1
|
Ren X, Wang Y, Li X, Wang X, Liu Z, Yang J, Wang L, Zheng C. Attenuated heterogeneity of hippocampal neuron subsets in response to novelty induced by amyloid-β. Cogn Neurodyn 2025; 19:56. [PMID: 40161457 PMCID: PMC11947398 DOI: 10.1007/s11571-025-10237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Alzheimer's disease (AD) patients exhibited episodic memory impairments including location-object recognition in a spatial environment, which was also presented in animal models with amyloid-β (Aβ) accumulation. A potential cellular mechanism was the unstable representation of spatial information and lack of discrimination ability of novel stimulus in the hippocampal place cells. However, how the firing characteristics of different hippocampal subsets responding to diverse spatial information were interrupted by Aβ accumulation remains unclear. In this study, we observed impaired novel object-location recognition in Aβ-treated Long-Evans rats, with larger receptive fields of place cells in hippocampal CA1, compared with those in the saline-treated group. We identified two subsets of place cells coding object information (ObjCell) and global environment (EnvCell) during the task, with firing heterogeneity in response to introduced novel information. ObjCells displayed a dynamic representation responding to the introduction of novel information, while EnvCells exhibited a stable representation to support the recognition of the familiar environment. However, the dynamic firing patterns of these two subsets of cells were disrupted to present attenuated heterogeneity under Aβ accumulation. The impaired spatial representation novelty information could be due to the disturbed gamma modulation of neural activities. Taken together, these findings provide new evidence for novelty recognition impairments of AD rats with spatial representation dysfunctions of hippocampal subsets.
Collapse
Affiliation(s)
- Xiaoxin Ren
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yimeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xin Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xueling Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhaodi Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jiajia Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Ling Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Chenguang Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| |
Collapse
|
2
|
Lopes-Dos-Santos V, Brizee D, Dupret D. Spatio-temporal organization of network activity patterns in the hippocampus. Cell Rep 2025; 44:115808. [PMID: 40478735 PMCID: PMC7617751 DOI: 10.1016/j.celrep.2025.115808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/04/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025] Open
Abstract
Understanding how coordinated neural networks support brain functions remains a central goal in neuroscience. The hippocampus, with its layered architecture and structured inputs to diverse cell populations, is a tractable model for dissecting operating microcircuits through the analysis of electrophysiological signatures. We investigated hippocampal network patterns in behaving mice by developing a low-dimensional embedding of local field potentials recorded along the CA1-to-dentate gyrus axis. This embedding revealed layer-specific gamma profiles reflecting spatially organized rhythms and their associated principal cell-interneuron firing motifs. Moreover, firing behaviors along the CA1 radial axis distinguished between deep and superficial principal cells, as well as between interneurons from the pyramidal, radiatum, and lacunosum-moleculare layers. These findings provide a comprehensive map of spatiotemporal activity patterns underlying hippocampal network functions.
Collapse
Affiliation(s)
- Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| | - Demi Brizee
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
3
|
Ikebara JM, Jorge RS, Marinho LSR, Higa GSV, Adhikari A, Reis FMCV, Borges FS, Ulrich H, Takada SH, De Pasquale R, Kihara AH. Hippocampal Interneurons Shape Spatial Coding Alterations in Neurological Disorders. Mol Neurobiol 2025:10.1007/s12035-025-05020-2. [PMID: 40392508 DOI: 10.1007/s12035-025-05020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/29/2025] [Indexed: 05/22/2025]
Abstract
Hippocampal interneurons (INs) play a fundamental role in regulating neural oscillations, modulating excitatory circuits, and shaping spatial representation. While historically overshadowed by excitatory pyramidal cells in spatial coding research, recent advances have demonstrated that inhibitory INs not only coordinate network dynamics but also contribute directly to spatial information processing. This review aims to provide a novel integrative perspective on how distinct IN subtypes participate in spatial coding and how their dysfunction contributes to cognitive deficits in neurological disorders such as epilepsy, Alzheimer's disease (AD), traumatic brain injury (TBI), and cerebral hypoxia-ischemia. We synthesize recent findings demonstrating that different IN classes-including parvalbumin (PV)-, somatostatin (SST)-, cholecystokinin (CCK)-, and calretinin (CR)-expressing neurons-exhibit spatially selective activity, challenging traditional views of spatial representation, and influence memory consolidation through network-level interactions. By leveraging cutting-edge techniques such as in vivo calcium imaging and optogenetics, new evidence suggests that INs encode spatial information with a level of specificity previously attributed only to pyramidal cells. Furthermore, we investigate the impact of inhibitory circuit dysfunction in neurological disorders, examining how disruptions in interneuronal activity lead to impaired theta-gamma coupling, altered sharp wave ripples, and destabilized place cell representations, ultimately resulting in spatial memory deficits. This review advances the field by shifting the focus from pyramidal-centered models to a more nuanced understanding of the hippocampal network, emphasizing the active role of INs in spatial coding. By highlighting the translational potential of targeting inhibitory circuits for therapeutic interventions, we propose novel strategies for restoring hippocampal network function in neurological conditions. Readers will gain a comprehensive understanding of the emerging role of INs in spatial representation and the critical implications of their dysfunction, paving the way for future research on interneuron-targeted treatments for cognitive disorders.
Collapse
Affiliation(s)
- Juliane Midori Ikebara
- Neurogenetics Laboratory, Center of Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Alameda da Universidade, S/N, São Bernardo Do Campo, SP, 09606-045, Brazil
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Renata Silva Jorge
- Neurogenetics Laboratory, Center of Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Alameda da Universidade, S/N, São Bernardo Do Campo, SP, 09606-045, Brazil
| | - Luciana Simões Rafagnin Marinho
- Neurogenetics Laboratory, Center of Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Alameda da Universidade, S/N, São Bernardo Do Campo, SP, 09606-045, Brazil
| | - Guilherme Shigueto Vilar Higa
- Neurogenetics Laboratory, Center of Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Alameda da Universidade, S/N, São Bernardo Do Campo, SP, 09606-045, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fernando S Borges
- Neurogenetics Laboratory, Center of Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Alameda da Universidade, S/N, São Bernardo Do Campo, SP, 09606-045, Brazil
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Center of Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Alameda da Universidade, S/N, São Bernardo Do Campo, SP, 09606-045, Brazil
| | - Roberto De Pasquale
- Neurophysiology Laboratory, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Center of Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Alameda da Universidade, S/N, São Bernardo Do Campo, SP, 09606-045, Brazil.
| |
Collapse
|
4
|
Dellal S, Zurita H, Kruglikov I, Valero M, Abad-Perez P, Geron E, Meng JH, Pronneke A, Hanson JL, Mir E, Ongaro M, Wang XJ, Buzsaki G, Machold RP, Rudy B. Inhibitory and disinhibitory VIP IN-mediated circuits in neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640383. [PMID: 40060562 PMCID: PMC11888407 DOI: 10.1101/2025.02.26.640383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Cortical GABAergic interneurons (INs) expressing the neuropeptide vasoactive-intestinal peptide (VIP) predominantly function by inhibiting dendritic-targeting somato-statin (SST) expressing INs, thereby disinhibiting pyramidal cells (PCs) and facilitating cortical circuit plasticity. VIP INs are a molecularly heterogeneous group, but the physiological significance of this diversity is unclear at present. Here, we have characterized the functional diversity of VIP INs in the primary somatosensory cortex (vS1) using intersectional genetic approaches. We found that VIP INs are comprised of four primary populations that exhibit different laminar distributions, axonal and dendritic arbors, intrinsic electrophysiological properties, and efferent connectivity. Furthermore, we observe that these populations are differentially activated by long-range inputs, and display distinct responses to neuromodulation by endocannabinoids, acetylcholine and noradrenaline. Stimulation of VIP IN subpopulations in vivo results in differential effects on the cortical network, thus providing evidence for specialized modes of VIP IN-mediated regulation of PC activity during cortical information processing.
Collapse
|
5
|
Hong S. Wireless Optogenetic Microsystems Accelerate Artificial Intelligence-Neuroscience Coevolution Through Embedded Closed-Loop System. MICROMACHINES 2025; 16:557. [PMID: 40428683 PMCID: PMC12113789 DOI: 10.3390/mi16050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025]
Abstract
Brain-inspired models in artificial intelligence (AI) originated from foundational insights in neuroscience. In recent years, this relationship has been moving toward a mutually reinforcing feedback loop. Currently, AI is significantly contributing to advancing our understanding of neuroscience. In particular, when combined with wireless optogenetics, AI enables experiments without physical constraints. Furthermore, AI-driven real-time analysis facilitates closed-loop control, allowing experimental setups across a diverse range of scenarios. And a deeper understanding of these neural networks may, in turn, contribute to future advances in AI. This work demonstrates the synergy between AI and miniaturized neural technology, particularly through wireless optogenetic systems designed for closed-loop neural control. We highlight how AI is now revolutionizing neuroscience experiments from decoding complex neural signals and quantifying behavior, to enabling closed-loop interventions and high-throughput phenotyping in freely moving subjects. Notably, AI-integrated wireless implants can monitor and modulate biological processes with unprecedented precision. We then recount how neuroscience insights derived from AI-integrated neuroscience experiments can potentially inspire the next generation of machine intelligence. Insights gained from these technologies loop back to inspire more efficient and robust AI systems. We discuss future directions in this positive feedback loop between AI and neuroscience, arguing that the coevolution of the two fields, grounded in technologies like wireless optogenetics and guided by reciprocal insight, will accelerate progress in both, while raising new challenges and opportunities for interdisciplinary collaboration.
Collapse
Affiliation(s)
- Sungcheol Hong
- Department of Electronic & Electrical Convergence Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
6
|
Erfanparast A, Tamaddonfard E, Tamaddonfard S, Firooznia B, Hatami-Marandi A. Muscarinic cholinergic system of the dorsal hippocampus involvement in the modulation of formalin-induced orofacial nociception and relevant memory impairment in rats. Behav Brain Res 2025; 484:115518. [PMID: 40024485 DOI: 10.1016/j.bbr.2025.115518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
The hippocampus is well recognized for its significant contributions to learning, memory formation, and emotional regulation. In addition, it was approved by several studies that hippocampus plays a pivotal role in pain modulation; however, the exact mechanism has not yet been identified. In the current research, effects of microinjection of muscarinic M1 cholinergic agents into the CA1 region of the hippocampus in orofacial nociception evoked by formalin and corresponding memory impairment were investigated. Left and right sides of the hippocampus were implanted by guide cannulas. Orofacial nociception was elicited through subcutaneously injection of formalin (1.5 %) solution into the pad of vibrissa region. Evaluating memory was conducted with Morris water maze (MWM). Microinjections of McN-A-343 (a selective agonist of muscarinic M1 receptors) attenuated the both phases of orofacial nociceptive behavior, face rubbing. This effect of McN-A-343 was blocked by prior microinjection of pirenzepine (an antagonist of muscarinic receptors). On the other hand, McN-A-343 and pirenzepine increased and decreased traveled time as well as traveled distance in target zone of MWM, respectively. Additionally, McN-A-343 improved the memory deficits caused by orofacial nociception. Our results indicate that muscarinic acetylcholine receptors contribute significantly in the hippocampal modulation of orofacial nociception and related memory impairment.
