1
|
Oger C, Claeys Bouuaert C. In Vitro Reconstitution of SPO11-Mediated DNA Cleavage Sheds New Light on the Initiation of Meiotic Recombination. DNA Cell Biol 2025. [PMID: 40387614 DOI: 10.1089/dna.2025.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
Three recent studies report the first biochemical reconstitution of DNA double-strand break (DSB) formation by SPO11, the topoisomerase-derived transesterase that initiates meiotic recombination in sexually reproducing organisms. A central conclusion of these studies is that SPO11 is sufficient to catalyze DSBs in vitro, but cleavage is limited by the poor propensity of SPO11 to dimerize, thereby providing an effective mechanism to prevent uncontrolled breaks. The studies yield new insights into the mechanism of DNA DSB formation and raise new questions regarding the functions of SPO11 partners, the impact of the DNA substrate, the coordination between cleavage events, and the reversibility of the reaction.
Collapse
Affiliation(s)
- Cédric Oger
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Corentin Claeys Bouuaert
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| |
Collapse
|
2
|
Kim S, Yamada S, Li T, Canasto-Chibuque C, Kim JH, Marcet-Ortega M, Xu J, Eng DY, Feeney L, Petrini JHJ, Keeney S. Mouse MRE11-RAD50-NBS1 is needed to start and extend meiotic DNA end resection. Nat Commun 2025; 16:3613. [PMID: 40240347 PMCID: PMC12003770 DOI: 10.1038/s41467-025-57928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/07/2025] [Indexed: 04/18/2025] Open
Abstract
Nucleolytic resection of DNA ends is critical for homologous recombination, but its mechanism is not fully understood, particularly in mammalian meiosis. Here we examine roles of the conserved MRN complex (MRE11, RAD50, and NBS1) through genome-wide analysis of meiotic resection during spermatogenesis in mice with various MRN mutations, including several that cause chromosomal instability in humans. Meiotic DSBs form at elevated levels but remain unresected if Mre11 is conditionally deleted, thus MRN is required for both resection initiation and regulation of DSB numbers. Resection lengths are reduced to varying degrees in MRN hypomorphs or if MRE11 nuclease activity is attenuated in a conditional nuclease-dead Mre11 model. These findings unexpectedly establish that MRN is needed for longer-range extension of resection beyond that carried out by the orthologous proteins in budding yeast meiosis. Finally, resection defects are additively worsened by combining MRN and Exo1 mutations, and mice that are unable to initiate resection or have greatly curtailed resection lengths experience catastrophic spermatogenic failure. Our results elucidate MRN roles in meiotic DSB end processing and establish the importance of resection for mammalian meiosis.
Collapse
Affiliation(s)
- Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tao Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marina Marcet-Ortega
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jiaqi Xu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Diana Y Eng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- PackGene Biotech, Houston, TX, USA
| | - Laura Feeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Translational Medicine, Oncology R&D, AstraZeneca, Barcelona, Spain
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Yone H, Kawashima Y, Hirai H, Oda AH, Sato M, Kono H, Ohta K. Light-controlled Spo11-less meiotic DNA breaks by MagTAQing lead to chromosomal aberrations. Nucleic Acids Res 2025; 53:gkaf206. [PMID: 40207630 PMCID: PMC11983132 DOI: 10.1093/nar/gkaf206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/27/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025] Open
Abstract
TAQing technologies are based on the restriction enzyme-induced DNA double-strand break (DSB) formation in living cells, which results in large-scale genomic rearrangements and phenotypic alterations. Originally, the TAQing system requires heat treatments to activate restriction enzymes, which sometimes leads to cell toxicity or stress responses. Here, we developed a blue-light-controlled MagTAQing system, which induces DSBs exclusively upon blue-light exposure by assembling the split restriction enzymes via Magnet modules. Application of MagTAQing to mitotic budding yeast cells successfully triggered various genomic rearrangements upon blue-light exposure. Since this technology enables the conditional induction of genomic rearrangements in specific cells or tissues, we employed MagTAQing on meiotic yeast cells lacking the recombinase Spo11 to induce artificial DSBs. Consequently, Spo11-independent meiotic DSBs resulted in aneuploidies and nonallelic homologous recombinations between repetitive sequences such as ribosomal DNA and retrotransposons. These results suggest a pivotal role of Spo11-induced recombination in preventing chromosomal abnormality.
Collapse
Affiliation(s)
- Hideyuki Yone
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Yuri Kawashima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Hayato Hirai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Arisa H Oda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Moritoshi Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Hiromitsu Kono
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Hongo 7-3-1, Bunkyo-Ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Hongo 7-3-1, Bunkyo-Ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Harper JA, Brown GGB, Neale MJ. Spo11: from topoisomerase VI to meiotic recombination initiator. Biochem Soc Trans 2025; 53:BST20253019. [PMID: 40181639 DOI: 10.1042/bst20253019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Meiotic recombination is required to break up gene linkage and facilitate faithful chromosome segregation during gamete formation. By inducing DNA double-strand breaks, Spo11, a protein that is conserved in all meiotic organisms, initiates the process of recombination. Here, we chart the evolutionary history of Spo11 and compare the protein to its ancestors. Evolving from the A subunit of archaeal topoisomerase VI (Topo VI), a heterotetrameric type II topoisomerase, Spo11 appears to have evolved alongside meiosis and been present in the last eukaryotic common ancestor. There are many differences between Spo11 and TopVIA, particularly in regulation, despite similarities in structure and mechanism of action. Critical to its function as an inducer of recombination, Spo11 has an apparently amputated activity that, unlike topoisomerases, does not re-seal the DNA breaks it creates. We discuss how and why Spo11 has taken its path down the tree of life, considering its regulation and its roles compared with those of its progenitor Topo VI, in both meiotic and non-meiotic species. We find some commonality between different forms and orthologs of Spo11 in different species and touch upon how recent biochemical advances are beginning to finally unlock the molecular secrets hidden within this fundamental yet enigmatic protein.
Collapse
Affiliation(s)
- Jon A Harper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| | - George G B Brown
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| |
Collapse
|
5
|
Zhang L, Wang J, Tang Z, Lin Z, Su R, Hu N, Tang Y, Ge G, Fan J, Tong MH, Xue Y, Zhou Y, Cheng H. The nuclear exosome co-factor MTR4 shapes the transcriptome for meiotic initiation. Nat Commun 2025; 16:2605. [PMID: 40097464 PMCID: PMC11914058 DOI: 10.1038/s41467-025-57898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Nuclear RNA decay has emerged as a mechanism for post-transcriptional gene regulation in cultured cells. However, whether this process occurs in animals and holds biological relevance remains largely unexplored. Here, we demonstrate that MTR4, the central cofactor of the nuclear RNA exosome, is essential for embryogenesis and spermatogenesis. Embryonic development of Mtr4 knockout mice arrests at 6.5 day. Germ cell-specific knockout of Mtr4 results in male infertility with a specific and severe defect in meiotic initiation. During the pre-meiotic stage, MTR4/exosome represses meiotic genes, which are typically shorter in size and possess fewer introns, through RNA degradation. Concurrently, it ensures the expression of mitotic genes generally exhibiting the opposite features. Consistent with these regulation rules, mature replication-dependent histone mRNAs and polyadenylated retrotransposon RNAs were identified as MTR4/exosome targets in germ cells. In addition, MTR4 regulates alternative splicing of many meiotic genes. Together, our work underscores the importance of nuclear RNA degradation in regulating germline transcriptome, ensuring the appropriate gene expression program for the transition from mitosis to meiosis during spermatogenesis.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianshu Wang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhidong Tang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhen Lin
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruibao Su
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Naijing Hu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Tang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China
| | - Gaoxiang Ge
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Fan
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ming-Han Tong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China.
| | - Hong Cheng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Zheng Z, Zheng L, Arter M, Liu K, Yamada S, Ontoso D, Kim S, Keeney S. Reconstitution of SPO11-dependent double-strand break formation. Nature 2025; 639:784-791. [PMID: 39972129 PMCID: PMC11922745 DOI: 10.1038/s41586-025-08601-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/06/2025] [Indexed: 02/21/2025]
Abstract
Meiotic recombination starts with SPO11 generation of DNA double-strand breaks (DSBs)1. SPO11 is critical for meiosis in most species, but it generates dangerous DSBs with mutagenic2 and gametocidal3 potential. Cells must therefore utilize the beneficial functions of SPO11 while minimizing its risks4-how they do so remains poorly understood. Here we report reconstitution of DNA cleavage in vitro with purified recombinant mouse SPO11 bound to TOP6BL. SPO11-TOP6BL complexes are monomeric (1:1) in solution and bind tightly to DNA, but dimeric (2:2) assemblies cleave DNA to form covalent 5' attachments that require SPO11 active-site residues, divalent metal ions and SPO11 dimerization. SPO11 can also reseal DNA that it has nicked. Structure modelling with AlphaFold 3 suggests that DNA is bent prior to cleavage5. In vitro cleavage displays a sequence bias that partially explains DSB site preferences in vivo. Cleavage is inefficient on complex DNA substrates, partly because SPO11 is readily trapped in DSB-incompetent (presumably monomeric) binding states that exchange slowly. However, cleavage is improved with substrates that favour dimer assembly or by artificially dimerizing SPO11. Our results inform a model in which intrinsically weak dimerization restrains SPO11 activity in vivo, making it exquisitely dependent on accessory proteins that focus and control DSB formation.
