1
|
Asor R, Loewenthal D, van Wee R, Benesch JLP, Kukura P. Mass Photometry. Annu Rev Biophys 2025; 54:379-399. [PMID: 40327438 DOI: 10.1146/annurev-biophys-061824-111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Mass photometry (MP) is a technology for the mass measurement of biological macromolecules in solution. Its mass accuracy and resolution have transformed label-free optical detection into a quantitative measurement, enabling the identification of distinct species in a mixture and the characterization of their relative abundances. Its applicability to a variety of biomolecules, including polypeptides, nucleic acids, lipids, and sugars, coupled with the ability to quantify heterogeneity, interaction energies, and kinetics, has driven the rapid and widespread adoption of MP across the life sciences community. These applications have been largely orthogonal to those traditionally associated with microscopy, such as detection, imaging, and tracking, instead focusing on the constituents of biomolecular complexes and their change with time. Here, we present an overview of the origins of MP, its current applications, and future improvements that will further expand its scope.
Collapse
Affiliation(s)
- Roi Asor
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Dan Loewenthal
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Raman van Wee
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Philipp Kukura
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Osiński N, Majsterkiewicz K, Pakosz‐Stępień Z, Azuma Y, Biela AP, Gaweł S, Heddle JG. Designed, Programmable Protein Cages Utilizing Diverse Metal Coordination Geometries Show Reversible, pH-Dependent Assembly. Macromol Rapid Commun 2025; 46:e2400712. [PMID: 39676522 PMCID: PMC11925324 DOI: 10.1002/marc.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Indexed: 12/17/2024]
Abstract
The rational design and production of a novel series of engineered protein cages are presented, which have emerged as versatile and adaptable platforms with significant applications in biomedicine. These protein cages are assembled from multiple protein subunits, and precise control over their interactions is crucial for regulating assembly and disassembly, such as the on-demand release of encapsulated therapeutic agents. This approach employs a homo-undecameric, ring-shaped protein scaffold with strategically positioned metal binding sites. These engineered proteins can self-assemble into highly stable cages in the presence of cobalt or zinc ions. Furthermore, the cages can be disassembled on demand by employing external triggers such as chelating agents and changes in pH. Interestingly, for certain triggers, the disassembly process is reversible, allowing the cages to reassemble upon reversal or outcompeting of triggering conditions/agents. This work offers a promising platform for the development of advanced drug delivery systems and other biomedical applications.
Collapse
Affiliation(s)
- Norbert Osiński
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7AKraków30387Poland
- Doctoral School of Exact and Natural SciencesJagiellonian UniversityŁojasiewicza 11Kraków30384Poland
| | - Karolina Majsterkiewicz
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7AKraków30387Poland
- Postgraduate School of Molecular Medicineul. Żwirki i Wigury 61Warsaw02091Poland
| | | | - Yusuke Azuma
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7AKraków30387Poland
| | - Artur P. Biela
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7AKraków30387Poland
- National Synchrotron Radiation Centre SOLARISCzerwone Maki 98Kraków30392Poland
| | - Szymon Gaweł
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7AKraków30387Poland
- Doctoral School of Exact and Natural SciencesJagiellonian UniversityŁojasiewicza 11Kraków30384Poland
| | - Jonathan G. Heddle
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7AKraków30387Poland
- School of Biological and Biomedical SciencesDurham UniversityDurhamDH1‐3LEUK
| |
Collapse
|
3
|
Vidmar S, Šmidlehner T, Aupič J, Strmšek Ž, Ljubetič A, Xiao F, Hu G, Liu C, Beck F, Erdmann PS, Jerala R. Beyond Dimerization: Harnessing Tetrameric Coiled-Coils for Nanostructure Assembly. Angew Chem Int Ed Engl 2025; 64:e202422075. [PMID: 39666653 PMCID: PMC11914934 DOI: 10.1002/anie.202422075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
Versatile DNA and polypeptide-based structures have been designed based on complementary modules. However, polypeptides can also form higher oligomeric states. We investigated the introduction of tetrameric modules as a substitute for coiled-coil dimerization units used in previous modular nanostructures. Tetramerizing helical bundles can run in parallel or antiparallel orientation, expanding the number of topological solutions for modular nanostructures. Furthermore, this strategy facilitates the construction of nanostructures from two identical polypeptide chains. Importantly, tetrameric modules substantially stabilized protein nanostructures against air-water interface denaturation, enabling the determination of the first cryo-electron microscopy three-dimensional structure of a coiled-coil-based nanostructure, confirming the designed agreement of the modules forming a tetrahedral cage.
Collapse
Affiliation(s)
- Sara Vidmar
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Interdisciplinary Doctoral Programme in BiomedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Tamara Šmidlehner
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
| | - Jana Aupič
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
| | - Žiga Strmšek
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- EN-FIST Centre of ExcellenceLjubljanaSlovenia
| | - Fei Xiao
- MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Key Laboratory of Pathogen Bioscience and Anti-infective MedicineDepartment of BioinformaticsCenter for Systems BiologySchool of Life SciencesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Key Laboratory of Pathogen Bioscience and Anti-infective MedicineDepartment of BioinformaticsCenter for Systems BiologySchool of Life SciencesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Chuan Liu
- Human TechnopoleMilanItaly
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Florian Beck
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Roman Jerala
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- EN-FIST Centre of ExcellenceLjubljanaSlovenia
| |
Collapse
|
4
|
Koziej L, Fatehi F, Aleksejczuk M, Byrne MJ, Heddle JG, Twarock R, Azuma Y. Dynamic Assembly of Pentamer-Based Protein Nanotubes. ACS NANO 2025; 19:8786-8798. [PMID: 39993171 PMCID: PMC11912573 DOI: 10.1021/acsnano.4c16192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
Hollow proteinaceous particles are useful nanometric containers for delivery and catalysis. Understanding the molecular mechanisms and the geometrical theory behind the polymorphic protein assemblies provides a basis for designing ones with the desired morphology. As such, we found that a circularly permuted variant of a cage-forming enzyme, Aquifex aeolicus lumazine synthase, cpAaLS, assembles into a variety of hollow spherical and cylindrical structures in response to changes in ionic strength. Cryogenic electron microscopy revealed that these structures are composed entirely of pentameric subunits, and the dramatic cage-to-tube transformation is attributed to the moderately hindered 3-fold symmetry interaction and the imparted torsion angle of the building blocks, where both mechanisms are mediated by an α-helix domain that is untethered from the native position by circular permutation. Mathematical modeling suggests that the unique double- and triple-stranded helical arrangements of subunits are optimal tiling patterns, while different geometries should be possible by modulating the interaction angles of the pentagons. These structural insights into dynamic, pentamer-based protein cages and nanotubes afford guidelines for designing nanoarchitectures with customized morphology and assembly characteristics.
Collapse
Affiliation(s)
- Lukasz Koziej
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Farzad Fatehi
- Departments
of Mathematics, University of York, York YO10 5DD, U.K.
| | - Marta Aleksejczuk
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Matthew J. Byrne
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Jonathan G. Heddle
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
- School
of Biological and Biomedical Sciences, Durham
University, Durham DH1 3LE, U.K.
| | - Reidun Twarock
- Departments
of Mathematics, University of York, York YO10 5DD, U.K.
- Department
of Biology, University of York, York YO10 5DD, U.K.
| | - Yusuke Azuma
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
5
|
Dowling QM, Park YJ, Fries CN, Gerstenmaier NC, Ols S, Yang EC, Wargacki AJ, Dosey A, Hsia Y, Ravichandran R, Walkey CD, Burrell AL, Veesler D, Baker D, King NP. Hierarchical design of pseudosymmetric protein nanocages. Nature 2025; 638:553-561. [PMID: 39695230 PMCID: PMC11821544 DOI: 10.1038/s41586-024-08360-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions1,2. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry3. Here, inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540 and 960 subunits. At 49, 71 and 96 nm diameter, these nanocages are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work substantially broadens the variety of self-assembling protein architectures that are accessible through design.
Collapse
Affiliation(s)
- Quinton M Dowling
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Chelsea N Fries
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Neil C Gerstenmaier
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sebastian Ols
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Adam J Wargacki
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Carl D Walkey
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Li W, Yang H, Stachowski K, Norris AS, Lichtenthal K, Kelly S, Gollnick P, Wysocki VH, Foster MP. Structural basis of nearest-neighbor cooperativity in the ring-shaped gene regulatory protein TRAP from protein engineering and cryo-EM. Proc Natl Acad Sci U S A 2025; 122:e2409030121. [PMID: 39793047 PMCID: PMC11725872 DOI: 10.1073/pnas.2409030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
The homo-dodecameric ring-shaped trp RNA binding attenuation protein (TRAP) from Alkalihalobacillus halodurans (Aha) binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the trp operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity. To establish a solid basis for describing nearest-neighbor cooperativity in TRAP, we engineered variants constructed with two subunits connected by a flexible linker (dTRAP). We mutated the binding sites of alternating protomers such that only every other site was competent for Trp binding (WT-Mut dTRAP). Ligand binding monitored by NMR, calorimetry, and native mass spectrometry revealed strong cooperativity in dTRAP containing adjacent binding-competent sites, but a severe binding defect when the wild-type sites were separated by mutated sites. Cryo-EM experiments of dTRAP in its ligand-free apo state, and both dTRAP and WT-Mut dTRAP in the presence of Trp, revealed progressive stabilization of loops that gate the Trp binding site and participate in RNA binding. These studies provide important insights into the thermodynamic and structural basis for the observed ligand binding cooperativity in TRAP. Such insights can be useful for understanding allosteric control networks and for the development of those with defined ligand sensitivity and regulatory control.
