1
|
Belato HB, Knight AL, D'Ordine AM, Pindi C, Fan Z, Luo J, Palermo G, Jogl G, Lisi GP. Structural and dynamic impacts of single-atom disruptions to guide RNA interactions within the recognition lobe of Geobacillus stearothermophilus Cas9. eLife 2025; 13:RP99275. [PMID: 40387084 PMCID: PMC12088677 DOI: 10.7554/elife.99275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
The intuitive manipulation of specific amino acids to alter the activity or specificity of CRISPR-Cas9 has been a topic of great interest. As a large multi-domain RNA-guided endonuclease, the intricate molecular crosstalk within the Cas9 protein hinges on its conformational dynamics, but a comprehensive understanding of the extent and timescale of the motions that drive its allosteric function and association with nucleic acids remains elusive. Here, we investigated the structure and multi-timescale molecular motions of the recognition (Rec) lobe of GeoCas9, a thermophilic Cas9 from Geobacillus stearothermophilus. Our results provide new atomic details about the GeoRec subdomains (GeoRec1, GeoRec2) and the full-length domain in solution. Two rationally designed mutants, K267E and R332A, enhanced and redistributed micro-millisecond flexibility throughout GeoRec, and NMR studies of the interaction between GeoRec and its guide RNA showed that mutations reduced this affinity and the stability of the ribonucleoprotein complex. Despite measured biophysical differences due to the mutations, DNA cleavage assays reveal no functional differences in on-target activity, and similar specificity. These data suggest that guide RNA interactions can be tuned at the biophysical level in the absence of major functional losses but also raise questions about the underlying mechanism of GeoCas9, since analogous single-point mutations have significantly impacted on- and off-target DNA editing in mesophilic Streptococcus pyogenes Cas9. A K267E/R332A double mutant did also did not enhance GeoCas9 specificity, highlighting the robust tolerance of mutations to the Rec lobe of GeoCas9 and species-dependent complexity of Rec across Cas9 paralogs. Ultimately, this work provides an avenue by which to modulate the structure, motion, and guide RNA interactions at the level of the Rec lobe of GeoCas9, setting the stage for future studies of GeoCas9 variants and their effect on its allosteric mechanism.
Collapse
Affiliation(s)
- Helen B Belato
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
| | - Alexa L Knight
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
| | - Alexandra M D'Ordine
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
| | - Chinmai Pindi
- Departments of Bioengineering and Chemistry, University of California, RiversideRiversideUnited States
| | - Zhiqiang Fan
- Brown University Transgenic Mouse and Gene Targeting FacilityProvidenceUnited States
| | - Jinping Luo
- Brown University Transgenic Mouse and Gene Targeting FacilityProvidenceUnited States
| | - Giulia Palermo
- Departments of Bioengineering and Chemistry, University of California, RiversideRiversideUnited States
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Brown University RNA CenterProvidenceUnited States
| | - George P Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Brown University RNA CenterProvidenceUnited States
| |
Collapse
|
2
|
Song Z, Tang M, Xiao H, Xu H, Shi M, Dark A, Xie Z, Peng B. Unraveling the trisubstrate-triproduct reaction mechanisms of wine grape VvCYP76F14 to improve wine bouquet. Food Chem 2025; 474:143077. [PMID: 39893722 PMCID: PMC11877275 DOI: 10.1016/j.foodchem.2025.143077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/22/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
Bouquet is a captivating wine characteristic that affects consumer consumption. Wine lactone correlates with both precursor ((E)-8-carboxylinalool) concentration and wine age that has the greatest contribution to bouquet. In wine grape, cytochrome P450 VvCYP76F14 can catalyze trisubstrate-triproduct reaction processes (hydroxylation, dehydrogenation and carboxylation) to produce (E)-8-carboxylinalool. However, the exact mechanism of the whole reaction is unclear. Here, we unraveled the multi-catalysis mechanism with the aim of rapid conversion of linalool into (E)-8-carboxylinalool in winemaking. Results showed that the redox partner NADPH cytochrome P450 reductase (VvCPR1) was indispensable for hydroxylation and carboxylation, but not dehydrogenation oxidation. Furthermore, the VvCYP76F14-VvCPR1 complex was introduced in the aging stage of winemaking and results showed that the complex could improve the bouquet by increasing the content of wine lactone and shortening the aging time. Nonetheless, this study reveals the trisubstrate-triproduct reaction mechanism of VvCYP76F14 and the VvCYP76F14/VvCPR1 complex has the potential use for wine bouquet enrichment.
Collapse
Affiliation(s)
- Zhizhong Song
- Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212499, China; Department of Plant Science, University of Cambridge, Cambridge CB2 3EA, UK; College of Horticulture, Ludong University/Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 264025, China
| | - Meiling Tang
- College of Horticulture, Ludong University/Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 264025, China; Yantai Academy of Agricultural Sciences, Yantai 265599, China; Shandong Technology Innovation Center of Wine Grape and Wine/ COFCO Great Wall Wine (Penglai) Co., Ltd, Yantai, 264000, China
| | - Huilin Xiao
- College of Horticulture, Ludong University/Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 264025, China; Yantai Academy of Agricultural Sciences, Yantai 265599, China; Shandong Technology Innovation Center of Wine Grape and Wine/ COFCO Great Wall Wine (Penglai) Co., Ltd, Yantai, 264000, China
| | - Houhua Xu
- College of Horticulture, Ludong University/Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 264025, China; Shandong Technology Innovation Center of Wine Grape and Wine/ COFCO Great Wall Wine (Penglai) Co., Ltd, Yantai, 264000, China
| | - Matthew Shi
- Department of Plant Science, University of Cambridge, Cambridge CB2 3EA, UK; College of Horticulture, Ludong University/Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 264025, China
| | - Adeeba Dark
- Department of Plant Science, University of Cambridge, Cambridge CB2 3EA, UK
| | - Zhenqiang Xie
- Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212499, China; Shandong Technology Innovation Center of Wine Grape and Wine/ COFCO Great Wall Wine (Penglai) Co., Ltd, Yantai, 264000, China; Cocodala Vocational and Technical College, Cocodala 853213, China.
| | - Bin Peng
- Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212499, China; College of Horticulture, Ludong University/Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 264025, China; Cocodala Vocational and Technical College, Cocodala 853213, China.
| |
Collapse
|
3
|
Wang L, Xie X, Huang F, Wei Q, Cai T, Yu N, Chen S, Wang F, Chen W, Chen CY, Li C, Ma L. An Engineered PfAgo with Wide Catalytic Temperature Range and Substrate Spectrum. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416631. [PMID: 40364725 DOI: 10.1002/advs.202416631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/04/2025] [Indexed: 05/15/2025]
Abstract
PfAgo, a thermophilic Argonaute nuclease from Pyrococcus furiosus, is widely used in various fields due to its high DNA-guided DNA cleavage activity. However, its high-temperature-dependent cleavage activity largely restricts its applications in moderate-temperature scenarios. In this study, PfAgo is engineered for cold adaptation based on its ternary complex structure and the attributes of cold-adapted enzymes, yielding a series of variants with better performance at moderate temperatures. Among those, mPfAgo (K617G, L618G) exhibits significantly promoted cleavage activity at 37 °C and a wider catalytic temperature range of 30-95 °C. Its high-temperature cleavage activity is also greatly improved, enabling its application in DNA detection with attomolar sensitivity in the presence of Mg2+. Additionally, mPfAgo shows versatile cleavage activities, including DNA cleavage guided by 5'OH-gDNA, 5'P-gDNA, or 5'COOH-gDNA, as well as RNA cleavage with 5'OH-gDNA, 5'P-gDNA, 5'P-gRNA, or 5'COOH-gDNA as guides. Further analysis through far-UV CD spectra and DSF indicates that mPfAgo has a more flexible structure than wild-type PfAgo. Furthermore, this established strategy is applied to engineer TtdAgo, likewise obtaining its variants with enhanced moderate-temperature activity and expanded substrate spectrum. In summary, this work provides a novel method for the rational design of thermophilic Agos, thereby greatly expanding their application scopes.
Collapse
Affiliation(s)
- Longyu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xiaochen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Fuyong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Qiang Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Tianxin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Na Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Shi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Chin-Yu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Chunhua Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| |
Collapse
|
4
|
Hilser VJ, Wrabl JO, Millard CEF, Schmitz A, Brantley SJ, Pearce M, Rehfus J, Russo MM, Voortman-Sheetz K. Statistical Thermodynamics of the Protein Ensemble: Mediating Function and Evolution. Annu Rev Biophys 2025; 54:227-247. [PMID: 39929551 DOI: 10.1146/annurev-biophys-061824-104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The growing appreciation of native state conformational fluctuations mediating protein function calls for critical reevaluation of protein evolution and adaptation. If proteins are ensembles, does nature select solely for ground state structure, or are conformational equilibria between functional states also conserved? If so, what is the mechanism and how can it be measured? Addressing these fundamental questions, we review our investigation into the role of local unfolding fluctuations in the native state ensembles of proteins. We describe the functional importance of these ubiquitous fluctuations, as revealed through studies of adenylate kinase. We then summarize elucidation of thermodynamic organizing principles, which culminate in a quantitative probe for evolutionary conservation of protein energetics. Finally, we show that these principles are predictive of sequence compatibility for multiple folds, providing a unique thermodynamic perspective on metamorphic proteins. These research areas demonstrate that the locally unfolded ensemble is an emerging, important mechanism of protein evolution.
