1
|
Zhou X, Wang P, Xie L, Chan YK, Jiao Z, Shu R, Bai D, Lai S, Deng Y. Molybdoenzymes-emulating bio-heterojunction hydrogel with rapid disinfection and macrophage reprogramming for wound regeneration. Biomaterials 2025; 320:123284. [PMID: 40121831 DOI: 10.1016/j.biomaterials.2025.123284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/02/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Developing hydrogel dressings with the capabilities to accommodate irregular wounds and provide a cascade disinfective-regenerative microenvironment for wound repair is of great importance to combating pathogenic bacteria-infected wounds but remains an ongoing challenge. To address the conundrum, we devise a molybdoenzymes-emulating bio-heterojunction (M-bioHJ) doped double network (DN) hydrogel dressing for bacterial-infected wound healing. The near-infrared (NIR) photothermal effect of the M-bioHJ facilitates the exchange of multiple dynamic crosslinking sites in the hydrogel, endowing the hydrogel with photo-remote reprocessing capabilities to completely accommodate the encountered irregular wounds and ultimately accomplish the admirable therapeutic effect. Meanwhile, the introduced M-bioHJ shows NIR light-enhanced photodynamic activity to induce a massive engendering of reactive oxygen species (ROS), allowing rapid sterilization without reliance on exogenous hydrogen peroxide. Furthermore, the Mo ions released from the M-bioHJ-encapsulated hydrogel can play a crucial role in reprogramming the macrophage phenotype and determining tissue regeneration. Both in vitro and in vivo evidences authenticate the accelerated healing potential of infected wounds through the synergistic effects of photo-reprocessing, disinfection, and macrophage-reprogramming facilitated by the hydrogel. These findings highlight the promising application prospects of such neoteric M-bioHJ-encapsulated hydrogel dressings for wound disinfection and tissue regeneration.
Collapse
Affiliation(s)
- Xiong Zhou
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China; Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peiqi Wang
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lu Xie
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, 999077, Hong Kong, China
| | - Zheng Jiao
- Swanson School of Engineering, University of Pittsburgh, Pittsburgh, 15261, USA
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shuangquan Lai
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China; Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong 519000, China
| | - Yi Deng
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Zhou Z, Chen Z, Li Y, Mao X, Chen J, Zhou X, Zhang B. Advances in solubilization and stabilization techniques for structural and functional studies of membrane proteins. PeerJ 2025; 13:e19211. [PMID: 40196297 PMCID: PMC11974516 DOI: 10.7717/peerj.19211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Membrane proteins (MPs) are indispensable in various biological processes, including material transport, signal transduction, immune response, and cell recognition. Unraveling the intricate interplay between MP structure and function is pivotal for advancing fundamental biology and pharmaceutical research. However, the inherent hydrophobicity and complex lipid interactions of MPs pose significant challenges in determining their three-dimensional configurations. In recent years, cryo-electron microscopy (cryo-EM) has emerged as a powerful alternative for structural elucidation, overcoming the challenges faced by traditional techniques such as X-ray crystallography and nuclear magnetic resonance (NMR). This review centers on advanced solubilization and stabilization techniques for MPs, as well as MP functions and expression systems, highlighting the strengths and limitations of conventional detergents, liposomes, bicelles, and nanodiscs, alongside emerging alternatives like styrene-maleic acid (SMA) and diisobutylene-maleic acid (DIBMA). Notably, SMA and its derivatives provide promising detergent-free alternatives that preserve protein stability and native conformation, which is particularly valuable for accurate cryo-EM characterization of complex MPs. This work is designed to serve as both an updated resource for researchers already immersed in the field and an accessible entry point for those new to MP research. By consolidating recent advancements and highlighting critical gaps, this review aims to inspire future investigations that push the boundaries of MP structural and functional studies, ultimately driving innovations in drug discovery and therapeutic development.
Collapse
Affiliation(s)
- Zhuanghan Zhou
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Zheng Chen
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Yiran Li
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Xingyue Mao
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Junjie Chen
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Xuan Zhou
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Bo Zhang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University of New Jersey, Union, NJ, United States of America
| |
Collapse
|
3
|
Farrelly MD, Korneev D, Martin LL, Thang SH. Tethering Efficiency of Reversible Addition-Fragmentation Chain Transfer-Synthesized Styrene Maleic Acid Polymers and Associated Styrene Maleic Acid Lipid Nanoparticles on Gold Surfaces. Chempluschem 2025:e2500173. [PMID: 40180599 DOI: 10.1002/cplu.202500173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/05/2025]
Abstract
Styrene maleic acid lipid nanoparticles (SMALPs) arise from amphipathic styrene maleic acid (SMA) copolymer encapsulation of membranes into polymer-lipid nanodiscs, structures applied in the native extraction of membrane proteins (MPs). Strategies to immobilize SMALPs via their polymer belt onto surfaces allow the biophysical study of MPs without direct protein-surface anchoring. In this work, reversible addition-fragmentation chain transfer (RAFT) polymerization is used to synthesize a library of diblock SMA copolymers to determine the optimal sequence for SMALP assembly. The further ability of trithiocarbonates (T) and attached (Z)-end-groups, generated by RAFT polymerization, to tether SMALPs to gold surfaces via sulfur-gold bonds is evaluated. Improved DMPC liposome solubilization is achieved with a hydrophilic (Z)-end-group, shorter polystyrene block and lower molecular weight for diblock R-(Sty)-b-(Sty-alt-MA)-T-Z polymers. Quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) revealed that diblock SMA polymers bound to gold as a micellular film, irrespective of the presence of the trithiocarbonate group. SMALPs, however, showed an enhanced gold affinity when terminated by a trithiocarbonate and hydrophilic RAFT (Z)-end-group compared to end-group removed SMALPs, the latter exhibiting nonspecific gold adhesion. These findings offer a new approach in utilizing RAFT end-groups of nanodisc assembling polymers for label-free analysis of MPs.
Collapse
Affiliation(s)
| | - Denis Korneev
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, 3800, Australia
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
4
|
Lorencik K, Ekiert R, Pietras R, Ner-Kluza J, Hopciaś M, Osyczka A. Defining the direct electron transfer connection between alternative complex III and cytochrome oxidase in Flavobacterium johnsoniae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149548. [PMID: 39956414 DOI: 10.1016/j.bbabio.2025.149548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Alternative complex III (ACIII) is an enzyme of electron transport chains in some bacterial species. ACIII, like cytochrome bc enzymes, oxidizes quinol and transfers electrons from quinol to electron acceptors located outside the membrane. Various proteins can functionally link ACIII with other enzymes. The structure of ACIII from Flavobacterium johnsoniae suggests that in this bacterium the membrane-anchored mobile mono-heme cytochrome c domain (mdA) of the ActA subunit of ACIII provides means for its connection with cytochrome aa3 oxidase. Here, using a recently-developed genetic system for ACIII, we revealed that ACIII mutant deprived of mdA does not exhibit electron transfer activity towards cytochrome aa3 oxidase in the cells and in the isolated membranes. These results indicate that mdA is the only carrier of electrons between the pentaheme core of ActA and cytochrome aa3 oxidase. In addition, we heterologously expressed and purified mdA and ActE (another mono-heme subunit of ACIII) from Escherichia coli to identify the redox midpoint potentials of the hemes in these two domains. The obtained values analyzed in the context of the whole titration profiles of native ACIII and ACIII deprived of mdA provide first insights into the arrangement of heme redox potentials in the seven-heme chain formed by the ActA/ActE assembly.
Collapse
Affiliation(s)
- Katarzyna Lorencik
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Robert Ekiert
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Rafał Pietras
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Joanna Ner-Kluza
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Kraków, Poland
| | - Małgorzata Hopciaś
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
5
|
Rimle L, Phillips BP, Codo Costa Barra IM, Arnold N, Hennebert C, Meier T, von Ballmoos C. A splendid molecular factory: De- and reconstruction of the mammalian respiratory chain. Proc Natl Acad Sci U S A 2025; 122:e2416162122. [PMID: 40100632 PMCID: PMC11962478 DOI: 10.1073/pnas.2416162122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/26/2025] [Indexed: 03/20/2025] Open
Abstract
Mitochondrial respiratory complexes I to IV and the F1Fo-ATP synthase (complex V) are large protein assemblies producing the universal cellular energy currency adenosine triphosphate (ATP). Individual complexes have been extensively studied in vitro, but functional co-reconstitution of several mammalian complexes into proteoliposomes, in particular, the combination of a primary pump with the ATP synthase, is less well understood. Here, we present a generic and scalable strategy to purify mammalian respiratory complexes I, III and the ATP synthase from enriched mitochondria in enzymatically fully active form, and procedures to reassemble the complexes into liposomes. A robust functionality can be shown by in situ monitoring of ATP synthesis rates and by using selected inhibitors of the respiratory chain complexes. By inclusion of cytochrome c oxidase, our procedures allowed us to reconstruct the entire mitochondrial respiratory chain (complexes I, III, IV, and V) in ubiquinone Q10 containing liposomes, demonstrating oxidative phosphorylation by nicotinamide adenine dinucleotide hydrogen driven ATP synthesis. The system was fully coupled at all levels and was used to probe cardiolipin as an essential component to activate the mammalian respiratory chain. Structural characterization using electron cryomicroscopy allowed us to resolve apo-state complex III and complex V at high and medium resolution, respectively, using in silico particle sorting, confirming the presence of all protein subunits and cofactors in native stoichiometry and conformation. The reported findings will facilitate future endeavors to characterize or modulate these key bioenergetic processes.
Collapse
Affiliation(s)
- Lukas Rimle
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern3012, Switzerland
| | - Ben P. Phillips
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Isabela M. Codo Costa Barra
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Noëlle Arnold
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern3012, Switzerland
| | - Charlie Hennebert
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern3012, Switzerland
- Institute of Biochemistry, ETH Zürich, Zürich8093, Switzerland
| | - Thomas Meier
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, LondonSW7 2AZ, United Kingdom
- Liechtenstein-Institute, Gamprin-Bendern9487, Liechtenstein
| | - Christoph von Ballmoos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern3012, Switzerland
| |
Collapse
|
6
|
Reddan B, Cummins EP. The regulation of cell metabolism by hypoxia and hypercapnia. J Biol Chem 2025; 301:108252. [PMID: 39914740 PMCID: PMC11923829 DOI: 10.1016/j.jbc.2025.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 03/06/2025] Open
Abstract
Every cell in the body is exposed to a certain level of CO2 and O2. Hypercapnia and hypoxia elicit stress signals to influence cellular metabolism and function. Both conditions exert profound yet distinct effects on metabolic pathways and mitochondrial dynamics, highlighting the need for cells to adapt to changes in the gaseous microenvironment. The interplay between hypercapnia and hypoxia signaling is the key for dictating cellular homeostasis as microenvironmental CO2 and O2 levels are inextricably linked. Hypercapnia, characterized by elevated pCO2, introduces metabolic adaptations within the aerobic metabolism pathways, affecting tricarboxylic acid cycle flux, lipid, and amino acid metabolism, oxidative phosphorylation and the electron transport chain. Hypoxia, defined by reduced oxygen availability, necessitates a shift from oxidative phosphorylation to anaerobic glycolysis to sustain ATP production, a process orchestrated by the stabilization of hypoxia-inducible factor-1α. Given that hypoxia and hypercapnia are present in both physiological and cancerous microenvironments, how might the coexistence of hypercapnia and hypoxia influence metabolic pathways and cellular function in physiological niches and the tumor microenvironment?