Collapse
Affiliation(s)
- Weicheng Li
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
| | - Haoyun Yang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
- Center for RNA Biology, The Ohio State University, Columbus, OH43210
| | - Kye Stachowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
| | - Andrew S. Norris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
- Native MS Guided Structural Biology Center, The Ohio State University, Columbus, OH43210
| | | | - Skyler Kelly
- Department of Biology, University at Buffalo, Buffalo, NY14260
| | - Paul Gollnick
- Department of Biology, University at Buffalo, Buffalo, NY14260
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
- Center for RNA Biology, The Ohio State University, Columbus, OH43210
- Native MS Guided Structural Biology Center, The Ohio State University, Columbus, OH43210
| | - Mark P. Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
- Center for RNA Biology, The Ohio State University, Columbus, OH43210
- Biophysics Graduate Program, The Ohio State University, Columbus, OH43210
| |
Collapse
|
7
|
Wu H, Wang Y, Đorđević L, Kundu P, Bhunia S, Chen AXY, Feng L, Shen D, Liu W, Zhang L, Song B, Wu G, Liu BT, Yang MY, Yang Y, Stern CL, Stupp SI, Goddard WA, Hu W, Stoddart JF. Dynamic supramolecular snub cubes. Nature 2025; 637:347-353. [PMID: 39780009 DOI: 10.1038/s41586-024-08266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/22/2024] [Indexed: 01/11/2025]
Abstract
Mimicking the superstructures and properties of spherical biological encapsulants such as viral capsids1 and ferritin2 offers viable pathways to understand their chiral assemblies and functional roles in living systems. However, stereospecific assembly of artificial polyhedra with mechanical properties and guest-binding attributes akin to biological encapsulants remains a formidable challenge. Here we report the stereospecific assembly of dynamic supramolecular snub cubes from 12 helical macrocycles, which are held together by 144 weak C-H hydrogen bonds3. The enantiomerically pure snub cubes, which have external diameters of 5.1 nm, contain 2,712 atoms and chiral cavities with volumes of 6,215 Å3. The stereospecific assembly of left- and right-handed snub cubes was achieved by means of a hierarchical chirality transfer protocol4, which was streamlined by diastereoselective crystallization. In addition to their reversible photochromic behaviour, the snub cubes exhibit photocontrollable elasticity and hardness in their crystalline states. The snub cubes can accommodate numerous small guest molecules simultaneously and encapsulate two different guest molecules separately inside the uniquely distinct compartments in their frameworks. This research expands the scope of artificial supramolecular assemblies to imitate the chiral superstructures, dynamic features and binding properties of spherical biomacromolecules and also establishes a protocol for construction of crystalline materials with photocontrollable mechanical properties.
Collapse
Affiliation(s)
- Huang Wu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, China.
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yu Wang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, China.
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Pramita Kundu
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Surojit Bhunia
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Aspen X-Y Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Liang Feng
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Wenqi Liu
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Long Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Bo Song
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Guangcheng Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Bai-Tong Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Moon Young Yang
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, USA
| | - Yong Yang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | | | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Center for Regenerative Nanomedicine and Department of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, USA
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, China.
| | - J Fraser Stoddart
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Center for Regenerative Nanomedicine and Department of Medicine, Northwestern University, Chicago, IL, USA.
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China.
| |
Collapse
|
8
|
Li L, Ye L, Shi Y, Yin L, Chen G. Liquid Phase Exfoliation of Protein Parent Crystals into Nanosheets and Fibrils Based on Orthogonal Supramolecular Interactions. J Am Chem Soc 2024; 146:31992-32002. [PMID: 39530760 DOI: 10.1021/jacs.4c11921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Proteins are attractive building blocks for fabricating diverse and precise nanomaterials. However, the facile fabrication of multidimensional artificial assemblies is highly challenging. Here, inspired by the large-scale production technique of inorganic nanomaterials, we demonstrate the application of liquid phase exfoliation (LPE) on native protein ConA by the design of synthetic ligands. These ligands provide distinct in-plane and out-of-plane supramolecular interactions, allowing the generation of multidimensional architectures based on the same protein by dissociating a single interaction in solution, including 3D porous protein crystals, 2D sizable nanosheets, and 1D fibrils. Importantly, the exfoliated 2D sheets were dozens of times larger than the self-assembled nanosheets, resulting in a dramatic enhancement of the intrinsic bioactivity of the building blocks by receptor clustering and less endocytosis. These findings enable the successful application of LPE on biomacromolecules and open up an alternative avenue to generate advanced multidimensional nanomaterials, without the need for complex protein design and careful adjustment of self-assembly conditions.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Linfei Ye
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yiwei Shi
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Lin Yin
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Duan M, Lv C, Zang J, Leng X, Zhao G, Zhang T. Metals at the Helm: Revolutionizing Protein Assembly and Applications. Macromol Biosci 2024; 24:e2400126. [PMID: 39239781 DOI: 10.1002/mabi.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Indexed: 09/07/2024]
Abstract
Protein assembly is an essential process in biological systems, where proteins self-assemble into complex structures with diverse functions. Inspired by the exquisite control over protein assembly in nature, scientists have been exploring ways to design and assemble protein structures with precise control over their topologies and functions. One promising approach for achieving this goal is through metal coordination, which utilizes metal-binding motifs to mediate protein-protein interactions and assemble protein complexes with controlled stoichiometry and geometry. Metal coordination provides a modular and tunable approach for protein assembly and de novo structure design, where the metal ion acts as a molecular glue that holds the protein subunits together in a specific orientation. Metal-coordinated protein assemblies have shown great potential for developing functional metalloproteinase, novel biomaterials and integrated drug delivery systems. In this review, an overview of the recent advances in protein assemblies benefited from metal coordination is provided, focusing on various protein arrangements in different dimensions including protein oligomers, protein nanocage and higher-order protein architectures. Moreover, the key metal-binding motifs and strategies used to assemble protein structures with precise control over their properties are highlighted. The potential applications of metal-mediated protein assemblies in biotechnology and biomedicine are also discussed.
Collapse
Affiliation(s)
- Maoping Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaojing Leng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
10
|
Zhou W, Li Y, Partridge BE, Mirkin CA. Engineering Anisotropy into Organized Nanoscale Matter. Chem Rev 2024; 124:11063-11107. [PMID: 39315621 DOI: 10.1021/acs.chemrev.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties. In this review, we define guidelines for leveraging anisotropy of individual building blocks to direct the organization of nanoscale matter. First, the nature and spatial distribution of local interactions are considered and three design rules that guide particle organization are derived. Subsequently, recent examples from the literature are examined in the context of these design rules. Within the discussion of each rule, we delineate the examples according to the dimensionality (0D-3D) of the building blocks. Finally, we use geometric considerations to propose a general inverse design-based construction strategy that will enable the engineering of colloidal crystals with unprecedented structural control.
Collapse
Affiliation(s)
- Wenjie Zhou
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuanwei Li
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin E Partridge
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Azuma Y, Gaweł S, Pasternak M, Woźnicka O, Pyza E, Heddle JG. Reengineering of an Artificial Protein Cage for Efficient Packaging of Active Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312286. [PMID: 38738740 DOI: 10.1002/smll.202312286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Indexed: 05/14/2024]
Abstract
Protein cages that readily encapsulate active enzymes of interest present useful nanotools for delivery and catalysis, wherein those with programmable disassembly characteristics serve as particularly attractive platforms. Here, a general guest packaging system based on an artificial protein cage, TRAP-cage, the disassembly of which can be induced by the addition of reducing agents, is established. In this system, TRAP-cage with SpyCatcher moieties in the lumen is prepared using genetic modification of the protein building block and assembled into a cage structure with either monovalent gold ions or molecular crosslinkers. The resulting protein cage can efficiently capture guest proteins equipped with a SpyTag by simply mixing them in an aqueous solution. This post-assembly loading system, which circumvents the exposure of guests to thiol-reactive crosslinkers, enables the packaging of enzymes possessing a catalytic cysteine or a metal cofactor while retaining their catalytic activity.