Collapse
Affiliation(s)
- Vincent J Hilser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA;
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - James O Wrabl
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA;
| | - Charles E F Millard
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA;
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Anna Schmitz
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah J Brantley
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marie Pearce
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joe Rehfus
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA;
| | - Miranda M Russo
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Keila Voortman-Sheetz
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA;
- Chemistry/Biology Interface Program, Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Wankowicz SA, Fraser JS. Advances in uncovering the mechanisms of macromolecular conformational entropy. Nat Chem Biol 2025; 21:623-634. [PMID: 40275100 PMCID: PMC12103944 DOI: 10.1038/s41589-025-01879-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/10/2025] [Indexed: 04/26/2025]
Abstract
During protein folding, proteins transition from a disordered polymer into a globular structure, markedly decreasing their conformational degrees of freedom, leading to a substantial reduction in entropy. Nonetheless, folded proteins retain substantial entropy as they fluctuate between the conformations that make up their native state. This residual entropy contributes to crucial functions like binding and catalysis, supported by growing evidence primarily from NMR and simulation studies. Here, we propose three major ways that macromolecules use conformational entropy to perform their functions; first, prepaying entropic cost through ordering of the ground state; second, spatially redistributing entropy, in which a decrease in entropy in one area is reciprocated by an increase in entropy elsewhere; third, populating catalytically competent ensembles, in which conformational entropy within the enzymatic scaffold aids in lowering transition state barriers. We also provide our perspective on how solving the current challenge of structurally defining the ensembles encoding conformational entropy will lead to new possibilities for controlling binding, catalysis and allostery.
Collapse
Affiliation(s)
- Stephanie A Wankowicz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Belato HB, Knight AL, D’Ordine AM, Pindi C, Fan Z, Luo J, Palermo G, Jogl G, Lisi GP. Structural and Dynamic Impacts of Single-atom Disruptions to Guide RNA Interactions within the Recognition Lobe of Geobacillus stearothermophilus Cas9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.26.591382. [PMID: 38746279 PMCID: PMC11092435 DOI: 10.1101/2024.04.26.591382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The intuitive manipulation of specific amino acids to alter the activity or specificity of CRISPR-Cas9 has been a topic of great interest. As a large multi-domain RNA-guided endonuclease, the intricate molecular crosstalk within the Cas9 protein hinges on its conformational dynamics, but a comprehensive understanding of the extent and timescale of the motions that drive its allosteric function and association with nucleic acids remains elusive. Here, we investigated the structure and multi-timescale molecular motions of the recognition (Rec) lobe of GeoCas9, a thermophilic Cas9 from Geobacillus stearothermophilus. Our results provide new atomic details about the GeoRec subdomains (GeoRec1, GeoRec2) and the full-length domain in solution. Two rationally designed mutants, K267E and R332A, enhanced and redistributed micro-millisecond flexibility throughout GeoRec, and NMR studies of the interaction between GeoRec and its guide RNA showed that mutations reduced this affinity and the stability of the ribonucleoprotein complex. Despite measured biophysical differences due to the mutations, DNA cleavage assays reveal no functional differences in on-target activity, and similar specificity. These data suggest that guide RNA interactions can be tuned at the biophysical level in the absence of major functional losses but also raise questions about the underlying mechanism of GeoCas9, since analogous single-point mutations have significantly impacted on- and off-target DNA editing in mesophilic S. pyogenes Cas9. A K267E/R332A double mutant did also did not enhance GeoCas9 specificity, highlighting the robust tolerance of mutations to the Rec lobe of GeoCas9 and species-dependent complexity of Rec across Cas9 paralogs. Ultimately, this work provides an avenue by which to modulate the structure, motion, and guide RNA interactions at the level of the Rec lobe of GeoCas9, setting the stage for future studies of GeoCas9 variants and their effect on its allosteric mechanism.
Collapse
Affiliation(s)
- Helen B. Belato
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI USA
| | - Alexa L. Knight
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI USA
| | - Alexandra M. D’Ordine
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI USA
| | - Chinmai Pindi
- Departments of Bioengineering and Chemistry, University of California Riverside, Riverside, CA USA
| | - Zhiqiang Fan
- Departments of Bioengineering and Chemistry, University of California Riverside, Riverside, CA USA
| | - Jinping Luo
- Departments of Bioengineering and Chemistry, University of California Riverside, Riverside, CA USA
| | - Giulia Palermo
- Departments of Bioengineering and Chemistry, University of California Riverside, Riverside, CA USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI USA
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI USA
- Brown University RNA Center, Providence, RI USA
| |
Collapse
|
7
|
Voortman‐Sheetz K, Wrabl JO, Hilser VJ. Impact of local unfolding fluctuations on the evolution of regional sequence preferences in proteins. Protein Sci 2025; 34:e70015. [PMID: 39969063 PMCID: PMC11837041 DOI: 10.1002/pro.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/07/2024] [Accepted: 12/13/2024] [Indexed: 02/20/2025]
Abstract
The number of distinct structural environments in the proteome (as observed in the Protein Data Bank) may belie an organizing framework, whereby evolution conserves the relative stability of different sequence segments, regardless of the specific structural details present in the final fold. If true, the question arises as to whether the energetic consequences of amino acid substitutions, and thus the frequencies of amino acids within each of these so-called thermodynamic environments, could depend less on what local structure that sequence segment may adopt in the final fold, and more on the local stability of that final structure relative to the unfolded state. To address this question, a previously described ensemble-based approach (the COREX algorithm) was used to define proteins in terms of thermodynamic environments, and the naturally occurring frequencies of amino acids within these environments were used to generate statistical energies (a type of knowledge-based potential). By comparing compatibility scores from the statistical energies with energies calculated using the Rosetta all-atom energy function, we assessed the information overlap between the two approaches. Results revealed a substantial correlation between the statistical scores and those obtained using Rosetta, directly demonstrating that a small number of thermodynamic environments are sufficient to capture the perceived multiplicity of different structural environments in proteins. More importantly, the agreement suggests that regional amino acid distributions within each protein in any proteome have been substantially driven by the evolutionary conservation of the regional differences in stabilities within protein families.
Collapse
Affiliation(s)
- Keila Voortman‐Sheetz
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Chemical Biology Interface Graduate ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - James O. Wrabl
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | |
Collapse
|
8
|
Gonzales JE, Kim I, Bastiray A, Hwang W, Cho JH. Evolutionary rewiring of the dynamic network underpinning allosteric epistasis in NS1 of the influenza A virus. Proc Natl Acad Sci U S A 2025; 122:e2410813122. [PMID: 39977319 PMCID: PMC11873825 DOI: 10.1073/pnas.2410813122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025] Open
Abstract
Viral proteins frequently mutate to evade host innate immune responses, yet the impact of these mutations on the molecular energy landscape remains unclear. Epistasis, the intramolecular communications between mutations, often renders the combined mutational effects unpredictable. Nonstructural protein 1 (NS1) is a major virulence factor of the influenza A virus (IAV) that activates host PI3K by binding to its p85β subunit. Here, we present a deep analysis of the impact of evolutionary mutations in NS1 that emerged between the 1918 pandemic IAV strain and its descendant PR8 strain. Our analysis reveals how the mutations rewired interresidue communications, which underlie long-range allosteric and epistatic networks in NS1. Our findings show that PR8 NS1 binds to p85β with approximately 10-fold greater affinity than 1918 NS1 due to allosteric mutational effects, which are further tuned by epistasis. NMR chemical shift perturbation and methyl-axis order parameter analyses revealed that the mutations induced long-range structural and dynamic changes in PR8 NS1, relative to 1918 NS1, enhancing its affinity to p85β. Complementary molecular dynamics simulations and graph theory-based network analysis for conformational dynamics on the submicrosecond timescales uncover how these mutations rewire the dynamic network, which underlies the allosteric epistasis. Significantly, we find that conformational dynamics of residues with high betweenness centrality play a crucial role in communications between network communities and are highly conserved across influenza A virus evolution. These findings advance our mechanistic understanding of the allosteric and epistatic communications between distant residues and provide insight into their role in the molecular evolution of NS1.
Collapse
Affiliation(s)
- James E. Gonzales
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD20892
| | - Iktae Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Abhishek Bastiray
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX77843
- Department of Physics and Astronomy, Texas A&M University, College Station, TX77843
- Center for Artificial Intelligence and Natural Sciences, Korea Institute for Advanced Study, Seoul02455, Republic of Korea
| | - Jae-Hyun Cho
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| |
Collapse
|
9
|
Kannan A, Naganathan AN. Engineering the native ensemble to tune protein function: Diverse mutational strategies and interlinked molecular mechanisms. Curr Opin Struct Biol 2024; 89:102940. [PMID: 39393291 DOI: 10.1016/j.sbi.2024.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Natural proteins are fragile entities, intrinsically sensitive to perturbations both at the level of sequence and their immediate environment. Here, we highlight the diverse strategies available for engineering function through mutations influencing backbone conformational entropy, charge-charge interactions, and in the loops and hinge regions, many of which are located far from the active site. It thus appears that there are potentially numerous ways to microscopically vary the identity of residues and the constituent interactions to tune function. Functional modulation could occur via changes in native-state stability, altered thermodynamic coupling extents within the folded structure, redistributed dynamics, or through modulation of the population of conformational substates. As these mechanisms are intrinsically linked and given the pervasive long-range effects of mutations, it is crucial to consider the interaction network as a whole and fully map the native conformational landscape to place mutational effects in the context of allostery and protein evolution.
Collapse
Affiliation(s)
- Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
10
|
McCormick JW, Dinan JC, Russo MA, Reynolds KA. Local disorder is associated with enhanced catalysis in an engineered photoswitch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625553. [PMID: 39651153 PMCID: PMC11623596 DOI: 10.1101/2024.11.26.625553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The A. sativa LOV2 domain is commonly harnessed as a source of light-based regulation in engineered optogenetic switches. In prior work, we used LOV2 to create a light-regulated Dihydrofolate Reductase (DHFR) enzyme and showed that structurally disperse mutations in DHFR were able to tune the allosteric response to light. However, it remained unclear how light allosterically activates DHFR, and how disperse mutations modulate the allosteric effect. A mechanistic understanding of these phenomena would improve our ability to rationally design new light-regulated enzymes. We used a combination of Eyring analysis and CD spectroscopy to quantify the relationship between allostery, catalytic activity, and global thermal stability. We found that the DHFR/LOV2 fusion was marginally stable at physiological temperatures. LOV2 photoactivation simultaneously: (1) thermally destabilized the fusion and (2) lowered the catalytic transition free energy of the lit state relative to the dark state. The energetic effect of light activation on the transition state free energy was composed of two opposing forces: a favorable reduction in the enthalpic transition state barrier offset by an entropic penalty. Allostery-tuning mutations in DHFR acted through this tradeoff, either accentuating the enthalpic benefit or minimizing the entropic penalty but never improving both. Many of the allostery tuning mutations showed a negative correlation between the light induced change in thermal stability and catalytic activity, suggesting an activity-stability tradeoff.