Collapse
Affiliation(s)
- Amir Erfanparast
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran.
| | - Esmaeal Tamaddonfard
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran
| | - Sina Tamaddonfard
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran
| | - Behzad Firooznia
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran
| | - Ali Hatami-Marandi
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran
| |
Collapse
|
7
|
Wang N, Wang Y, Guo M, Wang L, Wang X, Zhu N, Yang J, Wang L, Zheng C, Ming D. Dynamic gamma modulation of hippocampal place cells predominates development of theta sequences. eLife 2025; 13:RP97334. [PMID: 40213917 PMCID: PMC11991698 DOI: 10.7554/elife.97334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025] Open
Abstract
The experience-dependent spatial cognitive process requires sequential organization of hippocampal neural activities by theta rhythm, which develops to represent highly compressed information for rapid learning. However, how the theta sequences were developed in a finer timescale within theta cycles remains unclear. In this study, we found in rats that sweep-ahead structure of theta sequences developing with exploration was predominantly dependent on a relatively large proportion of FG-cells, that is a subset of place cells dominantly phase-locked to fast gamma rhythms. These ensembles integrated compressed spatial information by cells consistently firing at precessing slow gamma phases within the theta cycle. Accordingly, the sweep-ahead structure of FG-cell sequences was positively correlated with the intensity of slow gamma phase precession, in particular during early development of theta sequences. These findings highlight the dynamic network modulation by fast and slow gamma in the development of theta sequences which may further facilitate memory encoding and retrieval.
Collapse
Affiliation(s)
- Ning Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin UniversityTianjinChina
| | - Yimeng Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin UniversityTianjinChina
| | - Mingkun Guo
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin UniversityTianjinChina
| | - Ling Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin UniversityTianjinChina
- Tianjin Key Laboratory of Brain Science and NeuroengineeringTianjinChina
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine IntegrationTianjinChina
| | - Xueling Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin UniversityTianjinChina
| | - Nan Zhu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin UniversityTianjinChina
| | - Jiajia Yang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin UniversityTianjinChina
- Tianjin Key Laboratory of Brain Science and NeuroengineeringTianjinChina
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine IntegrationTianjinChina
| | - Lei Wang
- School of Statistics and Data Science, Nankai UniversityTianjinChina
| | - Chenguang Zheng
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin UniversityTianjinChina
- Tianjin Key Laboratory of Brain Science and NeuroengineeringTianjinChina
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine IntegrationTianjinChina
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin UniversityTianjinChina
- Tianjin Key Laboratory of Brain Science and NeuroengineeringTianjinChina
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine IntegrationTianjinChina
| |
Collapse
|
8
|
Merino-Serrais P, Plaza-Alonso S, Tapia-Gonzalez S, León-Espinosa G, DeFelipe J. Parvalbumin interneurons in the hippocampal formation of individuals with Alzheimer's disease: a neuropathological study of abnormal phosphorylated tau in neurons. Front Neuroanat 2025; 19:1571514. [PMID: 40275866 PMCID: PMC12018435 DOI: 10.3389/fnana.2025.1571514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly. Recent efforts have centered on understanding early events that trigger AD, aiming to facilitate early diagnosis and intervention for improved patient outcomes. The traditional histopathological features observed in AD encompass the extracellular accumulation of amyloid-beta protein and the intracellular abnormal phosphorylation of Tau protein (pTau). However, elucidating how these pathological hallmarks ultimately contribute to cognitive deficits remains a complex challenge. While AD is commonly conceptualized as a disorder characterized by synaptic failure, substantial knowledge gaps persist regarding the mechanisms underlying the onset and progression of the disease, underscoring the need for novel and more effective therapeutic approaches. In this context, the impairment of GABAergic paravalbumin (PV+) neurons has been proposed as a crucial factor contributing to neuronal network dysfunction and cognitive decline in AD. The presence of pTau in pyramidal neurons is directly linked to their impairment in AD; however, the effect of pTau in PV+ neurons remains unclear. In this present study, we analyzed the existence of PV+ neurons containing pTau using immunocytochemistry in the hippocampal formation and entorhinal cortex of human samples from diagnosed AD cases and individuals without neurological or psychiatric disorders. Two pTau isoforms, pTauAT8 and pTaupS396, corresponding to early and late stages of AD respectively, were examined. Our findings indicate that most PV+ neurons across the hippocampal formation and entorhinal cortex did not contain pTau in either group cases. Interestingly, while AD cases diagnosed with dementia exhibited a higher number of pTau+ neurons, the majority of PV+/pTau+ neurons were found in individuals with no neurological alterations. This suggests that the presence of pTau in PV+ neurons does not directly correlate with the overall abundance of pTau+ neurons. Given that PV+ neuron impairment is a key pathogenic mechanism in AD and is associated with cognitive decline, understanding the changes in PV+ neurons during AD progression could provide critical insights into the alterations of neuronal circuits underlying the disease.
Collapse
Affiliation(s)
- Paula Merino-Serrais
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Silvia Tapia-Gonzalez
- Laboratorio de Neurofisiología Celular, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Gonzalo León-Espinosa
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| |
Collapse
|
9
|
Du C, Sun Y, Wang J, Zhang Q, Zeng Y. Synapses mediate the effects of different types of stress on working memory: a brain-inspired spiking neural network study. Front Cell Neurosci 2025; 19:1534839. [PMID: 40177582 PMCID: PMC11961926 DOI: 10.3389/fncel.2025.1534839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Acute stress results from sudden short-term events, and individuals need to quickly adjust their physiological and psychological to re-establish balance. Chronic stress, on the other hand, results in long-term physiological and psychological burdens due to the continued existence of stressors, making it difficult for individuals to recover and prone to pathological symptoms. Both types of stress can affect working memory and change cognitive function. In this study, we explored the impact of acute and chronic stress on synaptic modulation using a biologically inspired, data-driven rodent prefrontal neural network model. The model consists of a specific number of excitatory and inhibitory neurons that are connected through AMPA, NMDA, and GABA synapses. The study used a short-term recall to simulate working memory tasks and assess the ability of neuronal populations to maintain information over time. The results showed that acute stress can enhance working memory information retention by enhancing AMPA and NMDA synaptic currents. In contrast, chronic stress reduces dendritic spine density and weakens the regulatory effect of GABA currents on working memory tasks. In addition, this structural damage can be complemented by strong connections between excitatory neurons with the same selectivity. These findings provide a reference scheme for understanding the neural basis of working memory under different stress conditions.
Collapse
Affiliation(s)
- Chengcheng Du
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Center for Long-term Artificial Intelligence, Beijing, China
| | - Yinqian Sun
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Center for Long-term Artificial Intelligence, Beijing, China
| | - Jihang Wang
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Center for Long-term Artificial Intelligence, Beijing, China
| | - Qian Zhang
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Center for Long-term Artificial Intelligence, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zeng
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Center for Long-term Artificial Intelligence, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Wang C, Liu J, Su L, Wang X, Bian Y, Wang Z, Ye L, Lu X, Zhou L, Chen W, Yang W, Liu J, Wang L, Shen Y. GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411972. [PMID: 39823534 PMCID: PMC11904963 DOI: 10.1002/advs.202411972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons. MGE cell transplantation restores Ras-PKB signaling in pyramidal neurons, enhances AMPA receptor trafficking, rescues synaptic plasticity, and corrects abnormal hippocampal neural oscillations. These findings highlight the potential of GABAergic precursor cell transplantation as a promising therapeutic strategy for FXS.
Collapse
Affiliation(s)
- Chen Wang
- Department of NeurologyInstitute of NeuroscienceKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhou510260China
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Jia‐Yu Liu
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Zhejiang Development & Planning InstituteHangzhou310030China
| | - Li‐Da Su
- Neuroscience Care UnitKey Laboratory of Multiple Organ Failure of Ministry of Educationthe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou310009China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang ProvinceHangzhou310009China
| | - Xin‐Tai Wang
- Institute of Life SciencesCollege of Life and Environmental SciencesHangzhou Normal UniversityHangzhou311121China
| | - Yu‐Peng Bian
- Center for Brain Healththe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
| | | | - Lu‐Yu Ye
- Department of BiophysicsZhejiang University School of MedicineHangzhou310058China
| | - Xin‐Jiang Lu
- Department of PhysiologyZhejiang University School of MedicineHangzhou310058China
| | - Lin Zhou
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Wei Chen
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Wei Yang
- Department of BiophysicsZhejiang University School of MedicineHangzhou310058China
| | - Jun Liu
- Department of NeurologyInstitute of NeuroscienceKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhou510260China
| | - Luxi Wang
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Center for Brain Healththe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
| | - Ying Shen
- Department of NeurologyInstitute of NeuroscienceKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhou510260China
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Center for Brain Healththe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Key Laboratory for Precision DiagnosisTreatmentand Clinical Translation of Rare Diseases of Zhejiang ProvinceZhejiang University School of MedicineHangzhou310058China
| |
Collapse
|
11
|
English D, Gilbert E, Klaver L, Arndt K, Kim J, Jia X, Mckenzie S. Reciprocal interactions between CA1 pyramidal and axo-axonic cells control sharp wave-ripple events. RESEARCH SQUARE 2025:rs.3.rs-5844238. [PMID: 39989976 PMCID: PMC11844635 DOI: 10.21203/rs.3.rs-5844238/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Diverse sources of inhibition serve to modulate circuits and control cell assembly spiking across various timescales. For example, in hippocampus area CA1 the competition between inhibition and excitation organizes spike timing of pyramidal cells (PYR) in network events, including sharp wave-ripples (SPW-R). Specific cellular-synaptic sources of inhibition in SPW-R remain unclear, as there are > 20 types of GABAergic interneurons in CA1. Axo-axonic cells (AAC) are defined by their synaptic targeting of the axon initial segment of pyramidal cells, potently controlling spike output. The impact of AAC activity on SPW-R is controversial, due mainly to ambiguity of AAC identification. Here we monitored and manipulated opto-tagged AACs in behaving mice using silicon probe recordings. We found a large variability of AAC neurons, varying from enhanced to suppressed spiking during SPW-Rs, in contrast to the near-uniform excitation of other parvalbumin-expressing interneurons. AACs received convergent monosynaptic inputs from local pyramidal cell assemblies, which strongly influenced their participation in SPW-Rs. Optogenetic silencing of AACs increased power and duration of SPW-Rs, recruiting a greater number of PYR, suggesting AACs control SPW-R dynamics. We hypothesize that lateral inhibition by reciprocal PYR-AAC interactions thus supports the organization of cell assemblies in SPW-R.
