectives for therapeutic strategies targeting B cells in sepsis.
Collapse
Affiliation(s)
- Chengyong Ma
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hanrui Liu
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuo Yang
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Liu J, Guan F. B cell phenotype, activity, and function in idiopathic nephrotic syndrome. Pediatr Res 2022:10.1038/s41390-022-02336-w. [PMID: 36316536 DOI: 10.1038/s41390-022-02336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Idiopathic nephrotic syndrome (INS) is the most frequent glomerular disease in childhood. However, its underlying etiology mechanism lacks thorough understanding. Previous studies have described INS as a T cell functional disorder resulting in increased plasma lymphocyte-derived permeability factors. In children with frequent relapses of nephrotic syndrome, the mechanism underlying the therapeutic efficacy of CD20 monoclonal antibodies in depleting B cells may provide additional evidence in exploring the critical role of B lymphocytes in INS pathogenesis. Previous studies have proposed that RTX bound to CD20 through antibody-dependent and complement-dependent cytotoxicity and led to lytic clearance of B cells. Additionally, RTX exerted an effect by blocking the interaction between B and T cells or regulating homeostasis and functions of T cell subsets. Recent studies on the development, differentiation, and activation of B-lymphocytes in glomerular diseases have suggested that the B-lymphocytes participate in the INS pathogenesis through interaction with T cells, secretion of antibodies, or production of cytokines. In this study, we aimed to provide a detailed description of the current knowledge on the development, differentiation, activity, functions, and related regulating factors of B cells involved in INS. Thus, further understanding of the immunopathogenesis of INS may offer some opportunities in precisely targeting B cells during therapeutic interventions. IMPACT: The topic "B cells play a role in glomerular disease" is a novel point, which is not completely described previously. We described interactions between T and B cells and immunoglobulin, IgG, IgM, IgE, etc. as well in glomerular disease. The research of regulatory factors associated with B cell's function, like BAFF, is a hot topic in other diseases; however, it is rare in glomerular disease.
Collapse
Affiliation(s)
- Junhan Liu
- Department of Pediatrics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China
| | - Fengjun Guan
- Department of Pediatrics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China.
| |
Collapse
|
39
|
Metabolic signatures of immune cells in chronic kidney disease. Expert Rev Mol Med 2022; 24:e40. [PMID: 36268748 PMCID: PMC9884772 DOI: 10.1017/erm.2022.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Immune cells play a key role in maintaining renal dynamic balance and dealing with renal injury. The physiological and pathological functions of immune cells are intricately connected to their metabolic characteristics. However, immunometabolism in chronic kidney disease (CKD) is not fully understood. Pathophysiologically, disruption of kidney immune cells homeostasis causes inflammation and tissue damage via triggering metabolic reprogramming. The diverse metabolic characteristics of immune cells at different stages of CKD are strongly associated with their different pathological effect. In this work, we reviewed the metabolic characteristics of immune cells (macrophages, natural killer cells, T cells, natural killer T cells and B cells) and several non-immune cells, as well as potential treatments targeting immunometabolism in CKD. We attempt to elaborate on the metabolic signatures of immune cells and their intimate correlation with non-immune cells in CKD.