Collapse
|
11
|
Galenkamp NS, Zernia S, Van Oppen YB, van den Noort M, Milias-Argeitis A, Maglia G. Allostery can convert binding free energies into concerted domain motions in enzymes. Nat Commun 2024; 15:10109. [PMID: 39572546 PMCID: PMC11582565 DOI: 10.1038/s41467-024-54421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Enzymatic mechanisms are typically inferred from structural data. However, understanding enzymes require unravelling the intricate dynamic interplay between dynamics, conformational substates, and multiple protein structures. Here, we use single-molecule nanopore analysis to investigate the catalytic conformational changes of adenylate kinase (AK), an enzyme that catalyzes the interconversion of various adenosine phosphates (ATP, ADP, and AMP). Kinetic analysis validated by hidden Markov models unravels the details of domain motions during catalysis. Our findings reveal that allosteric interactions between ligands and cofactor enable converting binding energies into directional conformational changes of the two catalytic domains of AK. These coordinated motions emerged to control the exact sequence of ligand binding and the affinity for the three different substrates, thereby guiding the reactants along the reaction coordinates. Interestingly, we find that about 10% of enzymes show altered allosteric regulation and ligand affinities, indicating that a subset of enzymes folds in alternative catalytically active forms. Since molecules or proteins might be able to selectively stabilize one of the folds, this observation suggests an evolutionary path for allostery in enzymes. In AK, this complex catalytic framework has likely emerged to prevent futile ATP/ADP hydrolysis and to regulate the enzyme for different energy needs of the cell.
Collapse
Affiliation(s)
- Nicole Stéphanie Galenkamp
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Sarah Zernia
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Yulan B Van Oppen
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Marco van den Noort
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Giovanni Maglia
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
12
|
Medina Gomez S, Gonzalez TI, Vasa SK, Linser R. Allostery at a Protein-Protein Interface Harboring an Intermolecular Motional Network. Angew Chem Int Ed Engl 2024; 63:e202411472. [PMID: 39157914 DOI: 10.1002/anie.202411472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Motional properties of proteins govern recognition, catalysis, and regulation. The dynamics of tightly interacting residues can form intramolecular dynamic networks, dependencies fine-tuned by evolution to optimize a plethora of functional aspects. The constructive interaction of residues from different proteins to assemble intermolecular dynamic networks is a similarly likely case but has escaped thorough experimental assessment due to interfering association/dissociation dynamics. Here, we use fast-MAS solid-state 15N R1ρ NMR relaxation dispersion aided by molecular-dynamics simulations to mechanistically assess the hierarchy of individual μs timescale motions arising from a crystal-crystal contact, in the absence of translational motion. In contrast to the monomer, where particular mutations entail isolated perturbations, specific intermolecular interactions couple the motional properties between distant residues in the same protein. The mechanistic insights obtained from this conceptual work may improve our understanding on how intramolecular allostery can be tuned by intermolecular interactions via assembly of dynamic networks from previously isolated elements.
Collapse
Affiliation(s)
- Sara Medina Gomez
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Tye I Gonzalez
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| |
Collapse
|
13
|
Jin M, Seed RI, Cai G, Shing T, Wang L, Ito S, Cormier A, Wankowicz SA, Jespersen JM, Baron JL, Carey ND, Campbell MG, Yu Z, Tang PK, Cossio P, Wen W, Lou J, Marks J, Nishimura SL, Cheng Y. Dynamic allostery drives autocrine and paracrine TGF-β signaling. Cell 2024; 187:6200-6219.e23. [PMID: 39288764 PMCID: PMC11531391 DOI: 10.1016/j.cell.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
TGF-β, essential for development and immunity, is expressed as a latent complex (L-TGF-β) non-covalently associated with its prodomain and presented on immune cell surfaces by covalent association with GARP. Binding to integrin αvβ8 activates L-TGF-β1/GARP. The dogma is that mature TGF-β must physically dissociate from L-TGF-β1 for signaling to occur. Our previous studies discovered that αvβ8-mediated TGF-β autocrine signaling can occur without TGF-β1 release from its latent form. Here, we show that mice engineered to express TGF-β1 that cannot release from L-TGF-β1 survive without early lethal tissue inflammation, unlike those with TGF-β1 deficiency. Combining cryogenic electron microscopy with cell-based assays, we reveal a dynamic allosteric mechanism of autocrine TGF-β1 signaling without release where αvβ8 binding redistributes the intrinsic flexibility of L-TGF-β1 to expose TGF-β1 to its receptors. Dynamic allostery explains the TGF-β3 latency/activation mechanism and why TGF-β3 functions distinctly from TGF-β1, suggesting that it broadly applies to other flexible cell surface receptor/ligand systems.
Collapse
Affiliation(s)
- Mingliang Jin
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Robert I Seed
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Guoqing Cai
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Tiffany Shing
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Li Wang
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Saburo Ito
- Department of Pathology, UCSF, San Francisco, CA, USA
| | | | | | | | - Jody L Baron
- Department of Medicine and UCSF Liver Center, UCSF, San Francisco, CA, USA
| | - Nicholas D Carey
- Department of Medicine and UCSF Liver Center, UCSF, San Francisco, CA, USA
| | - Melody G Campbell
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Phu K Tang
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA
| | - Pilar Cossio
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA; Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Weihua Wen
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | - Jianlong Lou
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | - James Marks
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | | | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA; Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA.
| |
Collapse
|
14
|
Muir DF, Asper GPR, Notin P, Posner JA, Marks DS, Keiser MJ, Pinney MM. Evolutionary-Scale Enzymology Enables Biochemical Constant Prediction Across a Multi-Peaked Catalytic Landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619915. [PMID: 39484523 PMCID: PMC11526920 DOI: 10.1101/2024.10.23.619915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Quantitatively mapping enzyme sequence-catalysis landscapes remains a critical challenge in understanding enzyme function, evolution, and design. Here, we expand an emerging microfluidic platform to measure catalytic constants-k cat and K M-for hundreds of diverse naturally occurring sequences and mutants of the model enzyme Adenylate Kinase (ADK). This enables us to dissect the sequence-catalysis landscape's topology, navigability, and mechanistic underpinnings, revealing distinct catalytic peaks organized by structural motifs. These results challenge long-standing hypotheses in enzyme adaptation, demonstrating that thermophilic enzymes are not slower than their mesophilic counterparts. Combining the rich representations of protein sequences provided by deep-learning models with our custom high-throughput kinetic data yields semi-supervised models that significantly outperform existing models at predicting catalytic parameters of naturally occurring ADK sequences. Our work demonstrates a promising strategy for dissecting sequence-catalysis landscapes across enzymatic evolution and building family-specific models capable of accurately predicting catalytic constants, opening new avenues for enzyme engineering and functional prediction.
Collapse
Affiliation(s)
- Duncan F Muir
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Program in Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Garrison P R Asper
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Pascal Notin
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Jacob A Posner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Michael J Keiser
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Margaux M Pinney
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Valhalla Fellow, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Mallimadugula UL, Cruz MA, Vithani N, Zimmerman MI, Bowman GR. Opening and closing of a cryptic pocket in VP35 toggles it between two different RNA-binding modes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609218. [PMID: 39229186 PMCID: PMC11370563 DOI: 10.1101/2024.08.22.609218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Cryptic pockets are of growing interest as potential drug targets, particularly to control protein-nucleic acid interactions that often occur via flat surfaces. However, it remains unclear whether cryptic pockets contribute to protein function or if they are merely happenstantial features that can easily be evolved away to achieve drug resistance. Here, we explore whether a cryptic pocket in the Interferon Inhibitory Domain (IID) of viral protein 35 (VP35) of Zaire ebolavirus aids its ability to bind double-stranded RNA (dsRNA). We use simulations and experiments to study the relationship between cryptic pocket opening and dsRNA binding of the IIDs of two other filoviruses, Reston and Marburg. These homologs have nearly identical structures but block different interferon pathways due to different affinities for blunt ends and backbone of the dsRNA. Simulations and thiol-labeling experiments demonstrate that the homologs have varying probabilities of pocket opening. Subsequent dsRNA-binding assays suggest that closed conformations preferentially bind dsRNA blunt ends while open conformations prefer binding the backbone. Point mutations that modulate pocket opening proteins further confirm this preference. These results demonstrate the open cryptic pocket has a function, suggesting cryptic pockets are under selective pressure and may be difficult to evolve away to achieve drug resistance.
Collapse
|
16
|
Xu S, Li ZL, Li ZM, Liu HL. Mining unique cysteine synthetases and computational study on thoroughly eliminating feedback inhibition through tunnel engineering. Protein Sci 2024; 33:e5160. [PMID: 39275998 PMCID: PMC11400630 DOI: 10.1002/pro.5160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
L-cysteine is an essential component in pharmaceutical and agricultural industries, and synthetic biology has made strides in developing new metabolic pathways for its production, particularly in archaea with unique O-phosphoserine sulfhydrylases (OPSS) as key enzymes. In this study, we employed database mining to identify a highly catalytic activity OPSS from Acetobacterium sp. (AsOPSS). However, it was observed that the enzymatic activity of AsOPSS suffered significant feedback inhibition from the product L-cysteine, exhibiting an IC50 value of merely 1.2 mM. A semi-rational design combined with tunnel analysis strategy was conducted to engineer AsOPSS. The best variant, AsOPSSA218R was achieved, totally eliminating product inhibition without sacrificing catalytic efficiency. Molecular docking and molecular dynamic simulations indicated that the binding conformation of AsOPSSA218R with L-cys was altered, leading to a reduced affinity between L-cysteine and the active pocket. Tunnel analysis revealed that the AsOPSSA218R variant reshaped the landscape of the tunnel, resulting in the construction of a new tunnel. Furthermore, random acceleration molecular dynamics simulation and umbrella sampling simulation demonstrated that the novel tunnel improved the suitability for product release and effectively separated the interference between the product release and substrate binding processes. Finally, more than 45 mM of L-cysteine was produced in vitro within 2 h using the AsOPSSA218R variant. Our findings emphasize the potential for relieving feedback inhibition by artificially generating new product release channels, while also laying an enzymatic foundation for efficient L-cysteine production.