Collapse
Affiliation(s)
- Ben Reddan
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Eoin P Cummins
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
7
|
Capture of membrane proteins in their native membrane milieu. Nat Methods 2025; 22:237-238. [PMID: 39833569 DOI: 10.1038/s41592-024-02518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
|
8
|
Brown C, Ghosh S, McAllister R, Kumar M, Walker G, Sun E, Aman T, Panda A, Kumar S, Li W, Coleman J, Liu Y, Rothman JE, Bhattacharyya M, Gupta K. A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs. Nat Methods 2025; 22:412-421. [PMID: 39609567 PMCID: PMC11810782 DOI: 10.1038/s41592-024-02517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/16/2024] [Indexed: 11/30/2024]
Abstract
The native membrane environment profoundly influences every aspect of membrane protein (MP) biology. Despite this, the most prevalent method of studying MPs uses detergents to disrupt and remove this vital membrane context, impeding our ability to decipher the local molecular context and its effect. Here we develop a membrane proteome-wide platform that enables rapid spatially resolved extraction of target MPs directly from cellular membranes into native nanodiscs that maintain the local membrane context, using a library of membrane-active polymers. We accompany this with an open-access database that quantifies the polymer-specific extraction efficiency for 2,065 unique mammalian MPs and provides the most optimized extraction condition for each. To validate, we demonstrate how this resource can enable rapid extraction and purification of target MPs from different organellar membranes with high efficiency and purity. Further, we show how the database can be extended to capture overexpressed multiprotein complexes by taking two synaptic vesicle MPs. We expect these publicly available resources to empower researchers across disciplines to efficiently capture membrane 'nano-scoops' containing a target MP and interface with structural, functional and bioanalytical approaches.
Collapse
Affiliation(s)
- Caroline Brown
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Snehasish Ghosh
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Rachel McAllister
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Mukesh Kumar
- F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Cell Signaling Technology, Danvers, MA, USA
| | - Gerard Walker
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Eric Sun
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Talat Aman
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Aniruddha Panda
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Shailesh Kumar
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Wenxue Li
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - James E Rothman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kallol Gupta
- Nanobiology Institute, Yale University, West Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
9
|
Kuyler G, Barnard E, Sridhar P, Murray RJ, Pollock NL, Wheatley M, Dafforn TR, Klumperman B. Tunable Terpolymer Series for the Systematic Investigation of Membrane Proteins. Biomacromolecules 2025; 26:415-427. [PMID: 39725644 PMCID: PMC11733950 DOI: 10.1021/acs.biomac.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Membrane proteins (MPs) are critical to cellular processes and serve as essential therapeutic targets. However, their isolation and characterization are often impeded by traditional detergent-based methods, which can compromise their native states, and retention of their native lipid environment. Amphiphilic polymers have emerged as effective alternatives, enabling the formation of nanoscale discs that preserve MPs' structural and functional integrity. We introduce a novel series of poly(styrene-co-maleic acid-co-(N-benzyl)maleimide) (BzAM) terpolymers with tunable amphiphilicity, synthesized through controlled polymerization. Designed to mimic and improve upon industry-standard poly(styrene-co-maleic acid), these well-defined terpolymers offer enhanced control over molecular weight and distribution, allowing for systematic evaluation of polymer properties and their effect on membrane solubilization. The BzAM series effectively solubilized membranes and demonstrated a direct correlation between polymer hydrophobicity and solubilization efficiency of bacterial ABC transporter, Sav1866. This research highlights the importance of rational polymer design in MP research and provides a foundation for future developments.
Collapse
Affiliation(s)
- Gestél
C. Kuyler
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Private Bag X1, Matieland 7602, South Africa
- Centre for
Health and Life Sciences, Coventry University, Coventry CV1 2DS, United Kingdom
| | - Elaine Barnard
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Private Bag X1, Matieland 7602, South Africa
| | - Pooja Sridhar
- School of
Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rebecca J. Murray
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Private Bag X1, Matieland 7602, South Africa
- Centre for
Health and Life Sciences, Coventry University, Coventry CV1 2DS, United Kingdom
| | - Naomi L. Pollock
- School of
Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Mark Wheatley
- Centre for
Health and Life Sciences, Coventry University, Coventry CV1 2DS, United Kingdom
- Centre of
Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands B15 2TT, United Kingdom
| | - Timothy R. Dafforn
- School of
Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Bert Klumperman
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
10
|
Wu W, Fang H, He H, Wu J, Gong Z, Li C, Pei X, Xu X. Crystal structure of the alternative complex III from the phototrophic bacterium Chloroflexus aurantiacus. Structure 2025; 33:29-38.e2. [PMID: 39500318 DOI: 10.1016/j.str.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Alternative complex III (ACIII) is a multi-subunit quinol:electron acceptor oxidoreductase that couples quinol oxidation with transmembrane proton translocation in bacterial respiratory and photosynthetic electron transport chains. Four ACIII cryoelectron microscopy (cryo-EM) structures are known. However, the effects of cryo-EM versus X-ray crystallography structure determination on ACIII structure are unclear. Here, we report a 3.25 Å crystal structure of photosynthetic ACIII from Chloroflexus aurantiacus (CaACIIIp), revealing eight subunits (ActA-G and I) with four iron-sulfur clusters and six c-type hemes, a menaquinol-binding site, and two proton translocation passages. Structural comparisons with the previously reported cryo-EM structures reveal slight local conformational changes in the solvent-exposed regions of ActB, ActD, ActG, and the transmembrane (TM) helix of subunit I. The regions conferring structural flexibility possess low sequence conservation across species. However, the core functional modules containing the menaquinol-binding pocket, redox centers, and proton translocation passages remain unchanged, preserving the enzyme's activity.
Collapse
Affiliation(s)
- Wenping Wu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Han Fang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huimin He
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingyi Wu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zijun Gong
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Chunyang Li
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinkai Pei
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoling Xu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China; Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
11
|
Roberge NA, Burrows LL. Building permits-control of type IV pilus assembly by PilB and its cofactors. J Bacteriol 2024; 206:e0035924. [PMID: 39508682 PMCID: PMC11656802 DOI: 10.1128/jb.00359-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Many bacteria produce type IV pili (T4P), surfaced-exposed protein filaments that enable cells to interact with their environment and transition from planktonic to surface-adapted states. T4P are dynamic, undergoing rapid cycles of filament extension and retraction facilitated by a complex protein nanomachine powered by cytoplasmic motor ATPases. Dedicated assembly motors drive the extension of the pilus fiber into the extracellular space, but like any machine, this process is tightly organized. These motors are coordinated by various ligands and binding partners, which control or optimize their functional associations with T4P machinery before cells commit to the crucial first step of building a pilus. This review focuses on the molecular mechanisms that regulate T4P extension motor function. We discuss secondary messenger-dependent transcriptional or post-translational regulation acting both directly on the motor and through protein effectors. We also discuss the recent discoveries of naturally occurring extension inhibitors as well as alternative mechanisms of pilus assembly and motor-dependent signaling pathways. Given that T4P are important virulence factors for many bacterial pathogens, studying these motor regulatory systems will provide new insights into T4P-dependent physiology and efficient strategies to disable them.
Collapse
Affiliation(s)
- Nathan A. Roberge
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Karimi R, Coupland CE, Rubinstein JL. Vesicle Picker: A tool for efficient identification of membrane protein complexes in vesicles. J Struct Biol 2024; 216:108148. [PMID: 39481498 DOI: 10.1016/j.jsb.2024.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/15/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Electron cryomicroscopy (cryo-EM) has recently allowed determination of near-atomic resolution structures of membrane proteins and protein complexes embedded in lipid vesicles. However, particle selection from electron micrographs of these vesicles can be challenging due to the strong signal contributed from the lipid bilayer. This challenge often requires iterative and laborious particle selection workflows to generate a dataset of high-quality particle images for subsequent analysis. Here we present Vesicle Picker, an open-source program built on the Segment Anything model. Vesicle Picker enables automatic identification of vesicles in cryo-EM micrographs with high recall and precision. It then exhaustively selects all potential particle locations, either at the perimeter or uniformly over the surface of the projection of the vesicle. The program is designed to interface with cryoSPARC, which performs both upstream micrograph processing and downstream single particle image analysis. We demonstrate Vesicle Picker's utility by determining a high-resolution map of the vacuolar-type ATPase from micrographs of native synaptic vesicles (SVs) and identifying an additional protein or protein complex in the SV membrane.
Collapse
Affiliation(s)
- Ryan Karimi
- Molecular Medicine Program, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, Toronto M5G 1L7, Canada
| | - Claire E Coupland
- Molecular Medicine Program, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, Toronto M5G 1L7, Canada; Department of Biochemistry, The University of Toronto, Toronto M5S 1A8, Canada.
| |
Collapse
|
13
|
Motov VV, Kot EF, Kislova SO, Bocharov EV, Arseniev AS, Boldyrev IA, Goncharuk SA, Mineev KS. On the Properties of Styrene-Maleic Acid Copolymer-Lipid Nanoparticles: A Solution NMR Perspective. Polymers (Basel) 2024; 16:3009. [PMID: 39518219 PMCID: PMC11548547 DOI: 10.3390/polym16213009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The production of functionally active membrane proteins (MPs) in an adequate membrane environment is a key step in structural biology. Polymer-lipid particles based on styrene and maleic acid (SMA) represent a promising type of membrane mimic, as they can extract properly folded MPs directly from their native lipid environment. However, the original SMA polymer is sensitive to acidic pH levels, which has led to the development of several modifications: SMA-EA, SMA-QA, and others. Here, we introduce a novel SMA derivative with a negatively charged taurine moiety, SMA-tau, and investigate the formation and characteristics of lipid-SMA-EA and lipid-SMA-tau membrane-mimicking particles. Our findings demonstrate that both polymers can form nanodiscs with a patch of lipid bilayer that can undergo phase transitions at temperatures close to those of the lipid bilayer membranes. Finally, we discuss the potential applications of these SMAs for NMR spectroscopy.