Collapse
Affiliation(s)
- Yusuke Azuma
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
| | - Szymon Gaweł
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, Krakow, 30-348, Poland
| | - Monika Pasternak
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, Krakow, 30-348, Poland
| | - Olga Woźnicka
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Elżbieta Pyza
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
| |
Collapse
|
12
|
Li M, Zhu H, Adorinni S, Xue W, Heard A, Garcia AM, Kralj S, Nitschke JR, Marchesan S. Metal Ions Trigger the Gelation of Cysteine-Containing Peptide-Appended Coordination Cages. Angew Chem Int Ed Engl 2024; 63:e202406909. [PMID: 38701043 DOI: 10.1002/anie.202406909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
We report a series of coordination cages that incorporate peptide chains at their vertices, prepared through subcomponent self-assembly. Three distinct heterochiral tripeptide subcomponents were incorporated, each exhibiting an L-D-L stereoconfiguration. Through this approach, we prepared and characterized three tetrahedral metal-peptide cages that incorporate thiol and methylthio groups. The gelation of these cages was probed through the binding of additional metal ions, with the metal-peptide cages acting as junctions, owing to the presence of sulfur atoms on the peripheral peptides. Gels were obtained with cages bearing cysteine at the C-terminus. Our strategy for developing functional metal-coordinated supramolecular gels with a modular design may result in the development of materials useful for chemical separations or drug delivery.
Collapse
Affiliation(s)
- Meng Li
- Department of Environmental Science and Engineering, North China Electric Power University, 689 Huadian Road, Baoding, 071003, P. R. China
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Huangtianzhi Zhu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Simone Adorinni
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Weichao Xue
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Andrew Heard
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ana M Garcia
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Pharmaceutical Technology Department - Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Silvia Marchesan
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- INSTM, Unit of Trieste, 34127, Trieste, Italy
| |
Collapse
|
13
|
Furukawa H, Nakamura S, Mizuta R, Sakamoto K, Inaba H, Sawada SI, Sasaki Y, Akiyoshi K, Matsuura K. Enveloped Viral Replica Equipped with Spike Protein Derived from SARS-CoV-2. ACS Synth Biol 2024; 13:2029-2037. [PMID: 38885191 DOI: 10.1021/acssynbio.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Synthetic viral nanostructures are useful as materials for analyzing the biological behavior of natural viruses and as vaccine materials. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped virus embedding a spike (S) protein involved in host cell infection. Although nanomaterials modified with an S protein without an envelope membrane have been developed, they are considered unsuitable for stability and functionality. We previously constructed an enveloped viral replica complexed with a cationic lipid bilayer and an anionic artificial viral capsid self-assembled from β-annulus peptides. In this study, we report the first example of an enveloped viral replica equipped with an S protein derived from SARS-CoV-2. Interestingly, even the S protein equipped on the enveloped viral replica bound strongly to the free angiotensin-converting enzyme 2 (ACE2) receptor as well as ACE2 localized on the cell membrane.
Collapse
Affiliation(s)
- Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Sosuke Nakamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Ryosuke Mizuta
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kentarou Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| |
Collapse
|
14
|
Tiryaki E, Álvarez-Leirós C, Majcherkiewicz JN, Chariou PL, Maceira-Campos M, Bodelón G, Steinmetz NF, Salgueiriño V. Magnetically Induced Thermal Effects on Tobacco Mosaic Virus-Based Nanocomposites for a Programmed Disassembly of Protein Cages. ACS APPLIED BIO MATERIALS 2024; 7:4804-4814. [PMID: 38934736 PMCID: PMC11253087 DOI: 10.1021/acsabm.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Protein cages are promising tools for the controlled delivery of therapeutics and imaging agents when endowed with programmable disassembly strategies. Here, we produced hybrid nanocomposites made of tobacco mosaic virus (TMV) and magnetic iron oxide nanoparticles (IONPs), designed to disrupt the viral protein cages using magnetically induced release of heat. We studied the effects of this magnetic hyperthermia on the programmable viral protein capsid disassembly using (1) elongated nanocomposites of TMV coated heterogeneously with magnetic iron oxide nanoparticles (TMV@IONPs) and (2) spherical nanocomposites of polystyrene (PS) on which we deposited presynthesized IONPs and TMV via layer-by-layer self-assembly (PS@IONPs/TMV). Notably, we found that the extent of the disassembly of the protein cages is contingent upon the specific absorption rate (SAR) of the magnetic nanoparticles, that is, the heating efficiency, and the relative position of the protein cage within the nanocomposite concerning the heating sources. This implies that the spatial arrangement of components within the hybrid nanostructure has a significant impact on the disassembly process. Understanding and optimizing this relationship will contribute to the critical spatiotemporal control for targeted drug and gene delivery using protein cages.
Collapse
Affiliation(s)
| | | | | | - Paul L. Chariou
- Department
of Bioengineering, University of California
San Diego, La Jolla, California 92093, United States
| | | | - Gustavo Bodelón
- CINBIO, Universidade de Vigo, Vigo 36310, Spain
- Departamento
de Biología Funcional y Ciencias de la Salud, Universidade de Vigo, Vigo 36310, Spain
| | - Nicole F. Steinmetz
- Department
of Bioengineering, University of California
San Diego, La Jolla, California 92093, United States
- Department
of NanoEngineering, University of California
San Diego, La Jolla, California 92093, United States
- Department
of Radiology, University of California San
Diego, La Jolla, California92093, United States
- Center for
Nano-ImmunoEngineering, University of California
San Diego, La Jolla, California92093, United States
- Institute
for Materials Discovery and Design, University
of California San Diego, La Jolla, California92093, United States
| | - Verónica Salgueiriño
- CINBIO, Universidade de Vigo, Vigo 36310, Spain
- Departamento
de Física Aplicada, Universidade
de Vigo, Vigo 36310, Spain
| |
Collapse
|
15
|
Hua Y, Qin Z, Gao L, Zhou M, Xue Y, Li Y, Xie J. Protein nanoparticles as drug delivery systems for cancer theranostics. J Control Release 2024; 371:429-444. [PMID: 38849096 DOI: 10.1016/j.jconrel.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Protein-based nanoparticles have garnered significant attention in theranostic applications due to their superior biocompatibility, exceptional biodegradability and ease of functionality. Compared to other nanocarriers, protein-based nanoparticles offer additional advantages, including biofunctionality and precise molecular recognition abilities, which make them highly effective in navigating complex biological environments. Moreover, proteins can serve as powerful tools with self-assembling structures and reagents that enhance cell penetration. And their derivation from abundant renewable sources and ability to degrade into harmless amino acids further enhance their suitability for biomedical applications. However, protein-based nanoparticles have so far not realized their full potential. In this review, we summarize recent advances in the use of protein nanoparticles in tumor diagnosis and treatment and outline typical methods for preparing protein nanoparticles. The review of protein nanoparticles may provide useful new insights into the development of biomaterial fabrication.
Collapse
Affiliation(s)
- Yue Hua
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Zibo Qin
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Lin Gao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Mei Zhou
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yonger Xue
- Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, PR China.
| | - Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau SAR, China.
| | - Jinbing Xie
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China.
| |
Collapse
|
16
|
Jeon H, Han AR, Oh S, Park JG, Namkoong M, Bang KM, Kim HM, Kim NK, Hwang KY, Hur K, Lee BJ, Heo J, Kim S, Song HK, Cho H, Lee IG. Polymorphic Self-Assembly with Procedural Flexibility for Monodisperse Quaternary Protein Structures of DegQ Enzymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308837. [PMID: 38351715 DOI: 10.1002/adma.202308837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/08/2024] [Indexed: 02/29/2024]
Abstract
As large molecular tertiary structures, some proteins can act as small robots that find, bind, and chaperone target protein clients, showing the potential to serve as smart building blocks in self-assembly fields. Instead of using such intrinsic functions, most self-assembly methodologies for proteins aim for de novo-designed structures with accurate geometric assemblies, which can limit procedural flexibility. Here, a strategy enabling polymorphic clustering of quaternary proteins, exhibiting simplicity and flexibility of self-assembling paths for proteins in forming monodisperse quaternary cage particles is presented. It is proposed that the enzyme protomer DegQ, previously solved at low resolution, may potentially be usable as a threefold symmetric building block, which can form polyhedral cages incorporated by the chaperone action of DegQ in the presence of protein clients. To obtain highly monodisperse cage particles, soft, and hence, less resistive client proteins, which can program the inherent chaperone activity of DegQ to efficient formations of polymorphic cages, depending on the size of clients are utilized. By reconstructing the atomic resolution cryogenic electron microscopy DegQ structures using obtained 12- and 24-meric clusters, the polymorphic clustering of DegQ enzymes is validated in terms of soft and rigid domains, which will provide effective routes for protein self-assemblies with procedural flexibility.
Collapse
Affiliation(s)
- Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ah-Reum Han
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55, Expo-ro, Daejeon, 34126, Republic of Korea
| | - Sangmin Oh
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Myeong Namkoong
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Kyeong-Mi Bang
- Advanced Analysis Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Life Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55, Expo-ro, Daejeon, 34126, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Daejeon, 34126, Republic of Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kahyun Hur
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Science, Seoul National University, 599, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- College of Pharmacy, Ajou University, 206, Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Jeongyun Heo
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Sehoon Kim
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyun Kyu Song
- Department of Life Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyesung Cho
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
17
|
Hori M, Steinauer A, Tetter S, Hälg J, Manz EM, Hilvert D. Stimulus-responsive assembly of nonviral nucleocapsids. Nat Commun 2024; 15:3576. [PMID: 38678040 PMCID: PMC11055949 DOI: 10.1038/s41467-024-47808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Controlled assembly of a protein shell around a viral genome is a key step in the life cycle of many viruses. Here we report a strategy for regulating the co-assembly of nonviral proteins and nucleic acids into highly ordered nucleocapsids in vitro. By fusing maltose binding protein to the subunits of NC-4, an engineered protein cage that encapsulates its own encoding mRNA, we successfully blocked spontaneous capsid assembly, allowing isolation of the individual monomers in soluble form. To initiate RNA-templated nucleocapsid formation, the steric block can be simply removed by selective proteolysis. Analyses by transmission and cryo-electron microscopy confirmed that the resulting assemblies are structurally identical to their RNA-containing counterparts produced in vivo. Enzymatically triggered cage formation broadens the range of RNA molecules that can be encapsulated by NC-4, provides unique opportunities to study the co-assembly of capsid and cargo, and could be useful for studying other nonviral and viral assemblies.