Collapse
Affiliation(s)
| | - Earl Gilbert
- Virginia Polytechnic Institute and State University
| | | | | | | | - Xiaoting Jia
- Virginia Polytechnic Institute and State University
| | | |
Collapse
|
12
|
Park E, Mosso MB, Barth AL. Neocortical somatostatin neuron diversity in cognition and learning. Trends Neurosci 2025; 48:140-155. [PMID: 39824710 DOI: 10.1016/j.tins.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
Somatostatin-expressing (SST) neurons are a major class of electrophysiologically and morphologically distinct inhibitory cells in the mammalian neocortex. Transcriptomic data suggest that this class can be divided into multiple subtypes that are correlated with morpho-electric properties. At the same time, availability of transgenic tools to identify and record from SST neurons in awake, behaving mice has stimulated insights about their response properties and computational function. Neocortical SST neurons are regulated by sleep and arousal, attention, and novelty detection, and show marked response plasticity during learning. Recent studies suggest that subtype-specific analysis of SST neurons may be critical for understanding their complex roles in cortical function. In this review, we discuss and synthesize recent advances in understanding the diversity, circuit integration, and functional properties of this important group of GABAergic neurons.
Collapse
Affiliation(s)
- Eunsol Park
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Matthew B Mosso
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Zerlaut Y, Tzilivaki A. Interneuronal modulations as a functional switch for cortical computations: mechanisms and implication for disease. Front Cell Neurosci 2025; 18:1479579. [PMID: 39916937 PMCID: PMC11799556 DOI: 10.3389/fncel.2024.1479579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 02/09/2025] Open
Abstract
Understanding cortical inhibition and its diverse roles remains a key challenge in neurophysiological research. Traditionally, inhibition has been recognized for controlling the stability and rhythmicity of network dynamics, or refining the spatiotemporal properties of cortical representations. In this perspective, we propose that specific types of interneurons may play a complementary role, by modulating the computational properties of neural networks. We review experimental and theoretical evidence, mainly from rodent sensory cortices, that supports this view. Additionally, we explore how dysfunctions in these interneurons may disrupt the network's ability to switch between computational modes, impacting the flexibility of cortical processing and potentially contributing to various neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Yann Zerlaut
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
- Einstein Center for Neurosciences, Chariteplatz, Berlin, Germany
- NeuroCure Cluster of Excellence, Chariteplatz, Berlin, Germany
| |
Collapse
|
14
|
Gilbert ET, Klaver LMF, Arndt KC, Kim J, Jia X, McKenzie S, English DF. Reciprocal interactions between CA1 pyramidal and axo-axonic cells control sharp wave-ripple events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.02.601726. [PMID: 39868302 PMCID: PMC11761640 DOI: 10.1101/2024.07.02.601726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Diverse sources of inhibition serve to modulate circuits and control cell assembly spiking across various timescales. For example, in hippocampus area CA1 the competition between inhibition and excitation organizes spike timing of pyramidal cells (PYR) in network events, including sharp wave-ripples (SPW-R). Specific cellular-synaptic sources of inhibition in SPW-R remain unclear, as there are >20 types of GABAergic interneurons in CA1. Axo-axonic cells (AAC) are defined by their synaptic targeting of the axon initial segment of pyramidal cells, potently controlling spike output. The impact of AAC activity on SPW-R is controversial, due mainly to ambiguity of AAC identification. Here we monitored and manipulated opto-tagged AACs in behaving mice using silicon probe recordings. We found a large variability of AAC neurons, varying from enhanced to suppressed spiking during SPW-Rs, in contrast to the near-uniform excitation of other parvalbumin-expressing interneurons. AACs received convergent monosynaptic inputs from local pyramidal cell assemblies, which strongly influenced their participation in SPW-Rs. Optogenetic silencing of AACs increased power and duration of SPW-Rs, recruiting a greater number of PYR, suggesting AACs control SPW-R dynamics. We hypothesize that lateral inhibition by reciprocal PYR-AAC interactions thus supports the organization of cell assemblies in SPW-R.
Collapse
|
15
|
Gunn BG, Pruess BS, Gall CM, Lynch G. Input/Output Relationships for the Primary Hippocampal Circuit. J Neurosci 2025; 45:e0130242024. [PMID: 39500578 PMCID: PMC11713854 DOI: 10.1523/jneurosci.0130-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025] Open
Abstract
The hippocampus is the most studied brain region, but little is known about signal throughput-the simplest, yet most essential of circuit operations-across its multiple stages from perforant path input to CA1 output. Using hippocampal slices derived from male mice, we have found that single-pulse lateral perforant path (LPP) stimulation produces a two-part CA1 response generated by LPP projections to CA3 ("direct path") and the dentate gyrus ("indirect path"). The latter, indirect path was far more potent in driving CA1 but did so only after a lengthy delay. Rather than operating as expected from the much-discussed trisynaptic circuit argument, the indirect path used the massive CA3 recurrent collateral system to trigger a high-frequency sequence of fEPSPs and spikes. The latter events promoted reliable signal transfer to CA1, but the mobilization time for the stereotyped, CA3 response resulted in surprisingly slow throughput. The circuit transmitted theta (5 Hz) but not gamma (50 Hz) frequency input, thus acting as a low-pass filter. It reliably transmitted short bursts of gamma input separated by the period of a theta wave-CA1 spiking output under these conditions closely resembled the input signal. In all, the primary hippocampal circuit does not behave as a linear, three-part system but instead uses novel filtering and amplification steps to shape throughput and restrict effective input to select patterns. We suggest that the operations described here constitute a default mode for processing cortical inputs with other types of functions being enabled by projections from outside the extended hippocampus.
Collapse
Affiliation(s)
- Benjamin G Gunn
- Departments of Anatomy & Neurobiology, University of California-Irvine, Irvine, California 92697
| | - Benedict S Pruess
- Departments of Anatomy & Neurobiology, University of California-Irvine, Irvine, California 92697
| | - Christine M Gall
- Departments of Anatomy & Neurobiology, University of California-Irvine, Irvine, California 92697
- Neurobiology & Behavior, University of California-Irvine, Irvine, California 92697
| | - Gary Lynch
- Departments of Anatomy & Neurobiology, University of California-Irvine, Irvine, California 92697
- Psychiatry & Human Behavior, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
16
|
Li J, Mi X, Yang Z, Feng Z, Han Y, Wang T, Lv H, Liu Y, Wu K, Liu J. Minocycline ameliorates cognitive impairment in rats with trigeminal neuralgia by regulating microglial polarization. Int Immunopharmacol 2025; 145:113786. [PMID: 39672028 DOI: 10.1016/j.intimp.2024.113786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Trigeminal neuralgia (TN)-related cognitive impairment is a common cause of decreased quality of life in patients and is closely associated with neuroinflammation. Although minocycline has demonstrated anti-inflammatory, analgesic, and neuroprotective functions, its role in treating TN-related cognitive impairment remains unreported. In this study, we used an in vivo TN model and an in vitro model of primary microglial neuroinflammation to investigate the potential effects of minocycline on cognitive function and microglial polarization in TN rats. Our results suggested that minocycline treatment attenuated cognitive deficits by alleviating hippocampal neuronal damage and enhancing synaptic plasticity in TN rats. Furthermore, both in vitro and in vivo assays demonstrated that minocycline polarized activated microglia to the M2 phenotype, leading to the reduction of pro-inflammatory factors, including tumor necrosis factor-α and interleukin-1, and an increase in the anti-inflammatory factors, such as interleukin-4 and interleukin-10, thereby attenuating neuroinflammation. Moreover, it was found that the TLR4/MyD88/NF-κB pathway was involved in the shift of microglia from a pro-inflammatory (M1) to an anti-inflammatory (M2). In summary, minocycline likely mediated the process of microglia polarization partly via the TLR4/MyD88/NF-κB pathway, promoting neuronal survival and restoring synaptic plasticity, thereby improving TN-related cognitive impairment.
Collapse
Affiliation(s)
- Junjie Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaojuan Mi
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Zhilun Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ziqi Feng
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yong Han
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Haowen Lv
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yanbo Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Kang Wu
- School of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
17
|
E Said S, Miyamoto D. Multi-region processing during sleep for memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:107-128. [PMID: 40074337 DOI: 10.2183/pjab.101.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Over the past decades, the understanding of sleep has evolved to be a fundamental physiological mechanism integral to the processing of different types of memory rather than just being a passive brain state. The cyclic sleep substates, namely, rapid eye movement (REM) sleep and non-REM (NREM) sleep, exhibit distinct yet complementary oscillatory patterns that form inter-regional networks between different brain regions crucial to learning, memory consolidation, and memory retrieval. Technical advancements in imaging and manipulation approaches have provided deeper understanding of memory formation processes on multi-scales including brain-wide, synaptic, and molecular levels. The present review provides a short background and outlines the current state of research and future perspectives in understanding the role of sleep and its substates in memory processing from both humans and rodents, with a focus on cross-regional brain communication, oscillation coupling, offline reactivations, and engram studies. Moreover, we briefly discuss how sleep contributes to other higher-order cognitive functions.