Collapse
Affiliation(s)
- Zhi Zheng
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lyuqin Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The HAKUBI Center for Advanced Research and Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David Ontoso
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Scott Keeney
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Oger C, Claeys Bouuaert C. SPO11 dimers are sufficient to catalyse DNA double-strand breaks in vitro. Nature 2025; 639:792-799. [PMID: 39972130 PMCID: PMC11922746 DOI: 10.1038/s41586-024-08574-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/23/2024] [Indexed: 02/21/2025]
Abstract
SPO11 initiates meiotic recombination through the induction of programmed DNA double-strand breaks (DSBs)1,2, but this catalytic activity has never been reconstituted in vitro3,4. Here, using Mus musculus SPO11, we report a biochemical system that recapitulates all the hallmarks of meiotic DSB formation. We show that SPO11 catalyses break formation in the absence of any partners and remains covalently attached to the 5' broken strands. We find that target site selection by SPO11 is influenced by the sequence, bendability and topology of the DNA substrate, and provide evidence that SPO11 can reseal single-strand DNA breaks. In addition, we show that SPO11 is monomeric in solution and that cleavage requires dimerization for the reconstitution of two hybrid active sites. SPO11 and its partner TOP6BL form a 1:1 complex that catalyses DNA cleavage with an activity similar to that of SPO11 alone. However, this complex binds DNA ends with higher affinity, suggesting a potential role after cleavage. We propose a model in which additional partners of SPO11 required for DSB formation in vivo assemble biomolecular condensates that recruit SPO11-TOP6BL, enabling dimerization and cleavage. Our work establishes SPO11 dimerization as the fundamental mechanism that controls the induction of meiotic DSBs.
Collapse
Affiliation(s)
- Cédric Oger
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Corentin Claeys Bouuaert
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium.
| |
Collapse
|
8
|
Lorenz A. Measuring Meiotic Recombination Frequency in Schizosaccharomyces pombe Using an Engineered Genetic Interval. Methods Mol Biol 2025; 2862:277-295. [PMID: 39527208 DOI: 10.1007/978-1-0716-4168-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The fission yeast Schizosaccharomyces pombe has been used to elucidate meiotic recombination mechanisms for decades. Alongside the budding yeast Saccharomyces cerevisiae, research employing fission yeast has been instrumental in advancing our knowledge of double-stranded DNA break (DSB) formation and repair during meiosis. Genetic recombination assays are the workhorses of gene conversion and crossover frequency analysis; these have been employed to investigate cis and trans determinants of meiotic recombination. Here, I describe meiotic recombination assays engineered by the introduction of nutritional markers up- and downstream of the ade6 and ade7 genes. These particular setups enable a comprehensive assessment of reproductive success in a single assay because spore viability and the frequency of gene conversion, crossovers, and crossovers associated with gene conversion events are simultaneously measured.
Collapse
Affiliation(s)
- Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
9
|
Huang PC, Hong S, Alnaser HF, Mimitou EP, Kim KP, Murakami H, Keeney S. Meiotic DNA break resection and recombination rely on chromatin remodeler Fun30. EMBO J 2025; 44:200-224. [PMID: 39613969 PMCID: PMC11695836 DOI: 10.1038/s44318-024-00318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
DNA double-strand breaks (DSBs) are nucleolytically processed to generate single-stranded DNA for homologous recombination. In Saccharomyces cerevisiae meiosis, this resection involves nicking by the Mre11-Rad50-Xrs2 complex (MRX), then exonucleolytic digestion by Exo1. Chromatin remodeling at meiotic DSBs is thought necessary for resection, but the remodeling enzyme was unknown. Here we show that the SWI/SNF-like ATPase Fun30 plays a major, nonredundant role in meiotic resection. A fun30 mutation shortened resection tracts almost as severely as an exo1-nd (nuclease-dead) mutation, and resection was further shortened in a fun30 exo1-nd double mutant. Fun30 associates with chromatin in response to DSBs, and the constitutive positioning of nucleosomes governs resection endpoint locations in the absence of Fun30. We infer that Fun30 promotes both the MRX- and Exo1-dependent steps in resection, possibly by removing nucleosomes from broken chromatids. Moreover, the extremely short resection in fun30 exo1-nd double mutants is accompanied by compromised interhomolog recombination bias, leading to defects in recombination and chromosome segregation. Thus, this study also provides insight about the minimal resection lengths needed for robust recombination.
Collapse
Affiliation(s)
- Pei-Ching Huang
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10021, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Metagenomi, Emeryville, CA, 94608, USA
| | - Soogil Hong
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hasan F Alnaser
- Chromosome and Cellular Dynamics Section, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Eleni P Mimitou
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Immunai, 430 E 29th St, New York, NY, 10016, USA
| | - Keun P Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
- Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, 06974, South Korea
| | - Hajime Murakami
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Chromosome and Cellular Dynamics Section, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | - Scott Keeney
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10021, USA.
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
10
|
Yu Y, Wang J, Liu K, Zheng Z, Arter M, Claeys Bouuaert C, Pu S, Patel DJ, Keeney S. Cryo-EM structures of the Spo11 core complex bound to DNA. Nat Struct Mol Biol 2025; 32:113-124. [PMID: 39304764 PMCID: PMC11746154 DOI: 10.1038/s41594-024-01382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 08/01/2024] [Indexed: 09/22/2024]
Abstract
DNA double-strand breaks that initiate meiotic recombination are formed by the topoisomerase-relative enzyme Spo11, supported by conserved auxiliary factors. Because high-resolution structural data have not been available, many questions remain about the architecture of Spo11 and its partners and how they engage with DNA. We report cryo-electron microscopy structures at up to 3.3-Å resolution of DNA-bound core complexes of Saccharomyces cerevisiae Spo11 with Rec102, Rec104 and Ski8. In these structures, monomeric core complexes make extensive contacts with the DNA backbone and with the recessed 3'-OH and first 5' overhanging nucleotide, establishing the molecular determinants of DNA end-binding specificity and providing insight into DNA cleavage preferences in vivo. The structures of individual subunits and their interfaces, supported by functional data in yeast, provide insight into the role of metal ions in DNA binding and uncover unexpected structural variation in homologs of the Top6BL component of the core complex.
Collapse
Affiliation(s)
- You Yu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Centre for Infection Immunity and Cancer (IIC), Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhi Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Corentin Claeys Bouuaert
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Stephen Pu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- WaypointBio, New York, NY, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Rafiei N, Ronceret A. The plant early recombinosome: a high security complex to break DNA during meiosis. PLANT REPRODUCTION 2024; 37:421-440. [PMID: 39331138 PMCID: PMC11511760 DOI: 10.1007/s00497-024-00509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
KEY MESSAGE The formacion of numerous unpredictable DNA Double Strand Breaks (DSBs) on chromosomes iniciates meiotic recombination. In this perspective, we propose a 'multi-key lock' model to secure the risky but necesary breaks as well as a 'one per pair of cromatids' model for the topoisomerase-like early recombinosome. During meiosis, homologous chromosomes recombine at few sites of crossing-overs (COs) to ensure correct segregation. The initiation of meiotic recombination involves the formation of DNA double strand breaks (DSBs) during prophase I. Too many DSBs are dangerous for genome integrity: if these DSBs are not properly repaired, it could potentially lead to chromosomal fragmentation. Too few DSBs are also problematic: if the obligate CO cannot form between bivalents, catastrophic unequal segregation of univalents lead to the formation of sterile aneuploid spores. Research on the regulation of the formation of these necessary but risky DSBs has recently advanced in yeast, mammals and plants. DNA DSBs are created by the enzymatic activity of the early recombinosome, a topoisomerase-like complex containing SPO11. This opinion paper reviews recent insights on the regulation of the SPO11 cofactors necessary for the introduction of temporally and spatially controlled DSBs. We propose that a 'multi-key-lock' model for each subunit of the early recombinosome complex is required to secure the formation of DSBs. We also discuss the hypothetical implications that the established topoisomerase-like nature of the SPO11 core-complex can have in creating DSB in only one of the two replicated chromatids of early prophase I meiotic chromosomes. This hypothetical 'one per pair of chromatids' DSB formation model could optimize the faithful repair of the self-inflicted DSBs. Each DSB could use three potential intact homologous DNA sequences as repair template: one from the sister chromatid and the two others from the homologous chromosomes.
Collapse
Affiliation(s)
- Nahid Rafiei
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Arnaud Ronceret
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México.
| |
Collapse
|
12
|
Crawford MR, Harper JA, Cooper TJ, Marsolier-Kergoat MC, Llorente B, Neale MJ. Separable roles of the DNA damage response kinase Mec1ATR and its activator Rad24RAD17 during meiotic recombination. PLoS Genet 2024; 20:e1011485. [PMID: 39652586 DOI: 10.1371/journal.pgen.1011485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/19/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
During meiosis, programmed DNA double-strand breaks (DSBs) are formed by the topoisomerase-like enzyme, Spo11, activating the DNA damage response (DDR) kinase Mec1ATR via the checkpoint clamp loader, Rad24RAD17. At single loci, loss of Mec1 and Rad24 activity alters DSB formation and recombination outcome, but their genome-wide roles have not been examined in detail. Here, we utilise two strategies-deletion of the mismatch repair protein, Msh2, and control of meiotic prophase length via regulation of the Ndt80 transcription factor-to help characterise the roles Mec1 and Rad24 play in meiotic recombination by enabling genome-wide mapping of meiotic progeny. In line with previous studies, we observe severely impacted spore viability and a reduction in the frequency of recombination upon deletion of RAD24-driven by a shortened prophase. By contrast, loss of Mec1 function increases recombination frequency, consistent with its role in DSB trans-interference, and has less effect on spore viability. Despite these differences, complex multi-chromatid events initiated by closely spaced DSBs-rare in wild-type cells-occur more frequently in the absence of either Rad24 or Mec1, suggesting a loss of spatial regulation at the level of DSB formation in both. Mec1 and Rad24 also have important roles in the spatial regulation of crossovers (COs). Upon loss of either Mec1 or Rad24, CO distributions become more random-suggesting reductions in the global manifestation of interference. Such effects are similar to, but less extreme than, the phenotype of 'ZMM' mutants such as zip3Δ, and may be driven by reductions in the proportion of interfering COs. Collectively, in addition to shared roles in CO regulation, our results highlight separable roles for Rad24 as a pro-CO factor, and for Mec1 as a regulator of recombination frequency, the loss of which helps to suppress any broader defects in CO regulation caused by abrogation of the DDR.