Collapse
Affiliation(s)
- Mao Hori
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LIBN, Lausanne, Switzerland
| | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Jamiro Hälg
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Eva-Maria Manz
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
18
|
Gladkov N, Scott EA, Meador K, Lee EJ, Laganowsky AD, Yeates TO, Castells‐Graells R. Design of a symmetry-broken tetrahedral protein cage by a method of internal steric occlusion. Protein Sci 2024; 33:e4973. [PMID: 38533546 PMCID: PMC10966355 DOI: 10.1002/pro.4973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, for example, so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.
Collapse
Affiliation(s)
- Nika Gladkov
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Elena A. Scott
- Department of ChemistryTexas A&M UniversityCollege StationTexasUSA
| | - Kyle Meador
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Eric J. Lee
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | | - Todd O. Yeates
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
- UCLA‐DOE Institute for Genomics and ProteomicsLos AngelesCaliforniaUSA
| | | |
Collapse
|
19
|
Gao R, Xu X, Kumar P, Liu Y, Zhang H, Guo X, Sun M, Colombari FM, de Moura AF, Hao C, Ma J, Turali Emre ES, Cha M, Xu L, Kuang H, Kotov NA, Xu C. Tapered chiral nanoparticles as broad-spectrum thermally stable antivirals for SARS-CoV-2 variants. Proc Natl Acad Sci U S A 2024; 121:e2310469121. [PMID: 38502692 PMCID: PMC10990083 DOI: 10.1073/pnas.2310469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024] Open
Abstract
The incessant mutations of viruses, variable immune responses, and likely emergence of new viral threats necessitate multiple approaches to novel antiviral therapeutics. Furthermore, the new antiviral agents should have broad-spectrum activity and be environmentally stable. Here, we show that biocompatible tapered CuS nanoparticles (NPs) efficiently agglutinate coronaviruses with binding affinity dependent on the chirality of surface ligands and particle shape. L-penicillamine-stabilized NPs with left-handed curved apexes display half-maximal inhibitory concentrations (IC50) as low as 0.66 pM (1.4 ng/mL) and 0.57 pM (1.2 ng/mL) for pseudo-type SARS-CoV-2 viruses and wild-type Wuhan-1 SARS-CoV-2 viruses, respectively, which are about 1,100 times lower than those for antibodies (0.73 nM). Benefiting from strong NPs-protein interactions, the same particles are also effective against other strains of coronaviruses, such as HCoV-HKU1, HCoV-OC43, HCoV-NL63, and SARS-CoV-2 Omicron variants with IC50 values below 10 pM (21.8 ng/mL). Considering rapid response to outbreaks, exposure to elevated temperatures causes no change in the antiviral activity of NPs while antibodies are completely deactivated. Testing in mice indicates that the chirality-optimized NPs can serve as thermally stable analogs of antiviral biologics complementing the current spectrum of treatments.
Collapse
Affiliation(s)
- Rui Gao
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Prashant Kumar
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan650000, People’s Republic of China
| | - Hongyu Zhang
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Xiao Guo
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Felippe Mariano Colombari
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13083-100, Brazil
| | - André F. de Moura
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo13565-905, Brazil
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Jessica Ma
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
- NSF Center for Complex Particles and Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI48109
| | - Emine Sumeyra Turali Emre
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
- NSF Center for Complex Particles and Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI48109
| | - Minjeong Cha
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Nicholas A. Kotov
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
- NSF Center for Complex Particles and Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI48109
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| |
Collapse
|
20
|
Du S, Sun S, Ju Z, Wang W, Su K, Qiu F, Yu X, Xu G, Yuan D. Hierarchical Self-Assembly of Capsule-Shaped Zirconium Coordination Cages with Quaternary Structure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308445. [PMID: 38229156 PMCID: PMC10953209 DOI: 10.1002/advs.202308445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/07/2024] [Indexed: 01/18/2024]
Abstract
Biological macromolecules exhibit emergent functions through hierarchical self-assembly, a concept that is extended to design artificial supramolecular assemblies. Here, the first example of breaking the common parallel arrangement of capsule-shaped zirconium coordination cages is reported by constructing the hierarchical porous framework ZrR-1. ZrR-1 adopts a quaternary structure resembling protein and contains 12-connected chloride clusters, representing the highest connectivity for zirconium-based cages reported thus far. Compared to the parallel framework ZrR-2, ZrR-1 demonstrated enhanced stability in acidic aqueous solutions and a tenfold increase in BET surface area (879 m2 g-1 ). ZrR-1 also exhibits excellent proton conductivity, reaching 1.31 × 10-2 S·cm-1 at 353 K and 98% relative humidity, with a low activation energy of 0.143 eV. This finding provides insights into controlling the hierarchical self-assembly of metal-organic cages to discover superstructures with emergent properties.
Collapse
Affiliation(s)
- Shunfu Du
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- University of the Chinese Academy of SciencesBeijing100049P. R. China
| | - Shihao Sun
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
| | - Zhanfeng Ju
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- University of the Chinese Academy of SciencesBeijing100049P. R. China
| | - Wenjing Wang
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- University of the Chinese Academy of SciencesBeijing100049P. R. China
| | - Kongzhao Su
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- University of the Chinese Academy of SciencesBeijing100049P. R. China
| | - Fenglei Qiu
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- College of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Xuying Yu
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- University of the Chinese Academy of SciencesBeijing100049P. R. China
| | - Gang Xu
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- University of the Chinese Academy of SciencesBeijing100049P. R. China
| | - Daqiang Yuan
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- University of the Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
21
|
Lee EJ, Gladkov N, Miller JE, Yeates TO. Design of Ligand-Operable Protein-Cages That Open Upon Specific Protein Binding. ACS Synth Biol 2024; 13:157-167. [PMID: 38133598 DOI: 10.1021/acssynbio.3c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Protein nanocages have diverse applications in medicine and biotechnology, including molecular delivery. However, although numerous studies have demonstrated the ability of protein nanocages to encapsulate various molecular species, limited methods are available for subsequently opening a nanocage for cargo release under specific conditions. A modular platform with a specific protein-target-based mechanism of nanocage opening is notably lacking. To address this important technology gap, we present a new class of designed protein cages, the Ligand-Operable Cage (LOC). LOCs primarily comprise a protein nanocage core and a fused surface binding adaptor. The geometry of the LOC is designed so that binding of a target protein ligand (or multiple copies thereof) to the surface binder is sterically incompatible with retention of the assembled state of the cage. Therefore, the tight binding of a target ligand drives cage disassembly by mass action, subsequently exposing the encapsulated cargo. LOCs are modular; direct substitution of the surface binder sequence can reprogram the nanocage to open in response to any target protein ligand of interest. We demonstrate these design principles using both a natural and a designed protein cage as the core, with different proteins acting as the triggering ligand and with different reporter readouts─fluorescence unquenching and luminescence─for cage disassembly. These developments advance the critical problem of targeted molecular delivery and detection.
Collapse
Affiliation(s)
- Eric J Lee
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Nika Gladkov
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Justin E Miller
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, United States
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, United States
- UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Stupka I, Biela AP, Piette B, Kowalczyk A, Majsterkiewicz K, Borzęcka-Solarz K, Naskalska A, Heddle JG. An artificial protein cage made from a 12-membered ring. J Mater Chem B 2024; 12:436-447. [PMID: 38088805 DOI: 10.1039/d3tb01659e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Artificial protein cages have great potential in diverse fields including as vaccines and drug delivery vehicles. TRAP-cage is an artificial protein cage notable for the way in which the interface between its ring-shaped building blocks can be modified such that the conditions under which cages disassemble can be controlled. To date, TRAP-cages have been constructed from homo-11mer rings, i.e., hendecamers. This is interesting as convex polyhedra with identical regular faces cannot be formed from hendecamers. TRAP-cage overcomes this limitation due to intrinsic flexibility, allowing slight deformation to absorb any error. The resulting TRAP-cage made from 24 TRAP 11mer rings is very close to regular with only very small errors necessary to allow the cage to form. The question arises as to the limits of the error that can be absorbed by a protein structure in this way before the formation of an apparently regular convex polyhedral becomes impossible. Here we use a naturally occurring TRAP variant consisting of twelve identical monomers (i.e., a dodecamer) to probe these limits. We show that it is able to form an apparently regular protein cage consisting of twelve TRAP rings. Comparison of the cryo-EM structure of the new cage with theoretical models and related cages gives insight into the rules of cage formation and allows us to predict other cages that may be formed given TRAP-rings consisting of different numbers of monomers.