Collapse
Affiliation(s)
- Shuai Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zong-Lin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhi-Min Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| | - Hong-Lai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Nemoto M, Muranushi W, Shuting C, Saito Y, Sugimori D, Yamada M. Beneficial base substitutions in Escherichia coli fucO gene for enhancement of glycolic acid production. J Biosci Bioeng 2024; 138:301-307. [PMID: 39079834 DOI: 10.1016/j.jbiosc.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 09/11/2024]
Abstract
Microbial production of glycolic acid (GA) from ethylene glycol is extensively used in a variety of industries because ethylene glycol is not only an inexpensive raw material but also the main component of industrial wastes. In this study, we produced GA from ethylene glycol using Escherichia coli overexpressing the endogenous 1,2-propanediol oxidoreductase (fucO) and lactaldehyde dehydrogenase (aldA) genes. To increase GA productivity, we screened a random mutant library generated using an error-prone polymerase chain reaction of fucO and obtained FucO mutants MF2-9 and MF6-9 with enhanced GA production in Lysogeny Broth medium containing 800 mM ethylene glycol. MF2-9 contained three amino acid substitutions (D23E, E222K, and G363S) and two synonymous mutations (coding DNA [c.] 93G > A and c.1131T > C) in fucO. MF6-9 contained one amino acid substitution (L377H) in FucO. An amino acid substitution (L377H) and a single synonymous mutation (c.1131T > C) in fucO contributed to the enhancement in GA production. Notably, cell lysates from E. coli harboring a synonymous mutation (c.1131T > C) or amino acid substitution (L377H) in fucO showed that only AldA activity was 1.3-fold higher than that of the cell lysate from E. coli harboring the wild-type fucO. We confirmed that c.1131T > C and L377H mutations increased aldA expression in E. coli. Analysis of mRNA levels and simulation of mRNA stabilization indicated that base substitutions at positions c.1130T, which corresponds to L377H amino acid substitution, and c.1131T increased aldA expression due to partial destabilization of the mRNA. These findings will be useful for the large-scale microbial production of GA from industrial waste.
Collapse
Affiliation(s)
- Mayu Nemoto
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Wataru Muranushi
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Chen Shuting
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yusuke Saito
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Daisuke Sugimori
- Materials Science Course, Faculty of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| | - Miwa Yamada
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; Agri-Innovation Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
18
|
Damberger F, Krepl M, Arora R, Beusch I, Maris C, Dorn G, Šponer J, Ravindranathan S, Allain FT. N-terminal domain of polypyrimidine-tract binding protein is a dynamic folding platform for adaptive RNA recognition. Nucleic Acids Res 2024; 52:10683-10704. [PMID: 39180402 PMCID: PMC11417363 DOI: 10.1093/nar/gkae713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The N-terminal RNA recognition motif domain (RRM1) of polypyrimidine tract binding protein (PTB) forms an additional C-terminal helix α3, which docks to one edge of the β-sheet upon binding to a stem-loop RNA containing a UCUUU pentaloop. Importantly, α3 does not contact the RNA. The α3 helix therefore represents an allosteric means to regulate the conformation of adjacent domains in PTB upon binding structured RNAs. Here we investigate the process of dynamic adaptation by stem-loop RNA and RRM1 using NMR and MD in order to obtain mechanistic insights on how this allostery is achieved. Relaxation data and NMR structure determination of the free protein show that α3 is partially ordered and interacts with the domain transiently. Stem-loop RNA binding quenches fast time scale dynamics and α3 becomes ordered, however microsecond dynamics at the protein-RNA interface is observed. MD shows how RRM1 binding to the stem-loop RNA is coupled to the stabilization of the C-terminal helix and helps to transduce differences in RNA loop sequence into changes in α3 length and order. IRES assays of full length PTB and a mutant with altered dynamics in the α3 region show that this dynamic allostery influences PTB function in cultured HEK293T cells.
Collapse
Affiliation(s)
- Fred F Damberger
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 00, Czech Republic
| | - Rajika Arora
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Irene Beusch
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Georg Dorn
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 00, Czech Republic
| | | | - Frédéric H-T Allain
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
19
|
Kutlu Y, Axel G, Kolodny R, Ben-Tal N, Haliloglu T. Reused Protein Segments Linked to Functional Dynamics. Mol Biol Evol 2024; 41:msae184. [PMID: 39226145 PMCID: PMC11412252 DOI: 10.1093/molbev/msae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Protein space is characterized by extensive recurrence, or "reuse," of parts, suggesting that new proteins and domains can evolve by mixing-and-matching of existing segments. From an evolutionary perspective, for a given combination to persist, the protein segments should presumably not only match geometrically but also dynamically communicate with each other to allow concerted motions that are key to function. Evidence from protein space supports the premise that domains indeed combine in this manner; we explore whether a similar phenomenon can be observed at the sub-domain level. To this end, we use Gaussian Network Models (GNMs) to calculate the so-called soft modes, or low-frequency modes of motion for a dataset of 150 protein domains. Modes of motion can be used to decompose a domain into segments of consecutive amino acids that we call "dynamic elements", each of which belongs to one of two parts that move in opposite senses. We find that, in many cases, the dynamic elements, detected based on GNM analysis, correspond to established "themes": Sub-domain-level segments that have been shown to recur in protein space, and which were detected in previous research using sequence similarity alone (i.e. completely independently of the GNM analysis). This statistically significant correlation hints at the importance of dynamics in evolution. Overall, the results are consistent with an evolutionary scenario where proteins have emerged from themes that need to match each other both geometrically and dynamically, e.g. to facilitate allosteric regulation.
Collapse
Affiliation(s)
- Yiğit Kutlu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Gabriel Axel
- School of Neurobiology, Biochemistry & Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Haifa, Israel
| | - Nir Ben-Tal
- School of Neurobiology, Biochemistry & Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| |
Collapse
|
20
|
Roy S, Laha J, Reja A, Das D. Allosteric Control of the Catalytic Properties of Dipeptide-Based Supramolecular Assemblies. J Am Chem Soc 2024; 146:22522-22529. [PMID: 39088245 DOI: 10.1021/jacs.4c06447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Allostery, as seen in extant biology, governs the activity regulation of enzymes through the redistribution of conformational equilibria upon binding an effector. Herein, a minimal design is demonstrated where a dipeptide can exploit dynamic imine linkage to condense with simple aldehydes to access spherical aggregates as catalytically active states, which facilitates an orthogonal reaction due to the closer proximity of catalytic residues (imidazoles). The allosteric site (amine) of the minimal catalyst can concomitantly bind to an inhibitor via a dynamic exchange, which leads to the alternation of the energy landscape of the self-assembled state, resulting in downregulation of catalytic activity. Further, temporal control over allosteric regulation is realized via a feedback-controlled autonomous reaction network that utilizes the hydrolytic activity of the (in)active state as a function of time.
Collapse
Affiliation(s)
- Soumili Roy
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Janmejay Laha
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Antara Reja
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
21
|
Sarkar S, Dhibar S, Jana B. Modulation of the conformational landscape of the PDZ3 domain by perturbation on a distal non-canonical α3 helix: decoding the microscopic mechanism of allostery in the PDZ3 domain. Phys Chem Chem Phys 2024; 26:21249-21259. [PMID: 39076021 DOI: 10.1039/d4cp01806k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
While allosteric signal transduction is crucial for protein signaling and regulation, the dynamic process of allosteric communication remains poorly understood. The third PDZ domain (PDZ stands for the common structural domain shared by the postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occludens-1 protein (ZO-1)) serves as a classic example of a single-domain allosteric protein, demonstrating a long-range coupling between the C-terminal α helix (known as the α3 helix) and ligand binding. A molecular level understanding of how the α3 helix modulates the ligand binding affinity of the PDZ3 domain is still lacking. In this study, extensive molecular dynamics simulations corroborated with principal component analysis (PCA), ligand binding free energy calculations, energetic frustration analysis and Markov state model analysis are employed to uncover such molecular details. We demonstrate the definite presence of a binding competent closed-like state in the conformational landscape of wild-type PDZ3. The population modulations of this closed state and other binding incompetent states in the landscape due to α3-truncation/mutation of PDZ3 are explored. A correlation between the closed state population and calculated binding free energy is established, which supports the conformation selection mechanism. Covariance analysis identified the presence of correlated motion between two distant loops (β1-β2 and β2-β3) in the wild-type PDZ3 system, which weakened due to truncation/mutation in the distant α3 helix. It has also been observed that whenever the α3 helix was perturbed, the β2-β3 loop got further away from the binding groove and it is found to be correlated with the binding free energy values. Energetic frustration analysis of the PDZ3 domain also showed that the β2-β3 loop is highly frustrated. Finally, MSM analysis revealed a relevant timescale (closed to open state transition), which is similar to the observed experimental signal transduction timescale for the system. These observations led to the conclusion that the distantly located α3 helix plays a pivotal role in regulating the conformational landscape of the PDZ3 domain, determining the ligand binding affinity and resulting in allosteric behavior of the domain.