Collapse
|
40
|
Harnett MM, Doonan J, Lumb FE, Crowe J, Damink RO, Buitrago G, Duncombe-Moore J, Wilkinson DI, Suckling CJ, Selman C, Harnett W. The parasitic worm product ES-62 protects the osteoimmunology axis in a mouse model of obesity-accelerated ageing. Front Immunol 2022; 13:953053. [PMID: 36105811 PMCID: PMC9465317 DOI: 10.3389/fimmu.2022.953053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite significant increases in human lifespan over the last century, adoption of high calorie diets (HCD) has driven global increases in type-2 diabetes, obesity and cardiovascular disease, disorders precluding corresponding improvements in healthspan. Reflecting that such conditions are associated with chronic systemic inflammation, evidence is emerging that infection with parasitic helminths might protect against obesity-accelerated ageing, by virtue of their evolution of survival-promoting anti-inflammatory molecules. Indeed, ES-62, an anti-inflammatory secreted product of the filarial nematode Acanthocheilonema viteae, improves the healthspan of both male and female C57BL/6J mice undergoing obesity-accelerated ageing and also extends median lifespan in male animals, by positively impacting on inflammatory, adipose metabolic and gut microbiome parameters of ageing. We therefore explored whether ES-62 affects the osteoimmunology axis that integrates environmental signals, such as diet and the gut microbiome to homeostatically regulate haematopoiesis and training of immune responses, which become dysregulated during (obesity-accelerated) ageing. Of note, we find sexual dimorphisms in the decline in bone health, and associated dysregulation of haematopoiesis and consequent peripheral immune responses, during obesity-accelerated ageing, highlighting the importance of developing sex-specific anti-ageing strategies. Related to this, ES-62 protects trabecular bone structure, maintaining bone marrow (BM) niches that counter the ageing-associated decline in haematopoietic stem cell (HSC) functionality highlighted by a bias towards myeloid lineages, in male but not female, HCD-fed mice. This is evidenced by the ability of ES-62 to suppress the adipocyte and megakaryocyte bias and correspondingly promote increases in B lymphocytes in the BM. Furthermore, the consequent prevention of ageing-associated myeloid/lymphoid skewing is associated with reduced accumulation of inflammatory CD11c+ macrophages and IL-1β in adipose tissue, disrupting the perpetuation of inflammation-driven dysregulation of haematopoiesis during obesity-accelerated ageing in male HCD-fed mice. Finally, we report the ability of small drug-like molecule analogues of ES-62 to mimic some of its key actions, particularly in strongly protecting trabecular bone structure, highlighting the translational potential of these studies.
Collapse
Affiliation(s)
- Margaret M. Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Felicity E. Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jenny Crowe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Roel Olde Damink
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Geraldine Buitrago
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Josephine Duncombe-Moore
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Debbie I. Wilkinson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
41
|
Lomakin YA, Zvyagin IV, Ovchinnikova LA, Kabilov MR, Staroverov DB, Mikelov A, Tupikin AE, Zakharova MY, Bykova NA, Mukhina VS, Favorov AV, Ivanova M, Simaniv T, Rubtsov YP, Chudakov DM, Zakharova MN, Illarioshkin SN, Belogurov AA, Gabibov AG. Deconvolution of B cell receptor repertoire in multiple sclerosis patients revealed a delay in tBreg maturation. Front Immunol 2022; 13:803229. [PMID: 36052064 PMCID: PMC9425031 DOI: 10.3389/fimmu.2022.803229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundB lymphocytes play a pivotal regulatory role in the development of the immune response. It was previously shown that deficiency in B regulatory cells (Bregs) or a decrease in their anti-inflammatory activity can lead to immunological dysfunctions. However, the exact mechanisms of Bregs development and functioning are only partially resolved. For instance, only a little is known about the structure of their B cell receptor (BCR) repertoires in autoimmune disorders, including multiple sclerosis (MS), a severe neuroinflammatory disease with a yet unknown etiology. Here, we elucidate specific properties of B regulatory cells in MS.MethodsWe performed a prospective study of the transitional Breg (tBreg) subpopulations with the CD19+CD24highCD38high phenotype from MS patients and healthy donors by (i) measuring their content during two diverging courses of relapsing-remitting MS: benign multiple sclerosis (BMS) and highly active multiple sclerosis (HAMS); (ii) analyzing BCR repertoires of circulating B cells by high-throughput sequencing; and (iii) measuring the percentage of CD27+ cells in tBregs.ResultsThe tBregs from HAMS patients carry the heavy chain with a lower amount of hypermutations than tBregs from healthy donors. The percentage of transitional CD24highCD38high B cells is elevated, whereas the frequency of differentiated CD27+ cells in this transitional B cell subset was decreased in the MS patients as compared with healthy donors.ConclusionsImpaired maturation of regulatory B cells is associated with MS progression.