Collapse
Affiliation(s)
- Margaret R Crawford
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Jon A Harper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
| | - Tim J Cooper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
| | - Marie-Claude Marsolier-Kergoat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- UMR7206 Eco-Anthropology and Ethno-Biology, CNRS-MNHN-University Paris Diderot, Musée de l'Homme, Paris, France
| | - Bertrand Llorente
- Cancer Research Centre of Marseille, CNRS, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
| |
Collapse
|
13
|
Zheng Z, Zheng L, Arter M, Liu K, Yamada S, Ontoso D, Kim S, Keeney S. Reconstitution of SPO11-dependent double-strand break formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624382. [PMID: 39605552 PMCID: PMC11601517 DOI: 10.1101/2024.11.20.624382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Homologous meiotic recombination starts with DNA double-strand breaks (DSBs) generated by SPO11 protein1. SPO11 is critical for meiosis in most species but the DSBs it makes are also dangerous because of their mutagenic2 and gametocidal3 potential, so cells must foster SPO11's beneficial functions while minimizing its risks4. SPO11 mechanism and regulation remain poorly understood. Here we report reconstitution of DNA cleavage in vitro with purified recombinant mouse SPO11 bound to its essential partner TOP6BL. Similar to their yeast orthologs5,6, SPO11-TOP6BL complexes are monomeric (1:1) in solution and bind tightly to DNA. Unlike in yeast, however, dimeric (2:2) assemblies of mouse SPO11-TOP6BL cleave DNA to form covalent 5´ attachments requiring SPO11 active site residues, divalent metal ions, and SPO11 dimerization. Surprisingly, SPO11 can also manifest topoisomerase activity by relaxing supercoils and resealing DNA that it has nicked. Structure modeling with AlphaFold37 illuminates the protein-DNA interface and suggests that DNA is bent prior to cleavage. Deep sequencing of in vitro cleavage products reveals a rotationally symmetric base composition bias that partially explains DSB site preferences in vivo. Cleavage is inefficient on complex DNA substrates, partly because SPO11 is readily trapped in DSB-incompetent (presumably monomeric) binding states that exchange slowly. However, cleavage is improved by using substrates that favor DSB-competent dimer assembly, or by fusing SPO11 to an artificial dimerization module. Our results inform a model in which intrinsically feeble dimerization restrains SPO11 activity in vivo, making it exquisitely dependent on accessory proteins that focus and control DSB formation so that it happens only at the right time and the right places.
Collapse
Affiliation(s)
- Zhi Zheng
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, New York, NY 10065
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Lyuqin Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- The HAKUBI Center for Advanced Research, and Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David Ontoso
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Scott Keeney
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, New York, NY 10065
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
14
|
Jiang N, Li Y, Yin L, Yuan S, Wang F. The Intricate Functional Networks of Pre-mRNA Alternative Splicing in Mammalian Spermatogenesis. Int J Mol Sci 2024; 25:12074. [PMID: 39596142 PMCID: PMC11594017 DOI: 10.3390/ijms252212074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Spermatogenesis is a highly coordinated process that requires the precise expression of specific subsets of genes in different types of germ cells, controlled both temporally and spatially. Among these genes, those that can exert an indispensable influence in spermatogenesis via participating in alternative splicing make up the overwhelming majority. mRNA alternative-splicing (AS) events can generate various isoforms with distinct functions from a single DNA sequence, based on specific AS codes. In addition to enhancing the finite diversity of the genome, AS can also regulate the transcription and translation of certain genes by directly binding to their cis-elements or by recruiting trans-elements that interact with consensus motifs. The testis, being one of the most complex tissue transcriptomes, undergoes unparalleled transcriptional and translational activity, supporting the dramatic and dynamic transitions that occur during spermatogenesis. Consequently, AS plays a vital role in producing an extensive array of transcripts and coordinating significant changes throughout this process. In this review, we summarize the intricate functional network of alternative splicing in spermatogenesis based on the integration of current research findings.
Collapse
Affiliation(s)
| | | | | | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| |
Collapse
|
15
|
Chang Q, Li J, Zhao Z, Zhu Q, Zhang Y, Sheng R, Yang Z, Dai M, Wang P, Fan X, He J. Elevated temperature affects the expression of signaling molecules in quail testes meiosis I prophase, but spermatogenesis remains normal. Theriogenology 2024; 229:16-22. [PMID: 39142066 DOI: 10.1016/j.theriogenology.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Spermatogenesis in eukaryotes is a process that occurs within a very narrow temperature threshold, typically not exceeding 36 °C. SPO11 was isolated from the temperature-sensitive mutant receptor of Saccharomyces cerevisiae and is thought to be the only protein that functions during meiosis. This suggested that SPO11 may be the key protein that influenced the temperature of spermatogenesis not exceeding 36 °C. Elevated temperatures typically damage the spermatogenic cells. Birds have a core body temperature of 41-42 °C, and their testis are located inside their bodies, providing an alternative perspective to investigate the potential impact of temperature threshold on spermatogenesis. The objective of this study was to ascertain whether elevated ambient temperatures affect spermatogenesis in birds and whether SPO11 is the key gene affecting the temperature threshold for spermatogenesis. STRA8, SCP3, SPO11, γ-H2AX, and RAD51 were all crucial components in the process of meiotic initiation, synapsis, DNA double-strand break (DSB) induction, homologous chromosome crossover recombination, and repair of DSB. In this study, 39-day-old Japanese quail were subjected to heat stress (HS) at 38 °C for 8 h per day for 3 (3d HS) and 13 (13d HS) consecutive days and analyzed the expression of meiotic signaling molecules (STRA8, SCP3, SPO11, γ-H2AX, and RAD51) using molecular biology techniques, including Immunohistochemistry (IHC), Western Blot (WB), and Real-time Quantitative Polymerase Chain Reaction (qRT-PCR). We found that spermatogenesis was normal in both groups exposed to HS. Meiotic signaling molecules were expressed normally in the 3d HS group. All detected signaling molecules were normally expressed in the 13d HS group, except for SPO11, which showed a significant increase in expression, indicating that SPO11 was temperature-sensitive. We examined the localized expression of each meiotic signaling molecule in quail testis, explored the temperature sensitivity of SPO11, and determined that quail testis can undergo normal spermatogenesis at ambient temperatures exceeding 36 °C. This study concluded that SPO11 is not the key protein influencing spermatogenesis in birds. These findings enhance our understanding of avian spermatogenesis.
Collapse
Affiliation(s)
- Qianwen Chang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Jiarong Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Zihui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Qi Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Yaning Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Ruimin Sheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Ziyin Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Mingcheng Dai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Pengchao Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Xiaorui Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Junping He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| |
Collapse
|
16
|
Feng S, Gui Y, Yin S, Xiong X, Liu K, Li J, Dong J, Ma X, Zhou S, Zhang B, Yang S, Wang F, Wang X, Jiang X, Yuan S. Histone demethylase KDM2A recruits HCFC1 and E2F1 to orchestrate male germ cell meiotic entry and progression. EMBO J 2024; 43:4197-4227. [PMID: 39160277 PMCID: PMC11448500 DOI: 10.1038/s44318-024-00203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
In mammals, the transition from mitosis to meiosis facilitates the successful production of gametes. However, the regulatory mechanisms that control meiotic initiation remain unclear, particularly in the context of complex histone modifications. Herein, we show that KDM2A, acting as a lysine demethylase targeting H3K36me3 in male germ cells, plays an essential role in modulating meiotic entry and progression. Conditional deletion of Kdm2a in mouse pre-meiotic germ cells results in complete male sterility, with spermatogenesis ultimately arrested at the zygotene stage of meiosis. KDM2A deficiency disrupts H3K36me2/3 deposition in c-KIT+ germ cells, characterized by a reduction in H3K36me2 but a dramatic increase in H3K36me3. Furthermore, KDM2A recruits the transcription factor E2F1 and its co-factor HCFC1 to the promoters of key genes required for meiosis entry and progression, such as Stra8, Meiosin, Spo11, and Sycp1. Collectively, our study unveils an essential role for KDM2A in mediating H3K36me2/3 deposition and controlling the programmed gene expression necessary for the transition from mitosis to meiosis during spermatogenesis.
Collapse
Affiliation(s)
- Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi Yin
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, 610041, China
| | - Xinxin Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinmei Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juan Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xixiang Ma
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shunchang Zhou
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bingqian Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiyu Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaohua Jiang
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
17
|
Johnson D, Allison RM, Cannavo E, Cejka P, Harper JA, Neale MJ. Exploring the removal of Spo11 and topoisomerases from DNA breaks in S. cerevisiae by human Tyrosyl DNA Phosphodiesterase 2. DNA Repair (Amst) 2024; 142:103757. [PMID: 39236418 DOI: 10.1016/j.dnarep.2024.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Meiotic recombination is initiated by DNA double-strand breaks (DSBs) created by Spo11, a type-II topoisomerase-like protein that becomes covalently linked to DSB ends. Whilst Spo11 oligos-the products of nucleolytic removal by Mre11-have been detected in several organisms, the lifetime of the covalent Spo11-DSB precursor has not been determined and may be subject to alternative processing. Here, we explore the activity of human Tyrosyl DNA Phosphodiesterase, TDP2-a protein known to repair DNA ends arising from abortive topoisomerase activity-on Spo11 DSBs isolated from S. cerevisiae cells. We demonstrate that TDP2 can remove Spo11 peptides from ssDNA oligos and dsDNA ends even in the presence of competitor genomic DNA. Interestingly, TDP2-processed DSB ends are refractory to resection by Exo1, suggesting that ssDNA generated by Mre11 may be essential in vivo to facilitate HR at Spo11 DSBs even if TDP2 were active. Moreover, although TDP2 can remove Spo11 peptides in vitro, TDP2 expression in meiotic cells was unable to remove Spo11 in vivo-contrasting its ability to aid repair of topoisomerase-induced DNA lesions. These results suggest that Spo11-DNA, but not topoisomerase-DNA cleavage complexes, are inaccessible to the TDP2 enzyme, perhaps due to occlusion by higher-order protein complexes at sites of meiotic recombination.