Collapse
Affiliation(s)
- Subhajit Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| | - Saikat Dhibar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| |
Collapse
|
22
|
Gonzales J, Kim I, Hwang W, Cho JH. Evolutionary rewiring of the dynamic network underpinning allosteric epistasis in NS1 of influenza A virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595776. [PMID: 38826371 PMCID: PMC11142230 DOI: 10.1101/2024.05.24.595776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Viral proteins frequently mutate to evade or antagonize host innate immune responses, yet the impact of these mutations on the molecular energy landscape remains unclear. Epistasis, the intramolecular communications between mutations, often renders the combined mutational effects unpredictable. Nonstructural protein 1 (NS1) is a major virulence factor of the influenza A virus (IAV) that activates host PI3K by binding to its p85β subunit. Here, we present the deep analysis for the impact of evolutionary mutations in NS1 that emerged between the 1918 pandemic IAV strain and its descendant PR8 strain. Our analysis reveal how the mutations rewired inter-residue communications which underlies long-range allosteric and epistatic networks in NS1. Our findings show that PR8 NS1 binds to p85β with approximately 10-fold greater affinity than 1918 NS1 due to allosteric mutational effects. Notably, these mutations also exhibited long-range epistatic effects. NMR chemical shift perturbation and methyl-axis order parameter analyses revealed that the mutations induced long-range structural and dynamic changes in PR8 NS1, enhancing its affinity to p85β. Complementary MD simulations and graph-based network analysis uncover how these mutations rewire dynamic residue interaction networks, which underlies the long-range epistasis and allosteric effects on p85β-binding affinity. Significantly, we find that conformational dynamics of residues with high betweenness centrality play a crucial role in communications between network communities and are highly conserved across influenza A virus evolution. These findings advance our mechanistic understanding of the allosteric and epistatic communications between distant residues and provides insight into their role in the molecular evolution of NS1.
Collapse
|
23
|
Ose NJ, Campitelli P, Modi T, Kazan IC, Kumar S, Ozkan SB. Some mechanistic underpinnings of molecular adaptations of SARS-COV-2 spike protein by integrating candidate adaptive polymorphisms with protein dynamics. eLife 2024; 12:RP92063. [PMID: 38713502 PMCID: PMC11076047 DOI: 10.7554/elife.92063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.
Collapse
Affiliation(s)
- Nicholas James Ose
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Paul Campitelli
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Tushar Modi
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - I Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple UniversityPhiladelphiaUnited States
- Department of Biology, Temple UniversityPhiladelphiaUnited States
- Center for Genomic Medicine Research, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Sefika Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| |
Collapse
|
24
|
Hernández Berthet AS, Aptekmann AA, Tejero J, Sánchez IE, Noguera ME, Roman EA. Associating protein sequence positions with the modulation of quantitative phenotypes. Arch Biochem Biophys 2024; 755:109979. [PMID: 38583654 DOI: 10.1016/j.abb.2024.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Although protein sequences encode the information for folding and function, understanding their link is not an easy task. Unluckily, the prediction of how specific amino acids contribute to these features is still considerably impaired. Here, we developed a simple algorithm that finds positions in a protein sequence with potential to modulate the studied quantitative phenotypes. From a few hundred protein sequences, we perform multiple sequence alignments, obtain the per-position pairwise differences for both the sequence and the observed phenotypes, and calculate the correlation between these last two quantities. We tested our methodology with four cases: archaeal Adenylate Kinases and the organisms optimal growth temperatures, microbial rhodopsins and their maximal absorption wavelengths, mammalian myoglobins and their muscular concentration, and inhibition of HIV protease clinical isolates by two different molecules. We found from 3 to 10 positions tightly associated with those phenotypes, depending on the studied case. We showed that these correlations appear using individual positions but an improvement is achieved when the most correlated positions are jointly analyzed. Noteworthy, we performed phenotype predictions using a simple linear model that links per-position divergences and differences in the observed phenotypes. Predictions are comparable to the state-of-art methodologies which, in most of the cases, are far more complex. All of the calculations are obtained at a very low information cost since the only input needed is a multiple sequence alignment of protein sequences with their associated quantitative phenotypes. The diversity of the explored systems makes our work a valuable tool to find sequence determinants of biological activity modulation and to predict various functional features for uncharacterized members of a protein family.
Collapse
Affiliation(s)
- Ayelén S Hernández Berthet
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160 - Ciudad Universitaria, 1428EGA, C.A.B.A., Argentina.
| | - Ariel A Aptekmann
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Laboratorio de Fisiología de Proteínas, Buenos Aires, Argentina; Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08873, USA; Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Ignacio E Sánchez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Laboratorio de Fisiología de Proteínas, Buenos Aires, Argentina.
| | - Martín E Noguera
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Dr. Alejandro Paladini, Junín 956, 1113AAD, C.A.B.A., Argentina; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina.
| | - Ernesto A Roman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160 - Ciudad Universitaria, 1428EGA, C.A.B.A., Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Dr. Alejandro Paladini, Junín 956, 1113AAD, C.A.B.A., Argentina.
| |
Collapse
|
25
|
Reddy KD, Rasool B, Akher FB, Kutlešić N, Pant S, Boudker O. Evolutionary analysis reveals the origin of sodium coupling in glutamate transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.03.569786. [PMID: 38106174 PMCID: PMC10723334 DOI: 10.1101/2023.12.03.569786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Secondary active membrane transporters harness the energy of ion gradients to concentrate their substrates. Homologous transporters evolved to couple transport to different ions in response to changing environments and needs. The bases of such diversification, and thus principles of ion coupling, are unexplored. Employing phylogenetics and ancestral protein reconstruction, we investigated sodium-coupled transport in prokaryotic glutamate transporters, a mechanism ubiquitous across life domains and critical to neurotransmitter recycling in humans. We found that the evolutionary transition from sodium-dependent to independent substrate binding to the transporter preceded changes in the coupling mechanism. Structural and functional experiments suggest that the transition entailed allosteric mutations, making sodium binding dispensable without affecting ion-binding sites. Allosteric tuning of transporters' energy landscapes might be a widespread route of their functional diversification.
Collapse
Affiliation(s)
- Krishna D. Reddy
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Burha Rasool
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Farideh Badichi Akher
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Nemanja Kutlešić
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Swati Pant
- Dept. of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Olga Boudker
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| |
Collapse
|
26
|
Zheng J, Guo N, Huang Y, Guo X, Wagner A. High temperature delays and low temperature accelerates evolution of a new protein phenotype. Nat Commun 2024; 15:2495. [PMID: 38553445 PMCID: PMC10980763 DOI: 10.1038/s41467-024-46332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024] Open
Abstract
Since the origin of life, temperatures on earth have fluctuated both on short and long time scales. How such changes affect the rate at which Darwinian evolution can bring forth new phenotypes remains unclear. On the one hand, high temperature may accelerate phenotypic evolution because it accelerates most biological processes. On the other hand, it may slow phenotypic evolution, because proteins are usually less stable at high temperatures and therefore less evolvable. Here, to test these hypotheses experimentally, we evolved a green fluorescent protein in E. coli towards the new phenotype of yellow fluorescence at different temperatures. Yellow fluorescence evolved most slowly at high temperature and most rapidly at low temperature, in contradiction to the first hypothesis. Using high-throughput population sequencing, protein engineering, and biochemical assays, we determined that this is due to the protein-destabilizing effect of neofunctionalizing mutations. Destabilization is highly detrimental at high temperature, where neofunctionalizing mutations cannot be tolerated. Their detrimental effects can be mitigated through excess stability at low temperature, leading to accelerated adaptive evolution. By modifying protein folding stability, temperature alters the accessibility of mutational paths towards high-fitness genotypes. Our observations have broad implications for our understanding of how temperature changes affect evolutionary adaptations and innovations.
Collapse
Affiliation(s)
- Jia Zheng
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Ning Guo
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuxiang Huang
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiang Guo
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- The Santa Fe Institute, Santa Fe, USA.
| |
Collapse
|
27
|
Coleman T, Shin J, Silberg JJ, Shamoo Y, Atkinson JT. The Biochemical Impact of Extracting an Embedded Adenylate Kinase Domain Using Circular Permutation. Biochemistry 2024; 63:599-609. [PMID: 38357768 DOI: 10.1021/acs.biochem.3c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Adenylate kinases (AKs) have evolved AMP-binding and lid domains that are encoded as continuous polypeptides embedded at different locations within the discontinuous polypeptide encoding the core domain. A prior study showed that AK homologues of different stabilities consistently retain cellular activity following circular permutation that splits a region with high energetic frustration within the AMP-binding domain into discontinuous fragments. Herein, we show that mesophilic and thermophilic AKs having this topological restructuring retain activity and substrate-binding characteristics of the parental AK. While permutation decreased the activity of both AK homologues at physiological temperatures, the catalytic activity of the thermophilic AK increased upon permutation when assayed >30 °C below the melting temperature of the native AK. The thermostabilities of the permuted AKs were uniformly lower than those of native AKs, and they exhibited multiphasic unfolding transitions, unlike the native AKs, which presented cooperative thermal unfolding. In addition, proteolytic digestion revealed that permutation destabilized each AK in differing manners, and mass spectrometry suggested that the new termini within the AMP-binding domain were responsible for the increased proteolysis sensitivity. These findings illustrate how changes in contact order can be used to tune enzyme activity and alter folding dynamics in multidomain enzymes.
Collapse
Affiliation(s)
- Tom Coleman
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - John Shin
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, MS-362, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| | - Yousif Shamoo
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - Joshua T Atkinson
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90007, United States
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
28
|
Bhat ZA, Khan MM, Rehman A, Iqbal J, Sanjeev BS, Madhumalar A. MD simulations indicate Omicron P132H of SARS-CoV-2 M pro is a potential allosteric mutant involved in modulating the dynamics of catalytic site entry loop. Int J Biol Macromol 2024; 262:130077. [PMID: 38346625 DOI: 10.1016/j.ijbiomac.2024.130077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
The SARS-CoV-2 main protease Mpro, essential for viral replication is an important drug target. It plays a critical role in processing viral polyproteins necessary for viral replication assembly. One of the predominant SARS-CoV-2 Mpro mutations of Omicron variant is Pro132His. Structurally, this mutation site is located ∼22 Å away from the catalytic site. The solved crystal structure of this mutant in complex with inhibitors as well as its reported catalytic efficiency did not show any difference with respect to the wild type. Thus, the mutation was concluded to be non-allosteric. Based on microsecond long MD simulation of the Pro132His mutant and wild type, we show that Pro132His mutation affects the conformational equilibrium with more population of conformational substates having open catalytic site, modulated by the dynamics of the catalytic site entry loop, implying the allosteric nature of this mutation. The structural analysis indicates that rearrangement of hydrogen bonds between His132 and adjacent residues enhances the dynamics of the linker, which in turn is augmented by the inherent dynamic flexibility of the catalytic pocket entry site due to the presence of charged residues. The altered dynamics leading to loss of secondary structures corroborate well with the reported compromised thermal stability.