Collapse
Affiliation(s)
- Izabela Stupka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
- Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Artur P Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Bernard Piette
- Department of Mathematical Sciences, Durham University, Durham, UK
| | - Agnieszka Kowalczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
- Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland
| | - Karolina Majsterkiewicz
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
- Postgraduate School of Molecular Medicine, Warsaw, Poland
| | | | - Antonina Naskalska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
23
|
Fatehi F, Twarock R. An interaction network approach predicts protein cage architectures in bionanotechnology. Proc Natl Acad Sci U S A 2023; 120:e2303580120. [PMID: 38060565 PMCID: PMC10723117 DOI: 10.1073/pnas.2303580120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/21/2023] [Indexed: 12/17/2023] Open
Abstract
Protein nanoparticles play pivotal roles in many areas of bionanotechnology, including drug delivery, vaccination, and diagnostics. These technologies require control over the distinct particle morphologies that protein nanocontainers can adopt during self-assembly from their constituent protein components. The geometric construction principle of virus-derived protein cages is by now fairly well understood by analogy to viral protein shells in terms of Caspar and Klug's quasi-equivalence principle. However, many artificial, or genetically modified, protein containers exhibit varying degrees of quasi-equivalence in the interactions between identical protein subunits. They can also contain a subset of protein subunits that do not participate in interactions with other assembly units, called capsomers, leading to gaps in the particle surface. We introduce a method that exploits information on the local interactions between the capsomers to infer the geometric construction principle of these nanoparticle architectures. The predictive power of this approach is demonstrated here for a prominent system in nanotechnology, the AaLS pentamer. Our method not only rationalises hitherto discovered cage structures but also predicts geometrically viable options that have not yet been observed. The classification of nanoparticle architecture based on the geometric properties of the interaction network closes a gap in our current understanding of protein container structure and can be widely applied in protein nanotechnology, paving the way to programmable control over particle polymorphism.
Collapse
Affiliation(s)
- Farzad Fatehi
- Departments of Mathematics, University of York, YorkYO10 5DD, United Kingdom
| | - Reidun Twarock
- Departments of Mathematics, University of York, YorkYO10 5DD, United Kingdom
- Department of Biology, University of York, YorkYO10 5DD, United Kingdom
| |
Collapse
|
24
|
Gladkov N, Scott EA, Meador K, Lee EJ, Laganowsky AD, Yeates TO, Castells-Graells R. Design of a symmetry-broken tetrahedral protein cage by a method of internal steric occlusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566319. [PMID: 37986890 PMCID: PMC10659388 DOI: 10.1101/2023.11.08.566319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, e.g., so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.
Collapse
Affiliation(s)
- Nika Gladkov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Elena A. Scott
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States of America
| | - Kyle Meador
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Eric J. Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Arthur D. Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States of America
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, United States of America
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, United States of America
| | - Roger Castells-Graells
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, United States of America
| |
Collapse
|
25
|
Seitz I, Saarinen S, Kumpula EP, McNeale D, Anaya-Plaza E, Lampinen V, Hytönen VP, Sainsbury F, Cornelissen JJLM, Linko V, Huiskonen JT, Kostiainen MA. DNA-origami-directed virus capsid polymorphism. NATURE NANOTECHNOLOGY 2023; 18:1205-1212. [PMID: 37460794 PMCID: PMC10575778 DOI: 10.1038/s41565-023-01443-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/06/2023] [Indexed: 10/15/2023]
Abstract
Viral capsids can adopt various geometries, most iconically characterized by icosahedral or helical symmetries. Importantly, precise control over the size and shape of virus capsids would have advantages in the development of new vaccines and delivery systems. However, current tools to direct the assembly process in a programmable manner are exceedingly elusive. Here we introduce a modular approach by demonstrating DNA-origami-directed polymorphism of single-protein subunit capsids. We achieve control over the capsid shape, size and topology by employing user-defined DNA origami nanostructures as binding and assembly platforms, which are efficiently encapsulated within the capsid. Furthermore, the obtained viral capsid coatings can shield the encapsulated DNA origami from degradation. Our approach is, moreover, not limited to a single type of capsomers and can also be applied to RNA-DNA origami structures to pave way for next-generation cargo protection and targeting strategies.
Collapse
Affiliation(s)
- Iris Seitz
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Sharon Saarinen
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | | | - Vili Lampinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Jeroen J L M Cornelissen
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede, Netherlands
| | - Veikko Linko
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
- LIBER Center of Excellence, Aalto University, Aalto, Finland
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland.
- LIBER Center of Excellence, Aalto University, Aalto, Finland.
| |
Collapse
|
26
|
Cao S, Peeters S, Michel-Souzy S, Hamelmann N, Paulusse JMJ, Yang LL, Cornelissen JJLM. Construction of viral protein-based hybrid nanomaterials mediated by a macromolecular glue. J Mater Chem B 2023; 11:7933-7941. [PMID: 37306104 PMCID: PMC10448939 DOI: 10.1039/d2tb02688k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
A generic strategy to construct virus protein-based hybrid nanomaterials is reported by using a macromolecular glue inspired by mussel adhesion. Commercially available poly(isobutylene-alt-maleic anhydride) (PiBMA) modified with dopamine (PiBMAD) is designed as this macromolecular glue, which serves as a universal adhesive material for the construction of multicomponent hybrid nanomaterials. As a proof of concept, gold nanorods (AuNRs) and single-walled carbon nanotubes (SWCNTs) are initially coated with PiBMAD. Subsequently, viral capsid proteins from the Cowpea Chlorotic Mottle Virus (CCMV) assemble around the nano-objects templated by the negative charges of the glue. With virtually unchanged properties of the rods and tubes, the hybrid materials might show improved biocompatibility and can be used in future studies toward cell uptake and delivery.
Collapse
Affiliation(s)
- Shuqin Cao
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Sandro Peeters
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Sandra Michel-Souzy
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Naomi Hamelmann
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Jos M J Paulusse
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Liu-Lin Yang
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
- College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
| | - Jeroen J L M Cornelissen
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| |
Collapse
|
27
|
Becker J, Peters JS, Crooks I, Helmi S, Synakewicz M, Schuler B, Kukura P. A Quantitative Description for Optical Mass Measurement of Single Biomolecules. ACS PHOTONICS 2023; 10:2699-2710. [PMID: 37602293 PMCID: PMC10436351 DOI: 10.1021/acsphotonics.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 08/22/2023]
Abstract
Label-free detection of single biomolecules in solution has been achieved using a variety of experimental approaches over the past decade. Yet, our understanding of the magnitude of the optical contrast and its relationship with the underlying atomic structure as well as the achievable measurement sensitivity and precision remain poorly defined. Here, we use a Fourier optics approach combined with an atomic structure-based molecular polarizability model to simulate mass photometry experiments from first principles. We find excellent agreement between several key experimentally determined parameters such as optical contrast-to-mass conversion, achievable mass accuracy, and molecular shape and orientation dependence. This allows us to determine detection sensitivity and measurement precision mostly independent of the optical detection approach chosen, resulting in a general framework for light-based single-molecule detection and quantification.
Collapse
Affiliation(s)
- Jan Becker
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Rd, Oxford OX1 3QU, U.K.
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Jack S. Peters
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Rd, Oxford OX1 3QU, U.K.
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Ivor Crooks
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Seham Helmi
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Rd, Oxford OX1 3QU, U.K.
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Marie Synakewicz
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Benjamin Schuler
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Department
of Physics, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Philipp Kukura
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Rd, Oxford OX1 3QU, U.K.
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
28
|
Mallik BB, Stanislaw J, Alawathurage TM, Khmelinskaia A. De Novo Design of Polyhedral Protein Assemblies: Before and After the AI Revolution. Chembiochem 2023; 24:e202300117. [PMID: 37014094 DOI: 10.1002/cbic.202300117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Self-assembling polyhedral protein biomaterials have gained attention as engineering targets owing to their naturally evolved sophisticated functions, ranging from protecting macromolecules from the environment to spatially controlling biochemical reactions. Precise computational design of de novo protein polyhedra is possible through two main types of approaches: methods from first principles, using physical and geometrical rules, and more recent data-driven methods based on artificial intelligence (AI), including deep learning (DL). Here, we retrospect first principle- and AI-based approaches for designing finite polyhedral protein assemblies, as well as advances in the structure prediction of such assemblies. We further highlight the possible applications of these materials and explore how the presented approaches can be combined to overcome current challenges and to advance the design of functional protein-based biomaterials.