Collapse
Affiliation(s)
- Yakov A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Ivan V. Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Leyla A. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences (RAS), Novosibirsk, Russia
| | - Dmitriy B. Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Artem Mikelov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences (RAS), Novosibirsk, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nadezda A. Bykova
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences (RAS), Moscow, Russia
| | - Vera S. Mukhina
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences (RAS), Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Alexander V. Favorov
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins University, Baltimore, MD, United States
| | - Maria Ivanova
- Neuroinfection Department of the Research Center of Neurology, Moscow, Russia
| | - Taras Simaniv
- Neuroinfection Department of the Research Center of Neurology, Moscow, Russia
| | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Dmitriy M. Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maria N. Zakharova
- Neuroinfection Department of the Research Center of Neurology, Moscow, Russia
| | | | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
- *Correspondence: Alexey A. Belogurov Jr., ; Alexander G. Gabibov,
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Alexey A. Belogurov Jr., ; Alexander G. Gabibov,
| |
Collapse
|
42
|
Laumont CM, Banville AC, Gilardi M, Hollern DP, Nelson BH. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat Rev Cancer 2022; 22:414-430. [PMID: 35393541 PMCID: PMC9678336 DOI: 10.1038/s41568-022-00466-1] [Citation(s) in RCA: 285] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 01/03/2023]
Abstract
Although immunotherapy research to date has focused largely on T cells, there is mounting evidence that tumour-infiltrating B cells and plasma cells (collectively referred to as tumour-infiltrating B lymphocytes (TIL-Bs)) have a crucial, synergistic role in tumour control. In many cancers, TIL-Bs have demonstrated strong predictive and prognostic significance in the context of both standard treatments and immune checkpoint blockade, offering the prospect of new therapeutic opportunities that leverage their unique immunological properties. Drawing insights from autoimmunity, we review the molecular phenotypes, architectural contexts, antigen specificities, effector mechanisms and regulatory pathways relevant to TIL-Bs in human cancer. Although the field is young, the emerging picture is that TIL-Bs promote antitumour immunity through their unique mode of antigen presentation to T cells; their role in assembling and perpetuating immunologically 'hot' tumour microenvironments involving T cells, myeloid cells and natural killer cells; and their potential to combat immune editing and tumour heterogeneity through the easing of self-tolerance mechanisms. We end by discussing the most promising approaches to enhance TIL-B responses in concert with other immune cell subsets to extend the reach, potency and durability of cancer immunotherapy.
Collapse
Affiliation(s)
- Céline M Laumont
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Allyson C Banville
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mara Gilardi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, San Diego, CA, USA
| | - Daniel P Hollern
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, San Diego, CA, USA
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
43
|
Fu Y, Wang L, Yu B, Xu D, Chu Y. Immunometabolism shapes B cell fate and functions. Immunology 2022; 166:444-457. [PMID: 35569110 DOI: 10.1111/imm.13499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences Fudan University Shanghai China
- Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital Fudan University Shanghai China
- Biotherapy Research Center Fudan University Shanghai China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Damo Xu
- School of Medicine Shenzhen University Shenzhen China
- Third Affiliated Hospital of Shenzhen University Shenzhen Luohu Hospital Group Shenzhen China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences Fudan University Shanghai China
- Biotherapy Research Center Fudan University Shanghai China
| |
Collapse
|
44
|
Wang Q, Li L, Li C, Cao H, Chen Y, Zhou W, Yang G, Yang H. Circadian protein CLOCK modulates regulatory B cell functions of nurses engaging day-night shift rotation. Cell Signal 2022; 96:110362. [DOI: 10.1016/j.cellsig.2022.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
|
45
|
Clr-f expression regulates kidney immune and metabolic homeostasis. Sci Rep 2022; 12:4834. [PMID: 35318366 PMCID: PMC8940912 DOI: 10.1038/s41598-022-08547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
The C-type lectin-related protein, Clr-f, encoded by Clec2h in the mouse NK gene complex (NKC), is a member of a family of immune regulatory lectins that guide immune responses at distinct tissues of the body. Clr-f is highly expressed in the kidney; however, its activity in this organ is unknown. To assess the requirement for Clr-f in kidney health and function, we generated a Clr-f-deficient mouse (Clr-f−/−) by targeted deletions in the Clec2h gene. Mice lacking Clr-f exhibited glomerular and tubular lesions, immunoglobulin and C3 complement protein renal deposits, and significant abdominal and ectopic lipid accumulation. Whole kidney transcriptional profile analysis of Clr-f−/− mice at 7, 13, and 24 weeks of age revealed a dynamic dysregulation in lipid metabolic processes, stress responses, and inflammatory mediators. Examination of the immune contribution to the pathologies of Clr-f−/− mouse kidneys identified elevated IL-12 and IFNγ in cells of the tubulointerstitium, and an infiltrating population of neutrophils and T and B lymphocytes. The presence of these insults in a Rag1−/−Clr-f−/− background reveals that Clr-f−/− mice are susceptible to a T and B lymphocyte-independent renal pathogenesis. Our data reveal a role for Clr-f in the maintenance of kidney immune and metabolic homeostasis.