Collapse
Affiliation(s)
- Zahoor Ahmad Bhat
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Muzammil Khan
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Ayyub Rehman
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Jawed Iqbal
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - B S Sanjeev
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj -211012, India
| | - Arumugam Madhumalar
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
29
|
Astumian RD. Kinetic Asymmetry and Directionality of Nonequilibrium Molecular Systems. Angew Chem Int Ed Engl 2024; 63:e202306569. [PMID: 38236163 DOI: 10.1002/anie.202306569] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Indexed: 01/19/2024]
Abstract
Scientists have long been fascinated by the biomolecular machines in living systems that process energy and information to sustain life. The first synthetic molecular rotor capable of performing repeated 360° rotations due to a combination of photo- and thermally activated processes was reported in 1999. The progress in designing different molecular machines in the intervening years has been remarkable, with several outstanding examples appearing in the last few years. Despite the synthetic accomplishments, there remains confusion regarding the fundamental design principles by which the motions of molecules can be controlled, with significant intellectual tension between mechanical and chemical ways of thinking about and describing molecular machines. A thermodynamically consistent analysis of the kinetics of several molecular rotors and pumps shows that while light driven rotors operate by a power-stroke mechanism, kinetic asymmetry-the relative heights of energy barriers-is the sole determinant of the directionality of catalysis driven machines. Power-strokes-the relative depths of energy wells-play no role whatsoever in determining the sign of the directionality. These results, elaborated using trajectory thermodynamics and the nonequilibrium pump equality, show that kinetic asymmetry governs the response of many non-equilibrium chemical phenomena.
Collapse
Affiliation(s)
- Raymond Dean Astumian
- Department of Physics and Astronomy, The University of Maine, 5709 Bennett Hall, Orono, ME-04469, USA
| |
Collapse
|
30
|
Nam K, Shao Y, Major DT, Wolf-Watz M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS OMEGA 2024; 9:7393-7412. [PMID: 38405524 PMCID: PMC10883025 DOI: 10.1021/acsomega.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
31
|
Astore MA, Pradhan AS, Thiede EH, Hanson SM. Protein dynamics underlying allosteric regulation. Curr Opin Struct Biol 2024; 84:102768. [PMID: 38215528 DOI: 10.1016/j.sbi.2023.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Allostery is the mechanism by which information and control are propagated in biomolecules. It regulates ligand binding, chemical reactions, and conformational changes. An increasing level of experimental resolution and control over allosteric mechanisms promises a deeper understanding of the molecular basis for life and powerful new therapeutics. In this review, we survey the literature for an up-to-date biological and theoretical understanding of protein allostery. By delineating five ways in which the energy landscape or the kinetics of a system may change to give rise to allostery, we aim to help the reader grasp its physical origins. To illustrate this framework, we examine three systems that display these forms of allostery: allosteric inhibitors of beta-lactamases, thermosensation of TRP channels, and the role of kinetic allostery in the function of kinases. Finally, we summarize the growing power of computational tools available to investigate the different forms of allostery presented in this review.
Collapse
Affiliation(s)
- Miro A Astore
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Center for Computational Mathematics, Flatiron Institute, New York, NY, USA. https://twitter.com/@miroastore
| | - Akshada S Pradhan
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Erik H Thiede
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Center for Computational Mathematics, Flatiron Institute, New York, NY, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Sonya M Hanson
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Center for Computational Mathematics, Flatiron Institute, New York, NY, USA.
| |
Collapse
|
32
|
Ose NJ, Campitelli P, Modi T, Can Kazan I, Kumar S, Banu Ozkan S. Some mechanistic underpinnings of molecular adaptations of SARS-COV-2 spike protein by integrating candidate adaptive polymorphisms with protein dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557827. [PMID: 37745560 PMCID: PMC10515954 DOI: 10.1101/2023.09.14.557827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 Spike (S) protein. With this approach, we first identified Candidate Adaptive Polymorphisms (CAPs) of the SARS-CoV-2 Spike protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.
Collapse
Affiliation(s)
- Nicholas J. Ose
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Paul Campitelli
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Tushar Modi
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - I. Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S. Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
33
|
Read B, Cadzow AF, Alphey MS, Mitchell JBO, da Silva RG. Crystal Structure, Steady-State, and Pre-Steady-State Kinetics of Acinetobacter baumannii ATP Phosphoribosyltransferase. Biochemistry 2024; 63:230-240. [PMID: 38150593 PMCID: PMC10795190 DOI: 10.1021/acs.biochem.3c00551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
The first step of histidine biosynthesis in Acinetobacter baumannii, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate to produce N1-(5-phospho-β-d-ribosyl)-ATP (PRATP) and pyrophosphate, is catalyzed by the hetero-octameric enzyme ATP phosphoribosyltransferase, a promising target for antibiotic design. The catalytic subunit, HisGS, is allosterically activated upon binding of the regulatory subunit, HisZ, to form the hetero-octameric holoenzyme (ATPPRT), leading to a large increase in kcat. Here, we present the crystal structure of ATPPRT, along with kinetic investigations of the rate-limiting steps governing catalysis in the nonactivated (HisGS) and activated (ATPPRT) forms of the enzyme. A pH-rate profile showed that maximum catalysis is achieved above pH 8.0. Surprisingly, at 25 °C, kcat is higher when ADP replaces ATP as substrate for ATPPRT but not for HisGS. The HisGS-catalyzed reaction is limited by the chemical step, as suggested by the enhancement of kcat when Mg2+ was replaced by Mn2+, and by the lack of a pre-steady-state burst of product formation. Conversely, the ATPPRT-catalyzed reaction rate is determined by PRATP diffusion from the active site, as gleaned from a substantial solvent viscosity effect. A burst of product formation could be inferred from pre-steady-state kinetics, but the first turnover was too fast to be directly observed. Lowering the temperature to 5 °C allowed observation of the PRATP formation burst by ATPPRT. At this temperature, the single-turnover rate constant was significantly higher than kcat, providing additional evidence for a step after chemistry limiting catalysis by ATPPRT. This demonstrates allosteric activation by HisZ accelerates the chemical step.
Collapse
Affiliation(s)
- Benjamin
J. Read
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Andrew F. Cadzow
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Magnus S. Alphey
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - John B. O. Mitchell
- EaStCHEM
School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Rafael G. da Silva
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| |
Collapse
|
34
|
Sohmen B, Beck C, Frank V, Seydel T, Hoffmann I, Hermann B, Nüesch M, Grimaldo M, Schreiber F, Wolf S, Roosen‐Runge F, Hugel T. The Onset of Molecule-Spanning Dynamics in Heat Shock Protein Hsp90. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304262. [PMID: 37984887 PMCID: PMC10754087 DOI: 10.1002/advs.202304262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
Protein dynamics have been investigated on a wide range of time scales. Nano- and picosecond dynamics have been assigned to local fluctuations, while slower dynamics have been attributed to larger conformational changes. However, it is largely unknown how fast (local) fluctuations can lead to slow global (allosteric) changes. Here, fast molecule-spanning dynamics on the 100 to 200 ns time scale in the heat shock protein 90 (Hsp90) are shown. Global real-space movements are assigned to dynamic modes on this time scale, which is possible by a combination of single-molecule fluorescence, quasi-elastic neutron scattering and all-atom molecular dynamics (MD) simulations. The time scale of these dynamic modes depends on the conformational state of the Hsp90 dimer. In addition, the dynamic modes are affected to various degrees by Sba1, a co-chaperone of Hsp90, depending on the location within Hsp90, which is in very good agreement with MD simulations. Altogether, this data is best described by fast molecule-spanning dynamics, which precede larger conformational changes in Hsp90 and might be the molecular basis for allostery. This integrative approach provides comprehensive insights into molecule-spanning dynamics on the nanosecond time scale for a multi-domain protein.
Collapse
Affiliation(s)
- Benedikt Sohmen
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Christian Beck
- Institute of Applied PhysicsUniversity of TübingenAuf der Morgenstelle 1072076TübingenGermany
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Veronika Frank
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Tilo Seydel
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Ingo Hoffmann
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Bianca Hermann
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Mark Nüesch
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 190CH‐8057ZurichSwitzerland
| | - Marco Grimaldo
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Frank Schreiber
- Institute of Applied PhysicsUniversity of TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of PhysicsUniversity of FreiburgHermann‐Herder‐Strasse 379104FreiburgGermany
| | - Felix Roosen‐Runge
- Department of Biomedical Sciences and Biofilms‐Research Center for Biointerfaces (BRCB)Malmö University20506MalmöSweden
- Division of Physical ChemistryLund UniversityNaturvetarvägen 1422100LundSweden
| | - Thorsten Hugel
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
- Signalling Research Centers BIOSS and CIBSSUniversity of FreiburgSchänzlestrasse 1879104FreiburgGermany
| |
Collapse
|
35
|
Roy M, Horovitz A. Distinguishing between concerted, sequential and barrierless conformational changes: Folding versus allostery. Curr Opin Struct Biol 2023; 83:102721. [PMID: 37922762 DOI: 10.1016/j.sbi.2023.102721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Characterization of transition and intermediate states of reactions provides insights into their mechanisms and is often achieved through analysis of linear free energy relationships. Such an approach has been used extensively in protein folding studies but less so for analyzing allosteric transitions. Here, we point out analogies in ways to characterize pathways and intermediates in folding and allosteric transitions. Achieving an understanding of the mechanisms by which proteins undergo allosteric switching is important in many cases for obtaining insights into how they function.