Collapse
Affiliation(s)
- Dominic Johnson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton UK
| | - Rachal M Allison
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton UK
| | - Elda Cannavo
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich 8093, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich 8093, Switzerland
| | - Jon A Harper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton UK
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton UK.
| |
Collapse
|
18
|
Estrem B, Davis R, Wang J. End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination. Nucleic Acids Res 2024; 52:8913-8929. [PMID: 38953168 PMCID: PMC11347171 DOI: 10.1093/nar/gkae579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Most DNA double-strand breaks (DSBs) are harmful to genome integrity. However, some forms of DSBs are essential to biological processes, such as meiotic recombination and V(D)J recombination. DSBs are also required for programmed DNA elimination (PDE) in ciliates and nematodes. In nematodes, the DSBs are healed with telomere addition. While telomere addition sites have been well characterized, little is known regarding the DSBs that fragment nematode chromosomes. Here, we used embryos from the human and pig parasitic nematode Ascaris to characterize the DSBs. Using END-seq, we demonstrate that DSBs are introduced before mitosis, followed by extensive end resection. The resection profile is unique for each break site, and the resection generates 3'-overhangs before the addition of neotelomeres. Interestingly, telomere healing occurs much more frequently on retained DSB ends than on eliminated ends. This biased repair of the DSB ends may be due to the sequestration of the eliminated DNA into micronuclei, preventing neotelomere formation at their ends. Additional DNA breaks occur within the eliminated DNA in both Ascaris and Parascaris, ensuring chromosomal breakage and providing a fail-safe mechanism for PDE. Overall, our data indicate that telomere healing of DSBs is specific to the break sites responsible for nematode PDE.
Collapse
Affiliation(s)
- Brandon Estrem
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
19
|
Diagouraga B, Tambones I, Carivenc C, Bechara C, Nadal M, de Massy B, le Maire A, Robert T. The TOPOVIBL meiotic DSB formation protein: new insights from its biochemical and structural characterization. Nucleic Acids Res 2024; 52:8930-8946. [PMID: 38966985 PMCID: PMC11347134 DOI: 10.1093/nar/gkae587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
The TOPOVIL complex catalyzes the formation of DNA double strand breaks (DSB) that initiate meiotic homologous recombination, an essential step for chromosome segregation and genetic diversity during gamete production. TOPOVIL is composed of two subunits (SPO11 and TOPOVIBL) and is evolutionarily related to the archaeal TopoVI topoisomerase complex. SPO11 is the TopoVIA subunit orthologue and carries the DSB formation catalytic activity. TOPOVIBL shares homology with the TopoVIB ATPase subunit. TOPOVIBL is essential for meiotic DSB formation, but its molecular function remains elusive, partly due to the lack of biochemical studies. Here, we purified TOPOVIBLΔC25 and characterized its structure and mode of action in vitro. Our structural analysis revealed that TOPOVIBLΔC25 adopts a dynamic conformation in solution and our biochemical study showed that the protein remains monomeric upon incubation with ATP, which correlates with the absence of ATP binding. Moreover, TOPOVIBLΔC25 interacted with DNA, with a preference for some geometries, suggesting that TOPOVIBL senses specific DNA architectures. Altogether, our study identified specific TOPOVIBL features that might help to explain how TOPOVIL function evolved toward a DSB formation activity in meiosis.
Collapse
Affiliation(s)
- Boubou Diagouraga
- Centre de Biologie Structurale (CBS), Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Izabella Tambones
- Centre de Biologie Structurale (CBS), Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Coralie Carivenc
- Centre de Biologie Structurale (CBS), Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Chérine Bechara
- Institut de Génomique Fonctionnelle (IGF), Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Marc Nadal
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France; Department of Life Sciences, Université Paris Cité, Paris, France
| | - Bernard de Massy
- Institut de Génétique Humaine (IGH), Univ Montpellier, CNRS, 34090 Montpellier, France
| | - Albane le Maire
- Centre de Biologie Structurale (CBS), Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Thomas Robert
- Centre de Biologie Structurale (CBS), Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| |
Collapse
|
20
|
Tamai T, Reginato G, Ojiri R, Morita I, Avrutis A, Cejka P, Shinohara M, Sugimoto K. Sae2 controls Mre11 endo- and exonuclease activities by different mechanisms. Nat Commun 2024; 15:7221. [PMID: 39174552 PMCID: PMC11341764 DOI: 10.1038/s41467-024-51493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
DNA double-strand breaks (DSBs) must be repaired to ensure cell survival and genomic integrity. In yeast, the Mre11-Rad50-Xrs2 complex (MRX) collaborates with Sae2 to initiate DSB repair. Sae2 stimulates two MRX nuclease activities, endonuclease and 3'-5' exonuclease. However, how Sae2 controls the two nuclease activities remains enigmatic. Using a combined genetic and biochemical approach, we identified a separation-of-function rad50 mutation, rad50-C47, that causes a defect in Sae2-dependent MRX 3'-5' exonuclease activity, but not endonuclease activity. We found that both the endo- and 3'-5' exonuclease activities are essential to release Spo11 from DNA ends, whereas only the endonuclease activity is required for hairpin removal. We also uncovered that MRX-Sae2 endonuclease introduces a cleavage at defined distances from the Spo11-blocked end with gradually decreasing efficiency. Our findings demonstrate that Sae2 stimulates the MRX endo- and exonuclease activities via Rad50 by different mechanisms, ensuring diverse actions of MRX-Sae2 nuclease at DNA ends.
Collapse
Affiliation(s)
- Tomoki Tamai
- Faculty of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara City, Nara, 631-8505, Japan
| | - Giordano Reginato
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Ryusei Ojiri
- Faculty of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara City, Nara, 631-8505, Japan
| | - Issei Morita
- Faculty of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara City, Nara, 631-8505, Japan
| | - Alexandra Avrutis
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, 07103, USA
| | - Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland.
| | - Miki Shinohara
- Faculty of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara City, Nara, 631-8505, Japan.
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara City, Nara, 631-8505, Japan.
| | - Katsunori Sugimoto
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
21
|
Kim S, Yamada S, Li T, Canasto-Chibuque C, Kim JH, Marcet-Ortega M, Xu J, Eng DY, Feeney L, Petrini JHJ, Keeney S. The MRE11-RAD50-NBS1 complex both starts and extends DNA end resection in mouse meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608390. [PMID: 39185212 PMCID: PMC11343206 DOI: 10.1101/2024.08.17.608390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nucleolytic resection of DNA ends is critical for homologous recombination, but its mechanism is not fully understood, particularly in mammalian meiosis. Here we examine roles of the conserved MRN complex (MRE11, RAD50, and NBS1) through genome-wide analysis of meiotic resection in mice with various MRN mutations, including several that cause chromosomal instability in humans. Meiotic DSBs form at elevated levels but remain unresected if Mre11 is conditionally deleted, thus MRN is required for both resection initiation and regulation of DSB numbers. Resection lengths are reduced to varying degrees in MRN hypomorphs or if MRE11 nuclease activity is attenuated in a conditional nuclease-dead Mre11 model. These findings unexpectedly establish that MRN is needed for longer-range extension of resection, not just resection initiation. Finally, resection defects are additively worsened by combining MRN and Exo1 mutations, and mice that are unable to initiate resection or have greatly curtailed resection lengths experience catastrophic spermatogenic failure. Our results elucidate multiple functions of MRN in meiotic recombination, uncover unanticipated relationships between short- and long-range resection, and establish the importance of resection for mammalian meiosis.
Collapse
Affiliation(s)
- Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- The HAKUBI Center for Advanced Research, and Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tao Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Claudia Canasto-Chibuque
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Marina Marcet-Ortega
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jiaqi Xu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences
| | - Diana Y. Eng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Laura Feeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - John H. J. Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
22
|
Cheng A, Luo H, Fan B, Xiang Q, Nie Z, Feng S, Qiao Y, Wu Y, Zhu Q, Liu R, Song X, Li X, Zhang J. Fluoride induces pyroptosis via IL-17A-mediated caspase-1/11-dependent pathways and Bifidobacterium intervention in testis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172036. [PMID: 38554964 DOI: 10.1016/j.scitotenv.2024.172036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Fluoride, a ubiquitous environmental pollutant, poses a significant public health threat. Our previous study revealed a correlation between fluoride-induced testicular pyroptosis and male reproductive dysfunction. However, the underlying mechanism remains unclear. Wild-type and interleukin 17A knockout mice were exposed to sodium fluoride (100 mg/L) in deionized drinking water for 18 weeks. Bifidobacterium intervention (1 × 109 CFU/mL, 0.2 mL/day, administered via gavage) commenced in the 10th week. Sperm quality, testicular morphology, key pyroptosis markers, spermatogenesis key genes, IL-17A signaling pathway, and pyroptosis pathway related genes were determined. The results showed that fluoride reduced sperm quality, damaged testicular morphology, affected spermatogenesis, elevated IL-17A levels, and induced testicular pyroptosis. Bifidobacterium intervention alleviated adverse reproductive outcomes. Fluoride-activated testicular pyroptosis through both typical and atypical pathways, with IL-17A involvement. Bifidobacterium supplementation attenuated pyroptosis by downregulating IL-17A, inhibiting NLRP3 and PYRIN-mediated caspase-1 and caspase-11 dependent pathways in testis, thereby alleviating fluoride-induced male reproductive damage. In summary, this study uncovers the mechanism underlying fluorine-induced testicular pyroptosis and illustrates the novel protecting feature of Bifidobacterium against fluoride-induced harm to male reproduction, along with its potential regulatory mechanism. These results provide fresh perspectives on treating male reproductive dysfunction resulting from fluoride or other environmental toxins.
Collapse
Affiliation(s)
- Ao Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Bingchao Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qing Xiang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhaochen Nie
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shuang Feng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yurou Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yue Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qianlong Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Rongxiu Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaochao Song
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
23
|
Aithal R, Nangalia K, Spirek M, Chen D, Klein F, Krejci L. Physical interaction with Spo11 mediates the localisation of Mre11 to chromatin in meiosis and promotes its nuclease activity. Nucleic Acids Res 2024; 52:4328-4343. [PMID: 38407383 PMCID: PMC11077076 DOI: 10.1093/nar/gkae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Meiotic recombination is of central importance for the proper segregation of homologous chromosomes, but also for creating genetic diversity. It is initiated by the formation of double-strand breaks (DSBs) in DNA catalysed by evolutionarily conserved Spo11, together with additional protein partners. Difficulties in purifying the Spo11 protein have limited the characterization of its biochemical properties and of its interactions with other DSB proteins. In this study, we have purified fragments of Spo11 and show for the first time that Spo11 can physically interact with Mre11 and modulates its DNA binding, bridging, and nuclease activities. The interaction of Mre11 with Spo11 requires its far C-terminal region, which is in line with the severe meiotic phenotypes of various mre11 mutations located at the C-terminus. Moreover, calibrated ChIP for Mre11 shows that Spo11 promotes Mre11 recruitment to chromatin, independent of DSB formation. A mutant deficient in Spo11 interaction severely reduces the association of Mre11 with meiotic chromatin. Consistent with the reduction of Mre11 foci in this mutant, it strongly impedes DSB formation, leading to spore death. Our data provide evidence that physical interaction between Spo11 and Mre11, together with end-bridging, promote normal recruitment of Mre11 to hotspots and DSB formation.