Collapse
|
46
|
Colucci M, Oniszczuk J, Vivarelli M, Audard V. B-Cell Dysregulation in Idiopathic Nephrotic Syndrome: What We Know and What We Need to Discover. Front Immunol 2022; 13:823204. [PMID: 35140723 PMCID: PMC8819007 DOI: 10.3389/fimmu.2022.823204] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
The therapeutic efficacy of B-cell depletion by anti-CD20 treatment in pediatric and, more recently, in adult idiopathic nephrotic syndrome patients suggests a key role of B cells in the pathogenesis of the disease. However, their exact role is still unclear. B cells are able to secrete a large variety of antibodies that can protect against infections. However, B-cell dysregulation is well-established in a variety of autoimmune diseases. In parallel with their ability to produce antibodies, pathogenic B cells display altered effector functions by expressing activating surface molecules, which can strongly modify the immune homeostasis, or by producing specific cytokines, which can directly affect either podocyte structure and functions or modulate T-cell homeostasis. Herein, we report the most relevant clinical and experimental evidences of a pathogenic role of B cells in idiopathic nephrotic syndrome. We further highlight similarities and differences between children and adults affected by non-genetic forms of the disease and discuss what needs to be investigated in order to define the exact mechanisms underlying the pathogenic role of B cells and to identify more tailored therapeutic approaches.
Collapse
Affiliation(s)
- Manuela Colucci
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Manuela Colucci,
| | - Julie Oniszczuk
- Assistance Publique des Hôpitaux de Paris, Hôpitaux Universitaires Henri-Mondor, Service de Néphrologie et Transplantation, Centre de Référence Maladie Rare “Syndrome Néphrotique Idiopathique”, Fédération Hospitalo-Universitaire, Innovative Therapy for Immune Disorders, Créteil, France
- Univ Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Marina Vivarelli
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincent Audard
- Assistance Publique des Hôpitaux de Paris, Hôpitaux Universitaires Henri-Mondor, Service de Néphrologie et Transplantation, Centre de Référence Maladie Rare “Syndrome Néphrotique Idiopathique”, Fédération Hospitalo-Universitaire, Innovative Therapy for Immune Disorders, Créteil, France
- Univ Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
47
|
Urinary immune cell phenotype of severe AKI in critically ill patients. Int Urol Nephrol 2022; 54:2047-2055. [DOI: 10.1007/s11255-021-03088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
|
48
|
Tang F, Lu Z, Lei H, Lai Y, Lu Z, Li Z, Tang Z, Zhang J, He Z. DNA Methylation Data-Based Classification and Identification of Prognostic Signature of Children With Wilms Tumor. Front Cell Dev Biol 2022; 9:683242. [PMID: 35004665 PMCID: PMC8740190 DOI: 10.3389/fcell.2021.683242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
Background: As an epigenetic alteration, DNA methylation plays an important role in early Wilms tumorigenesis and is possibly used as marker to improve the diagnosis and classification of tumor heterogeneity. Methods: Methylation data, RNA-sequencing (RNA-seq) data, and corresponding clinical information were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. The prognostic values of DNA methylation subtypes in Wilms tumor were identified. Results: Four prognostic subtypes of Wilms tumor patients were identified by consensus cluster analysis performed on 312 independent prognostic CpG sites. Cluster one showed the best prognosis, whereas Cluster two represented the worst prognosis. Unique CpG sites identified in Cluster one that were not identified in other subtypes were assessed to construct a prognostic signature. The prognostic methylation risk score was closely related to prognosis, and the area under the curve (AUC) was 0.802. Furthermore, the risk score based on prognostic signature was identified as an independent prognostic factor for Wilms tumor in univariate and multivariate Cox regression analyses. Finally, the abundance of B cell infiltration was higher in the low-risk group than in the high-risk group, based on the methylation data. Conclusion: Collectively, we divided Wilms tumor cases into four prognostic subtypes, which could efficiently identify high-risk Wilms tumor patients. Prognostic methylation risk scores that were significantly associated with the adverse clinical outcomes were established, and this prognostic signature was able to predict the prognosis of Wilms tumor in children, which may be useful in guiding clinicians in therapeutic decision-making. Further independent studies are needed to validate and advance this hypothesis.