Collapse
Affiliation(s)
- Vladislav V. Motov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (V.V.M.); (E.F.K.); (E.V.B.); (A.S.A.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 140829 Moscow, Russia
| | - Erik F. Kot
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (V.V.M.); (E.F.K.); (E.V.B.); (A.S.A.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Svetlana O. Kislova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119071 Moscow, Russia; (S.O.K.); (I.A.B.)
| | - Eduard V. Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (V.V.M.); (E.F.K.); (E.V.B.); (A.S.A.)
| | - Alexander S. Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (V.V.M.); (E.F.K.); (E.V.B.); (A.S.A.)
| | - Ivan A. Boldyrev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119071 Moscow, Russia; (S.O.K.); (I.A.B.)
| | - Sergey A. Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (V.V.M.); (E.F.K.); (E.V.B.); (A.S.A.)
| | - Konstantin S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (V.V.M.); (E.F.K.); (E.V.B.); (A.S.A.)
| |
Collapse
|
14
|
Xin J, Min Z, Yu L, Yuan X, Liu A, Wu W, Zhang X, He H, Wu J, Xin Y, Blankenship RE, Tian C, Xu X. Cryo-EM structure of HQNO-bound alternative complex III from the anoxygenic phototrophic bacterium Chloroflexus aurantiacus. THE PLANT CELL 2024; 36:4212-4233. [PMID: 38299372 PMCID: PMC11635291 DOI: 10.1093/plcell/koae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Alternative complex III (ACIII) couples quinol oxidation and electron acceptor reduction with potential transmembrane proton translocation. It is compositionally and structurally different from the cytochrome bc1/b6f complexes but functionally replaces these enzymes in the photosynthetic and/or respiratory electron transport chains (ETCs) of many bacteria. However, the true compositions and architectures of ACIIIs remain unclear, as do their structural and functional relevance in mediating the ETCs. We here determined cryogenic electron microscopy structures of photosynthetic ACIII isolated from Chloroflexus aurantiacus (CaACIIIp), in apo-form and in complexed form bound to a menadiol analog 2-heptyl-4-hydroxyquinoline-N-oxide. Besides 6 canonical subunits (ActABCDEF), the structures revealed conformations of 2 previously unresolved subunits, ActG and I, which contributed to the complex stability. We also elucidated the structural basis of menaquinol oxidation and subsequent electron transfer along the [3Fe-4S]-6 hemes wire to its periplasmic electron acceptors, using electron paramagnetic resonance, spectroelectrochemistry, enzymatic analyses, and molecular dynamics simulations. A unique insertion loop in ActE was shown to function in determining the binding specificity of CaACIIIp for downstream electron acceptors. This study broadens our understanding of the structural diversity and molecular evolution of ACIIIs, enabling further investigation of the (mena)quinol oxidoreductases-evolved coupling mechanism in bacterial energy conservation.
Collapse
Affiliation(s)
- Jiyu Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenzhen Min
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Xinyi Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou 311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Aokun Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Wenping Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou 311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huimin He
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingyi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou 311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yueyong Xin
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert E Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou 311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
15
|
Cioccolo S, Barritt JD, Pollock N, Hall Z, Babuta J, Sridhar P, Just A, Morgner N, Dafforn T, Gould I, Byrne B. The mycobacterium lipid transporter MmpL3 is dimeric in detergent solution, SMALPs and reconstituted nanodiscs. RSC Chem Biol 2024; 5:901-913. [PMID: 39211474 PMCID: PMC11352979 DOI: 10.1039/d4cb00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The mycobacterial membrane protein large 3 (MmpL3) transports key precursor lipids to the outer membrane of Mycobacterium species. Multiple structures of MmpL3 from both M. tuberculosis and M. smegmatis in various conformational states indicate that the protein is both structurally and functionally monomeric. However, most other resistance, nodulation and cell division (RND) transporters structurally characterised to date are either dimeric or trimeric. Here we present an in depth biophysical and computational analysis revealing that MmpL3 from M. smegmatis exists as a dimer in a variety of membrane mimetic systems (SMALPs, detergent-based solution and nanodiscs). Sucrose gradient separation of MmpL3 populations from M. smegmatis, reconstituted into nanodiscs, identified monomeric and dimeric populations of the protein using laser induced liquid bead ion desorption (LILBID), a native mass spectrometry technique. Preliminary cryo-EM analysis confirmed that MmpL3 forms physiological dimers. Untargeted lipidomics experiments on membrane protein co-purified lipids revealed PE and PG lipid classes were predominant. Molecular dynamics (MD) simulations, in the presence of physiologically-relevant lipid compositions revealed the likely dimer interface.
Collapse
Affiliation(s)
- Sara Cioccolo
- Department of Life Sciences, Imperial College London Exhibition Road, South Kensington London SW7 2AZ UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London Shepherd's Bush London W12 0BZ UK
| | - Joseph D Barritt
- Department of Life Sciences, Imperial College London Exhibition Road, South Kensington London SW7 2AZ UK
| | - Naomi Pollock
- School of Biosciences, University of Birmingham Birmingham UK
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London London UK
| | - Julia Babuta
- Division of Systems Medicine, Imperial College London London UK
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham Birmingham UK
| | - Alicia Just
- Institute of Physical and Theoretical Chemistry, J.W. Goethe-University Frankfurt am Main Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, J.W. Goethe-University Frankfurt am Main Germany
| | - Tim Dafforn
- School of Biosciences, University of Birmingham Birmingham UK
| | - Ian Gould
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London Shepherd's Bush London W12 0BZ UK
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London Exhibition Road, South Kensington London SW7 2AZ UK
| |
Collapse
|
16
|
Brown C, Ghosh S, McAllister R, Kumar M, Walker G, Sun E, Aman T, Panda A, Kumar S, Li W, Coleman J, Liu Y, Rothman JE, Bhattacharyya M, Gupta K. A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579775. [PMID: 38405833 PMCID: PMC10888908 DOI: 10.1101/2024.02.10.579775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The intricate molecular environment of the native membrane profoundly influences every aspect of membrane protein (MP) biology. Despite this, the most prevalent method of studying MPs uses detergent-like molecules that disrupt and remove this vital local membrane context. This severely impedes our ability to quantitatively decipher the local molecular context and comprehend its regulatory role in the structure, function, and biogenesis of MPs. Using a library of membrane-active polymers we have developed a platform for the high-throughput analysis of the membrane proteome. The platform enables near-complete spatially resolved extraction of target MPs directly from their endogenous membranes into native nanodiscs that maintain the local membrane context. We accompany this advancement with an open-access database that quantifies the polymer-specific extraction variability for 2065 unique mammalian MPs and provides the most optimized condition for each of them. Our method enables rapid and near-complete extraction and purification of target MPs directly from their endogenous organellar membranes at physiological expression levels while maintaining the nanoscale local membrane environment. Going beyond the plasma membrane proteome, our platform enables extraction from any target organellar membrane including the endoplasmic reticulum, mitochondria, lysosome, Golgi, and even transient organelles such as the autophagosome. To further validate this platform, we took several independent MPs and demonstrated how our resource can enable rapid extraction and purification of target MPs from different organellar membranes with high efficiency and purity. Further, taking two synaptic vesicle MPs, we show how the database can be extended to capture multiprotein complexes between overexpressed MPs. We expect these publicly available resources to empower researchers across disciplines to efficiently capture membrane 'nano-scoops' containing a target MP and interface with structural, functional, and other bioanalytical approaches. We demonstrate an example of this by combining our extraction platform with single-molecule TIRF imaging to demonstrate how it can enable rapid determination of homo-oligomeric states of target MPs in native cell membranes.
Collapse
Affiliation(s)
- Caroline Brown
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Snehasish Ghosh
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Rachel McAllister
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Mukesh Kumar
- F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gerard Walker
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Eric Sun
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Talat Aman
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Aniruddha Panda
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Shailesh Kumar
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Wenxue Li
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - James E Rothman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kallol Gupta
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
17
|
Dai M, Tan X, Ye Z, Chen X, Zhang Y, Ruan Y, Ma B, Kong D. Analysis of lettuce transcriptome reveals the mechanism of different light/dark cycle in promoting the growth and quality. FRONTIERS IN PLANT SCIENCE 2024; 15:1394434. [PMID: 39045594 PMCID: PMC11263018 DOI: 10.3389/fpls.2024.1394434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Light/dark (L/D) cycle plays a crucial role in controlling the production and quality of vegetables. However, the mechanism of L/D cycle on vegetable growth and quality is scarce studied. To investigate the impact of L/D cycle on lettuce growth and quality, we designed three diel scenarios, including 16 hours of light and 8 hours of darkness (L16/D8), 12 hours of light and 6 hours of darkness (L12/D6), and 8 hours of light and 4 hours of darkness (L8/D4). By phenotypic analysis, we found that lettuce grew taller under the L8/D4 scenario than under L16/D8 light cycle scenarios. The physiological indexes showed that the lettuce leaves grown in the L8/D4 scenario exhibited greater enhancements in the levels of soluble protein, soluble sugar, and carotenoid content compared to the other scenarios. By comparing the expression levels under different diel scenarios (L16/D8 vs L12/D6, L16/D8 vs L8/D4, and L12/D6 vs L8/D4), we identified 7,209 differentially expressed genes (DEGs). Additionally, 3 gene modules that were closely related to L/D cycle of lettuce were selected by WGCNA analysis. The eigengenes of three gene modules were enriched in plant hormone signal transduction, sphingolipid metabolism, and nucleocytoplasmic transport pathways. Through network analysis, we identified six hub genes (CIP1, SCL34, ROPGEF1, ACD6, CcmB, and Rps4) in the three gene modules, which were dominant in plant circadian rhythms and greatly affected lettuce growth. qRT-PCR analysis confirmed the diurnal response patterns of the 6 hub genes in different treatments were significant. This study intensively enhanced our comprehension of the L/D cycle in the growth morphology, nutritional quality, and metabolic pathways of lettuce.
Collapse
Affiliation(s)
- Mengdi Dai
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangfeng Tan
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ziran Ye
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xuting Chen
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yi Zhang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou, China
| | - Yunjie Ruan
- lnstitute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Academy of Rural Development, Zhejiang University, Hangzhou, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Dedong Kong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
18
|
Karanth S, Benthin J, Wiesenfarth M, Somoza V, Koehler M. Nanodisc Technology: Direction toward Physicochemical Characterization of Chemosensory Membrane Proteins in Food Flavor Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14521-14529. [PMID: 38906535 PMCID: PMC11228972 DOI: 10.1021/acs.jafc.4c01827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
Chemosensory membrane proteins such as G-protein-coupled receptors (GPCRs) drive flavor perception of food formulations. To achieve this, a detailed understanding of the structure and function of these membrane proteins is needed, which is often limited by the extraction and purification methods involved. The proposed nanodisc methodology helps overcome some of these existing challenges such as protein stability and solubilization along with their reconstitution from a native cell-membrane environment. Being well-established in structural biology procedures, nanodiscs offer this elegant solution by using, e.g., a membrane scaffold protein (MSP) or styrene-maleic acid (SMA) polymer, which interacts directly with the cell membrane during protein reconstitution. Such derived proteins retain their biophysical properties without compromising the membrane architecture. Here, we seek to show that these lipidic systems can be explored for insights with a focus on chemosensory membrane protein morphology and structure, conformational dynamics of protein-ligand interactions, and binding kinetics to answer pending questions in flavor research. Additionally, the compatibility of nanodiscs across varied (labeled or label-free) techniques offers significant leverage, which has been highlighted here.