Collapse
Affiliation(s)
- Rakesh Aithal
- National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
- Department of Biology, Masaryk University, Brno, Czech Republic
| | - Kuldeep Nangalia
- Department of Chromosome Biology, Center for Molecular Biology, University of Vienna
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030Vienna, Austria
| | - Mario Spirek
- Department of Biology, Masaryk University, Brno, Czech Republic
| | - Doris Chen
- Department of Chromosome Biology, Center for Molecular Biology, University of Vienna
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030Vienna, Austria
| | - Franz Klein
- Department of Chromosome Biology, Center for Molecular Biology, University of Vienna
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030Vienna, Austria
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
- Department of Biology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
24
|
Huang PC, Hong S, Mimitou EP, Kim KP, Murakami H, Keeney S. Meiotic DNA break resection and recombination rely on chromatin remodeler Fun30. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589955. [PMID: 38659928 PMCID: PMC11042300 DOI: 10.1101/2024.04.17.589955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
DNA double-strand breaks (DSBs) are nucleolytically processed to generate single-stranded DNA tails for homologous recombination. In Saccharomyces cerevisiae meiosis, this 5'-to-3' resection involves initial nicking by the Mre11-Rad50-Xrs2 complex (MRX) plus Sae2, then exonucleolytic digestion by Exo1. Chromatin remodeling adjacent to meiotic DSBs is thought to be necessary for resection, but the relevant remodeling activity was unknown. Here we show that the SWI/SNF-like ATPase Fun30 plays a major, non-redundant role in resecting meiotic DSBs. A fun30 null mutation shortened resection tract lengths almost as severely as an exo1-nd (nuclease-dead) mutation, and resection was further shortened in the fun30 exo1-nd double mutant. Fun30 associates with chromatin in response to meiotic DSBs, and the constitutive positioning of nucleosomes governs resection endpoint locations in the absence of Fun30. We infer that Fun30 directly promotes both the MRX- and Exo1-dependent steps in resection, possibly by removing nucleosomes from broken chromatids. Moreover, we found that the extremely short resection in the fun30 exo1-nd double mutant is accompanied by compromised interhomolog recombination bias, leading to defects in recombination and chromosome segregation. Thus, this study also provides insight about the minimal resection lengths needed for robust recombination.
Collapse
Affiliation(s)
- Pei-Ching Huang
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10021
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Soogil Hong
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Eleni P. Mimitou
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Keun P. Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
- Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 06974, South Korea
| | - Hajime Murakami
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Scott Keeney
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10021
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
25
|
Legrand S, Saifudeen A, Bordelet H, Vernerey J, Guille A, Bignaud A, Thierry A, Acquaviva L, Gaudin M, Sanchez A, Johnson D, Friedrich A, Schacherer J, Neale MJ, Borde V, Koszul R, Llorente B. Absence of chromosome axis protein recruitment prevents meiotic recombination chromosome-wide in the budding yeast Lachancea kluyveri. Proc Natl Acad Sci U S A 2024; 121:e2312820121. [PMID: 38478689 PMCID: PMC10962940 DOI: 10.1073/pnas.2312820121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/24/2024] [Indexed: 03/27/2024] Open
Abstract
Meiotic recombination shows broad variations across species and along chromosomes and is often suppressed at and around genomic regions determining sexual compatibility such as mating type loci in fungi. Here, we show that the absence of Spo11-DSBs and meiotic recombination on Lakl0C-left, the chromosome arm containing the sex locus of the Lachancea kluyveri budding yeast, results from the absence of recruitment of the two chromosome axis proteins Red1 and Hop1, essential for proper Spo11-DSBs formation. Furthermore, cytological observation of spread pachytene meiotic chromosomes reveals that Lakl0C-left does not undergo synapsis. However, we show that the behavior of Lakl0C-left is independent of its particularly early replication timing and is not accompanied by any peculiar chromosome structure as detectable by Hi-C in this yet poorly studied yeast. Finally, we observed an accumulation of heterozygous mutations on Lakl0C-left and a sexual dimorphism of the haploid meiotic offspring, supporting a direct effect of this absence of meiotic recombination on L. kluyveri genome evolution and fitness. Because suppression of meiotic recombination on sex chromosomes is widely observed across eukaryotes, the mechanism for recombination suppression described here may apply to other species, with the potential to impact sex chromosome evolution.
Collapse
Affiliation(s)
- Sylvain Legrand
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Asma Saifudeen
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Hélène Bordelet
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Julien Vernerey
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Arnaud Guille
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Amaury Bignaud
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Laurent Acquaviva
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Maxime Gaudin
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Aurore Sanchez
- Institut Curie, Paris Sciences and Lettres University, Sorbonne Université, CNRS UMR 3244, Dynamics of Genetic Information, Paris75005, France
| | - Dominic Johnson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, BrightonBN1 9RH, United Kingdom
| | - Anne Friedrich
- Université de Strasbourg, CNRS, Génétique moléculaire, génomique, microbiologie UMR 7156, Strasbourg67000, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, Génétique moléculaire, génomique, microbiologie UMR 7156, Strasbourg67000, France
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, BrightonBN1 9RH, United Kingdom
| | - Valérie Borde
- Institut Curie, Paris Sciences and Lettres University, Sorbonne Université, CNRS UMR 3244, Dynamics of Genetic Information, Paris75005, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Bertrand Llorente
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| |
Collapse
|
26
|
López Ruiz LM, Johnson D, Gittens WH, Brown GGB, Allison RM, Neale MJ. Meiotic prophase length modulates Tel1-dependent DNA double-strand break interference. PLoS Genet 2024; 20:e1011140. [PMID: 38427688 PMCID: PMC10936813 DOI: 10.1371/journal.pgen.1011140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/13/2024] [Accepted: 01/17/2024] [Indexed: 03/03/2024] Open
Abstract
During meiosis, genetic recombination is initiated by the formation of many DNA double-strand breaks (DSBs) catalysed by the evolutionarily conserved topoisomerase-like enzyme, Spo11, in preferred genomic sites known as hotspots. DSB formation activates the Tel1/ATM DNA damage responsive (DDR) kinase, locally inhibiting Spo11 activity in adjacent hotspots via a process known as DSB interference. Intriguingly, in S. cerevisiae, over short genomic distances (<15 kb), Spo11 activity displays characteristics of concerted activity or clustering, wherein the frequency of DSB formation in adjacent hotspots is greater than expected by chance. We have proposed that clustering is caused by a limited number of sub-chromosomal domains becoming primed for DSB formation. Here, we provide evidence that DSB clustering is abolished when meiotic prophase timing is extended via deletion of the NDT80 transcription factor. We propose that extension of meiotic prophase enables most cells, and therefore most chromosomal domains within them, to reach an equilibrium state of similar Spo11-DSB potential, reducing the impact that priming has on estimates of coincident DSB formation. Consistent with this view, when Tel1 is absent but Ndt80 is present and thus cells are able to rapidly exit meiotic prophase, genome-wide maps of Spo11-DSB formation are skewed towards pericentromeric regions and regions that load pro-DSB factors early-revealing regions of preferential priming-but this effect is abolished when NDT80 is deleted. Our work highlights how the stochastic nature of Spo11-DSB formation in individual cells within the limited temporal window of meiotic prophase can cause localised DSB clustering-a phenomenon that is exacerbated in tel1Δ cells due to the dual roles that Tel1 has in DSB interference and meiotic prophase checkpoint control.
Collapse
Affiliation(s)
- Luz María López Ruiz
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Dominic Johnson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - William H. Gittens
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - George G. B. Brown
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Rachal M. Allison
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
27
|
Horan TS, Ascenção CFR, Mellor C, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in double strand break repair processing, but not crossover formation during prophase I of meiosis in male mice. PLoS Genet 2024; 20:e1011175. [PMID: 38377115 PMCID: PMC10906868 DOI: 10.1371/journal.pgen.1011175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Meiotic recombination between homologous chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs). Approximately 10% of these DSBs result in crossovers (COs), sites of physical DNA exchange between homologs that are critical to correct chromosome segregation. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers, the latter representing the defining marks of CO sites. The regulation of CO number and position is poorly understood, but undoubtedly requires the coordinated action of multiple repair pathways. In a previous report, we found gene-trap disruption of the DNA helicase, FANCJ (BRIP1/BACH1), elicited elevated numbers of MLH1 foci and chiasmata. In somatic cells, FANCJ interacts with numerous DNA repair proteins including MLH1, and we hypothesized that FANCJ functions with MLH1 to regulate the major CO pathway. To further elucidate the meiotic function of FANCJ, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, truncation of the N-terminal Helicase domain, and a C-terminal dual-tagged allele. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, none of our Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 in meiosis. Instead, FANCJ co-localizes with BRCA1 and TOPBP1, forming discrete foci along the chromosome cores beginning in early meiotic prophase I and densely localized to unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data indicate a role for FANCJ in early DSB repair, but they rule out a role for FANCJ in MLH1-mediated CO events.
Collapse
Affiliation(s)
- Tegan S. Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| | - Carolline F. R. Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Christopher Mellor
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Marcus B. Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
28
|
Hinch R, Donnelly P, Hinch AG. Meiotic DNA breaks drive multifaceted mutagenesis in the human germ line. Science 2023; 382:eadh2531. [PMID: 38033082 PMCID: PMC7615360 DOI: 10.1126/science.adh2531] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/29/2023] [Indexed: 12/02/2023]
Abstract
Meiotic recombination commences with hundreds of programmed DNA breaks; however, the degree to which they are accurately repaired remains poorly understood. We report that meiotic break repair is eightfold more mutagenic for single-base substitutions than was previously understood, leading to de novo mutation in one in four sperm and one in 12 eggs. Its impact on indels and structural variants is even higher, with 100- to 1300-fold increases in rates per break. We uncovered new mutational signatures and footprints relative to break sites, which implicate unexpected biochemical processes and error-prone DNA repair mechanisms, including translesion synthesis and end joining in meiotic break repair. We provide evidence that these mechanisms drive mutagenesis in human germ lines and lead to disruption of hundreds of genes genome wide.