Collapse
Affiliation(s)
- Bhoomika Basu Mallik
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Jenna Stanislaw
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Tharindu Madhusankha Alawathurage
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Alena Khmelinskaia
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
- Current address: Department of Chemistry, Ludwig Maximillian University, 80539, Munich, Germany
| |
Collapse
|
29
|
João J, Prazeres DMF. Manufacturing of non-viral protein nanocages for biotechnological and biomedical applications. Front Bioeng Biotechnol 2023; 11:1200729. [PMID: 37520292 PMCID: PMC10374429 DOI: 10.3389/fbioe.2023.1200729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Protein nanocages are highly ordered nanometer scale architectures, which are typically formed by homo- or hetero-self-assembly of multiple monomers into symmetric structures of different size and shape. The intrinsic characteristics of protein nanocages make them very attractive and promising as a biological nanomaterial. These include, among others, a high surface/volume ratio, multi-functionality, ease to modify or manipulate genetically or chemically, high stability, mono-dispersity, and biocompatibility. Since the beginning of the investigation into protein nanocages, several applications were conceived in a variety of areas such as drug delivery, vaccine development, bioimaging, biomineralization, nanomaterial synthesis and biocatalysis. The ability to generate large amounts of pure and well-folded protein assemblies is one of the keys to transform nanocages into clinically valuable products and move biomedical applications forward. This calls for the development of more efficient biomanufacturing processes and for the setting up of analytical techniques adequate for the quality control and characterization of the biological function and structure of nanocages. This review concisely covers and overviews the progress made since the emergence of protein nanocages as a new, next-generation class of biologics. A brief outline of non-viral protein nanocages is followed by a presentation of their main applications in the areas of bioengineering, biotechnology, and biomedicine. Afterwards, we focus on a description of the current processes used in the manufacturing of protein nanocages with particular emphasis on the most relevant aspects of production and purification. The state-of-the-art on current characterization techniques is then described and future alternative or complementary approaches in development are also discussed. Finally, a critical analysis of the limitations and drawbacks of the current manufacturing strategies is presented, alongside with the identification of the major challenges and bottlenecks.
Collapse
Affiliation(s)
- Jorge João
- iBB–Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Duarte Miguel F. Prazeres
- iBB–Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
30
|
Dowling QM, Park YJ, Gerstenmaier N, Yang EC, Wargacki A, Hsia Y, Fries CN, Ravichandran R, Walkey C, Burrell A, Veesler D, Baker D, King NP. Hierarchical design of pseudosymmetric protein nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545393. [PMID: 37398374 PMCID: PMC10312784 DOI: 10.1101/2023.06.16.545393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions 1-3. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry 4,5. Inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540, and 960 subunits. At 49, 71, and 96 nm diameter, these nanoparticles are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work represents an important step towards the accurate design of arbitrary self-assembling nanoscale protein objects.
Collapse
Affiliation(s)
- Quinton M Dowling
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil Gerstenmaier
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adam Wargacki
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Chelsea N Fries
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Carl Walkey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anika Burrell
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
31
|
Oohora K. Supramolecular assembling systems of hemoproteins using chemical modifications. J INCL PHENOM MACRO 2023. [DOI: 10.1007/s10847-023-01181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
32
|
Near-Miss Symmetric Polyhedral Cages. Symmetry (Basel) 2023. [DOI: 10.3390/sym15030717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Following the experimental discovery of several nearly symmetric protein cages, we define the concept of homogeneous symmetric congruent equivalent near-miss polyhedral cages made out of P-gons. We use group theory to parameterize the possible configurations and we minimize the irregularity of the P-gons numerically to construct all such polyhedral cages for P=6 to P=20 with deformation of up to 10%.
Collapse
|
33
|
Himiyama T, Hamaguchi T, Yonekura K, Nakamura T. Unnaturally Distorted Hexagonal Protein Ring Alternatingly Reorganized from Two Distinct Chemically Modified Proteins. Bioconjug Chem 2023. [PMID: 36888722 DOI: 10.1021/acs.bioconjchem.3c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
In this study, we constructed a semiartificial protein assembly of alternating ring type, which was modified from the natural assembly state via incorporation of a synthetic component at the protein interface. For the redesign of a natural protein assembly, a scrap-and-build approach employing chemical modification was used. Two different protein dimer units were designed based on peroxiredoxin from Thermococcus kodakaraensis, which originally forms a dodecameric hexagonal ring with six homodimers. The two dimeric mutants were reorganized into a ring by reconstructing the protein-protein interactions via synthetic naphthalene moieties introduced by chemical modification. Cryo-electron microscopy revealed the formation of a uniquely shaped dodecameric hexagonal protein ring with broken symmetry, distorted from the regular hexagon of the wild-type protein. The artificially installed naphthalene moieties were arranged at the interfaces of dimer units, forming two distinct protein-protein interactions, one of which is highly unnatural. This study deciphered the potential of the chemical modification technique that constructs semiartificial protein structures and assembly hardly accessible by conventional amino acid mutations.
Collapse
Affiliation(s)
- Tomoki Himiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31, Ikeda, Osaka 563-8577, Japan
| | - Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
- Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program, 1-1-1, Sayo, Hyogo 679-5148, Japan
| | - Tsutomu Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
34
|
Ohara N, Kawakami N, Arai R, Adachi N, Moriya T, Kawasaki M, Miyamoto K. Reversible Assembly of an Artificial Protein Nanocage Using Alkaline Earth Metal Ions. J Am Chem Soc 2023; 145:216-223. [PMID: 36541447 DOI: 10.1021/jacs.2c09537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein nanocages are of increasing interest for use as drug capsules, but the encapsulation and release of drug molecules at appropriate times require the reversible association and dissociation of the nanocages. One promising approach to addressing this challenge is the design of metal-dependent associating proteins. Such designed proteins typically have Cys or His residues at the protein surface for connecting the associating proteins through metal-ion coordination. However, Cys and His residues favor interactions with soft and borderline metal ions, such as Au+ and Zn2+, classified by the hard and soft acids and bases concept, restricting the types of metal ions available to drive association. Here, we show the alkaline earth (AE) metal-dependent association of the recently designed artificial protein nanocage TIP60, which is composed of 60-mer fusion proteins. The introduction of a Glu (hard base) mutation to the fusion protein (K67E mutant) prevented the formation of the 60-mer but formed the expected cage structure in the presence of Ca, Sr, or Ba ions (hard acids). Cryogenic electron microscopy (cryo-EM) analysis indicated a Ba ion at the interface of the subunits. Furthermore, we demonstrated the encapsulation and release of single-stranded DNA molecules using this system. Our results provide insights into the design of AE metal-dependent association and dissociation mechanisms for proteins.
Collapse
Affiliation(s)
- Naoya Ohara
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Norifumi Kawakami
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Nagano 386-8567, Japan.,Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-0801, Japan
| | - Toshio Moriya
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-0801, Japan
| | - Masato Kawasaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-0801, Japan
| | - Kenji Miyamoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
35
|
Majsterkiewicz K, Stupka I, Borzęcka-Solarz K, Biela A, Gaweł S, Pasternak M, Heddle J. Artificial Protein Cages Assembled via Gold Coordination. Methods Mol Biol 2023; 2671:49-68. [PMID: 37308637 DOI: 10.1007/978-1-0716-3222-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Artificial protein cages made from multiple copies of a single protein can be produced such that they only assemble upon addition of a metal ion. Consequently, the ability to remove the metal ion triggers protein-cage disassembly. Controlling assembly and disassembly has many potential uses including cargo loading/unloading and hence drug delivery. TRAP-cage is an example of such a protein cage which assembles due to linear coordination bond formation with Au(I) which acts to bridge constituent proteins. Here we describe the method for production and purification of TRAP-cage.
Collapse
Affiliation(s)
| | - Izabela Stupka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Artur Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Szymon Gaweł
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Pasternak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jonathan Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
36
|
Oohora K, Hayashi T. Preparation of Cage-Like Micellar Assemblies of Engineered Hemoproteins. Methods Mol Biol 2023; 2671:95-108. [PMID: 37308640 DOI: 10.1007/978-1-0716-3222-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural protein assemblies have encouraged scientists to create large supramolecular systems consisting of various protein motifs. In the case of hemoproteins containing heme as a cofactor, several approaches have been reported to form artificial assemblies with various structures such as fibers, sheets, networks, and cages. This chapter describes the design, preparation, and characterization of cage-like micellar assemblies for chemically modified hemoproteins including hydrophilic protein units attached to hydrophobic molecules. Detailed procedures are described for constructing specific systems using cytochrome b562 and hexameric tyrosine-coordinated heme protein as hemoprotein units with heme-azobenzene conjugate and poly-N-isopropylacrylamide as attached molecules.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Japan.
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Japan.
| |
Collapse
|
37
|
Wu D, Hwang P, Li T, Piszczek G. Rapid characterization of adeno-associated virus (AAV) gene therapy vectors by mass photometry. Gene Ther 2022; 29:691-697. [PMID: 35046529 PMCID: PMC9296698 DOI: 10.1038/s41434-021-00311-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
Abstract
Recombinant adeno-associated viruses (rAAV) are used extensively as gene delivery vectors in clinical studies, and several rAAV based treatments have already been approved. Significant progress has been made in rAAV manufacturing; however, better and more precise capsid characterization techniques are still needed to guarantee the purity and safety of rAAV preparations. Current analytical techniques used to characterize rAAV preparations are susceptible to background signals, have limited accuracy, or require a large amount of time and material. A recently developed single-molecule technique, mass photometry (MP), measures mass distributions of biomolecules with high-resolution and sensitivity. Here we explore applications of MP for the characterization of capsid fractions. We demonstrate that MP is able to resolve and quantify not only empty and full-genome containing capsid populations but also identify partially packaged capsid impurities. MP data accurately measures full and empty capsid ratios, and can be used to estimate the size of the encapsidated genome. MP distributions provide information on sample heterogeneity and on the presence of aggregates. Sub-picomole quantities of sample are sufficient for MP analysis, and data can be obtained and analyzed within minutes. This method provides a simple, robust, and effective tool to monitor the physical attributes of rAAV vectors.