Collapse
Affiliation(s)
- Sanjai Karanth
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Julia Benthin
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
- TUM
Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany
| | - Marina Wiesenfarth
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
- TUM
Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany
| | - Veronika Somoza
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
- Chair
of Nutritional Systems Biology, Technical
University of Munich, 85354 Freising, Germany
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Melanie Koehler
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
- TUM
Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
19
|
Woubshete M, Cioccolo S, Byrne B. Advances in Membrane Mimetic Systems for Manipulation and Analysis of Membrane Proteins: Detergents, Polymers, Lipids and Scaffolds. Chempluschem 2024; 89:e202300678. [PMID: 38315323 DOI: 10.1002/cplu.202300678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Extracting membrane proteins from the hydrophobic environment of the biological membrane, in a physiologically relevant and stable state, suitable for downstream analysis remains a challenge. The traditional route to membrane protein extraction has been to use detergents and the last 15 years or so have seen a veritable explosion in the development of novel detergents with improved properties, making them more suitable for individual proteins and specific applications. There have also been significant advances in the development of encapsulation of membrane proteins in lipid based nanodiscs, either directly from the native membrane using polymers allowing effective capture of the protein and protein-associated membrane lipids, or via reconstitution of detergent extracted and purified protein into nanodiscs of defined lipid composition. All of these advances have been successfully applied to the study of membrane proteins via a range of techniques and there have been some spectacular membrane protein structures solved. In addition, the first detailed structural and biophysical analyses of membrane proteins retained within a biological membrane have been reported. Here we summarise and review the recent advances with respect to these new agents and systems for membrane protein extraction, reconstitution and analysis.
Collapse
Affiliation(s)
- Menebere Woubshete
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Sara Cioccolo
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
- Department of Chemistry, Imperial College London, White City, London, W12 0BZ, United Kingdom
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
20
|
Krajewska M, Możajew M, Filipek S, Koprowski P. Interaction of ROMK2 channel with lipid kinases DGKE and AGK: Potential channel activation by localized anionic lipid synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159443. [PMID: 38056763 DOI: 10.1016/j.bbalip.2023.159443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
In this study, we utilized enzyme-catalyzed proximity labeling with the engineered promiscuous biotin ligase Turbo-ID to identify the proxisome of the ROMK2 channel. This channel resides in various cellular membrane compartments of the cell including the plasma membrane, endoplasmic reticulum and mitochondria. Within mitochondria, ROMK2 has been suggested as a pore-forming subunit of mitochondrial ATP-regulated potassium channel (mitoKATP). We found that ROMK2 proxisome in addition to previously known protein partners included two lipid kinases: acylglycerol kinase (AGK) and diacylglycerol kinase ε (DGKE), which are localized in mitochondria and the endoplasmic reticulum, respectively. Through co-immunoprecipitation, we confirmed that these two kinases are present in complexes with ROMK2 channels. Additionally, we found that the products of AGK and DGKE, lysophosphatidic acid (LPA) and phosphatidic acid (PA), stimulated the activity of ROMK2 channels in artificial lipid bilayers. Our molecular docking studies revealed the presence of acidic lipid binding sites in the ROMK2 channel, similar to those previously identified in Kir2 channels. Based on these findings, we propose a model wherein localized lipid synthesis, mediated by channel-bound lipid kinases, contributes to the regulation of ROMK2 activity within distinct intracellular compartments, such as mitochondria and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Milena Krajewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Mariusz Możajew
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland.
| |
Collapse
|
21
|
Lu J, Zhang C, Shi S, Li S, Liu J, Wu J, Huang C, Lei M. Stoichiometry and architecture of the platelet membrane complex glycoprotein Ib-IX-V. Biol Chem 2024; 405:91-104. [PMID: 36942505 DOI: 10.1515/hsz-2022-0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Glycoprotein (GP) Ib-IX-V is the second most abundant platelet receptor for thrombin and other ligands crucial for hemostasis and thrombosis. Its activity is involved in platelet adhesion to vascular injury sites and thrombin-induced platelet aggregation. GPIb-IX-V is a heteromeric complex composed of four subunits, GPIbα, GPIbβ, GPV and GPIX, in a stoichiometric ratio that has been wildly debated. Despite its important physiological roles, the overall structure and molecular arrangement of GPIb-IX-V are not yet fully understood. Here, we purify stable and functional human GPIb-IX-V complex from reconstituted EXPi293F cells in high homogeneity, and perform biochemical and structural characterization of this complex. Single-particle cryo-electron microscopy structure of GPIb-IX-V is determined at ∼11 Å resolution, which unveils the architecture of GPIb-IX-V and its subunit organization. Size-exclusion chromatography-multi-angle static light scattering analysis reveals that GPIb-IX-V contains GPIb-IX and GPV at a 1:1 stoichiometric ratio and surface plasmon resonance assays show that association of GPV leads to slow kinetics of thrombin binding to GPIb-IX-V. Taken together, our results provide the first three-dimensional architecture of the intact GPIb-IX-V complex, which extends our understanding of the structure and functional mechanism of this complex in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Juanjuan Lu
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Chunli Zhang
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Shaohua Shi
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Shaobai Li
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wu
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Chenhui Huang
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Ming Lei
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
- State Key laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Yu L, Min Z, Liu M, Xin Y, Liu A, Kuang J, Wu W, Wu J, He H, Xin J, Blankenship RE, Tian C, Xu X. A cytochrome c 551 mediates the cyclic electron transport chain of the anoxygenic phototrophic bacterium Roseiflexus castenholzii. PLANT COMMUNICATIONS 2024; 5:100715. [PMID: 37710959 PMCID: PMC10873879 DOI: 10.1016/j.xplc.2023.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/27/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Roseiflexus castenholzii is a gram-negative filamentous phototrophic bacterium that carries out anoxygenic photosynthesis through a cyclic electron transport chain (ETC). The ETC is composed of a reaction center (RC)-light-harvesting (LH) complex (rcRC-LH); an alternative complex III (rcACIII), which functionally replaces the cytochrome bc1/b6f complex; and the periplasmic electron acceptor auracyanin (rcAc). Although compositionally and structurally different from the bc1/b6f complex, rcACIII plays similar essential roles in oxidizing menaquinol and transferring electrons to the rcAc. However, rcACIII-mediated electron transfer (which includes both an intraprotein route and a downstream route) has not been clearly elucidated, nor have the details of cyclic ETC. Here, we identify a previously unknown monoheme cytochrome c (cyt c551) as a novel periplasmic electron acceptor of rcACIII. It reduces the light-excited rcRC-LH to complete a cyclic ETC. We also reveal the molecular mechanisms involved in the ETC using electron paramagnetic resonance (EPR), spectroelectrochemistry, and enzymatic and structural analyses. We find that electrons released from rcACIII-oxidized menaquinol are transferred to two alternative periplasmic electron acceptors (rcAc and cyt c551), which eventually reduce the rcRC to form the complete cyclic ETC. This work serves as a foundation for further studies of ACIII-mediated electron transfer in anoxygenic photosynthesis and broadens our understanding of the diversity and molecular evolution of prokaryotic ETCs.
Collapse
Affiliation(s)
- Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenzhen Min
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Menghua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yueyong Xin
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Aokun Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Jian Kuang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wenping Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingyi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Huimin He
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiyu Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China; Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
23
|
Barbosa ACC, Venceslau SS, Pereira IAC. DsrMKJOP is the terminal reductase complex in anaerobic sulfate respiration. Proc Natl Acad Sci U S A 2024; 121:e2313650121. [PMID: 38285932 PMCID: PMC10861901 DOI: 10.1073/pnas.2313650121] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Microbial dissimilatory sulfate reduction (DSR) is a key process in the Earth biogeochemical sulfur cycle. In spite of its importance to the sulfur and carbon cycles, industrial processes, and human health, it is still not clear how reduction of sulfate to sulfide is coupled to energy conservation. A central step in the pathway is the reduction of sulfite by the DsrAB dissimilatory sulfite reductase, which leads to the production of a DsrC-trisulfide. A membrane-bound complex, DsrMKJOP, is present in most organisms that have DsrAB and DsrC, and its involvement in energy conservation has been inferred from sequence analysis, but its precise function was so far not determined. Here, we present studies revealing that the DsrMKJOP complex of the sulfate reducer Archaeoglobus fulgidus works as a menadiol:DsrC-trisulfide oxidoreductase. Our results reveal a close interaction between the DsrC-trisulfide and the DsrMKJOP complex and show that electrons from the quinone pool reduce consecutively the DsrM hemes b, the DsrK noncubane [4Fe-4S]3+/2+ catalytic center, and finally the DsrC-trisulfide with concomitant release of sulfide. These results clarify the role of this widespread respiratory membrane complex and support the suggestion that DsrMKJOP contributes to energy conservation upon reduction of the DsrC-trisulfide in the last step of DSR.
Collapse
Affiliation(s)
- Ana C. C. Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| | - Sofia S. Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| |
Collapse
|
24
|
Moller E, Britt M, Zhou F, Yang H, Anshkin A, Ernst R, Sukharev S, Matthies D. Polymer-extracted structure of the mechanosensitive channel MscS reveals the role of protein-lipid interactions in the gating cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576751. [PMID: 38328078 PMCID: PMC10849555 DOI: 10.1101/2024.01.22.576751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Membrane protein structure determination is not only technically challenging but is further complicated by the removal or displacement of lipids, which can result in non-native conformations or a strong preference for certain states at the exclusion of others. This is especially applicable to mechanosensitive channels (MSC's) that evolved to gate in response to subtle changes in membrane tension transmitted through the lipid bilayer. E. coli MscS, a model bacterial system, is an ancestral member of the large family of MSCs found across all phyla of walled organisms. As a tension sensor, MscS is very sensitive and highly adaptive; it readily opens under super-threshold tension and closes under no tension, but under lower tensions, it slowly inactivates and can only recover when tension is released. However, existing cryo-EM structures do not explain the entire functional gating cycle of open, closed, and inactivated states. A central question in the field has been the assignment of the frequently observed non-conductive conformation to either a closed or inactivated state. Here, we present a 3 Å MscS structure in native nanodiscs obtained with Glyco-DIBMA polymer extraction, eliminating the lipid removal step that is common to all previous structures. Besides the protein in the non-conductive conformation, we observe well-resolved densities of four endogenous phospholipid molecules intercalating between the lipid-facing and pore-lining helices in preferred orientations. Mutations of positively charged residues coordinating these lipids inhibit MscS inactivation, whereas removal of a negative charge near the lipid-filled crevice increases inactivation. The functional data allows us to assign this class of structures to the inactivated state. This structure reveals preserved lipids in their native locations, and the functional effects of their destabilization illustrate a novel inactivation mechanism based on an uncoupling of the peripheral tension-sensing helices from the gate.