Collapse
Affiliation(s)
- Salma E Said
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Daisuke Miyamoto
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
18
|
Thompson JR, Nelson ED, Tippani M, Ramnauth AD, Divecha HR, Miller RA, Eagles NJ, Pattie EA, Kwon SH, Bach SV, Kaipa UM, Yao J, Hou C, Kleinman JE, Collado-Torres L, Han S, Maynard KR, Hyde TM, Martinowich K, Page SC, Hicks SC. An integrated single-nucleus and spatial transcriptomics atlas reveals the molecular landscape of the human hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590643. [PMID: 38712198 PMCID: PMC11071618 DOI: 10.1101/2024.04.26.590643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The hippocampus contains many unique cell types, which serve the structure's specialized functions, including learning, memory and cognition. These cells have distinct spatial organization, morphology, physiology, and connectivity, highlighting the importance of transcriptome-wide profiling strategies that retain cytoarchitectural organization. Here, we generated spatially-resolved transcriptomics (SRT) and single-nucleus RNA-sequencing (snRNA-seq) data from adjacent tissue sections of the anterior human hippocampus in ten adult neurotypical donors to define molecular profiles for hippocampal cell types and spatial domains. Using non-negative matrix factorization (NMF) and label transfer, we integrated these data by defining gene expression patterns within the snRNA-seq data and inferring their expression in the SRT data. We identified NMF patterns that captured transcriptional variation across neuronal cell types and indicated that the response of excitatory and inhibitory postsynaptic specializations were prioritized in different SRT spatial domains. We used the NMF and label transfer approach to leverage existing rodent datasets, identifying patterns of activity-dependent transcription and subpopulations of dentate gyrus granule cells in our SRT dataset that may be predisposed to participate in learning and memory ensembles. Finally, we characterized the spatial organization of NMF patterns corresponding to non-cornu ammonis pyramidal neurons and identified snRNA-seq clusters mapping to distinct regions of the retrohippocampus, to three subiculum layers, and to a population of presubiculum neurons. To make this comprehensive molecular atlas accessible to the scientific community, both raw and processed data are freely available, including through interactive web applications.
Collapse
Affiliation(s)
- Jacqueline R. Thompson
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Erik D. Nelson
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Anthony D. Ramnauth
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Heena R. Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Ryan A. Miller
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Nicholas J. Eagles
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Elizabeth A. Pattie
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Svitlana V. Bach
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Uma M. Kaipa
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Jianing Yao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Hou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Leonardo Collado-Torres
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Shizhong Han
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, MD, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, MD, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA
| | - Stephanie C. Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Wang T, Liu S, Shen W, Liu J, Liu Y, Li Y, Zhang F, Li T, Zhang X, Tian W, Zhang J, Ma J, Guo Y, Mi X, Lin Y, Hu Q, Zhang X, Liu J, Wang H. α-linolenic acid mitigates microglia-mediated neuroinflammation of schizophrenia in mice by suppressing the NF-κB/NLRP3 pathway via binding GPR120-β-arrestin 2. Int Immunopharmacol 2024; 142:113047. [PMID: 39236458 DOI: 10.1016/j.intimp.2024.113047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Schizophrenia (SCZ) is a heterogeneous psychiatric disorder that is poorly treated by current therapies. Emerging evidence indicates that SCZ is closely correlated with a persistent neuroinflammation. α-linolenic acid (ALA) is highly concentrated in the brain and represents a modulator of the immune system by decreasing the inflammatory response in chronic metabolic diseases. This study was first designed to investigate the potential role of dietary ALA on cognitive function and neuroinflammation in mice with SCZ. METHODS In vivo, after 2 weeks of modeling, mice were treated with dietary ALA treatment for 6 weeks. In vitro, inflammation model was created using lipopolysaccharide as an inducer in BV2 microglial cells. RESULTS Our results demonstrated that ALA alleviated cognitive impairment and enhanced synaptic plasticity in mice with SCZ. Moreover, ALA mitigated systematic and cerebral inflammation through elevating IL-10 and inhibiting IL-1β, IL-6, IL-18 and TNF-α. Furthermore, ALA notably inhibited microglia and pro-inflammatory monocytes, as well as microglial activation andpolarization. Mechanistically, ALA up-regulated the expressions of G protein coupled receptor (GPR) 120 and associated β-inhibitor protein 2 (β-arrestin2), accompanied by observable weakened levels of transforming growth factor-β activated kinase 1 (TAK1), NF-κB p65, cysteine proteinase-1 (caspase-1), pro-caspase-1, associated speck-like protein (ASC) and NLRP3. In vitro, ALA directly restrained the inflammation of microglia by decreasing the levels of pro-inflammatory factors and regulating microglial polarization via GPR120-NF-κB/NLRP3inflammasome signaling pathway, whereas AH7614 definitely eliminated this anti-inflammatory effect of ALA. CONCLUSION Dietary ALA ameliorates microglia-mediated neuroinflammation by suppressing the NF-κB/NLRP3 pathway via binding GPR120-β-arrestin2.
Collapse
Affiliation(s)
- Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Shudan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Wenke Shen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Jian Liu
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yuanyuan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Yiwei Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Feng Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Ting Li
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Xiaoxu Zhang
- General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Wenyan Tian
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiani Zhang
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Junbai Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Yamei Guo
- General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Xiaojuan Mi
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Yuan Lin
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Qikuan Hu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China; General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| |
Collapse
|
20
|
John YJ, Wang J, Bullock D, Barbas H. Amygdalar Excitation of Hippocampal Interneurons Can Lead to Emotion-driven Overgeneralization of Context. J Cogn Neurosci 2024; 36:2667-2686. [PMID: 38261402 DOI: 10.1162/jocn_a_02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Context is central to cognition: Detailed contextual representations enable flexible adjustment of behavior via comparison of the current situation with prior experience. Emotional experiences can greatly enhance contextual memory. However, sufficiently intense emotional signals can have the opposite effect, leading to weaker or less specific memories. How can emotional signals have such intensity-dependent effects? A plausible mechanistic account has emerged from recent anatomical data on the impact of the amygdala on the hippocampus in primates. In hippocampal CA3, the amygdala formed potent synapses on pyramidal neurons, calretinin (CR) interneurons, as well as parvalbumin (PV) interneurons. CR interneurons are known to disinhibit pyramidal neuron dendrites, whereas PV neurons provide strong perisomatic inhibition. This potentially counterintuitive connectivity, enabling amygdala to both enhance and inhibit CA3 activity, may provide a mechanism that can boost or suppress memory in an intensity-dependent way. To investigate this possibility, we simulated this connectivity pattern in a spiking network model. Our simulations revealed that moderate amygdala input can enrich CA3 representations of context through disinhibition via CR interneurons, but strong amygdalar input can impoverish CA3 activity through simultaneous excitation and feedforward inhibition via PV interneurons. Our model revealed an elegant circuit mechanism that mediates an affective "inverted U" phenomenon: There is an optimal level of amygdalar input that enriches hippocampal context representations, but on either side of this zone, representations are impoverished. This circuit mechanism helps explain why excessive emotional arousal can disrupt contextual memory and lead to overgeneralization, as seen in severe anxiety and posttraumatic stress disorder.
Collapse
|
21
|
Maroteaux MJ, Noccioli CT, Daniel JM, Schrader LA. Rapid and local neuroestrogen synthesis supports long-term potentiation of hippocampal Schaffer collaterals-cornu ammonis 1 synapse in ovariectomized mice. J Neuroendocrinol 2024; 36:e13450. [PMID: 39351868 DOI: 10.1111/jne.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024]
Abstract
In aging women, cognitive decline and increased risk of dementia have been associated with the cessation of ovarian hormones production at menopause. In the brain, presence of the key enzyme aromatase required for the synthesis of 17-β-estradiol (E2) allows for local production of E2 in absence of functional ovaries. Understanding how aromatase activity is regulated could help alleviate the cognitive symptoms. In female rodents, genetic or pharmacological reduction of aromatase activity over extended periods of time impair memory formation, decreases spine density, and hinders long-term potentiation (LTP) in the hippocampus. Conversely, increased excitatory neurotransmission resulting in rapid N-methyl-d-aspartic acid (NMDA) receptor activation rapidly promotes neuroestrogen synthesis. This rapid modulation of aromatase activity led us to address the hypothesis that acute neuroestrogens synthesis is necessary for LTP at the Schaffer collateral-cornu ammonis 1 (CA1) synapse in absence of circulating ovarian estrogens. To test this hypothesis, we did electrophysiological recordings of field excitatory postsynaptic potential (fEPSPs) in hippocampal slices obtained from ovariectomized mice. To assess the impact of neuroestrogens synthesis on LTP, we applied the specific aromatase inhibitor, letrozole, before the induction of LTP with a theta burst stimulation protocol. We found that blocking aromatase activity prevented LTP. Interestingly, exogenous E2 application, while blocking aromatase activity, was not sufficient to recover LTP in our model. Our results indicate the critical importance of rapid, activity-dependent local neuroestrogens synthesis, independent of circulating hormones for hippocampal synaptic plasticity in female rodents.
Collapse
Affiliation(s)
- Matthieu J Maroteaux
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Claire T Noccioli
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jill M Daniel
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Laura A Schrader
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
22
|
Absalom NL, Lin SXN, Liao VWY, Chua HC, Møller RS, Chebib M, Ahring PK. GABA A receptors in epilepsy: Elucidating phenotypic divergence through functional analysis of genetic variants. J Neurochem 2024; 168:3831-3852. [PMID: 37621067 PMCID: PMC11591409 DOI: 10.1111/jnc.15932] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Normal brain function requires a tightly regulated balance between excitatory and inhibitory neurotransmissions. γ-Aminobutyric acid type A (GABAA) receptors represent the major class of inhibitory ion channels in the mammalian brain. Dysregulation of these receptors and/or their associated pathways is strongly implicated in the pathophysiology of epilepsy. To date, hundreds of different GABAA receptor subunit variants have been associated with epilepsy, making them a prominent cause of genetically linked epilepsy. While identifying these genetic variants is crucial for accurate diagnosis and effective genetic counselling, it does not necessarily lead to improved personalised treatment options. This is because the identification of a variant does not reveal how the function of GABAA receptors is affected. Genetic variants in GABAA receptor subunits can cause complex changes to receptor properties resulting in various degrees of gain-of-function, loss-of-function or a combination of both. Understanding how variants affect the function of GABAA receptors therefore represents an important first step in the ongoing development of precision therapies. Furthermore, it is important to ensure that functional data are produced using methodologies that allow genetic variants to be classified using clinical guidelines such as those developed by the American College of Medical Genetics and Genomics. This article will review the current knowledge in the field and provide recommendations for future functional analysis of genetic GABAA receptor variants.