Collapse
Affiliation(s)
- Mousam Roy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
36
|
Knight AL, Widjaja V, Lisi GP. Temperature as a modulator of allosteric motions and crosstalk in mesophilic and thermophilic enzymes. Front Mol Biosci 2023; 10:1281062. [PMID: 37877120 PMCID: PMC10591084 DOI: 10.3389/fmolb.2023.1281062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Mesophilic and thermophilic enzyme counterparts are often studied to understand how proteins function under harsh conditions. To function well outside of standard temperature ranges, thermophiles often tightly regulate their structural ensemble through intra-protein communication (via allostery) and altered interactions with ligands. It has also become apparent in recent years that the enhancement or diminution of allosteric crosstalk can be temperature-dependent and distinguish thermophilic enzymes from their mesophilic paralogs. Since most studies of allostery utilize chemical modifications from pH, mutations, or ligands, the impact of temperature on allosteric function is comparatively understudied. Here, we discuss the biophysical methods, as well as critical case studies, that dissect temperature-dependent function of mesophilic-thermophilic enzyme pairs and their allosteric regulation across a range of temperatures.
Collapse
Affiliation(s)
| | | | - George P. Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
37
|
Collins T, Feller G. Psychrophilic enzymes: strategies for cold-adaptation. Essays Biochem 2023; 67:701-713. [PMID: 37021674 DOI: 10.1042/ebc20220193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023]
Abstract
Psychrophilic organisms thriving at near-zero temperatures synthesize cold-adapted enzymes to sustain cell metabolism. These enzymes have overcome the reduced molecular kinetic energy and increased viscosity inherent to their environment and maintained high catalytic rates by development of a diverse range of structural solutions. Most commonly, they are characterized by a high flexibility coupled with an intrinsic structural instability and reduced substrate affinity. However, this paradigm for cold-adaptation is not universal as some cold-active enzymes with high stability and/or high substrate affinity and/or even an unaltered flexibility have been reported, pointing to alternative adaptation strategies. Indeed, cold-adaptation can involve any of a number of a diverse range of structural modifications, or combinations of modifications, depending on the enzyme involved, its function, structure, stability, and evolutionary history. This paper presents the challenges, properties, and adaptation strategies of these enzymes.
Collapse
Affiliation(s)
- Tony Collins
- Department of Biology, Center of Molecular and Environmental Biology (CBMA), University of Minho, 4710-057 Braga, Portugal
| | - Georges Feller
- Department of Life Sciences, Laboratory of Biochemistry, Center for Protein Engineering-InBioS, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
38
|
Ose NJ, Campitelli P, Patel R, Kumar S, Ozkan SB. Protein dynamics provide mechanistic insights about epistasis among common missense polymorphisms. Biophys J 2023; 122:2938-2947. [PMID: 36726312 PMCID: PMC10398253 DOI: 10.1016/j.bpj.2023.01.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Sequencing of the protein coding genome has revealed many different missense mutations of human proteins and different population frequencies of corresponding haplotypes, which consist of different sets of those mutations. Here, we present evidence for pairwise intramolecular epistasis (i.e., nonadditive interactions) between many such mutations through an analysis of protein dynamics. We suggest that functional compensation for conserving protein dynamics is a likely evolutionary mechanism that maintains high-frequency mutations that are individually nonneutral but epistatically compensating within proteins. This analysis is the first of its type to look at human proteins with specific high population frequency mutations and examine the relationship between mutations that make up that observed high-frequency protein haplotype. Importantly, protein dynamics revealed a separation between high and low frequency haplotypes within a target protein cytochrome P450 2A7, with the high-frequency haplotypes showing behavior closer to the wild-type protein. Common protein haplotypes containing two mutations display dynamic compensation in which one mutation can correct for the dynamic effects of the other. We also utilize a dynamics-based metric, EpiScore, that evaluates the epistatic interactions and allows us to see dynamic compensation within many other proteins.
Collapse
Affiliation(s)
- Nicholas J Ose
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - Paul Campitelli
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - Ravi Patel
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania; Department of Biology, Temple University, Philadelphia, Pennsylvania
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania; Department of Biology, Temple University, Philadelphia, Pennsylvania; Center for Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - S Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona.
| |
Collapse
|
39
|
van der Ent F, Skagseth S, Lund BA, Sǒan J, Griese JJ, Brandsdal BO, Åqvist J. Computational design of the temperature optimum of an enzyme reaction. SCIENCE ADVANCES 2023; 9:eadi0963. [PMID: 37379391 DOI: 10.1126/sciadv.adi0963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Cold-adapted enzymes are characterized both by a higher catalytic activity at low temperatures and by having their temperature optimum down-shifted, compared to mesophilic orthologs. In several cases, the optimum does not coincide with the onset of protein melting but reflects some other type of inactivation. In the psychrophilic α-amylase from an Antarctic bacterium, the inactivation is thought to originate from a specific enzyme-substrate interaction that breaks around room temperature. Here, we report a computational redesign of this enzyme aimed at shifting its temperature optimum upward. A set of mutations designed to stabilize the enzyme-substrate interaction were predicted by computer simulations of the catalytic reaction at different temperatures. The predictions were verified by kinetic experiments and crystal structures of the redesigned α-amylase, showing that the temperature optimum is indeed markedly shifted upward and that the critical surface loop controlling the temperature dependence approaches the target conformation observed in a mesophilic ortholog.
Collapse
Affiliation(s)
- Florian van der Ent
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Susann Skagseth
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N9037 Tromsø, Norway
| | - Bjarte A Lund
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N9037 Tromsø, Norway
| | - Jaka Sǒan
- National Institute of Chemistry, SI-1001 Ljubljana, Slovenia
| | - Julia J Griese
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Bjørn O Brandsdal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N9037 Tromsø, Norway
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N9037 Tromsø, Norway
| |
Collapse
|
40
|
Maschietto F, Morzan UN, Tofoleanu F, Gheeraert A, Chaudhuri A, Kyro GW, Nekrasov P, Brooks B, Loria JP, Rivalta I, Batista VS. Turning up the heat mimics allosteric signaling in imidazole-glycerol phosphate synthase. Nat Commun 2023; 14:2239. [PMID: 37076500 PMCID: PMC10115891 DOI: 10.1038/s41467-023-37956-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
Allosteric drugs have the potential to revolutionize biomedicine due to their enhanced selectivity and protection against overdosage. However, we need to better understand allosteric mechanisms in order to fully harness their potential in drug discovery. In this study, molecular dynamics simulations and nuclear magnetic resonance spectroscopy are used to investigate how increases in temperature affect allostery in imidazole glycerol phosphate synthase. Results demonstrate that temperature increase triggers a cascade of local amino acid-to-amino acid dynamics that remarkably resembles the allosteric activation that takes place upon effector binding. The differences in the allosteric response elicited by temperature increase as opposed to effector binding are conditional to the alterations of collective motions induced by either mode of activation. This work provides an atomistic picture of temperature-dependent allostery, which could be harnessed to more precisely control enzyme function.
Collapse
Affiliation(s)
- Federica Maschietto
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT, 06520-8107, USA.
| | - Uriel N Morzan
- International Center for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy.
| | - Florentina Tofoleanu
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT, 06520-8107, USA
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20852, USA
- Treeline Biosciences, 500 Arsenal Street, Watertown, MA, 02472, USA
| | - Aria Gheeraert
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364, Lyon, France
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum, Università di Bologna, Bologna, Italy
| | - Apala Chaudhuri
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Gregory W Kyro
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT, 06520-8107, USA
| | - Peter Nekrasov
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT, 06520-8107, USA
| | - Bernard Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20852, USA
| | - J Patrick Loria
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT, 06520-8107, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Ivan Rivalta
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364, Lyon, France.
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum, Università di Bologna, Bologna, Italy.
| | - Victor S Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT, 06520-8107, USA.
| |
Collapse
|
41
|
Zaragoza JPT, Offenbacher AR, Hu S, Gee CL, Firestein ZM, Minnetian N, Deng Z, Fan F, Iavarone AT, Klinman JP. Temporal and spatial resolution of distal protein motions that activate hydrogen tunneling in soybean lipoxygenase. Proc Natl Acad Sci U S A 2023; 120:e2211630120. [PMID: 36867685 PMCID: PMC10013837 DOI: 10.1073/pnas.2211630120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/27/2023] [Indexed: 03/05/2023] Open
Abstract
The enzyme soybean lipoxygenase (SLO) provides a prototype for deep tunneling mechanisms in hydrogen transfer catalysis. This work combines room temperature X-ray studies with extended hydrogen-deuterium exchange experiments to define a catalytically-linked, radiating cone of aliphatic side chains that connects an active site iron center of SLO to the protein-solvent interface. Employing eight variants of SLO that have been appended with a fluorescent probe at the identified surface loop, nanosecond fluorescence Stokes shifts have been measured. We report a remarkable identity of the energies of activation (Ea) for the Stokes shifts decay rates and the millisecond C-H bond cleavage step that is restricted to side chain mutants within an identified thermal network. These findings implicate a direct coupling of distal protein motions surrounding the exposed fluorescent probe to active site motions controlling catalysis. While the role of dynamics in enzyme function has been predominantly attributed to a distributed protein conformational landscape, the presented data implicate a thermally initiated, cooperative protein reorganization that occurs on a timescale faster than nanosecond and represents the enthalpic barrier to the reaction of SLO.
Collapse
Affiliation(s)
- Jan Paulo T. Zaragoza
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Adam R. Offenbacher
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, East Carolina University, Greenville, NC27858
| | - Shenshen Hu
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Christine L. Gee
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA94720
| | | | - Natalie Minnetian
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Zhenyu Deng
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Flora Fan
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
| | - Judith P. Klinman
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA94720
- Department of Chemistry, University of California Berkeley, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA94720
| |
Collapse
|
42
|
Dynamics and mechanistic interpretations of nonribosomal peptide synthetase cyclization domains. Curr Opin Chem Biol 2023; 72:102228. [PMID: 36402006 DOI: 10.1016/j.cbpa.2022.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
Abstract
Ox-/thiazoline groups in nonribosomal peptides are formed by a variant of peptide-forming condensation domains called heterocyclization (Cy) domains and appear in a range of pharmaceutically important natural products and virulence factors. Recent cryo-EM, crystallographic, and NMR studies of Cy domains make it opportune to revisit outstanding questions regarding their molecular mechanisms. This review covers structural and dynamical findings about Cy domains that will inform future bioengineering efforts and our understanding of natural product synthesis.