Collapse
|
25
|
Deniaud A, Kabasakal BV, Bufton JC, Schaffitzel C. Sample Preparation for Electron Cryo-Microscopy of Macromolecular Machines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:173-190. [PMID: 38507207 DOI: 10.1007/978-3-031-52193-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
High-resolution structure determination by electron cryo-microscopy underwent a step change in recent years. This now allows study of challenging samples which previously were inaccessible for structure determination, including membrane proteins. These developments shift the focus in the field to the next bottlenecks which are high-quality sample preparations. While the amounts of sample required for cryo-EM are relatively small, sample quality is the key challenge. Sample quality is influenced by the stability of complexes which depends on buffer composition, inherent flexibility of the sample, and the method of solubilization from the membrane for membrane proteins. It further depends on the choice of sample support, grid pre-treatment and cryo-grid freezing protocol. Here, we discuss various widely applicable approaches to improve sample quality for structural analysis by cryo-EM.
Collapse
Affiliation(s)
- Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG - Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Burak V Kabasakal
- School of Biochemistry, University of Bristol, Bristol, UK
- Turkish Accelerator and Radiation Laboratory, Gölbaşı, Ankara, Türkiye
| | | | | |
Collapse
|
26
|
Krishnarjuna B, Sharma G, Ravula T, Ramamoorthy A. Factors influencing the detergent-free membrane protein isolation using synthetic nanodisc-forming polymers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184240. [PMID: 37866688 PMCID: PMC11585079 DOI: 10.1016/j.bbamem.2023.184240] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
The detergent-free isolation of membrane proteins using synthetic polymers is becoming the desired approach for functional and structural studies of membrane proteins. Since the expression levels for many membrane proteins are low and a high yield of functionalized reconstituted membrane proteins is essential for in vitro studies, it is crucial to optimize the experimental conditions for a given polymer to solubilize target membranes/proteins effectively. The factors that affect membrane solubilization and subsequently the isolation of a target membrane protein include polymer concentration, polymer charge, temperature, pH, and concentration of divalent metal ions. Therefore, it is important to have knowledge about the efficacy of different types of polymers in solubilizing cell membranes. In this study, we evaluate the efficacy of inulin-based non-ionic polymers in solubilizing E. coli membranes enriched with rat flavin mononucleotide binding-domain (FBD) of cytochrome-P450-reductase (CPR) and rabbit cytochrome-b5 (Cyt-b5) under various solubilization conditions. Our results show that a 1:1 (w/w) membrane:polymer ratio, low temperature, high pH and sub-millimolar concentration of metal ions favor the solubilization of E. coli membranes enriched with FBD or Cyt-b5. Conversely, the presence of excess divalent metal ions affected the final protein levels in the polymer-solubilized samples. We believe that the results from this study provide knowledge to assess and plan the use of non-ionic polymers in membrane protein studies.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Gaurav Sharma
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayyalusamy Ramamoorthy
- National High Magnetic Field Laboratory, Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA.
| |
Collapse
|
27
|
Hellmold N, Eberwein M, Phan MHT, Kümmel S, Einsle O, Deobald D, Adrian L. Dehalococcoides mccartyi strain CBDB1 takes up protons from the cytoplasm to reductively dehalogenate organohalides indicating a new modus of proton motive force generation. Front Microbiol 2023; 14:1305108. [PMID: 38192294 PMCID: PMC10772276 DOI: 10.3389/fmicb.2023.1305108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Proton translocation across the cytoplasmic membrane is a vital process for all organisms. Dehalococcoides strains are strictly anaerobic organohalide respiring bacteria that lack quinones and cytochromes but express a large membrane-bound protein complex (OHR complex) proposed to generate a proton gradient. However, its functioning is unclear. By using a dehalogenase-based enzyme activity assay with deuterium-labelled water in various experimental designs, we obtained evidence that the halogen atom of the halogenated electron acceptor is substituted with a proton from the cytoplasm. This suggests that the protein complex couples exergonic electron flux through the periplasmic subunits of the OHR complex to the endergonic transport of protons from the cytoplasm across the cytoplasmic membrane against the proton gradient to the halogenated electron acceptor. Using computational tools, we located two proton-conducting half-channels in the AlphaFold2-predicted structure of the OmeB subunit of the OHR complex, converging in a highly conserved arginine residue that could play a proton gatekeeper role. The cytoplasmic proton half-channel in OmeB is connected to a putative proton-conducting path within the reductive dehalogenase subunit. Our results indicate that the reductive dehalogenase and its halogenated substrate serve as both electron and proton acceptors, providing insights into the proton translocation mechanism within the OHR complex and contributing to a better understanding of energy conservation in D. mccartyi strains. Our results reveal a very simple mode of energy conservation in anaerobic bacteria, showing that proton translocation coupled to periplasmic electron flow might have importance also in other microbial processes and biotechnological applications.
Collapse
Affiliation(s)
- Nadine Hellmold
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Marie Eberwein
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - My Hanh Thi Phan
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Steffen Kümmel
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Oliver Einsle
- Institute of Biochemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Darja Deobald
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
28
|
Hoang Trinh TK, Catalano C, Guo Y. Fabrication of membrane proteins in the form of native cell membrane nanoparticles using novel membrane active polymers. NANOSCALE ADVANCES 2023; 5:5932-5940. [PMID: 37881706 PMCID: PMC10597567 DOI: 10.1039/d3na00381g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Membrane proteins are a widespread class of bio-macromolecules responsible for numerous vital biological processes and serve as therapeutic targets for a vast array of contemporary medications. For membrane protein isolation and purification, detergents have historically been used. Despite this, detergents frequently result in protein instability. Consequently, their application was limited. Recent detergent-free approaches have been invented. Among these, styrene-maleic acid lipid particle (SMALP), diisobutylene-maleic acid lipid particle (DIBMALP), and native cell membrane nanoparticle (NCMN) systems are the most prevalent. The NCMN system intends to create a library of membrane-active polymers suitable for high-resolution structure determination of membrane protein. Design, synthesis, characterization, and comparative application evaluations of three novel classes of NCMN polymers, NCMNP13-x, NCMNP21-x, and NCMNP21b-x, are presented in this article. Although each NCMN polymer can solubilize distinct model membrane proteins and retain native lipids in NCMN particles, only the NCMNP21b-x family produces lipid-protein particles with ideal buffer compatibility and high homogeneity suitable for single-particle cryo-EM analysis. NCMNP21b-x polymers that generate high-quality NCMN particles are particularly desirable for membrane protein structural biology.
Collapse
Affiliation(s)
- Thi Kim Hoang Trinh
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Claudio Catalano
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
29
|
Janata M, Gupta S, Čadová E, Angelisová P, Krishnarjuna B, Ramamoorthy A, Hořejší V, Raus V. Sulfonated polystyrenes: pH and Mg 2+-insensitive amphiphilic copolymers for detergent-free membrane protein isolation. Eur Polym J 2023; 198:112412. [PMID: 37780808 PMCID: PMC10538444 DOI: 10.1016/j.eurpolymj.2023.112412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Amphiphilic polymers are increasingly applied in the detergent-free isolation and functional studies of membrane proteins. However, the carboxylate group present in the structure of many popular variants, such as styrene-maleic acid (SMA) copolymers, brings limitations in terms of polymer sensitivity to precipitation at acidic pH or in the presence of divalent metal cations. Herein, we addressed this problem by replacing carboxylate with the more acidic sulfonate groups. To this end, we synthesized a library of amphiphilic poly[styrene-co-(sodium 4-styrene sulfonate)] copolymers (termed SSS), differing in their molecular weight and overall polarity. Using model cell membranes (Jurkat), we identified two copolymer compositions (SSS-L30 and SSS-L36) that solubilized membranes to an extent similar to SMA. Interestingly, the density gradient ultracentrifugation/SDS-PAGE/Western blotting analysis of cell lysates revealed a distribution of studied membrane proteins in the gradient fractions that was different than for SMA-solubilized membranes. Importantly, unlike SMA, the SSS copolymers remained soluble at low pH and in the presence of Mg2+ ions. Additionally, the solubilization of DMPC liposomes by the lead materials was studied by turbidimetry, DLS, SEC, and high-resolution NMR, revealing, for SSS-L36, the formation of stable particles (nanodiscs), facilitated by the direct hydrophobic interaction of the copolymer phenyls with lipid acyl chains.
Collapse
Affiliation(s)
- Miroslav Janata
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Sachin Gupta
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Pavla Angelisová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Václav Hořejší
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
30
|
Townsend JA, Marty MT. What's the defect? Using mass defects to study oligomerization of membrane proteins and peptides in nanodiscs with native mass spectrometry. Methods 2023; 218:1-13. [PMID: 37482149 PMCID: PMC10529358 DOI: 10.1016/j.ymeth.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
Many membrane proteins form functional complexes that are either homo- or hetero-oligomeric. However, it is challenging to characterize membrane protein oligomerization in intact lipid bilayers, especially for polydisperse mixtures. Native mass spectrometry of membrane proteins and peptides inserted in lipid nanodiscs provides a unique method to study the oligomeric state distribution and lipid preferences of oligomeric assemblies. To interpret these complex spectra, we developed novel data analysis methods using macromolecular mass defect analysis. Here, we provide an overview of how mass defect analysis can be used to study oligomerization in nanodiscs, discuss potential limitations in interpretation, and explore strategies to resolve these ambiguities. Finally, we review recent work applying this technique to studying formation of antimicrobial peptide, amyloid protein, and viroporin complexes with lipid membranes.
Collapse
Affiliation(s)
- Julia A Townsend
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
31
|
Farrelly MD, Zhai J, Tiong AYJ, van 't Hag L, Yu HH, Li J, Martin LL, Thang SH. Membrane interaction and selectivity of novel alternating cationic lipid-nanodisc assembling polymers. Biomater Sci 2023; 11:5955-5969. [PMID: 37477383 DOI: 10.1039/d3bm00477e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Synthetic polymer nanodiscs are self-assembled structures formed from amphipathic copolymers encapsulating membrane proteins and surrounding phospholipids into water soluble discs. These nanostructures have served as an analytical tool for the detergent free solubilisation and structural study of membrane proteins (MPs) in their native lipid environment. We established the polymer-lipid nanodisc forming ability of a novel class of amphipathic copolymer comprised of an alternating sequence of N-alkyl functionalised maleimide (AlkylM) of systematically varied hydrocarbon chain length, and cationic N-methyl-4-vinyl pyridinium iodide (MVP). Using a combination of physicochemical techniques, the solubilisation efficiency, size, structure and shape of DMPC lipid containing poly(MVP-co-AlkylM) nanodiscs were determined. Lipid solubilisation increased with AlkylM hydrocarbon chain length from methyl (MM), ethyl (EtM), n-propyl (PM), iso-butyl (IBM) through to n-butyl (BM) maleimide bearing polymers. More hydrophobic derivatives formed smaller sized nanodiscs and lipid ordering within poly(MVP-co-AlkylM) nanodiscs was affected by nanodisc size. In dye-release assays, shorter N-alkyl substituted polymers, particularly poly(MVP-co-EtM), exhibited low activities against eukaryotic mimetic POPC membrane and increased their liposome disruption as POPC : POPG membrane mixtures increased in their anionic POPG component, resembling the charge profile of bacterial membranes. These trends in membrane selectivity were transferred towards native cell systems in which gram-positive Staphylococcus aureus and gram-negative Acenobacter baumannii bacterial strains were relatively susceptible to disruption by hydrophobic n-butyl- and n-propyl-poly(MVP-co-AlkylM) derivatives compared to human red blood cells (HRBCs), with a more pronounced selectivity resulting from poly(MVP-co-PM). Such selective membrane interaction by less hydrophobic polymers provides a framework for polymer design towards applications including selective membrane component solubilisation, biosensing and antimicrobial development.