Collapse
Affiliation(s)
- Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, 50 South Drive, Bethesda, MD, 20892-8012, USA
| | - Philsang Hwang
- Ocular Gene Therapy Core Facility, National Eye Institute, 6 Center Drive, Bethesda, MD, 20892, USA
| | - Tiansen Li
- Ocular Gene Therapy Core Facility, National Eye Institute, 6 Center Drive, Bethesda, MD, 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, 50 South Drive, Bethesda, MD, 20892-8012, USA.
| |
Collapse
|
38
|
Liu Y, Chen X, Yin S, Chang X, Lv C, Zang J, Leng X, Zhang T, Zhao G. Directed Self-Assembly of Dimeric Building Blocks into Networklike Protein Origami to Construct Hydrogels. ACS NANO 2022; 16:19472-19481. [PMID: 36315654 DOI: 10.1021/acsnano.2c09391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Engineering proteins to construct self-assemblies is of crucial significance not only for understanding the sophisticated living systems but also for fabricating advanced materials with unexplored functions. However, due to the inherent chemical heterogeneity and structural complexity of the protein surface, designing complex protein assemblies in an anisotropic fashion remains challenging. Here, we describe a self-assembly approach to fabricating protein origami with a networklike structure by designing dual noncovalent interactions on the different positions of a single protein building block. With dimeric proteins as building blocks, 1D protein filaments were constructed by the designed metal coordination at key protein interfaces. Subsequently, the network superstructures were created by the cross-linking of the 1D protein filaments at branch point linkages through the second designed π-π stacking interactions. Notably, upon increasing the protein concentration, the formed protein networks convert into hydrogels with reversible, injectable, and self-healing properties, which have the ability to promote bone regeneration. This strategy could be used to fabricate other protein-based materials with unexplored functions.
Collapse
Affiliation(s)
- Yu Liu
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xuemin Chen
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Shuhua Yin
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xiaoxi Chang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xiaojing Leng
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| |
Collapse
|
39
|
Olshefsky A, Richardson C, Pun SH, King NP. Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjug Chem 2022; 33:2018-2034. [PMID: 35487503 PMCID: PMC9673152 DOI: 10.1021/acs.bioconjchem.2c00030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite remarkable advances over the past several decades, many therapeutic nanomaterials fail to overcome major in vivo delivery barriers. Controlling immunogenicity, optimizing biodistribution, and engineering environmental responsiveness are key outstanding delivery problems for most nanotherapeutics. However, notable exceptions exist including some lipid and polymeric nanoparticles, some virus-based nanoparticles, and nanoparticle vaccines where immunogenicity is desired. Self-assembling protein nanoparticles offer a powerful blend of modularity and precise designability to the field, and have the potential to solve many of the major barriers to delivery. In this review, we provide a brief overview of key designable features of protein nanoparticles and their implications for therapeutic delivery applications. We anticipate that protein nanoparticles will rapidly grow in their prevalence and impact as clinically relevant delivery platforms.
Collapse
Affiliation(s)
- Audrey Olshefsky
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Christian Richardson
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| | - Neil P. King
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
40
|
Li Y, Champion JA. Self-assembling nanocarriers from engineered proteins: Design, functionalization, and application for drug delivery. Adv Drug Deliv Rev 2022; 189:114462. [PMID: 35934126 DOI: 10.1016/j.addr.2022.114462] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 01/24/2023]
Abstract
Self-assembling proteins are valuable building blocks for constructing drug nanocarriers due to their self-assembly behavior, monodispersity, biocompatibility, and biodegradability. Genetic and chemical modifications allow for modular design of protein nanocarriers with effective drug encapsulation, targetability, stimuli responsiveness, and in vivo half-life. Protein nanocarriers have been developed to deliver various therapeutic molecules including small molecules, proteins, and nucleic acids with proven in vitro and in vivo efficacy. This article reviews recent advances in protein nanocarriers that are not derived from natural protein nanostructures, such as protein cages or virus like particles. The protein nanocarriers described here are self-assembled from rationally or de novo designed recombinant proteins, as well as recombinant proteins complexed with other biomolecules, presenting properties that are unique from those of natural protein carriers. Design, functionalization, and therapeutic application of protein nanocarriers will be discussed.
Collapse
Affiliation(s)
- Yirui Li
- BioEngineering Program, Georgia Institute of Technology, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA 30332, United States; BioEngineering Program, Georgia Institute of Technology, United States.
| |
Collapse
|
41
|
Li L, Chen G. Precise Assembly of Proteins and Carbohydrates for Next-Generation Biomaterials. J Am Chem Soc 2022; 144:16232-16251. [PMID: 36044681 DOI: 10.1021/jacs.2c04418] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complexity and diversity of biomacromolecules make them a unique class of building blocks for generating precise assemblies. They are particularly available to a new generation of biomaterials integrated with living systems due to their intrinsic properties such as accurate recognition, self-organization, and adaptability. Therefore, many excellent approaches have been developed, leading to a variety of quite practical outcomes. Here, we review recent advances in the fabrication and application of artificially precise assemblies by employing proteins and carbohydrates as building blocks, followed by our perspectives on some of new challenges, goals, and opportunities for the future research directions in this field.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.,Multiscale Research Institute for Complex Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
42
|
Liang Y, Furukawa H, Sakamoto K, Inaba H, Matsuura K. Anticancer Activity of Reconstituted Ribonuclease S-Decorated Artificial Viral Capsid. Chembiochem 2022; 23:e202200220. [PMID: 35676201 PMCID: PMC9400862 DOI: 10.1002/cbic.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/31/2022] [Indexed: 11/10/2022]
Abstract
Ribonuclease S (RNase S) is an enzyme that exhibits anticancer activity by degrading RNAs within cancer cells; however, the cellular uptake efficiency is low due to its small molecular size. Here we generated RNase S-decorated artificial viral capsids with a size of 70-170 nm by self-assembly of the β-annulus-S-peptide followed by reconstitution with S-protein at neutral pH. The RNase S-decorated artificial viral capsids are efficiently taken up by HepG2 cells and exhibit higher RNA degradation activity in cells compared with RNase S alone. Cell viability assays revealed that RNase S-decorated capsids have high anticancer activity comparable to that of standard anticancer drugs.
Collapse
Affiliation(s)
- Yingbing Liang
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Hiroto Furukawa
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Kentarou Sakamoto
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Hiroshi Inaba
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
- Centre for Research on Green Sustainable ChemistryTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Kazunori Matsuura
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
- Centre for Research on Green Sustainable ChemistryTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| |
Collapse
|
43
|
Miller JE, Srinivasan Y, Dharmaraj NP, Liu A, Nguyen PL, Taylor SD, Yeates TO. Designing Protease-Triggered Protein Cages. J Am Chem Soc 2022; 144:12681-12689. [PMID: 35802879 DOI: 10.1021/jacs.2c02165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins that self-assemble into enclosed polyhedral cages, both naturally and by design, are garnering attention for their prospective utility in the fields of medicine and biotechnology. Notably, their potential for encapsulation and surface display are attractive for experiments that require protection and targeted delivery of cargo. The ability to control their opening or disassembly would greatly advance the development of protein nanocages into widespread molecular tools. Toward the development of protein cages that disassemble in a systematic manner and in response to biologically relevant stimuli, here we demonstrate a modular protein cage system that is opened by highly sequence-specific proteases, based on sequence insertions at strategically chosen loop positions in the protein cage subunits. We probed the generality of the approach in the context of protein cages built using the two prevailing methods of construction: genetic fusion between oligomeric components and (non-covalent) computational interface design between oligomeric components. Our results suggest that the former type of cage may be more amenable than the latter for endowing proteolytically controlled disassembly. We show that a successfully designed cage system, based on oligomeric fusion, is modular with regard to its triggering protease. One version of the cage is targeted by an asparagine protease implicated in cancer and Alzheimer's disease, whereas the second version is responsive to the blood-clotting protease, thrombin. The approach demonstrated here should guide future efforts to develop therapeutic vectors to treat disease states where protease induction or mis-regulation occurs.
Collapse
Affiliation(s)
- Justin E Miller
- UCLA Molecular Biology Institute, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA-DOE Institute for Genomics and Proteomics, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Yashes Srinivasan
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Nithin P Dharmaraj
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Andrew Liu
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Phillip L Nguyen
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Scott D Taylor
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Todd O Yeates
- UCLA Molecular Biology Institute, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA-DOE Institute for Genomics and Proteomics, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
44
|
McTernan C, Davies JA, Nitschke JR. Beyond Platonic: How to Build Metal-Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chem Rev 2022; 122:10393-10437. [PMID: 35436092 PMCID: PMC9185692 DOI: 10.1021/acs.chemrev.1c00763] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/17/2022]
Abstract
The field of metallosupramolecular chemistry has advanced rapidly in recent years. Much work in this area has focused on the formation of hollow self-assembled metal-organic architectures and exploration of the applications of their confined nanospaces. These discrete, soluble structures incorporate metal ions as 'glue' to link organic ligands together into polyhedra.Most of the architectures employed thus far have been highly symmetrical, as these have been the easiest to prepare. Such high-symmetry structures contain pseudospherical cavities, and so typically bind roughly spherical guests. Biomolecules and high-value synthetic compounds are rarely isotropic, highly-symmetrical species. To bind, sense, separate, and transform such substrates, new, lower-symmetry, metal-organic cages are needed. Herein we summarize recent approaches, which taken together form the first draft of a handbook for the design of higher-complexity, lower-symmetry, self-assembled metal-organic architectures.