Collapse
|
43
|
Poudel H, Leitner DM. Locating dynamic contributions to allostery via determining rates of vibrational energy transfer. J Chem Phys 2023; 158:015101. [PMID: 36610954 DOI: 10.1063/5.0132089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Determining rates of energy transfer across non-covalent contacts for different states of a protein can provide information about dynamic and associated entropy changes during transitions between states. We investigate the relationship between rates of energy transfer across polar and nonpolar contacts and contact dynamics for the β2-adrenergic receptor, a rhodopsin-like G-protein coupled receptor, in an antagonist-bound inactive state and agonist-bound active state. From structures sampled during molecular dynamics (MD) simulations, we find the active state to have, on average, a lower packing density, corresponding to generally more flexibility and greater entropy than the inactive state. Energy exchange networks (EENs) are computed for the inactive and active states from the results of the MD simulations. From the EENs, changes in the rates of energy transfer across polar and nonpolar contacts are found for contacts that remain largely intact during activation. Change in dynamics of the contact, and entropy associated with the dynamics, can be estimated from the change in rates of energy transfer across the contacts. Measurement of change in the rates of energy transfer before and after the transition between states thereby provides information about dynamic contributions to activation and allostery.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
44
|
Zhang S, McCallum SA, Gillilan R, Wang J, Royer CA. High Pressure CPMG and CEST Reveal That Cavity Position Dictates Distinct Dynamic Disorder in the PP32 Repeat Protein. J Phys Chem B 2022; 126:10597-10607. [PMID: 36455152 PMCID: PMC10314987 DOI: 10.1021/acs.jpcb.2c05498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Given the central role of conformational dynamics in protein function, it is essential to characterize the time scales and structures associated with these transitions. High pressure (HP) perturbation favors transitions to excited states because they typically occupy a smaller molar volume, thus facilitating characterization of conformational dynamics. Repeat proteins, with their straightforward architecture, provide good models for probing the sequence dependence of protein conformational dynamics. Investigations of chemical exchange by 15N CPMG relaxation dispersion analysis revealed that introduction of a cavity via substitution of isoleucine 7 by alanine in the N-terminal capping motif of the pp32 leucine-rich repeat protein leads to pressure-dependent conformational exchange detected on the 500 μs-2 ms CPMG time scale. Exchange amplitude decreased from the N- to C-terminus, revealing a gradient of conformational exchange across the protein. In contrast, introduction of a cavity in the central core of pp32 via the L60A mutation led to pressure-induced exchange on a slower (>2 ms) time scale detected by 15N-CEST analysis. Excited state 15N chemical shifts indicated that in the excited state detected by HP CEST, the N-terminal region is mostly unfolded, while the core retains native-like structure. These HP chemical exchange measurements reveal that cavity position dictates exchange on distinct time scales, highlighting the subtle, yet central role of sequence in determining protein conformational dynamics.
Collapse
Affiliation(s)
- Siwen Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Richard Gillilan
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY USA 14853
| | - Jinqiu Wang
- Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY USA 12180
| |
Collapse
|
45
|
Acharya N, Jha SK. Dry Molten Globule-Like Intermediates in Protein Folding, Function, and Disease. J Phys Chem B 2022; 126:8614-8622. [PMID: 36286394 DOI: 10.1021/acs.jpcb.2c04991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The performance of a protein depends on its correct folding to the final functional native form. Hence, understanding the process of protein folding has remained an important field of research for the scientific community for the past five decades. Two important intermediate states, namely, wet molten globule (WMG) and dry molten globule (DMG), have emerged as critical milestones during protein folding-unfolding reactions. While much has been discussed about WMGs as a common unfolding intermediate, the evidence for DMGs has remained elusive owing to their near-native features, which makes them difficult to probe using global structural probes. This Review puts together the available literature and new evidence on DMGs to give a broader perspective on the universality of DMGs and discuss their significance in protein folding, function, and disease.
Collapse
Affiliation(s)
- Nirbhik Acharya
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
46
|
Poudel H, Leitner DM. Energy Transport in Class B GPCRs: Role of Protein-Water Dynamics and Activation. J Phys Chem B 2022; 126:8362-8373. [PMID: 36256609 DOI: 10.1021/acs.jpcb.2c03960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We compute energy exchange networks (EENs) through glucagon-like peptide-1 receptor (GLP-1R), a class B G-protein-coupled receptor (GPCR), in inactive and two active states, one activated by a peptide ligand and the other by a small molecule agonist, from results of molecular dynamics simulations. The reorganized network upon activation contains contributions from structural as well as from dynamic changes and corresponding entropic contributions to the free energy of activation, which are estimated in terms of the change in rates of energy transfer across non-covalent contacts. The role of water in the EENs and in activation of GLP-1R is also investigated. The dynamics of water in contact with the central polar network of the transmembrane region is found to be significantly slower for both activated states compared to the inactive state. This result is consistent with the contribution of water molecules to activation of GLP-1R previously suggested and resembles water dynamics in parts of the transmembrane region found in earlier studies of rhodopsin-like GPCRs.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| |
Collapse
|
47
|
Molecular and thermodynamic mechanisms for protein adaptation. EUROPEAN BIOPHYSICS JOURNAL 2022; 51:519-534. [DOI: 10.1007/s00249-022-01618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
|
48
|
Bonin JP, Sapienza PJ, Lee AL. Dynamic allostery in substrate binding by human thymidylate synthase. eLife 2022; 11:79915. [PMID: 36200982 PMCID: PMC9536839 DOI: 10.7554/elife.79915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Human thymidylate synthase (hTS) is essential for DNA replication and therefore a therapeutic target for cancer. Effective targeting requires knowledge of the mechanism(s) of regulation of this 72 kDa homodimeric enzyme. Here, we investigate the mechanism of binding cooperativity of the nucleotide substrate. We have employed exquisitely sensitive methyl-based CPMG and CEST NMR experiments enabling us to identify residues undergoing bifurcated linear 3-state exchange, including concerted switching between active and inactive conformations in the apo enzyme. The inactive state is populated to only ~1.3%, indicating that conformational selection contributes negligibly to the cooperativity. Instead, methyl rotation axis order parameters, determined by 2H transverse relaxation rates, suggest that rigidification of the enzyme upon substrate binding is responsible for the entropically-driven cooperativity. Lack of the rigidification in product binding and substrate binding to an N-terminally truncated enzyme, both non-cooperative, support this idea. In addition, the lack of this rigidification in the N-terminal truncation indicates that interactions between the flexible N-terminus and the rest of the protein, which are perturbed by substrate binding, play a significant role in the cooperativity—a novel mechanism of dynamic allostery. Together, these findings yield a rare depth of insight into the substrate binding cooperativity of an essential enzyme.
Collapse
Affiliation(s)
- Jeffrey P Bonin
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina
| | - Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina
| | - Andrew L Lee
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina
| |
Collapse
|
49
|
Phenol sensing in nature is modulated via a conformational switch governed by dynamic allostery. J Biol Chem 2022; 298:102399. [PMID: 35988639 PMCID: PMC9556785 DOI: 10.1016/j.jbc.2022.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
The NtrC family of proteins senses external stimuli and accordingly stimulates stress and virulence pathways via activation of associated σ54-dependent RNA polymerases. However, the structural determinants that mediate this activation are not well understood. Here, we establish using computational, structural, biochemical, and biophysical studies that MopR, an NtrC protein, harbors a dynamic bidirectional electrostatic network that connects the phenol pocket to two distal regions, namely the “G-hinge” and the “allosteric linker.” While the G-hinge influences the entry of phenol into the pocket, the allosteric linker passes the signal to the downstream ATPase domain. We show that phenol binding induces a rewiring of the electrostatic connections by eliciting dynamic allostery and demonstrates that perturbation of the core relay residues results in a complete loss of ATPase stimulation. Furthermore, we found a mutation of the G-hinge, ∼20 Å from the phenol pocket, promotes altered flexibility by shifting the pattern of conformational states accessed, leading to a protein with 7-fold enhanced phenol binding ability and enhanced transcriptional activation. Finally, we conducted a global analysis that illustrates that dynamic allostery-driven conserved community networks are universal and evolutionarily conserved across species. Taken together, these results provide insights into the mechanisms of dynamic allostery-mediated conformational changes in NtrC sensor proteins.
Collapse
|
50
|
Mishra SH, Kancherla AK, Marincin KA, Bouvignies G, Nerli S, Sgourakis N, Dowling DP, Frueh DP. Global protein dynamics as communication sensors in peptide synthetase domains. SCIENCE ADVANCES 2022; 8:eabn6549. [PMID: 35857508 PMCID: PMC9286511 DOI: 10.1126/sciadv.abn6549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/28/2022] [Indexed: 05/04/2023]
Abstract
Biological activity is governed by the timely redistribution of molecular interactions, and static structural snapshots often appear insufficient to provide the molecular determinants that choreograph communication. This conundrum applies to multidomain enzymatic systems called nonribosomal peptide synthetases (NRPSs), which assemble simple substrates into complex metabolites, where a dynamic domain organization challenges rational design to produce new pharmaceuticals. Using a nuclear magnetic resonance (NMR) atomic-level readout of biochemical transformations, we demonstrate that global structural fluctuations help promote substrate-dependent communication and allosteric responses, and impeding these global dynamics by a point-site mutation hampers allostery and molecular recognition. Our results establish global structural dynamics as sensors of molecular events that can remodel domain interactions, and they provide new perspectives on mechanisms of allostery, protein communication, and NRPS synthesis.
Collapse
Affiliation(s)
- Subrata H. Mishra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aswani K. Kancherla
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth A. Marincin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules (LBM), Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Santrupti Nerli
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nikolaos Sgourakis
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel P. Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|