Collapse
Affiliation(s)
- Fucai Tang
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zeguang Lu
- The Second Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Hanqi Lei
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.,Department of Urology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongchang Lai
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zechao Lu
- The First Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Zhibiao Li
- The Third Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Zhicheng Tang
- The Third Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Jiahao Zhang
- The Sixth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Zhaohui He
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
49
|
Garcia SG, Sandoval-Hellín N, Franquesa M. Regulatory B Cell Therapy in Kidney Transplantation. Front Pharmacol 2021; 12:791450. [PMID: 34950041 PMCID: PMC8689004 DOI: 10.3389/fphar.2021.791450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
In the context of kidney injury, the role of Bregs is gaining interest. In a number of autoimmune diseases, the number and/or the function of Bregs has been shown to be impaired or downregulated, therefore restoring their balance might be a potential therapeutic tool. Moreover, in the context of kidney transplantation their upregulation has been linked to tolerance. However, a specific marker or set of markers that define Bregs as a unique cell subset has not been found and otherwise multiple phenotypes of Bregs have been studied. A quest on the proper markers and induction mechanisms is now the goal of many researchers. Here we summarize the most recent evidence on the role of Bregs in kidney disease by describing the relevance of in vitro and in vivo Bregs induction as well as the potential use of Bregs as cell therapy agents in kidney transplantation.
Collapse
Affiliation(s)
- Sergio G Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Noelia Sandoval-Hellín
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| |
Collapse
|
50
|
B Cells in Primary Membranous Nephropathy: Escape from Immune Tolerance and Implications for Patient Management. Int J Mol Sci 2021; 22:ijms222413560. [PMID: 34948358 PMCID: PMC8708506 DOI: 10.3390/ijms222413560] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Membranous nephropathy (MN) is an important cause of nephrotic syndrome and chronic kidney disease (CKD) in adults. The pathogenic significance of B cells in MN is increasingly recognized, especially following the discovery of various autoantibodies that target specific podocytic antigens and the promising treatment responses seen with B cell depleting therapies. The presence of autoreactive B cells and autoantibodies that bind to antigens on podocyte surfaces are characteristic features of MN, and are the result of breaches in central and peripheral tolerance of B lymphocytes. These perturbations in B cell tolerance include altered B lymphocyte subsets, dysregulation of genes that govern immunoglobulin production, aberrant somatic hypermutation and co-stimulatory signalling, abnormal expression of B cell-related cytokines, and increased B cell infiltrates and organized tertiary lymphoid structures within the kidneys. An understanding of the role of B cell tolerance and homeostasis may have important implications for patient management in MN, as conventional immunosuppressive treatments and novel B cell-targeted therapies show distinct effects on proliferation, differentiation and reconstitution in different B cell subsets. Circulating B lymphocytes and related cytokines may serve as potential biomarkers for treatment selection, monitoring of therapeutic response and prediction of disease relapse. These recent advances in the understanding of B cell tolerance in MN have provided greater insight into its immunopathogenesis and potential novel strategies for disease monitoring and treatment.
Collapse
|