Collapse
Affiliation(s)
| | - Jiali Zhai
- School of Science, STEM College, RMIT University Melbourne, VIC 3000, Australia
| | - Alice Y J Tiong
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Leonie van 't Hag
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Heidi H Yu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University Clayton, VIC 3800, Australia
| | - Jian Li
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University Clayton, VIC 3800, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University Clayton, VIC 3800, Australia.
| | - San H Thang
- School of Chemistry, Monash University Clayton, VIC 3800, Australia.
| |
Collapse
|
32
|
Pettersen JM, Yang Y, Robinson AS. Advances in nanodisc platforms for membrane protein purification. Trends Biotechnol 2023; 41:1041-1054. [PMID: 36935323 DOI: 10.1016/j.tibtech.2023.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023]
Abstract
Membrane scaffold protein nanodiscs (MSPNDs) are an invaluable tool for improving purified membrane protein (MP) stability and activity compared to traditional micellar methods, thus enabling an increase in high-resolution MP structures, particularly in concert with cryogenic electron microscopy (cryo-EM) approaches. In this review we highlight recent advances and breakthroughs in MSPND methodology and applications. We also introduce and discuss saposin-lipoprotein nanoparticles (salipros) and copolymer nanodiscs which have recently emerged as authentic MSPND alternatives. We compare the advantages and disadvantages of MSPNDs, salipros, and copolymer nanodisc technologies to highlight potential opportunities for using each platform for MP purification and characterization.
Collapse
Affiliation(s)
- John M Pettersen
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yaxin Yang
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Tzortzini E, Kolocouris A. Molecular Biophysics of Class A G Protein Coupled Receptors-Lipids Interactome at a Glance-Highlights from the A 2A Adenosine Receptor. Biomolecules 2023; 13:957. [PMID: 37371538 DOI: 10.3390/biom13060957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are embedded in phospholipid membrane bilayers with cholesterol representing 34% of the total lipid content in mammalian plasma membranes. Membrane lipids interact with GPCRs structures and modulate their function and drug-stimulated signaling through conformational selection. It has been shown that anionic phospholipids form strong interactions between positively charged residues in the G protein and the TM5-TM6-TM 7 cytoplasmic interface of class A GPCRs stabilizing the signaling GPCR-G complex. Cholesterol with a high content in plasma membranes can be identified in more specific sites in the transmembrane region of GPCRs, such as the Cholesterol Consensus Motif (CCM) and Cholesterol Recognition Amino Acid Consensus (CRAC) motifs and other receptor dependent and receptor state dependent sites. Experimental biophysical methods, atomistic (AA) MD simulations and coarse-grained (CG) molecular dynamics simulations have been applied to investigate these interactions. We emphasized here the impact of phosphatidyl inositol-4,5-bisphosphate (PtdIns(4,5)P2 or PIP2), a minor phospholipid component and of cholesterol on the function-related conformational equilibria of the human A2A adenosine receptor (A2AR), a representative receptor in class A GPCR. Several GPCRs of class A interacted with PIP2 and cholesterol and in many cases the mechanism of the modulation of their function remains unknown. This review provides a helpful comprehensive overview for biophysics that enter the field of GPCRs-lipid systems.
Collapse
Affiliation(s)
- Efpraxia Tzortzini
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
34
|
Scherhag A, Räschle M, Unbehend N, Venn B, Glueck D, Mühlhaus T, Keller S, Pérez Patallo E, Zehner S, Frankenberg-Dinkel N. Characterization of a soluble library of the Pseudomonas aeruginosa PAO1 membrane proteome with emphasis on c-di-GMP turnover enzymes. MICROLIFE 2023; 4:uqad028. [PMID: 37441524 PMCID: PMC10335732 DOI: 10.1093/femsml/uqad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023]
Abstract
Studies of protein-protein interactions in membranes are very important to fully understand the biological function of a cell. The extraction of proteins from the native membrane environment is a critical step in the preparation of membrane proteins that might affect the stability of protein complexes. In this work, we used the amphiphilic diisobutylene/maleic acid copolymer to extract the membrane proteome of the opportunistic pathogen Pseudomonas aeruginosa, thereby creating a soluble membrane-protein library within a native-like lipid-bilayer environment. Size fractionation of nanodisc-embedded proteins and subsequent mass spectrometry enabled the identification of 3358 proteins. The native membrane-protein library showed a very good overall coverage compared to previous proteome data. The pattern of size fractionation indicated that protein complexes were preserved in the library. More than 20 previously described complexes, e.g. the SecYEG and Pili complexes, were identified and analyzed for coelution. Although the mass-spectrometric dataset alone did not reveal new protein complexes, combining pulldown assays with mass spectrometry was successful in identifying new protein interactions in the native membrane-protein library. Thus, we identified several candidate proteins for interactions with the membrane phosphodiesterase NbdA, a member of the c-di-GMP network. We confirmed the candidate proteins CzcR, PA4200, SadC, and PilB as novel interaction partners of NbdA using the bacterial adenylate cyclase two-hybrid assay. Taken together, this work demonstrates the usefulness of the native membrane-protein library of P. aeruginosa for the investigation of protein interactions and membrane-protein complexes. Data are available via ProteomeXchange with identifiers PXD039702 and PXD039700.
Collapse
Affiliation(s)
- Anna Scherhag
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Markus Räschle
- Department of Molecular Genetics, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Niklas Unbehend
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Benedikt Venn
- Department of Computational Systems Biology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - David Glueck
- Department of Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Department of Field of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Timo Mühlhaus
- Department of Computational Systems Biology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Sandro Keller
- Department of Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Department of Field of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Eugenio Pérez Patallo
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | | | - Nicole Frankenberg-Dinkel
- Corresponding author. RPTU Kaiserslautern-Landau, Microbiology, Kaiserslautern 67655, Germany. E-mail:
| |
Collapse
|
35
|
Calisto F, Todorovic S, Louro RO, Pereira MM. Exploring substrate interaction in respiratory alternative complex III from Rhodothermus marinus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148983. [PMID: 37127243 DOI: 10.1016/j.bbabio.2023.148983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Rhodothermus marinus is a thermohalophilic organism that has optimized its microaerobic metabolism at 65 °C. We have been exploring its respiratory chain and observed the existence of a quinone:cytochrome c oxidoreductase complex, named Alternative Complex III, structurally different from the bc1 complex. In the present work, we took profit from nanodiscs and liposomes technology to investigate ACIII activity in membrane-mimicking systems. In addition, we studied the interaction of ACIII with menaquinone, its potential electron acceptors (HiPIP and cytochrome c) and the caa3 oxygen reductase.
Collapse
Affiliation(s)
- Filipa Calisto
- University of Lisbon, Faculty of Sciences, Department of Chemistry and Biochemistry and BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- University of Lisbon, Faculty of Sciences, Department of Chemistry and Biochemistry and BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
36
|
Wells M, Kim M, Akob DM, Basu P, Stolz JF. Impact of the Dimethyl Sulfoxide Reductase Superfamily on the Evolution of Biogeochemical Cycles. Microbiol Spectr 2023; 11:e0414522. [PMID: 36951557 PMCID: PMC10100899 DOI: 10.1128/spectrum.04145-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
The dimethyl sulfoxide reductase (or MopB) family is a diverse assemblage of enzymes found throughout Bacteria and Archaea. Many of these enzymes are believed to have been present in the last universal common ancestor (LUCA) of all cellular lineages. However, gaps in knowledge remain about how MopB enzymes evolved and how this diversification of functions impacted global biogeochemical cycles through geologic time. In this study, we perform maximum likelihood phylogenetic analyses on manually curated comparative genomic and metagenomic data sets containing over 47,000 distinct MopB homologs. We demonstrate that these enzymes constitute a catalytically and mechanistically diverse superfamily defined not by the molybdopterin- or tungstopterin-containing [molybdopterin or tungstopterin bis(pyranopterin guanine dinucleotide) (Mo/W-bisPGD)] cofactor but rather by the structural fold that binds it in the protein. Our results suggest that major metabolic innovations were the result of the loss of the metal cofactor or the gain or loss of protein domains. Phylogenetic analyses also demonstrated that formate oxidation and CO2 reduction were the ancestral functions of the superfamily, traits that have been vertically inherited from the LUCA. Nearly all of the other families, which drive all other biogeochemical cycles mediated by this superfamily, originated in the bacterial domain. Thus, organisms from Bacteria have been the key drivers of catalytic and biogeochemical innovations within the superfamily. The relative ordination of MopB families and their associated catalytic activities emphasize fundamental mechanisms of evolution in this superfamily. Furthermore, it underscores the importance of prokaryotic adaptability in response to the transition from an anoxic to an oxidized atmosphere. IMPORTANCE The MopB superfamily constitutes a repertoire of metalloenzymes that are central to enduring mysteries in microbiology, from the origin of life and how microorganisms and biogeochemical cycles have coevolved over deep time to how anaerobic life adapted to increasing concentrations of O2 during the transition from an anoxic to an oxic world. Our work emphasizes that phylogenetic analyses can reveal how domain gain or loss events, the acquisition of novel partner subunits, and the loss of metal cofactors can stimulate novel radiations of enzymes that dramatically increase the catalytic versatility of superfamilies. We also contend that the superfamily concept in protein evolution can uncover surprising kinships between enzymes that have remarkably different catalytic and physiological functions.