Collapse
Affiliation(s)
- Nathan L. Absalom
- School of ScienceUniversity of Western SydneySydneyNew South WalesAustralia
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Susan X. N. Lin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Vivian W. Y. Liao
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Han C. Chua
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized MedicineThe Danish Epilepsy Centre, FiladelfiaDianalundDenmark
- Department of Regional Health ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Mary Chebib
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Philip K. Ahring
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
23
|
Cheng Y, Chen X, Yan J, Zhang L, Jiang H. Single-Nucleus Transcriptomic Taxonomy of Multiple Sevoflurane-Induced Cell Type Specificity in the Hippocampus of Juvenile Non-human Primates. Neurosci Bull 2024; 40:1943-1949. [PMID: 39154311 PMCID: PMC11625024 DOI: 10.1007/s12264-024-01276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/12/2024] [Indexed: 08/19/2024] Open
Affiliation(s)
- Yanyong Cheng
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiao Chen
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
24
|
Zhang CL, Sontag L, Gómez-Ocádiz R, Schmidt-Hieber C. Learning-dependent gating of hippocampal inputs by frontal interneurons. Proc Natl Acad Sci U S A 2024; 121:e2403325121. [PMID: 39467130 PMCID: PMC11551329 DOI: 10.1073/pnas.2403325121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/03/2024] [Indexed: 10/30/2024] Open
Abstract
The hippocampus is a brain region that is essential for the initial encoding of episodic memories. However, the consolidation of these memories is thought to occur in the neocortex, under guidance of the hippocampus, over the course of days and weeks. Communication between the hippocampus and the neocortex during hippocampal sharp wave-ripple oscillations is believed to be critical for this memory consolidation process. Yet, the synaptic and circuit basis of this communication between brain areas is largely unclear. To address this problem, we perform in vivo whole-cell patch-clamp recordings in the frontal neocortex and local field potential recordings in CA1 of head-fixed mice exposed to a virtual-reality environment. In mice trained in a goal-directed spatial task, we observe a depolarization in frontal principal neurons during hippocampal ripple oscillations. Both this ripple-associated depolarization and goal-directed task performance can be disrupted by chemogenetic inactivation of somatostatin-positive (SOM+) interneurons. In untrained mice, a ripple-associated depolarization is not observed, but it emerges when frontal parvalbumin-positive (PV+) interneurons are inactivated. These results support a model where SOM+ interneurons inhibit PV+ interneurons during hippocampal activity, thereby acting as a disinhibitory gate for hippocampal inputs to neocortical principal neurons during learning.
Collapse
Affiliation(s)
- Chun-Lei Zhang
- Institut Pasteur, Université Paris Cité, Neural Circuits for Space and Memory, Department of Neuroscience, ParisF-75015, France
| | - Lucile Sontag
- Institut Pasteur, Université Paris Cité, Neural Circuits for Space and Memory, Department of Neuroscience, ParisF-75015, France
| | - Ruy Gómez-Ocádiz
- Institut Pasteur, Université Paris Cité, Neural Circuits for Space and Memory, Department of Neuroscience, ParisF-75015, France
| | - Christoph Schmidt-Hieber
- Institut Pasteur, Université Paris Cité, Neural Circuits for Space and Memory, Department of Neuroscience, ParisF-75015, France
- Institute for Physiology I, Jena University Hospital, Jena07743, Germany
| |
Collapse
|
25
|
Tang Z, Sun S, Lin Z, Wen Y, Li S, Shen J, Sun J. Neonatal anesthesia with remimazolam Reduces the expression of synaptic proteins and increases depressive behavior in adult mice. Neurosci Lett 2024; 842:137971. [PMID: 39251083 DOI: 10.1016/j.neulet.2024.137971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
The demand for pediatric anesthesia has risen in decades, raising concerns about the neurotoxic potential of anesthetics like remimazolam, which may impact neurodevelopment and later cognitive function. This study utilized a neonatal mouse model to assess remimazolam's neurodevelopmental effects. Results indicate that remimazolam-exposed mice displayed cognitive impairment and depressive behaviors in adulthood. Acute reductions in synaptic protein expression post-anesthesia were observed, along with long-term decreases in hippocampal choline acetyltransferase levels, reduced dendritic spine density in the CA1 region, and microglial proliferation. Collectively, these findings suggest that remimazolam can induce neurotoxicity and neuroinflammation, leading to synaptic dysfunction and associated cognitive and behavioral deficits.
Collapse
Affiliation(s)
- Zili Tang
- The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Siyi Sun
- PROYA Cosmetics Co., Ltd, PROYA Building, No. 588 Xixi Road, Xihu District, Hangzhou 310023, China
| | - Zhonglan Lin
- The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuxin Wen
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261, Huansha Road, Shangcheng district, Hangzhou 310006, China
| | - Shuxin Li
- The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China; Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261, Huansha Road, Shangcheng district, Hangzhou 310006, China
| | - Jiahong Shen
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261, Huansha Road, Shangcheng district, Hangzhou 310006, China
| | - Jianliang Sun
- The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China; Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261, Huansha Road, Shangcheng district, Hangzhou 310006, China.
| |
Collapse
|
26
|
Li J, Liu Y, Yin C, Zeng Y, Mei Y. Structural and functional remodeling of neural networks in β-amyloid driven hippocampal hyperactivity. Ageing Res Rev 2024; 101:102468. [PMID: 39218080 DOI: 10.1016/j.arr.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Early detection of Alzheimer's disease (AD) is essential for improving the patients outcomes and advancing our understanding of disease, allowing for timely intervention and treatment. However, accurate biomarkers are still lacking. Recent evidence indicates that hippocampal hyperexcitability precedes the diagnosis of AD decades ago, can predict cognitive decline. Thus, could hippocampal hyperactivity be a robust biomarker for early-AD, and what drives hippocampal hyperactivity in early-AD? these critical questions remain to be answered. Increasing clinical and experimental studies suggest that early hippocampal activation is closely associated with longitudinal β-amyloid (Aβ) accumulation, Aβ aggregates, in turn, enhances hippocampal activity. Therefore, in this narrative review, we discuss the role of Aβ-induced altered intrinsic neuronal properties as well as structural and functional remodeling of glutamatergic, GABAergic, cholinergic, noradrenergic, serotonergic circuits in hippocampal hyperactivity. In addition, we analyze the available therapies and trials that can potentially be used clinically to attenuate hippocampal hyperexcitability in AD. Overall, the present review sheds lights on the mechanism behind Aβ-induced hippocampal hyperactivity, and highlights that hippocampal hyperactivity could be a robust biomarker and therapeutic target in prodromal AD.
Collapse
Affiliation(s)
- Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yanjun Liu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuhui Yin
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
27
|
Banaraki AK, Toghi A, Mohammadzadeh A. RDoC Framework Through the Lens of Predictive Processing: Focusing on Cognitive Systems Domain. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2024; 8:178-201. [PMID: 39478691 PMCID: PMC11523845 DOI: 10.5334/cpsy.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024]
Abstract
In response to shortcomings of the current classification system in translating discoveries from basic science to clinical applications, NIMH offers a new framework for studying mental health disorders called Research Domain Criteria (RDoC). This framework holds a multidimensional outlook on psychopathologies focusing on functional domains of behavior and their implementing neural circuits. In parallel, the Predictive Processing (PP) framework stands as a leading theory of human brain function, offering a unified explanation for various types of information processing in the brain. While both frameworks share an interest in studying psychopathologies based on pathophysiology, their integration still needs to be explored. Here, we argued in favor of the explanatory power of PP to be a groundwork for the RDoC matrix in validating its constructs and creating testable hypotheses about mechanistic interactions between molecular biomarkers and clinical traits. Together, predictive processing may serve as a foundation for achieving the goals of the RDoC framework.
Collapse
Affiliation(s)
| | - Armin Toghi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Azar Mohammadzadeh
- Research Center for Cognitive and Behavioral Studies, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
28
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
29
|
Bocchio M, Vorobyev A, Sadeh S, Brustlein S, Dard R, Reichinnek S, Emiliani V, Baude A, Clopath C, Cossart R. Functional networks of inhibitory neurons orchestrate synchrony in the hippocampus. PLoS Biol 2024; 22:e3002837. [PMID: 39401246 PMCID: PMC11501041 DOI: 10.1371/journal.pbio.3002837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/24/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024] Open
Abstract
Inhibitory interneurons are pivotal components of cortical circuits. Beyond providing inhibition, they have been proposed to coordinate the firing of excitatory neurons within cell assemblies. While the roles of specific interneuron subtypes have been extensively studied, their influence on pyramidal cell synchrony in vivo remains elusive. Employing an all-optical approach in mice, we simultaneously recorded hippocampal interneurons and pyramidal cells and probed the network influence of individual interneurons using optogenetics. We demonstrate that CA1 interneurons form a functionally interconnected network that promotes synchrony through disinhibition during awake immobility, while preserving endogenous cell assemblies. Our network model underscores the importance of both cell assemblies and dense, unspecific interneuron connectivity in explaining our experimental findings, suggesting that interneurons may operate not only via division of labor but also through concerted activity.
Collapse
Affiliation(s)
- Marco Bocchio
- Aix Marseille, University, Inserm, INMED, Turing Center for Living Systems, Marseille, France
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Artem Vorobyev
- Aix Marseille, University, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Sadra Sadeh
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Sophie Brustlein
- Aix Marseille, University, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Robin Dard
- Aix Marseille, University, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Susanne Reichinnek
- Aix Marseille, University, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Photonics Department, Vision Institute, Sorbonne University, INSERM, CNRS, Paris, France
| | - Agnes Baude
- Aix Marseille, University, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Rosa Cossart
- Aix Marseille, University, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
30
|
Nassar M, Richevaux L, Lim D, Tayupo D, Martin E, Fricker D. Presubicular VIP expressing interneurons receive facilitating excitation from anterior thalamus. Neuroscience 2024:S0306-4522(24)00484-6. [PMID: 39322037 DOI: 10.1016/j.neuroscience.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
The presubiculum is part of the parahippocampal cortex and plays a fundamental role for orientation in space. Many principal neurons of the presubiculum signal head direction, and show persistent firing when the head of an animal is oriented in a specific preferred direction. GABAergic neurons of the presubiculum control the timing, sensitivity and selectivity of head directional signals from the anterior thalamic nuclei. However, the role of vasoactive intestinal peptide (VIP) expressing interneurons in the presubicular microcircuit has not yet been addressed. Here, we examined the intrinsic properties of VIP interneurons as well as their input connectivity following photostimulation of anterior thalamic axons. We show that presubicular VIP interneurons are more densely distributed in superficial than in deep layers. They are highly excitable. Three groups emerged from the unsupervised cluster analysis of their electrophysiological properties. We demonstrate a frequency dependent recruitment of VIP cells by thalamic afferences and facilitating synaptic input dynamics. Our data provide initial insight into the contribution of VIP interneurons for the integration of thalamic head direction information in the presubiculum.