Collapse
Affiliation(s)
| | | | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
45
|
Maity B, Taher M, Mazumdar S, Ueno T. Artificial metalloenzymes based on protein assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Curtis RW, Scrudders KL, Ulcickas JRW, Simpson GJ, Low-Nam ST, Chmielewski J. Supramolecular Assembly of His-Tagged Fluorescent Protein Guests within Coiled-Coil Peptide Crystal Hosts: Three-Dimensional Ordering and Protein Thermal Stability. ACS Biomater Sci Eng 2022; 8:1860-1866. [PMID: 35377599 PMCID: PMC9840175 DOI: 10.1021/acsbiomaterials.2c00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The use of biomaterials for the inclusion and stabilization of biopolymers is an ongoing challenge. Herein, we disclose three-dimensional (3D) coiled-coil peptide crystals with metal ions that include and overgrow His-tagged fluorescent proteins within the crystal. The protein guests are found within two symmetry-related growth sectors of the crystalline host that are associated with faces of the growing crystal that display ligands for metal ions. The fluorescent proteins are included within this "hourglass" region of the crystals at a notably high level, display order within the crystal hosts, and demonstrate sufficiently tight packing to enable energy transfer between a donor-acceptor pair. His-tagged fluorescent proteins display remarkable thermal stability to denaturation over extended periods of time (days) at high temperatures when within the crystals. Ultimately, this strategy may prove useful for the prolonged storage of thermally sensitive biopolymer guests within a 3D crystalline matrix.
Collapse
Affiliation(s)
- Ryan W. Curtis
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Kevin L. Scrudders
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - James R. W. Ulcickas
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Garth J. Simpson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Shalini T. Low-Nam
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
47
|
Sharma M, Biela AP, Kowalczyk A, Borzęcka-Solarz K, Piette BMAG, Gaweł S, Bishop J, Kukura P, Benesch JLP, Imamura M, Scheuring S, Heddle JG. Shape-Morphing of an Artificial Protein Cage with Unusual Geometry Induced by a Single Amino Acid Change. ACS NANOSCIENCE AU 2022; 2:404-413. [PMID: 36281256 PMCID: PMC9585630 DOI: 10.1021/acsnanoscienceau.2c00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Artificial protein
cages are constructed from multiple protein
subunits. The interaction between the subunits, notably the angle
formed between them, controls the geometry of the resulting cage.
Here, using the artificial protein cage, “TRAP-cage”,
we show that a simple alteration in the position of a single amino
acid responsible for Au(I)-mediated subunit–subunit interactions
in the constituent ring-shaped building blocks results in a more acute
dihedral angle between them. In turn, this causes a dramatic shift
in the structure from a 24-ring cage with an octahedral symmetry to
a 20-ring cage with a C2 symmetry. This symmetry change is accompanied
by a decrease in the number of Au(I)-mediated bonds between cysteines
and a concomitant change in biophysical properties of the cage.
Collapse
Affiliation(s)
- Mohit Sharma
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
- School of Molecular Medicine, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Artur P. Biela
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | - Agnieszka Kowalczyk
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
- Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków 30-348, Poland
| | - Kinga Borzęcka-Solarz
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | | | - Szymon Gaweł
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | - Joshua Bishop
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Justin L. P. Benesch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Motonori Imamura
- Department of Anesthesiology, Weill Cornell Medicine, New York City, New York 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, New York 10065, United States
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York City, New York 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, New York 10065, United States
| | - Jonathan G. Heddle
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| |
Collapse
|
48
|
Flood R, Ramberg KO, Mengel DB, Guagnini F, Crowley PB. Protein Frameworks with Thiacalixarene and Zinc. CRYSTAL GROWTH & DESIGN 2022; 22:3271-3276. [PMID: 35529063 PMCID: PMC9073927 DOI: 10.1021/acs.cgd.2c00108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Indexed: 05/15/2023]
Abstract
Controlled protein assembly provides a means to generate biomaterials. Synthetic macrocycles such as the water-soluble sulfonato-calix[n]arenes are useful mediators of protein assembly. Sulfonato-thiacalix[4]arene (tsclx 4 ), with its metal-binding capacity, affords the potential for simultaneous macrocycle- and metal-mediated protein assembly. Here, we describe the tsclx 4 -/Zn-directed assembly of two proteins: cationic α-helical cytochrome c (cyt c) and neutral β-propeller Ralstonia solanacearum lectin (RSL). Two co-crystal forms were obtained with cyt c, each involving multinuclear zinc sites supported by the cone conformation of tsclx 4 . The tsclx 4 /Zn cluster acted as an assembly node via both lysine encapsulation and metal-mediated protein-protein contacts. In the case of RSL, tsclx 4 adopted the 1,2-alternate conformation and supported a dinuclear zinc site with concomitant encapsulation and metal-binding of two histidine side chains. These results, together with the knowledge of thiacalixarene/metal nanoclusters, suggest promising applications for thiacalixarenes in biomaterials and MOF fabrication.
Collapse
|
49
|
Majsterkiewicz K, Biela AP, Maity S, Sharma M, Piette BMAG, Kowalczyk A, Gaweł S, Chakraborti S, Roos WH, Heddle JG. Artificial Protein Cage with Unusual Geometry and Regularly Embedded Gold Nanoparticles. NANO LETTERS 2022; 22:3187-3195. [PMID: 35254086 PMCID: PMC9052746 DOI: 10.1021/acs.nanolett.1c04222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Artificial protein cages have great potential in a number of areas including cargo capture and delivery and as artificial vaccines. Here, we investigate an artificial protein cage whose assembly is triggered by gold nanoparticles. Using biochemical and biophysical methods we were able to determine both the mechanical properties and the gross compositional features of the cage which, combined with mathematical models and biophysical data, allowed the structure of the cage to be predicted. The accuracy of the overall geometrical prediction was confirmed by the cryo-EM structure determined to sub-5 Å resolution. This showed the cage to be nonregular but similar to a dodecahedron, being constructed from 12 11-membered rings. Surprisingly, the structure revealed that the cage also contained a single, small gold nanoparticle at each 3-fold axis meaning that each cage acts as a synthetic framework for regular arrangement of 20 gold nanoparticles in a three-dimensional lattice.
Collapse
Affiliation(s)
- Karolina Majsterkiewicz
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Postgraduate
School of Molecular Medicine, ul. Żwirki i Wigury 61, Warsaw 02-091, Poland
| | - Artur P. Biela
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Institute
of Zoology and Biomedical Research, Department of Cell Biology and
Imaging, Jagiellonian University, Kraków 30-387, Poland
| | - Sourav Maity
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, Groningen 9747 AG, Netherlands
| | - Mohit Sharma
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Postgraduate
School of Molecular Medicine, ul. Żwirki i Wigury 61, Warsaw 02-091, Poland
| | | | - Agnieszka Kowalczyk
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Faculty of
Mathematics and Computer Science, Jagiellonian
University, Kraków 30-348, Poland
| | - Szymon Gaweł
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | | | - Wouter H. Roos
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, Groningen 9747 AG, Netherlands
| | - Jonathan G. Heddle
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| |
Collapse
|
50
|
Su D, Li H, Zhou R, Zhao L, Li A, Liu X, Wang C, Jia X, Liu F, Sun P, Yan X, Zhu C, Lu G. Embedding Proteins within Spatially Controlled Hierarchical Nanoarchitectures for Ultrasensitive Immunoassay. Anal Chem 2022; 94:6271-6280. [PMID: 35417142 DOI: 10.1021/acs.analchem.2c00269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Modulating the precise self-assembly of functional biomacromolecules is a critical challenge in biotechnology. Herein, functional biomacromolecule-assembled hierarchical hybrid nanoarchitectures in a spatially controlled fashion are synthesized, achieving the biorecognition behavior and signal amplification in the immunoassay simultaneously. Biomacromolecules with sequential assembly on the scaffold through the biomineralization process show significantly enhanced stability, bioactivity, and utilization efficiency, allowing tuning of their functions by modifying their size and composition. The hierarchically hybrid nanoarchitectures show great potential in construction of ultrasensitive immunoassay platforms, achieving a three order-of-magnitude increase in sensitivity. Notably, the well-designed HRP@Ab2 nanoarchitectures allow for optical immunoassays with a detection range from picogram mL-1 to microgram mL-1 on demand, providing great promise for quantitative analysis of both low-abundance and high-residue targets for biomedical applications.
Collapse
Affiliation(s)
- Dandan Su
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ri Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Lianjing Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Aixin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|