Collapse
Affiliation(s)
- Michael Wells
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Minjae Kim
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Denise M. Akob
- United States Geological Survey, Geology, Energy, and Minerals Science Center, Reston, Virginia, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - John F. Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
37
|
Zhao B, Chen L, Zhang M, Nie C, Yang Q, Yu K, Xia Y. Electric-Inducive Microbial Interactions in a Thermophilic Anaerobic Digester Revealed by High-Throughput Sequencing of Micron-Scale Single Flocs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4367-4378. [PMID: 36791305 DOI: 10.1021/acs.est.2c08833] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although conductive materials have been shown to improve efficiency in anaerobic digestion (AD) by modifying microbial interactions, the interacting network under thermophilic conditions has not been examined. To identify the true taxon-taxon associations within thermophilic anaerobic digestion (TAD) microbiome and reveal the influence of carbon cloth (CC) addition, we sampled micron-scale single flocs (40-70 μm) randomly isolated from lab-scale thermophilic digesters. Results revealed that CC addition not only significantly boosted methane yield by 25.3% but also increased the spatial heterogeneity of the community in the sludge medium. After CC addition, an evident translocation of Pseudomonas from the medium to the biofilm was observed, showing their remarkable capacity for biofilm formation. Additionally, Clostridium and Thermotogaceae tightly aggregated and steadily co-occurred in the medium and biofilm of the TAD microbiome, which might be associated with their unique extracellular sugar metabolizing style. Finally, CC induced syntrophic interaction between Syntrophomonas and denitrifiers of Rhodocyclaceae. The upregulated respiration-associated electron transferring genes (Cyst-c, complex III) on the cellular membranes of these collaborating partners indicated a potential coupling of the denitrification pathway with syntrophic acetate oxidation via direct interspecies electron transfer (DIET). These findings provide an insight into how conductive materials promote thermophilic digestion performance and open the path for improved community monitoring of biotreatment systems.
Collapse
Affiliation(s)
- Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cailong Nie
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaiqiang Yu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
38
|
Lenz J, Larsen AH, Keller S, Luchini A. Effect of Cholesterol on the Structure and Composition of Glyco-DIBMA Lipid Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3569-3579. [PMID: 36854196 PMCID: PMC10018766 DOI: 10.1021/acs.langmuir.2c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Different amphiphilic co-polymers have been introduced to produce polymer-lipid particles with nanodisc structure composed of an inner lipid bilayer and polymer chains self-assembled as an outer belt. These particles can be used to stabilize membrane proteins in solution and enable their characterization by means of biophysical methods, including small-angle X-ray scattering (SAXS). Some of these co-polymers have also been used to directly extract membrane proteins together with their associated lipids from native membranes. Styrene/maleic acid and diisobutylene/maleic acid are among the most commonly used co-polymers for producing polymer-lipid particles, named SMALPs and DIBMALPs, respectively. Recently, a new co-polymer, named Glyco-DIBMA, was produced by partial amidation of DIBMA with the amino sugar N-methyl-d-glucosamine. Polymer-lipid particles produced with Glyco-DIBMA, named Glyco-DIBMALPs, exhibit improved structural properties and stability compared to those of SMALPs and DIBMALPs while retaining the capability of directly extracting membrane proteins from native membranes. Here, we characterize the structure and lipid composition of Glyco-DIBMALPs produced with either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Glyco-DIBMALPs were also prepared with mixtures of either POPC or DMPC and cholesterol at different mole fractions. We estimated the lipid content in the Glyco-DIBMALPs and determined the particle structure and morphology by SAXS. We show that the Glyco-DIBMALPs are nanodisc-like particles whose size and shape depend on the polymer/lipid ratio. This is relevant for designing nanodisc particles with a tunable diameter according to the size of the membrane protein to be incorporated. We also report that the addition of >20 mol % cholesterol strongly perturbed the formation of Glyco-DIBMALPs. Altogether, we describe a detailed characterization of the Glyco-DIBMALPs, which provides relevant inputs for future application of these particles in the biophysical investigation of membrane proteins.
Collapse
Affiliation(s)
- Julia Lenz
- Molecular
Biophysics, Technische Universität
Kaiserslautern, Erwin-Schrödinger-Strasse
13, 67663 Kaiserslautern, Germany
| | | | - Sandro Keller
- Biophysics,
Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Alessandra Luchini
- European
Spallation Source - ERIC, Partikel Gatan, Lund 224
84, Sweden
- Department
of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
39
|
Pedersen GB, Blaschek L, Frandsen KEH, Noack LC, Persson S. Cellulose synthesis in land plants. MOLECULAR PLANT 2023; 16:206-231. [PMID: 36564945 DOI: 10.1016/j.molp.2022.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
All plant cells are surrounded by a cell wall that provides cohesion, protection, and a means of directional growth to plants. Cellulose microfibrils contribute the main biomechanical scaffold for most of these walls. The biosynthesis of cellulose, which typically is the most prominent constituent of the cell wall and therefore Earth's most abundant biopolymer, is finely attuned to developmental and environmental cues. Our understanding of the machinery that catalyzes and regulates cellulose biosynthesis has substantially improved due to recent technological advances in, for example, structural biology and microscopy. Here, we provide a comprehensive overview of the structure, function, and regulation of the cellulose synthesis machinery and its regulatory interactors. We aim to highlight important knowledge gaps in the field, and outline emerging approaches that promise a means to close those gaps.
Collapse
Affiliation(s)
- Gustav B Pedersen
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Leonard Blaschek
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Lise C Noack
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Staffan Persson
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
40
|
Sinha S, Kumar S, Singh K, Umam F, Agrawal V, Aggarwal A, Imperiali B. Immunochemical characterisation of styrene maleic acid lipid particles prepared from Mycobacterium tuberculosis plasma membrane. PLoS One 2023; 18:e0280074. [PMID: 36608027 PMCID: PMC9821473 DOI: 10.1371/journal.pone.0280074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Membrane proteins of Mycobacterium tuberculosis (Mtb) can be targeted for the development of therapeutic and prophylactic interventions against tuberculosis. We have utilized the unique membrane-solubilising properties of the styrene maleic acid copolymer <styrene:maleic acid::2:1> (SMA) to prepare and characterise 'styrene maleic acid lipid particles' from the native membrane of Mtb (MtM-SMALPs). When resolved by SDS-PAGE and visualised with coomassie blue, the molecular weights of Mtb membrane (MtM) proteins solubilised by SMA were mostly in the range of 40-70 kDa. When visualised by transmission electron microscopy, MtM-SMALPs appeared as nanoparticles of discrete shapes and sizes. The discoid nanoparticles exhibited a range of diameters of ~10-90 nm, with largest portion (~61%) ranging from 20-40 nm. MtM proteins of a molecular weight-range overlapping with that of MtM-SMALPs were also amenable to chemical cross-linking, revealing protein complex formation. Characterisation using monoclonal antibodies against seven MtM-associated antigens confirmed the incorporation of the inner membrane protein PRA, membrane-associated proteins PstS1, LpqH and Ag85, and the lipoglycan LAM into MtM-SMALPs. Conversely, the peripheral membrane proteins Acr and PspA were nearly completely excluded. Furthermore, although MtM showed an abundance of Con A-binding glycoproteins, MtM-SMALPs appeared devoid of these species. Immune responses of healthcare workers harbouring 'latent TB infection' provided additional insights. While MtM-SMALPs and MtM induced comparable levels of the cytokine IFN-γ, only MtM-SMALPs could induce the production of TNF-α. Antibodies present in the donor sera showed significantly higher binding to MtM than to MtM-SMALPs. These results have implications for the development of MtM-based immunoprophylaxis against tuberculosis.
Collapse
Affiliation(s)
- Sudhir Sinha
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
- * E-mail:
| | - Shashikant Kumar
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Komal Singh
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Fareha Umam
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Vinita Agrawal
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Amita Aggarwal
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
41
|
Porciello N, Cipria D, Masi G, Lanz AL, Milanetti E, Grottesi A, Howie D, Cobbold SP, Schermelleh L, He HT, D'Abramo M, Destainville N, Acuto O, Nika K. Role of the membrane anchor in the regulation of Lck activity. J Biol Chem 2022; 298:102663. [PMID: 36372231 PMCID: PMC9763865 DOI: 10.1016/j.jbc.2022.102663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Theoretical work suggests that collective spatiotemporal behavior of integral membrane proteins should be modulated by boundary lipids sheathing their membrane anchors. Here, we show evidence for this prediction while investigating the mechanism for maintaining a steady amount of the active form of integral membrane protein Lck kinase (LckA) by Lck trans-autophosphorylation regulated by the phosphatase CD45. We used super-resolution microscopy, flow cytometry, and pharmacological and genetic perturbation to gain insight into the spatiotemporal context of this process. We found that LckA is generated exclusively at the plasma membrane, where CD45 maintains it in a ceaseless dynamic equilibrium with its unphosphorylated precursor. Steady LckA shows linear dependence, after an initial threshold, over a considerable range of Lck expression levels. This behavior fits a phenomenological model of trans-autophosphorylation that becomes more efficient with increasing LckA. We then challenged steady LckA formation by genetically swapping the Lck membrane anchor with structurally divergent ones, such as that of Src or the transmembrane domains of LAT, CD4, palmitoylation-defective CD4 and CD45 that were expected to drastically modify Lck boundary lipids. We observed small but significant changes in LckA generation, except for the CD45 transmembrane domain that drastically reduced LckA due to its excessive lateral proximity to CD45. Comprehensively, LckA formation and maintenance can be best explained by lipid bilayer critical density fluctuations rather than liquid-ordered phase-separated nanodomains, as previously thought, with "like/unlike" boundary lipids driving dynamical proximity and remoteness of Lck with itself and with CD45.
Collapse
Affiliation(s)
- Nicla Porciello
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Deborah Cipria
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Giulia Masi
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Anna-Lisa Lanz
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Edoardo Milanetti
- Department of Physics, University of Rome "La Sapienza", Rome, Italy
| | | | - Duncan Howie
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Steve P Cobbold
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Lothar Schermelleh
- Micron Advanced Bioimaging Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | - Hai-Tao He
- Aix Marseille Université, CNRS, INSERM, CINL, Marseille, France
| | - Marco D'Abramo
- Department of Chemistry, University of Rome "La Sapienza", Rome, Italy
| | - Nicolas Destainville
- Laboratoire de Physique Théorique, Université Paul Sabatier, CNRS, UPS, Toulouse, France.
| | - Oreste Acuto
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom.
| | - Konstantina Nika
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom; Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece.
| |
Collapse
|
42
|
Li J, Zheng W, Gu M, Han L, Luo Y, Yu K, Sun M, Zong Y, Ma X, Liu B, Lowder EP, Mendez DL, Kranz RG, Zhang K, Zhu J. Structures of the CcmABCD heme release complex at multiple states. Nat Commun 2022; 13:6422. [PMID: 36307425 PMCID: PMC9616876 DOI: 10.1038/s41467-022-34136-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
Cytochromes c use heme as a cofactor to carry electrons in respiration and photosynthesis. The cytochrome c maturation system I, consisting of eight membrane proteins (CcmABCDEFGH), results in the attachment of heme to cysteine residues of cytochrome c proteins. Since all c-type cytochromes are periplasmic, heme is first transported to a periplasmic heme chaperone, CcmE. A large membrane complex, CcmABCD has been proposed to carry out this transport and linkage to CcmE, yet the structural basis and mechanisms underlying the process are unknown. We describe high resolution cryo-EM structures of CcmABCD in an unbound form, in complex with inhibitor AMP-PNP, and in complex with ATP and heme. We locate the ATP-binding site in CcmA and the heme-binding site in CcmC. Based on our structures combined with functional studies, we propose a hypothetic model of heme trafficking, heme transfer to CcmE, and ATP-dependent release of holoCcmE from CcmABCD. CcmABCD represents an ABC transporter complex using the energy of ATP hydrolysis for the transfer of heme from one binding partner (CcmC) to another (CcmE).