Collapse
Affiliation(s)
- Mérie Nassar
- Université Paris Cité, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006 Paris, France.
| | - Louis Richevaux
- Université Paris Cité, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Dongkyun Lim
- Université Paris Cité, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Dario Tayupo
- Université Paris Cité, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Erwan Martin
- Université Paris Cité, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Desdemona Fricker
- Université Paris Cité, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006 Paris, France.
| |
Collapse
|
31
|
Li K, Koukoutselos K, Sakaguchi M, Ciocchi S. Distinct ventral hippocampal inhibitory microcircuits regulating anxiety and fear behaviors. Nat Commun 2024; 15:8228. [PMID: 39300067 DOI: 10.1038/s41467-024-52466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
In emotion research, anxiety and fear have always been interconnected, sharing overlapping brain structures and neural circuitry. Recent investigations, however, have unveiled parallel long-range projection pathways originating from the ventral hippocampus, shedding light on their distinct roles in anxiety and fear. Yet, the mechanisms governing the emergence of projection-specific activity patterns to mediate different negative emotions remain elusive. Here, we show a division of labor in local GABAergic inhibitory microcircuits of the ventral hippocampus, orchestrating the activity of subpopulations of pyramidal neurons to shape anxiety and fear behaviors in mice. These findings offer a comprehensive insight into how distinct inhibitory microcircuits are dynamically engaged to encode different emotional states.
Collapse
Affiliation(s)
- Kaizhen Li
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland.
| | | | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Stéphane Ciocchi
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland.
| |
Collapse
|
32
|
Michaud F, Francavilla R, Topolnik D, Iloun P, Tamboli S, Calon F, Topolnik L. Altered firing output of VIP interneurons and early dysfunctions in CA1 hippocampal circuits in the 3xTg mouse model of Alzheimer's disease. eLife 2024; 13:RP95412. [PMID: 39264364 PMCID: PMC11392531 DOI: 10.7554/elife.95412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Alzheimer's disease (AD) leads to progressive memory decline, and alterations in hippocampal function are among the earliest pathological features observed in human and animal studies. GABAergic interneurons (INs) within the hippocampus coordinate network activity, among which type 3 interneuron-specific (I-S3) cells expressing vasoactive intestinal polypeptide and calretinin play a crucial role. These cells provide primarily disinhibition to principal excitatory cells (PCs) in the hippocampal CA1 region, regulating incoming inputs and memory formation. However, it remains unclear whether AD pathology induces changes in the activity of I-S3 cells, impacting the hippocampal network motifs. Here, using young adult 3xTg-AD mice, we found that while the density and morphology of I-S3 cells remain unaffected, there were significant changes in their firing output. Specifically, I-S3 cells displayed elongated action potentials and decreased firing rates, which was associated with a reduced inhibition of CA1 INs and their higher recruitment during spatial decision-making and object exploration tasks. Furthermore, the activation of CA1 PCs was also impacted, signifying early disruptions in CA1 network functionality. These findings suggest that altered firing patterns of I-S3 cells might initiate early-stage dysfunction in hippocampal CA1 circuits, potentially influencing the progression of AD pathology.
Collapse
Affiliation(s)
- Felix Michaud
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Ruggiero Francavilla
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Dimitry Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Parisa Iloun
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Suhel Tamboli
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Frederic Calon
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| |
Collapse
|
33
|
Ojima D, Tominaga Y, Kubota T, Tada A, Takahashi H, Kishimoto Y, Tominaga T, Yamamoto T. Impaired Hippocampal Long-Term Potentiation and Memory Deficits upon Haploinsufficiency of MDGA1 Can Be Rescued by Acute Administration of D-Cycloserine. Int J Mol Sci 2024; 25:9674. [PMID: 39273620 PMCID: PMC11394992 DOI: 10.3390/ijms25179674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The maintenance of proper brain function relies heavily on the balance of excitatory and inhibitory neural circuits, governed in part by synaptic adhesion molecules. Among these, MDGA1 (MAM domain-containing glycosylphosphatidylinositol anchor 1) acts as a suppressor of synapse formation by interfering with Neuroligin-mediated interactions, crucial for maintaining the excitatory-inhibitory (E/I) balance. Mdga1-/- mice exhibit selectively enhanced inhibitory synapse formation in their hippocampal pyramidal neurons, leading to impaired hippocampal long-term potentiation (LTP) and hippocampus-dependent learning and memory function; however, it has not been fully investigated yet if the reduction in MDGA1 protein levels would alter brain function. Here, we examined the behavioral and synaptic consequences of reduced MDGA1 protein levels in Mdga1+/- mice. As observed in Mdga1-/- mice, Mdga1+/- mice exhibited significant deficits in hippocampus-dependent learning and memory tasks, such as the Morris water maze and contextual fear-conditioning tests, along with a significant deficit in the long-term potentiation (LTP) in hippocampal Schaffer collateral CA1 synapses. The acute administration of D-cycloserine, a co-agonist of NMDAR (N-methyl-d-aspartate receptor), significantly ameliorated memory impairments and restored LTP deficits specifically in Mdga1+/- mice, while having no such effect on Mdga1-/- mice. These results highlight the critical role of MDGA1 in regulating inhibitory synapse formation and maintaining the E/I balance for proper cognitive function. These findings may also suggest potential therapeutic strategies targeting the E/I imbalance to alleviate cognitive deficits associated with neuropsychiatric disorders.
Collapse
Grants
- 16K08237, 19K07065, 19K07337, 16H06532, 24H01497, 23K18485, 23K21755, 21H03606, 23H03488, 23K28178, 23K21713, 22H05698, 24K18267, 21K15247, 19K07337, 22K06618 the Ministry of Education, Culture, Sports, Science and Technology, Japan
Collapse
Affiliation(s)
- Daiki Ojima
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Kagawa, Japan (A.T.); (H.T.)
| | - Yoko Tominaga
- Institute of Neuroscience, Tokushima Bunri University, Sanuki 769-2193, Kagawa, Japan
| | - Takashi Kubota
- Department of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Kagawa, Japan; (T.K.); (Y.K.)
| | - Atsushi Tada
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Kagawa, Japan (A.T.); (H.T.)
| | - Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Kagawa, Japan (A.T.); (H.T.)
| | - Yasushi Kishimoto
- Department of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Kagawa, Japan; (T.K.); (Y.K.)
- Laboratory of Physical Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Itabashi-ku 173-8605, Tokyo, Japan
| | - Takashi Tominaga
- Institute of Neuroscience, Tokushima Bunri University, Sanuki 769-2193, Kagawa, Japan
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Kagawa, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Kagawa, Japan (A.T.); (H.T.)
| |
Collapse
|
34
|
Wiera G, Jabłońska J, Lech AM, Mozrzymas JW. Input specificity of NMDA-dependent GABAergic plasticity in the hippocampus. Sci Rep 2024; 14:20463. [PMID: 39242672 PMCID: PMC11379801 DOI: 10.1038/s41598-024-70278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/14/2024] [Indexed: 09/09/2024] Open
Abstract
Sensory experiences and learning induce long-lasting changes in both excitatory and inhibitory synapses, thereby providing a crucial substrate for memory. However, the co-tuning of excitatory long-term potentiation (eLTP) or depression (eLTD) with the simultaneous changes at inhibitory synapses (iLTP/iLTD) remains unclear. Herein, we investigated the co-expression of NMDA-induced synaptic plasticity at excitatory and inhibitory synapses in hippocampal CA1 pyramidal cells (PCs) using a combination of electrophysiological, optogenetic, and pharmacological approaches. We found that inhibitory inputs from somatostatin (SST) and parvalbumin (PV)-positive interneurons onto CA1 PCs display input-specific long-term plastic changes following transient NMDA receptor activation. Notably, synapses from SST-positive interneurons consistently exhibited iLTP, irrespective of the direction of excitatory plasticity, whereas synapses from PV-positive interneurons predominantly showed iLTP concurrent with eLTP, rather than eLTD. As neuroplasticity is known to depend on the extracellular matrix, we tested the impact of metalloproteinases (MMP) inhibition. MMP3 blockade interfered with GABAergic plasticity for all inhibitory inputs, whereas MMP9 inhibition selectively blocked eLTP and iLTP in SST-CA1PC synapses co-occurring with eLTP but not eLTD. These findings demonstrate the dissociation of excitatory and inhibitory plasticity co-expression. We propose that these mechanisms of plasticity co-expression may be involved in maintaining excitation-inhibition balance and modulating neuronal integration modes.
Collapse
Affiliation(s)
- Grzegorz Wiera
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368, Wroclaw, Poland.
| | - Jadwiga Jabłońska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368, Wroclaw, Poland
| | - Anna Maria Lech
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368, Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368, Wroclaw, Poland.
| |
Collapse
|
35
|
Abbaspoor S, Hoffman KL. Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely moving macaques. Cell Rep 2024; 43:114519. [PMID: 39018243 PMCID: PMC11445748 DOI: 10.1016/j.celrep.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here, we report inhibitory functional cell groups in CA1 of freely moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were grouped by their superficial or deep layer position differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest that hippocampal CA1 in freely moving macaques bears a sublayer-specific circuit organization that may shape its role in cognition.
Collapse
Affiliation(s)
- Saman Abbaspoor
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Kari L Hoffman
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
36
|
Mahmood N, Choi JH, Wu PY, Dooling SW, Watkins TA, Huang Z, Lipman J, Zhao H, Yang A, Silversmith J, Inglebert Y, Koumenis C, Sharma V, Lacaille JC, Sossin WS, Khoutorsky A, McKinney RA, Costa-Mattioli M, Sonenberg N. The ISR downstream target ATF4 represses long-term memory in a cell type-specific manner. Proc Natl Acad Sci U S A 2024; 121:e2407472121. [PMID: 39047038 PMCID: PMC11295034 DOI: 10.1073/pnas.2407472121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The integrated stress response (ISR), a pivotal protein homeostasis network, plays a critical role in the formation of long-term memory (LTM). The precise mechanism by which the ISR controls LTM is not well understood. Here, we report insights into how the ISR modulates the mnemonic process by using targeted deletion of the activating transcription factor 4 (ATF4), a key downstream effector of the ISR, in various neuronal and non-neuronal cell types. We found that the removal of ATF4 from forebrain excitatory neurons (but not from inhibitory neurons, cholinergic neurons, or astrocytes) enhances LTM formation. Furthermore, the deletion of ATF4 in excitatory neurons lowers the threshold for the induction of long-term potentiation, a cellular model for LTM. Transcriptomic and proteomic analyses revealed that ATF4 deletion in excitatory neurons leads to upregulation of components of oxidative phosphorylation pathways, which are critical for ATP production. Thus, we conclude that ATF4 functions as a memory repressor selectively within excitatory neurons.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Jung-Hyun Choi
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 0B1, Canada
| | - Sean W. Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Trent A. Watkins
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Ziying Huang
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Jesse Lipman
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Hanjie Zhao
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Anqi Yang
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Jake Silversmith
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Yanis Inglebert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 0B1, Canada
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning, Research Group on Neural Signaling and Circuitry, University of Montréal, Montréal, QCH3T1J4, Canada
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104-5156
| | - Vijendra Sharma
- Department of Biomedical Sciences, University of Windsor, Windsor, ONN9B 3P4, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning, Research Group on Neural Signaling and Circuitry, University of Montréal, Montréal, QCH3T1J4, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QCH3A 2B4, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QCH4A3J1, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QCH3A 2B4, Canada
| | - R. Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 0B1, Canada
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX77030
- Altos Labs Inc., Bay Area Institute of Science, Redwood City, CA94065
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| |
Collapse
|
37
|
Machold R, Rudy B. Genetic approaches to elucidating cortical and hippocampal GABAergic interneuron diversity. Front Cell Neurosci 2024; 18:1414955. [PMID: 39113758 PMCID: PMC11303334 DOI: 10.3389/fncel.2024.1414955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
GABAergic interneurons (INs) in the mammalian forebrain represent a diverse population of cells that provide specialized forms of local inhibition to regulate neural circuit activity. Over the last few decades, the development of a palette of genetic tools along with the generation of single-cell transcriptomic data has begun to reveal the molecular basis of IN diversity, thereby providing deep insights into how different IN subtypes function in the forebrain. In this review, we outline the emerging picture of cortical and hippocampal IN speciation as defined by transcriptomics and developmental origin and summarize the genetic strategies that have been utilized to target specific IN subtypes, along with the technical considerations inherent to each approach. Collectively, these methods have greatly facilitated our understanding of how IN subtypes regulate forebrain circuitry via cell type and compartment-specific inhibition and thus have illuminated a path toward potential therapeutic interventions for a variety of neurocognitive disorders.