Collapse
Affiliation(s)
- Robert Hinch
- Big Data Institute, University of Oxford; Oxford, UK
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford; Oxford, UK
- Genomics plc; Oxford, UK
| | | |
Collapse
|
29
|
Abstract
The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
30
|
Yu Y, Wang J, Liu K, Zheng Z, Arter M, Bouuaert CC, Pu S, Patel DJ, Keeney S. Cryo-EM structure of the Spo11 core complex bound to DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564985. [PMID: 37961437 PMCID: PMC10634984 DOI: 10.1101/2023.10.31.564985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The DNA double-strand breaks that initiate meiotic recombination are formed by topoisomerase relative Spo11, supported by conserved auxiliary factors. Because high-resolution structural data are lacking, many questions remain about the architecture of Spo11 and its partners and how they engage with DNA. We report cryo-EM structures at up to 3.3 Å resolution of DNA-bound core complexes of Saccharomyces cerevisiae Spo11 with Rec102, Rec104, and Ski8. In these structures, monomeric core complexes make extensive contacts with the DNA backbone and with the recessed 3'-OH and first 5' overhanging nucleotide, definitively establishing the molecular determinants of DNA end-binding specificity and providing insight into DNA cleavage preferences in vivo. The structures of individual subunits and their interfaces, supported by functional data in yeast, provide insight into the role of metal ions in DNA binding and uncover unexpected structural variation in homologs of the Top6BL component of the core complex.
Collapse
Affiliation(s)
- You Yu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Zhi Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Corentin Claeys Bouuaert
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Stephen Pu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
31
|
Horan TS, Ascenção CFR, Mellor CA, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in Double Strand Break repair processing, but not crossover formation during Prophase I of meiosis in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561296. [PMID: 37873301 PMCID: PMC10592954 DOI: 10.1101/2023.10.06.561296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
During meiotic prophase I, recombination between homologous parental chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs), each of which must be repaired with absolute fidelity to ensure genome stability of the germline. One outcome of these DSB events is the formation of Crossovers (COs), the sites of physical DNA exchange between homologs that are critical to ensure the correct segregation of parental chromosomes. However, COs account for only a small (~10%) proportion of all DSB repair events; the remaining 90% are repaired as non-crossovers (NCOs), most by synthesis dependent strand annealing. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers. The number and positioning of COs is exquisitely controlled via mechanisms that remain poorly understood, but which undoubtedly require the coordinated action of multiple repair pathways downstream of the initiating DSB. In a previous report we found evidence suggesting that the DNA helicase and Fanconi Anemia repair protein, FANCJ (BRIP1/BACH1), functions to regulate meiotic recombination in mouse. A gene-trap disruption of Fancj showed an elevated number of MLH1 foci and COs. FANCJ is known to interact with numerous DNA repair proteins in somatic cell repair contexts, including MLH1, BLM, BRCA1, and TOPBP1, and we hypothesized that FANCJ regulates CO formation through a direct interaction with MLH1 to suppress the major CO pathway. To further elucidate the function of FANCJ in meiosis, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, a mutant line lacking the MLH1 interaction site and the N-terminal region of the Helicase domain, and a C-terminal 6xHIS-HA dual-tagged allele of Fancj. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, while Fanconi-like phenotypes are observed within the somatic cell lineages of the full deletion Fancj line, none of the Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I of meiosis. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 during late prophase I. Instead, FANCJ forms discrete foci along the chromosome cores beginning in early meiotic prophase I, occasionally co-localizing with MSH4, and then becomes densely localized on unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Strikingly, this localization strongly overlaps with BRCA1 and TOPBP1. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data suggest a role for FANCJ in early DSB repair events, and possibly in the formation of NCOs, but they rule out a role for FANCJ in MLH1-mediated CO events. Thus, the role of FANCJ in meiotic cells involves different pathways and different interactors to those described in somatic cell lineages.
Collapse
Affiliation(s)
- Tegan S Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Carolline F R Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | | | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Marcus B Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
32
|
Abstract
Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.
Collapse
Affiliation(s)
- G Valentin Börner
- Center for Gene Regulation in Health and Disease (GRHD), Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
33
|
Luo H, Liu R, Lang Y, Zhao J, Zhuang C, Wang J, Liang C, Zhang J. Melatonin alleviated fluoride-induced impairment of spermatogenesis and sperm maturation process via Interleukin-17A. Food Chem Toxicol 2023:113867. [PMID: 37269891 DOI: 10.1016/j.fct.2023.113867] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Fluoride-induced male reproductive failure is a major environmental and human health concern, but interventions are still lacking. Melatonin (MLT) has potential functions in regulating testicular damage and interleukin-17 (IL-17) production. This study aims to explore whether MLT can mitigate fluoride-induced male reproductive toxicity through IL-17A, and screen the potential targets. So the wild type and IL-17A knockout mice were employed and treated with sodium fluoride (100 mg/L) by drinking water and MLT (10 mg/kg.BW, intraperitoneal injection per two days starting from week 16) for 18 weeks. Bone F- concentrations, grade of dental damage, sperm quality, spermatogenic cells counts, histological morphology of testis and epididymis, and the mRNA expression of spermatogenesis and maturation, classical pyroptosis related and immune factor genes were detected respectively. The results revealed that MLT supplementations alleviated fluoride-induced impairment of spermatogenesis and maturation process, protecting the morphology of testis and epididymis through IL-17A pathway, and Tesk1 and Pten were identified as candidate targets from 29 regulation genes. Taken together, this study demonstrated a new physiological role for MLT in the protection against fluoride-induced reproductive injury and possible regulation mechanisms, which providing a useful therapeutic strategy for male reproductive function failure caused by fluoride or other environmental pollutants.
Collapse
Affiliation(s)
- Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Rongxiu Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Yilin Lang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jinhui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| |
Collapse
|
34
|
Mre11-Rad50: the DNA end game. Biochem Soc Trans 2023; 51:527-538. [PMID: 36892213 DOI: 10.1042/bst20220754] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
The Mre11-Rad50-(Nbs1/Xrs2) complex is an evolutionarily conserved factor for the repair of DNA double-strand breaks and other DNA termini in all kingdoms of life. It is an intricate DNA associated molecular machine that cuts, among other functions, a large variety of free and obstructed DNA termini for DNA repair by end joining or homologous recombination, yet leaves undamaged DNA intact. Recent years have brought progress in both the structural and functional analyses of Mre11-Rad50 orthologs, revealing mechanisms of DNA end recognition, endo/exonuclease activities, nuclease regulation and DNA scaffolding. Here, I review our current understanding and recent progress on the functional architecture Mre11-Rad50 and how this chromosome associated coiled-coil ABC ATPase acts as DNA topology specific endo-/exonuclease.
Collapse
|
35
|
Mazur AK, Gladyshev E. C-DNA may facilitate homologous DNA pairing. Trends Genet 2023:S0168-9525(23)00023-9. [PMID: 36804168 DOI: 10.1016/j.tig.2023.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Recombination-independent homologous pairing represents a prominent yet largely enigmatic feature of chromosome biology. As suggested by studies in the fungus Neurospora crassa, this process may be based on the direct pairing of homologous DNA molecules. Theoretical search for the DNA structures consistent with those genetic results has led to an all-atom model in which the B-DNA conformation of the paired double helices is strongly shifted toward C-DNA. Coincidentally, C-DNA also features a very shallow major groove that could permit initial homologous contacts without atom-atom clashes. The hereby conjectured role of C-DNA in homologous pairing should encourage the efforts to discover its biological functions and may also clarify the mechanism of recombination-independent recognition of DNA homology.
Collapse
Affiliation(s)
- Alexey K Mazur
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, Paris, France; Institut Pasteur, Université Paris Cité, Group Fungal Epigenomics, Paris, France.
| | - Eugene Gladyshev
- Institut Pasteur, Université Paris Cité, Group Fungal Epigenomics, Paris, France.
| |
Collapse
|
36
|
Kawashima Y, Oda AH, Hikida Y, Ohta K. Chromosome-dependent aneuploid formation in Spo11-less meiosis. Genes Cells 2023; 28:129-148. [PMID: 36530025 PMCID: PMC10107155 DOI: 10.1111/gtc.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Deficiency in meiotic recombination leads to aberrant chromosome disjunction during meiosis, often resulting in the lethality of gametes or genetic disorders due to aneuploidy formation. Budding yeasts lacking Spo11, which is essential for initiation of meiotic recombination, produce many inviable spores in meiosis, while very rarely all sets of 16 chromosomes are coincidentally assorted into gametes to form viable spores. We induced meiosis in a spo11∆ diploid, in which homolog pairs can be distinguished by single nucleotide polymorphisms and determined whole-genome sequences of their exceptionally viable spores. We detected no homologous recombination in the viable spores of spo11∆ diploid. Point mutations were fewer in spo11∆ than in wild-type. We observed spo11∆ viable spores carrying a complete diploid set of homolog pairs or haploid spores with a complete haploid set of homologs but with aneuploidy in some chromosomes. In the latter, we found the chromosome-dependence in the aneuploid incidence, which was positively and negatively influenced by the chromosome length and the impact of dosage-sensitive genes, respectively. Selection of aneuploidy during meiosis II or mitosis after spore germination was also chromosome dependent. These results suggest a pathway by which specific chromosomes are more prone to cause aneuploidy, as observed in Down syndrome.