Collapse
Affiliation(s)
- Jiao Li
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China ,grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511 USA
| | - Wan Zheng
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Ming Gu
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Long Han
- grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511 USA
| | - Yanmei Luo
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Koukou Yu
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Mengxin Sun
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Yuliang Zong
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Xiuxiu Ma
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Bing Liu
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Ethan P. Lowder
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, CB 1137, One Brookings Drive, St. Louis, MO 63130-4899 USA
| | - Deanna L. Mendez
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, CB 1137, One Brookings Drive, St. Louis, MO 63130-4899 USA
| | - Robert G. Kranz
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, CB 1137, One Brookings Drive, St. Louis, MO 63130-4899 USA
| | - Kai Zhang
- grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511 USA
| | - Jiapeng Zhu
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| |
Collapse
|
43
|
Piper SJ, Johnson RM, Wootten D, Sexton PM. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chem Rev 2022; 122:13989-14017. [PMID: 35849490 PMCID: PMC9480104 DOI: 10.1021/acs.chemrev.1c00837] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Membrane proteins are highly diverse in both structure and function and can, therefore, present different challenges for structure determination. They are biologically important for cells and organisms as gatekeepers for information and molecule transfer across membranes, but each class of membrane proteins can present unique obstacles to structure determination. Historically, many membrane protein structures have been investigated using highly engineered constructs or using larger fusion proteins to improve solubility and/or increase particle size. Other strategies included the deconstruction of the full-length protein to target smaller soluble domains. These manipulations were often required for crystal formation to support X-ray crystallography or to circumvent lower resolution due to high noise and dynamic motions of protein subdomains. However, recent revolutions in membrane protein biochemistry and cryo-electron microscopy now provide an opportunity to solve high resolution structures of both large, >1 megadalton (MDa), and small, <100 kDa (kDa), drug targets in near-native conditions, routinely reaching resolutions around or below 3 Å. This review provides insights into how the recent advances in membrane biology and biochemistry, as well as technical advances in cryo-electron microscopy, help us to solve structures of a large variety of membrane protein groups, from small receptors to large transporters and more complex machineries.
Collapse
Affiliation(s)
- Sarah J. Piper
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Rachel M. Johnson
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Denise Wootten
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
44
|
Li S. Detergents and alternatives in cryo-EM studies of membrane proteins. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1049-1056. [PMID: 35866608 PMCID: PMC9828306 DOI: 10.3724/abbs.2022088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/28/2022] [Indexed: 11/25/2022] Open
Abstract
Structure determination of membrane proteins has been a long-standing challenge to understand the molecular basis of life processes. Detergents are widely used to study the structure and function of membrane proteins by various experimental methods, and the application of membrane mimetics is also a prevalent trend in the field of cryo-EM analysis. This review focuses on the widely-used detergents and corresponding properties and structures, and also discusses the growing interests in membrane mimetic systems used in cryo-EM studies, providing insights into the role of detergent alternatives in structure determination.
Collapse
Affiliation(s)
- Shuo Li
- />Department of Life ScienceNational Natural Science Foundation of ChinaBeijing100085China
| |
Collapse
|
45
|
Janata M, Čadová E, Angelisová P, Charnavets T, Hořejší V, Raus V. Tailoring Butyl Methacrylate/Methacrylic Acid Copolymers for the Solubilization of Membrane Proteins: The Influence of Composition and Molecular Weight. Macromol Biosci 2022; 22:e2200284. [PMID: 35964154 DOI: 10.1002/mabi.202200284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Low-molecular weight (MW) amphiphilic copolymers have been recently introduced as a powerful tool for the detergent-free isolation of cell membrane proteins. Herein, we use a screening approach to identify a new copolymer type for this application. Via a two-step ATRP/acidolysis procedure, we prepare a 3×3 matrix of well-defined poly[(butyl methacrylate)-co-(methacrylic acid)] copolymers (denoted BMAA) differing in their MW and ratio of hydrophobic (BMA) and hydrophilic (MAA) units. Subsequently, using the biologically relevant model (T-cell line Jurkat), we identify two compositions of BMAA copolymers that solubilize cell membranes to an extent comparable to the industry standard, styrene-maleic acid copolymer (SMA), while avoiding the potentially problematic phenyl groups. Surprisingly, while only the lowest-MW variant of the BMA/MAA 2:1 composition is effective, all the copolymers of the BMA/MAA 1:1 composition are found to solubilize the model membranes, including the high-MW variant (MW of 14 000). Importantly, the density gradient ultracentrifugation/SDS PAGE/Western blotting experiments reveal that the BMA/MAA 1:1 copolymers disintegrate the Jurkat membranes differently than SMA, as demonstrated by the different distribution patterns of two tested membrane protein markers. This makes the BMAA copolymers a useful tool for studies on membrane microdomains differing in their composition and resistance to membrane-disintegrating polymers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Miroslav Janata
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 06, Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 06, Czech Republic
| | - Pavla Angelisová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20, Czech Republic
| | - Tatsiana Charnavets
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20, Czech Republic.,T. Charnavets, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, Vestec, CZ-25242, Czech Republic
| | - Václav Hořejší
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20, Czech Republic
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 06, Czech Republic
| |
Collapse
|
46
|
Heterologous (Over) Expression of Human SoLute Carrier (SLC) in Yeast: A Well-Recognized Tool for Human Transporter Function/Structure Studies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081206. [PMID: 36013385 PMCID: PMC9410066 DOI: 10.3390/life12081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
For more than 20 years, yeast has been a widely used system for the expression of human membrane transporters. Among them, more than 400 are members of the largest transporter family, the SLC superfamily. SLCs play critical roles in maintaining cellular homeostasis by transporting nutrients, ions, and waste products. Based on their involvement in drug absorption and in several human diseases, they are considered emerging therapeutic targets. Despite their critical role in human health, a large part of SLCs' is 'orphans' for substrate specificity or function. Moreover, very few data are available concerning their 3D structure. On the basis of the human health benefits of filling these knowledge gaps, an understanding of protein expression in systems that allow functional production of these proteins is essential. Among the 500 known yeast species, S. cerevisiae and P. pastoris represent those most employed for this purpose. This review aims to provide a comprehensive state-of-the-art on the attempts of human SLC expression performed by exploiting yeast. The collected data will hopefully be useful for guiding new attempts in SLCs expression with the aim to reveal new fundamental data that could lead to potential effects on human health.
Collapse
|
47
|
Krishnarjuna B, Ramamoorthy A. Detergent-Free Isolation of Membrane Proteins and Strategies to Study Them in a Near-Native Membrane Environment. Biomolecules 2022; 12:1076. [PMID: 36008970 PMCID: PMC9406181 DOI: 10.3390/biom12081076] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Atomic-resolution structural studies of membrane-associated proteins and peptides in a membrane environment are important to fully understand their biological function and the roles played by them in the pathology of many diseases. However, the complexity of the cell membrane has severely limited the application of commonly used biophysical and biochemical techniques. Recent advancements in NMR spectroscopy and cryoEM approaches and the development of novel membrane mimetics have overcome some of the major challenges in this area. For example, the development of a variety of lipid-nanodiscs has enabled stable reconstitution and structural and functional studies of membrane proteins. In particular, the ability of synthetic amphipathic polymers to isolate membrane proteins directly from the cell membrane, along with the associated membrane components such as lipids, without the use of a detergent, has opened new avenues to study the structure and function of membrane proteins using a variety of biophysical and biological approaches. This review article is focused on covering the various polymers and approaches developed and their applications for the functional reconstitution and structural investigation of membrane proteins. The unique advantages and limitations of the use of synthetic polymers are also discussed.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Department of Chemistry and Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry and Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
48
|
The function of BK channels extracted and purified within SMALPs. Biochem J 2022; 479:1609-1619. [PMID: 35851603 PMCID: PMC9444072 DOI: 10.1042/bcj20210628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Human BK channels are large voltage and Ca2+-activated K+ channels, involved in several important functions within the body. The core channel is a tetramer of α subunits, and its function is modulated by the presence of β and γ accessory subunits. BK channels composed of α subunits, as well as BK channels composed of α and β1 subunits, were successfully solubilised from HEK cells with styrene maleic acid (SMA) polymer and purified by nickel affinity chromatography. Native SMA–PAGE analysis of the purified proteins showed the α subunits were extracted as a tetramer. In the presence of β1 subunits, they were co-extracted with the α subunits as a heteromeric complex. Purified SMA lipid particles (SMALPs) containing BK channel could be inserted into planar lipid bilayers (PLB) and single channel currents recorded, showing a high conductance (≈260 pS), as expected. The open probability was increased in the presence of co-purified β1 subunits. However, voltage-dependent gating of the channel was restricted. In conclusion, we have demonstrated that SMA can be used to effectively extract and purify large, complex, human ion channels, from low expressing sources. That these large channels can be incorporated into PLB from SMALPs and display voltage-dependent channel activity. However, the SMA appears to reduce the voltage dependent gating of the channels.
Collapse
|
49
|
Formation of styrene maleic acid lipid nanoparticles (SMALPs) using SMA thin film on a substrate. Anal Biochem 2022; 647:114692. [DOI: 10.1016/j.ab.2022.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022]
|
50
|
Doyle MT, Jimah JR, Dowdy T, Ohlemacher SI, Larion M, Hinshaw JE, Bernstein HD. Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding. Cell 2022; 185:1143-1156.e13. [PMID: 35294859 DOI: 10.1016/j.cell.2022.02.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 02/13/2022] [Indexed: 02/08/2023]
Abstract
Transmembrane β barrel proteins are folded into the outer membrane (OM) of Gram-negative bacteria by the β barrel assembly machinery (BAM) via a poorly understood process that occurs without known external energy sources. Here, we used single-particle cryo-EM to visualize the folding dynamics of a model β barrel protein (EspP) by BAM. We found that BAM binds the highly conserved "β signal" motif of EspP to correctly orient β strands in the OM during folding. We also found that the folding of EspP proceeds via "hybrid-barrel" intermediates in which membrane integrated β sheets are attached to the essential BAM subunit, BamA. The structures show an unprecedented deflection of the membrane surrounding the EspP intermediates and suggest that β sheets progressively fold toward BamA to form a β barrel. Along with in vivo experiments that tracked β barrel folding while the OM tension was modified, our results support a model in which BAM harnesses OM elasticity to accelerate β barrel folding.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Jimah
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shannon I Ohlemacher
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|