Collapse
Affiliation(s)
- Robert Machold
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Bernardo Rudy
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
38
|
Lackey EP, Moreira L, Norton A, Hemelt ME, Osorno T, Nguyen TM, Macosko EZ, Lee WCA, Hull CA, Regehr WG. Specialized connectivity of molecular layer interneuron subtypes leads to disinhibition and synchronous inhibition of cerebellar Purkinje cells. Neuron 2024; 112:2333-2348.e6. [PMID: 38692278 PMCID: PMC11360088 DOI: 10.1016/j.neuron.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/12/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Molecular layer interneurons (MLIs) account for approximately 80% of the inhibitory interneurons in the cerebellar cortex and are vital to cerebellar processing. MLIs are thought to primarily inhibit Purkinje cells (PCs) and suppress the plasticity of synapses onto PCs. MLIs also inhibit, and are electrically coupled to, other MLIs, but the functional significance of these connections is not known. Here, we find that two recently recognized MLI subtypes, MLI1 and MLI2, have a highly specialized connectivity that allows them to serve distinct functional roles. MLI1s primarily inhibit PCs, are electrically coupled to each other, fire synchronously with other MLI1s on the millisecond timescale in vivo, and synchronously pause PC firing. MLI2s are not electrically coupled, primarily inhibit MLI1s and disinhibit PCs, and are well suited to gating cerebellar-dependent behavior and learning. The synchronous firing of electrically coupled MLI1s and disinhibition provided by MLI2s require a major re-evaluation of cerebellar processing.
Collapse
Affiliation(s)
| | - Luis Moreira
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aliya Norton
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Marie E Hemelt
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
| | - Tomas Osorno
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Evan Z Macosko
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Court A Hull
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Hadler MD, Alle H, Geiger JRP. Parvalbumin interneuron cell-to-network plasticity: mechanisms and therapeutic avenues. Trends Pharmacol Sci 2024; 45:586-601. [PMID: 38763836 DOI: 10.1016/j.tips.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Alzheimer's disease (AD) and schizophrenia (SCZ) represent two major neuropathological conditions with a high disease burden. Despite their distinct etiologies, patients suffering from AD or SCZ share a common burden of disrupted memory functions unattended by current therapies. Recent preclinical analyses highlight cell-type-specific contributions of parvalbumin interneurons (PVIs), particularly the plasticity of their cellular excitability, towards intact neuronal network function (cell-to-network plasticity) and memory performance. Here we argue that deficits of PVI cell-to-network plasticity may underlie memory deficits in AD and SCZ, and we explore two therapeutic avenues: the targeting of PVI-specific neuromodulation, including by neuropeptides, and the recruitment of network synchrony in the gamma frequency range (40 Hz) by external stimulation. We finally propose that these approaches be merged under consideration of recent insights into human brain physiology.
Collapse
Affiliation(s)
- Michael D Hadler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg R P Geiger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
40
|
Ezi S, Shadi M, Vafaei-Nezhad M, Vafaei-Nezhad S. Does Tramadol Exposure Have Unfavorable Effects on Hippocampus? A Review Study. ADDICTION & HEALTH 2024; 16:213-223. [PMID: 39439859 PMCID: PMC11491864 DOI: 10.34172/ahj.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/01/2024] [Indexed: 10/25/2024]
Abstract
Background Tramadol, one of the most common opioid pain relievers, acts upon the µ-receptor in the central nervous system (CNS) to alleviate pain associated with various situations like postoperative pain, arthritis, and muscular pain. Additionally, it has been utilized to address depression and anxiety disorders. Extensive research has shown that tramadol can potentially inflict irreversible harm on different regions of the CNS, including the cerebrum, cerebellum, amygdala, and, notably, the hippocampal formation. However, the precise mechanism behind these effects remains unclear. Within this study, we conducted a comprehensive examination of the impacts of tramadol on the CNS, specifically focusing on hippocampal formation. Methods In this study, we collected relevant articles published between 2000 and 2022 by conducting searches using specific keywords, including tramadol, tramadol hydrochloride, central nervous system, hippocampus, and hippocampal formation, in various databases. Findings The results of this study proposed several processes by which tramadol may impact the CNS, including the induction of apoptosis, autophagy, excessive production of free radicals, and dysfunction of cellular organelles. These processes ultimately lead to disturbances in neural cell function, particularly within the hippocampus. Furthermore, it is revealed that tramadol administration led to a significant decrease in the neural cell count and the volume of various regions within the brain and spinal cord. Conclusion Consequently, neuropsychological impairments, such as memory formation, attention deficits, and cognitive impairment, may happen. This finding highlights the potential impacts of tramadol on neural structures and warrants further investigation.
Collapse
Affiliation(s)
- Samira Ezi
- Department of Anatomical Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mehri Shadi
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Masood Vafaei-Nezhad
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Vafaei-Nezhad
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
41
|
Lazarov O, Gupta M, Kumar P, Morrissey Z, Phan T. Memory circuits in dementia: The engram, hippocampal neurogenesis and Alzheimer's disease. Prog Neurobiol 2024; 236:102601. [PMID: 38570083 PMCID: PMC11221328 DOI: 10.1016/j.pneurobio.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zachery Morrissey
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Trongha Phan
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
42
|
Tamboli S, Singh S, Topolnik D, El Amine Barkat M, Radhakrishnan R, Guet-McCreight A, Topolnik L. Mouse hippocampal CA1 VIP interneurons detect novelty in the environment and support recognition memory. Cell Rep 2024; 43:114115. [PMID: 38607918 DOI: 10.1016/j.celrep.2024.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/17/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.
Collapse
Affiliation(s)
- Suhel Tamboli
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Sanjay Singh
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Dimitry Topolnik
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Mohamed El Amine Barkat
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Risna Radhakrishnan
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | | | - Lisa Topolnik
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada.
| |
Collapse
|
43
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
44
|
Kaufhold D, Maristany de Las Casas E, Ocaña-Fernández MDÁ, Cazala A, Yuan M, Kulik A, Cholvin T, Steup S, Sauer JF, Eyre MD, Elgueta C, Strüber M, Bartos M. Spine plasticity of dentate gyrus parvalbumin-positive interneurons is regulated by experience. Cell Rep 2024; 43:113806. [PMID: 38377001 DOI: 10.1016/j.celrep.2024.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Experience-driven alterations in neuronal activity are followed by structural-functional modifications allowing cells to adapt to these activity changes. Structural plasticity has been observed for cortical principal cells. However, how GABAergic interneurons respond to experience-dependent network activity changes is not well understood. We show that parvalbumin-expressing interneurons (PVIs) of the dentate gyrus (DG) possess dendritic spines, which undergo behaviorally induced structural dynamics. Glutamatergic inputs at PVI spines evoke signals with high spatial compartmentalization defined by neck length. Mice experiencing novel contexts form more PVI spines with elongated necks and exhibit enhanced network and PVI activity and cFOS expression. Enhanced green fluorescent protein reconstitution across synaptic partner-mediated synapse labeling shows that experience-driven PVI spine growth boosts targeting of PVI spines over shafts by glutamatergic synapses. Our findings propose a role for PVI spine dynamics in regulating PVI excitation by their inputs, which may allow PVIs to dynamically adjust their functional integration in the DG microcircuitry in relation to network computational demands.
Collapse
Affiliation(s)
- Dorthe Kaufhold
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | | | - Aurore Cazala
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mei Yuan
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thibault Cholvin
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Stefanie Steup
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mark D Eyre
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Claudio Elgueta
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Michael Strüber
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, 60528 Frankfurt am Main, Germany
| | - Marlene Bartos
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
45
|
Hunter D, Petit-Pedrol M, Fernandes D, Bénac N, Rodrigues C, Kreye J, Ceanga M, Prüss H, Geis C, Groc L. Converging synaptic and network dysfunctions in distinct autoimmune encephalitis. EMBO Rep 2024; 25:1623-1649. [PMID: 38253690 PMCID: PMC10933378 DOI: 10.1038/s44319-024-00056-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Psychiatric and neurological symptoms, as well as cognitive deficits, represent a prominent phenotype associated with variable forms of autoimmune encephalitis, regardless of the neurotransmitter receptor targeted by autoantibodies. The mechanistic underpinnings of these shared major neuropsychiatric symptoms remain however unclear. Here, we investigate the impacts of patient-derived monoclonal autoantibodies against the glutamatergic NMDAR (NMDAR mAb) and inhibitory GABAaR (GABAaR mAb) signalling in the hippocampal network. Unexpectedly, both excitatory and inhibitory synaptic receptor membrane dynamics, content and transmissions are altered by NMDAR or GABAaR mAb, irrespective of the affinity or antagonistic effect of the autoantibodies. The effect of NMDAR mAb on inhibitory synapses and GABAaR mAb on excitatory synapses requires neuronal activity and involves protein kinase signalling. At the cell level, both autoantibodies increase the excitation/inhibition balance of principal cell inputs. Furthermore, NMDAR or GABAaR mAb leads to hyperactivation of hippocampal networks through distinct alterations of principal cell and interneuron properties. Thus, autoantibodies targeting excitatory NMDAR or inhibitory GABAaR trigger convergent network dysfunctions through a combination of shared and distinct mechanisms.