Collapse
Affiliation(s)
- Yuri Kawashima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Arisa H Oda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hikida
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Rotheneder M, Stakyte K, van de Logt E, Bartho JD, Lammens K, Fan Y, Alt A, Kessler B, Jung C, Roos WP, Steigenberger B, Hopfner KP. Cryo-EM structure of the Mre11-Rad50-Nbs1 complex reveals the molecular mechanism of scaffolding functions. Mol Cell 2023; 83:167-185.e9. [PMID: 36577401 DOI: 10.1016/j.molcel.2022.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/14/2022] [Accepted: 12/03/2022] [Indexed: 12/28/2022]
Abstract
The DNA double-strand break repair complex Mre11-Rad50-Nbs1 (MRN) detects and nucleolytically processes DNA ends, activates the ATM kinase, and tethers DNA at break sites. How MRN can act both as nuclease and scaffold protein is not well understood. The cryo-EM structure of MRN from Chaetomium thermophilum reveals a 2:2:1 complex with a single Nbs1 wrapping around the autoinhibited Mre11 nuclease dimer. MRN has two DNA-binding modes, one ATP-dependent mode for loading onto DNA ends and one ATP-independent mode through Mre11's C terminus, suggesting how it may interact with DSBs and intact DNA. MRNs two 60-nm-long coiled-coil domains form a linear rod structure, the apex of which is assembled by the two joined zinc-hook motifs. Apices from two MRN complexes can further dimerize, forming 120-nm spanning MRN-MRN structures. Our results illustrate the architecture of MRN and suggest how it mechanistically integrates catalytic and tethering functions.
Collapse
Affiliation(s)
- Matthias Rotheneder
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Kristina Stakyte
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Erik van de Logt
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Joseph D Bartho
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Katja Lammens
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Yilan Fan
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Aaron Alt
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Brigitte Kessler
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Christophe Jung
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Wynand P Roos
- Institute for Toxicology, Johannes-Gutenberg-Universität, Mainz, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Karl-Peter Hopfner
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany.
| |
Collapse
|
38
|
Continuous double-strand break induction and their differential processing sustain chiasma formation during Caenorhabditis elegans meiosis. Cell Rep 2022; 40:111403. [PMID: 36170820 DOI: 10.1016/j.celrep.2022.111403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Faithful chromosome segregation into gametes depends on Spo11-induced DNA double-strand breaks (DSBs). These yield single-stranded 3' tails upon resection to promote crossovers (COs). While early Mre11-dependent end resection is the predominant pathway in most organisms, Exo1 or Dna2/BLM can also contribute to the efficient processing of meiotic DSBs. Although its enzymatic activity has been thoroughly dissected, the temporal dynamics underlying Spo11 activity have remained mostly elusive. We show that, in Caenorhabditis elegans, SPO-11-mediated DSB induction takes place throughout early meiotic prophase I until mid-late pachynema. We find that late DSBs are essential for CO formation and are preferentially processed by EXO-1 and DNA-2 in a redundant fashion. Further, EXO-1-DNA-2-mediated resection ensures completion of conservative DSB repair and discourages activation of KU-dependent end joining. Taken together, our data unveil important temporal aspects of DSB induction and identify previously unknown functional implications for EXO-1-DNA-2-mediated resection activity in C. elegans.
Collapse
|
39
|
Vergara X, Schep R, Medema RH, van Steensel B. From fluorescent foci to sequence: Illuminating DNA double strand break repair by high-throughput sequencing technologies. DNA Repair (Amst) 2022; 118:103388. [PMID: 36037787 DOI: 10.1016/j.dnarep.2022.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Technologies to study DNA double-strand break (DSB) repair have traditionally mostly relied on fluorescence read-outs, either by microscopy or flow cytometry. The advent of high throughput sequencing (HTS) has created fundamentally new opportunities to study the mechanisms underlying DSB repair. Here, we review the suite of HTS-based assays that are used to study three different aspects of DNA repair: detection of broken ends, protein recruitment and pathway usage. We highlight new opportunities that HTS technology offers towards a better understanding of the DSB repair process.
Collapse
Affiliation(s)
- Xabier Vergara
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - Ruben Schep
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands.
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands; Department of Cell Biology, Erasmus University Medical Centre, the Netherlands.
| |
Collapse
|
40
|
Anqi Y, Saina Y, Chujie C, Yanfei Y, Xiangwei T, Jiajia M, Jiaojiao X, Maoliang R, Bin C. Regulation of DNA methylation during the testicular development of Shaziling pigs. Genomics 2022; 114:110450. [PMID: 35995261 DOI: 10.1016/j.ygeno.2022.110450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
DNA methylation is one of the key epigenetic regulatory mechanisms in development and spermatogenesis. However, the dynamic regulatory mechanisms of genome-wide DNA methylation during testicular development remain largely unknown. Herein, we generated a single-base resolution DNA methylome and transcriptome atlas of precocious porcine testicular tissues across three developmental stages (1, 75, and 150 days old). The results showed that the dynamic methylation patterns were directly related to the expression of the DNMT3A gene. Conjoint analysis revealed a negative regulatory pattern between promoter methylation and the positive regulation of 3'-untranslated region (3'UTR) methylation. Mechanistically, the decrease in promoter methylation affected the upregulation of meiosis-related genes, such as HORMAD1, SPO11, and SYCE1. Demethylation in the 3'UTR induced the downregulation of the INHBA gene and knockdown of INHBA inhibited cell proliferation by reducing the synthesis of activin A. These findings contribute to exploring the regulatory mechanisms of DNA methylation in testicular development.
Collapse
Affiliation(s)
- Yang Anqi
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yan Saina
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Chen Chujie
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yin Yanfei
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Tang Xiangwei
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ma Jiajia
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Xiang Jiaojiao
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ran Maoliang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China.
| | - Chen Bin
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China.
| |
Collapse
|
41
|
Structural mechanism of endonucleolytic processing of blocked DNA ends and hairpins by Mre11-Rad50. Mol Cell 2022; 82:3513-3522.e6. [DOI: 10.1016/j.molcel.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/10/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
|
42
|
Leng X, Duxin JP. Targeting DNA-Protein Crosslinks via Post-Translational Modifications. Front Mol Biosci 2022; 9:944775. [PMID: 35860355 PMCID: PMC9289515 DOI: 10.3389/fmolb.2022.944775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Covalent binding of proteins to DNA forms DNA-protein crosslinks (DPCs), which represent cytotoxic DNA lesions that interfere with essential processes such as DNA replication and transcription. Cells possess different enzymatic activities to counteract DPCs. These include enzymes that degrade the adducted proteins, resolve the crosslinks, or incise the DNA to remove the crosslinked proteins. An important question is how DPCs are sensed and targeted for removal via the most suited pathway. Recent advances have shown the inherent role of DNA replication in triggering DPC removal by proteolysis. However, DPCs are also efficiently sensed and removed in the absence of DNA replication. In either scenario, post-translational modifications (PTMs) on DPCs play essential and versatile roles in orchestrating the repair routes. In this review, we summarize the current knowledge of the mechanisms that trigger DPC removal via PTMs, focusing on ubiquitylation, small ubiquitin-related modifier (SUMO) conjugation (SUMOylation), and poly (ADP-ribosyl)ation (PARylation). We also briefly discuss the current knowledge gaps and emerging hypotheses in the field.
Collapse
|
43
|
Guo H, Stamper EL, Sato-Carlton A, Shimazoe MA, Li X, Zhang L, Stevens L, Tam KCJ, Dernburg AF, Carlton PM. Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity. eLife 2022; 11:77956. [PMID: 35758641 PMCID: PMC9278955 DOI: 10.7554/elife.77956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
In the first meiotic cell division, proper segregation of chromosomes in most organisms depends on chiasmata, exchanges of continuity between homologous chromosomes that originate from the repair of programmed double-strand breaks (DSBs) catalyzed by the Spo11 endonuclease. Since DSBs can lead to irreparable damage in germ cells, while chromosomes lacking DSBs also lack chiasmata, the number of DSBs must be carefully regulated to be neither too high nor too low. Here, we show that in Caenorhabditis elegans, meiotic DSB levels are controlled by the phosphoregulation of DSB-1, a homolog of the yeast Spo11 cofactor Rec114, by the opposing activities of PP4PPH-4.1 phosphatase and ATRATL-1 kinase. Increased DSB-1 phosphorylation in pph-4.1 mutants correlates with reduction in DSB formation, while prevention of DSB-1 phosphorylation drastically increases the number of meiotic DSBs both in pph-4.1 mutants and in the wild-type background. C. elegans and its close relatives also possess a diverged paralog of DSB-1, called DSB-2, and loss of dsb-2 is known to reduce DSB formation in oocytes with increasing age. We show that the proportion of the phosphorylated, and thus inactivated, form of DSB-1 increases with age and upon loss of DSB-2, while non-phosphorylatable DSB-1 rescues the age-dependent decrease in DSBs in dsb-2 mutants. These results suggest that DSB-2 evolved in part to compensate for the inactivation of DSB-1 through phosphorylation, to maintain levels of DSBs in older animals. Our work shows that PP4PPH-4.1, ATRATL-1, and DSB-2 act in concert with DSB-1 to promote optimal DSB levels throughout the reproductive lifespan.
Collapse
Affiliation(s)
- Heyun Guo
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Ericca L Stamper
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Aya Sato-Carlton
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Masa A Shimazoe
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan.,Department of Science, Kyoto University, Kyoto, Japan
| | - Xuan Li
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - K C Jacky Tam
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan.,Radiation Biology Center, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
Raina VB, Schoot Uiterkamp M, Vader G. Checkpoint control in meiotic prophase: Idiosyncratic demands require unique characteristics. Curr Top Dev Biol 2022; 151:281-315. [PMID: 36681474 DOI: 10.1016/bs.ctdb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomal transactions such as replication, recombination and segregation are monitored by cell cycle checkpoint cascades. These checkpoints ensure the proper execution of processes that are needed for faithful genome inheritance from one cell to the next, and across generations. In meiotic prophase, a specialized checkpoint monitors defining events of meiosis: programmed DNA break formation, followed by dedicated repair through recombination based on interhomolog (IH) crossovers. This checkpoint shares molecular characteristics with canonical DNA damage checkpoints active during somatic cell cycles. However, idiosyncratic requirements of meiotic prophase have introduced unique features in this signaling cascade. In this review, we discuss the unique features of the meiotic prophase checkpoint. While being related to canonical DNA damage checkpoint cascades, the meiotic prophase checkpoint also shows similarities with the spindle assembly checkpoint (SAC) that guards chromosome segregation. We highlight these emerging similarities in the signaling logic of the checkpoints that govern meiotic prophase and chromosome segregation, and how thinking of these similarities can help us better understand meiotic prophase control. We also discuss work showing that, when aberrantly expressed, components of the meiotic prophase checkpoint might alter DNA repair fidelity and chromosome segregation in cancer cells. Considering checkpoint function in light of demands imposed by the special characteristics of meiotic prophase helps us understand checkpoint integration into the meiotic cell cycle machinery.