Collapse
Affiliation(s)
- Daniel Hunter
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Mar Petit-Pedrol
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Dominique Fernandes
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Nathan Bénac
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Catarina Rodrigues
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117, Berlin, Germany
| | - Mihai Ceanga
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117, Berlin, Germany
| | - Christian Geis
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Laurent Groc
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
46
|
D'Oliveira da Silva F, Robert C, Lardant E, Pizzano C, Bruchas MR, Guiard BP, Chauveau F, Moulédous L. Targeting Nociceptin/Orphanin FQ receptor to rescue cognitive symptoms in a mouse neuroendocrine model of chronic stress. Mol Psychiatry 2024; 29:718-729. [PMID: 38123728 DOI: 10.1038/s41380-023-02363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Chronic stress causes cognitive deficits, such as impairments in episodic-like hippocampus-dependent memory. Stress regulates an opioid-related neuropeptide named Nociceptin/Orphanin FQ (N/OFQ), the ligand of the G protein-coupled receptor NOP. Since this peptide has deleterious effects on memory, we hypothesized that the N/OFQ system could be a mediator of the negative effects of stress on memory. Chronic stress was mimicked by chronic exposure to corticosterone (CORT). The NOP receptor was either acutely blocked using selective antagonists, or knocked-down specifically in the hippocampus using genetic tools. Long-term memory was assessed in the object recognition (OR) and object location (OL) paradigms. Acute injection of NOP antagonists before learning had a negative impact on memory in naive mice whereas it restored memory performances in the chronic stress model. This rescue was associated with a normalization of neuronal cell activity in the CA3 part of the hippocampus. Chronic CORT induced an upregulation of the N/OFQ precursor in the hippocampus. Knock-down of the NOP receptor in the CA3/Dentate Gyrus region prevented memory deficits in the CORT model. These data demonstrate that blocking the N/OFQ system can be beneficial for long-term memory in a neuroendocrine model of chronic stress. We therefore suggest that NOP antagonists could be useful for the treatment of memory deficits in stress-related disorders.
Collapse
Affiliation(s)
- Flora D'Oliveira da Silva
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), University of Toulouse, CNRS UMR-5169, UPS, Toulouse, France
| | - Cathaline Robert
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), University of Toulouse, CNRS UMR-5169, UPS, Toulouse, France
| | - Emma Lardant
- IRBA (Army Biomedical Research Institute), Brétigny-sur-Orge, France
| | - Carina Pizzano
- Department of Anesthesiology; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Michael R Bruchas
- Department of Anesthesiology; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Bruno P Guiard
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), University of Toulouse, CNRS UMR-5169, UPS, Toulouse, France
| | - Frédéric Chauveau
- IRBA (Army Biomedical Research Institute), Brétigny-sur-Orge, France
| | - Lionel Moulédous
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), University of Toulouse, CNRS UMR-5169, UPS, Toulouse, France.
| |
Collapse
|
47
|
Hadler MD, Tzilivaki A, Schmitz D, Alle H, Geiger JRP. Gamma oscillation plasticity is mediated via parvalbumin interneurons. SCIENCE ADVANCES 2024; 10:eadj7427. [PMID: 38295164 PMCID: PMC10830109 DOI: 10.1126/sciadv.adj7427] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Understanding the plasticity of neuronal networks is an emerging field of (patho-) physiological research, yet the underlying cellular mechanisms remain poorly understood. Gamma oscillations (30 to 80 hertz), a biomarker of cognitive performance, require and potentiate glutamatergic transmission onto parvalbumin-positive interneurons (PVIs), suggesting an interface for cell-to-network plasticity. In ex vivo local field potential recordings, we demonstrate long-term potentiation of hippocampal gamma power. Gamma potentiation obeys established rules of PVI plasticity, requiring calcium-permeable AMPA receptors (CP-AMPARs) and metabotropic glutamate receptors (mGluRs). A microcircuit computational model of CA3 gamma oscillations predicts CP-AMPAR plasticity onto PVIs critically outperforms pyramidal cell plasticity in increasing gamma power and completely accounts for gamma potentiation. We reaffirm this ex vivo in three PVI-targeting animal models, demonstrating that gamma potentiation requires PVI-specific signaling via a Gq/PKC pathway comprising mGluR5 and a Gi-sensitive, PKA-dependent pathway. Gamma activity-dependent, metabotropically mediated CP-AMPAR plasticity on PVIs may serve as a guiding principle in understanding network plasticity in health and disease.
Collapse
Affiliation(s)
- Michael D. Hadler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Neurocure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Neurocure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle-Straße 10, 13125 Berlin, Germany
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg R. P. Geiger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
48
|
Hainmueller T, Cazala A, Huang LW, Bartos M. Subfield-specific interneuron circuits govern the hippocampal response to novelty in male mice. Nat Commun 2024; 15:714. [PMID: 38267409 PMCID: PMC10808551 DOI: 10.1038/s41467-024-44882-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
The hippocampus is the brain's center for episodic memories. Its subregions, the dentate gyrus and CA1-3, are differentially involved in memory encoding and recall. Hippocampal principal cells represent episodic features like movement, space, and context, but less is known about GABAergic interneurons. Here, we performed two-photon calcium imaging of parvalbumin- and somatostatin-expressing interneurons in the dentate gyrus and CA1-3 of male mice exploring virtual environments. Parvalbumin-interneurons increased activity with running-speed and reduced it in novel environments. Somatostatin-interneurons in CA1-3 behaved similar to parvalbumin-expressing cells, but their dentate gyrus counterparts increased activity during rest and in novel environments. Congruently, chemogenetic silencing of dentate parvalbumin-interneurons had prominent effects in familiar contexts, while silencing somatostatin-expressing cells increased similarity of granule cell representations between novel and familiar environments. Our data indicate unique roles for parvalbumin- and somatostatin-positive interneurons in the dentate gyrus that are distinct from those in CA1-3 and may support routing of novel information.
Collapse
Affiliation(s)
- Thomas Hainmueller
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany.
- NYU Neuroscience Institute, 435 East 30th Street, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA.
| | - Aurore Cazala
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany
| | - Li-Wen Huang
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany.
| |
Collapse
|
49
|
Viana da Silva S, Haberl MG, Gaur K, Patel R, Narayan G, Ledakis M, Fu ML, de Castro Vieira M, Koo EH, Leutgeb JK, Leutgeb S. Localized APP expression results in progressive network dysfunction by disorganizing spike timing. Neuron 2024; 112:124-140.e6. [PMID: 37909036 PMCID: PMC10877582 DOI: 10.1016/j.neuron.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/16/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Progressive cognitive decline in Alzheimer's disease could either be caused by a spreading molecular pathology or by an initially focal pathology that causes aberrant neuronal activity in a larger network. To distinguish between these possibilities, we generated a mouse model with expression of mutant human amyloid precursor protein (APP) in only hippocampal CA3 cells. We found that performance in a hippocampus-dependent memory task was impaired in young adult and aged mutant mice. In both age groups, we then recorded from the CA1 region, which receives inputs from APP-expressing CA3 cells. We observed that theta oscillation frequency in CA1 was reduced along with disrupted relative timing of principal cells. Highly localized pathology limited to the presynaptic CA3 cells is thus sufficient to cause aberrant firing patterns in postsynaptic neuronal networks, which indicates that disease progression is not only from spreading pathology but also mediated by progressively advancing physiological dysfunction.
Collapse
Affiliation(s)
- Silvia Viana da Silva
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; NeuroCure Excellence Cluster and German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Matthias G Haberl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Charitéplatz 1, 10117 Berlin, Germany
| | - Kshitij Gaur
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Rina Patel
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Gautam Narayan
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Max Ledakis
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maylin L Fu
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Miguel de Castro Vieira
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Charitéplatz 1, 10117 Berlin, Germany
| | - Edward H Koo
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jill K Leutgeb
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Stefan Leutgeb
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
50
|
Grigoryan G, Harada H, Knobloch-Bollmann HS, Kilias A, Kaufhold D, Kulik A, Eyre MD, Bartos M. Synaptic plasticity at the dentate gyrus granule cell to somatostatin-expressing interneuron synapses supports object location memory. Proc Natl Acad Sci U S A 2023; 120:e2312752120. [PMID: 38091292 PMCID: PMC10742375 DOI: 10.1073/pnas.2312752120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/14/2023] [Indexed: 12/18/2023] Open
Abstract
Somatostatin-expressing interneurons (SOMIs) in the mouse dentate gyrus (DG) receive feedforward excitation from granule cell (GC) mossy fiber (MF) synapses and provide feedback lateral inhibition onto GC dendrites to support environment representation in the DG network. Although this microcircuitry has been implicated in memory formation, little is known about activity-dependent plastic changes at MF-SOMI synapses and their influence on behavior. Here, we report that the metabotropic glutamate receptor 1α (mGluR1α) is required for the induction of associative long-term potentiation (LTP) at MF-SOMI synapses. Pharmacological block of mGluR1α, but not mGluR5, prevented synaptic weight changes. LTP at MF-SOMI synapses was postsynaptically induced, required increased intracellular Ca2+, involved G-protein-mediated and Ca2+-dependent (extracellular signal-regulated kinase) ERK1/2 pathways, and the activation of NMDA receptors. Specific knockdown of mGluR1α in DG-SOMIs by small hairpin RNA expression prevented MF-SOMI LTP, reduced SOMI recruitment, and impaired object location memory. Thus, postsynaptic mGluR1α-mediated MF-plasticity at SOMI input synapses critically supports DG-dependent mnemonic functions.
Collapse
Affiliation(s)
- Gayane Grigoryan
- Laboratory of Systems & Cellular Neuroscience, Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| | - Harumi Harada
- Molecular Physiology, Institute for Physiology II, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| | - H. Sophie Knobloch-Bollmann
- Laboratory of Systems & Cellular Neuroscience, Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| | - Antje Kilias
- Laboratory of Systems & Cellular Neuroscience, Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| | - Dorthe Kaufhold
- Laboratory of Systems & Cellular Neuroscience, Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| | - Akos Kulik
- Molecular Physiology, Institute for Physiology II, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| | - Mark D. Eyre
- Laboratory of Systems & Cellular Neuroscience, Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| | - Marlene Bartos
- Laboratory of Systems & Cellular Neuroscience, Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| |
Collapse
|