Collapse
Affiliation(s)
- Vivek B Raina
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York City, NY, United States
| | - Maud Schoot Uiterkamp
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Lorenz A, Mpaulo SJ. Gene conversion: a non-Mendelian process integral to meiotic recombination. Heredity (Edinb) 2022; 129:56-63. [PMID: 35393552 PMCID: PMC9273591 DOI: 10.1038/s41437-022-00523-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/30/2022] Open
Abstract
Meiosis is undoubtedly the mechanism that underpins Mendelian genetics. Meiosis is a specialised, reductional cell division which generates haploid gametes (reproductive cells) carrying a single chromosome complement from diploid progenitor cells harbouring two chromosome sets. Through this process, the hereditary material is shuffled and distributed into haploid gametes such that upon fertilisation, when two haploid gametes fuse, diploidy is restored in the zygote. During meiosis the transient physical connection of two homologous chromosomes (one originally inherited from each parent) each consisting of two sister chromatids and their subsequent segregation into four meiotic products (gametes), is what enables genetic marker assortment forming the core of Mendelian laws. The initiating events of meiotic recombination are DNA double-strand breaks (DSBs) which need to be repaired in a certain way to enable the homologous chromosomes to find each other. This is achieved by DSB ends searching for homologous repair templates and invading them. Ultimately, the repair of meiotic DSBs by homologous recombination physically connects homologous chromosomes through crossovers. These physical connections provided by crossovers enable faithful chromosome segregation. That being said, the DSB repair mechanism integral to meiotic recombination also produces genetic transmission distortions which manifest as postmeiotic segregation events and gene conversions. These processes are non-reciprocal genetic exchanges and thus non-Mendelian.
Collapse
Affiliation(s)
- Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, UK.
| | - Samantha J Mpaulo
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, UK
| |
Collapse
|
46
|
Alavattam KG, Maezawa S, Andreassen PR, Namekawa SH. Meiotic sex chromosome inactivation and the XY body: a phase separation hypothesis. Cell Mol Life Sci 2021; 79:18. [PMID: 34971404 PMCID: PMC9188433 DOI: 10.1007/s00018-021-04075-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
In mammalian male meiosis, the heterologous X and Y chromosomes remain unsynapsed and, as a result, are subject to meiotic sex chromosome inactivation (MSCI). MSCI is required for the successful completion of spermatogenesis. Following the initiation of MSCI, the X and Y chromosomes undergo various epigenetic modifications and are transformed into a nuclear body termed the XY body. Here, we review the mechanisms underlying the initiation of two essential, sequential processes in meiotic prophase I: MSCI and XY-body formation. The initiation of MSCI is directed by the action of DNA damage response (DDR) pathways; downstream of the DDR, unique epigenetic states are established, leading to the formation of the XY body. Accumulating evidence suggests that MSCI and subsequent XY-body formation may be driven by phase separation, a physical process that governs the formation of membraneless organelles and other biomolecular condensates. Thus, here we gather literature-based evidence to explore a phase separation hypothesis for the initiation of MSCI and the formation of the XY body.
Collapse
Affiliation(s)
- Kris G Alavattam
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - So Maezawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
47
|
Lukaszewicz A, Lange J, Keeney S, Jasin M. De novo deletions and duplications at recombination hotspots in mouse germlines. Cell 2021; 184:5970-5984.e18. [PMID: 34793701 PMCID: PMC8616837 DOI: 10.1016/j.cell.2021.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022]
Abstract
Numerous DNA double-strand breaks (DSBs) arise during meiosis to initiate homologous recombination. These DSBs are usually repaired faithfully, but here, we uncover a distinct type of mutational event in which deletions form via joining of ends from two closely spaced DSBs (double cuts) within a single hotspot or at adjacent hotspots on the same or different chromatids. Deletions occur in normal meiosis but are much more frequent when DSB formation is dysregulated in the absence of the ATM kinase. Events between chromosome homologs point to multi-chromatid damage and aborted gap repair. Some deletions contain DNA from other hotspots, indicating that double cutting at distant sites creates substrates for insertional mutagenesis. End joining at double cuts can also yield tandem duplications or extrachromosomal circles. Our findings highlight the importance of DSB regulation and reveal a previously hidden potential for meiotic mutagenesis that is likely to affect human health and genome evolution.
Collapse
Affiliation(s)
- Agnieszka Lukaszewicz
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Memorial Sloan Kettering Cancer Center, Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
48
|
Ahuja JS, Harvey CS, Wheeler DL, Lichten M. Repeated strand invasion and extensive branch migration are hallmarks of meiotic recombination. Mol Cell 2021; 81:4258-4270.e4. [PMID: 34453891 PMCID: PMC8541907 DOI: 10.1016/j.molcel.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Currently favored models for meiotic recombination posit that both noncrossover and crossover recombination are initiated by DNA double-strand breaks but form by different mechanisms: noncrossovers by synthesis-dependent strand annealing and crossovers by formation and resolution of double Holliday junctions centered around the break. This dual mechanism hypothesis predicts different hybrid DNA patterns in noncrossover and crossover recombinants. We show that these predictions are not upheld, by mapping with unprecedented resolution parental strand contributions to recombinants at a model locus. Instead, break repair in both noncrossovers and crossovers involves synthesis-dependent strand annealing, often with multiple rounds of strand invasion. Crossover-specific double Holliday junction formation occurs via processes involving branch migration as an integral feature, one that can be separated from repair of the break itself. These findings reveal meiotic recombination to be a highly dynamic process and prompt a new view of the relationship between crossover and noncrossover recombination.
Collapse
Affiliation(s)
- Jasvinder S Ahuja
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Catherine S Harvey
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David L Wheeler
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Abstract
The specialized two-stage meiotic cell division program halves a cell's chromosome complement in preparation for sexual reproduction. This reduction in ploidy requires that in meiotic prophase, each pair of homologous chromosomes (homologs) identify one another and form physical links through DNA recombination. Here, we review recent advances in understanding the complex morphological changes that chromosomes undergo during meiotic prophase to promote homolog identification and crossing over. We focus on the structural maintenance of chromosomes (SMC) family cohesin complexes and the meiotic chromosome axis, which together organize chromosomes and promote recombination. We then discuss the architecture and dynamics of the conserved synaptonemal complex (SC), which assembles between homologs and mediates local and global feedback to ensure high fidelity in meiotic recombination. Finally, we discuss exciting new advances, including mechanisms for boosting recombination on particular chromosomes or chromosomal domains and the implications of a new liquid crystal model for SC assembly and structure. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah N Ur
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; ,
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
50
|
Prieler S, Chen D, Huang L, Mayrhofer E, Zsótér S, Vesely M, Mbogning J, Klein F. Spo11 generates gaps through concerted cuts at sites of topological stress. Nature 2021; 594:577-582. [PMID: 34108684 DOI: 10.1038/s41586-021-03632-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Meiotic recombination is essential for chromosome segregation at meiosis and fertility. It is initiated by programmed DNA double-strand breaks (DSBs) introduced by Spo11, a eukaryotic homologue of an archaeal topoisomerase (Topo VIA)1. Here we describe previously uncharacterized Spo11-induced lesions, 34 to several hundred base pair-long gaps, which are generated by coordinated pairs of DSBs termed double DSBs. Isolation and genome-wide mapping of the resulting fragments with single base-pair precision revealed enrichment at DSB hotspots but also a widely dispersed distribution across the genome. Spo11 prefers to cut sequences with similarity to a DNA-bending motif2, which indicates that bendability contributes to the choice of cleavage site. Moreover, fragment lengths have a periodicity of approximately (10.4n + 3) base pairs, which indicates that Spo11 favours cleavage on the same face of underwound DNA. Consistently, double DSB signals overlap and correlate with topoisomerase II-binding sites, which points to a role for topological stress and DNA crossings in break formation, and suggests a model for the formation of DSBs and double DSBs in which Spo11 traps two DNA strands. Double DSB gaps, which make up an estimated 20% of all initiation events, can account for full gene conversion events that are independent of both Msh2-dependent heteroduplex repair3,4 and the MutLγ endonuclease4. Because non-homologous gap repair results in deletions, and ectopically re-integrated double DSB fragments result in insertions, the formation of double DSBs is a potential source of evolutionary diversity and pathogenic germline aberrations.
Collapse
Affiliation(s)
- Silvia Prieler
- Max Perutz Labs Vienna, University of Vienna, Department of Chromosome Biology, Vienna, Austria
| | - Doris Chen
- Max Perutz Labs Vienna, University of Vienna, Department of Chromosome Biology, Vienna, Austria
| | - Lingzhi Huang
- Max Perutz Labs Vienna, University of Vienna, Department of Chromosome Biology, Vienna, Austria
| | - Elisa Mayrhofer
- Max Perutz Labs Vienna, University of Vienna, Department of Chromosome Biology, Vienna, Austria.,Austrian Research Institute for Chemistry and Technology, Microbiology and Cell Culture, Vienna, Austria
| | - Soma Zsótér
- Max Perutz Labs Vienna, University of Vienna, Department of Chromosome Biology, Vienna, Austria.,Humboldt University of Berlin, IRI Life Sciences, Berlin, Germany
| | - Magdalena Vesely
- Max Perutz Labs Vienna, University of Vienna, Department of Chromosome Biology, Vienna, Austria
| | - Jean Mbogning
- Max Perutz Labs Vienna, University of Vienna, Department of Chromosome Biology, Vienna, Austria.,McGill University, Department of Pharmacology and Therapeutics, Montréal, Canada
| | - Franz Klein
- Max Perutz Labs Vienna, University of Vienna, Department of Chromosome Biology, Vienna, Austria.
| |
Collapse
|