1
|
Guo L, Li T, Yang T, Hu Z, Wang A, Luo J. Ion-Docking Effect Enabling Rechargeable High-Voltage Magnesium-Iodine/Chlorine Battery. Angew Chem Int Ed Engl 2025; 64:e202503209. [PMID: 40119853 DOI: 10.1002/anie.202503209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 03/24/2025]
Abstract
Rechargeable magnesium (Mg) batteries represent a promising energy storage system by offering low cost and dendrite-less propensity. However, the limited selection of cathode materials, and often with low voltage and capacity, constrain Mg batteries. Herein, by exploiting the ion-docking effect between two halogen species-iodine cations (I+) and chlorine anions (Cl-)-we activate the cathodic activity of halogens and develop a magnesium-iodine/chlorine (Mg-I/Cl) battery prototype with high energy and power density. The ion-docking effect enables I+ and Cl- to mutually balance and disperse their charges, and weakens the coordination strength between Cl- and Mg2+ while enhancing the stability of I+, thus facilitating the multi-electron (2 + 1/3) redox reactions of halogens. We also find the solvation state of iodine species determines the reaction process of the I0/I3 -/I- redox couples. The here-developed magnesium-iodine/chlorine battery features an impressively high discharge plateau of up to 3.0 V with a high capacity exceeding 400 mAh g-1, and demonstrates a stable lifespan for 500 cycles, with the ability of ultra-fast charging at 20C and low-temperature cycling under -30 °C. These findings may provide new insights for developing high-energy-density Mg battery systems.
Collapse
Affiliation(s)
- Longyuan Guo
- Institute of Advanced Energy Materials, Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian, 350116, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Tong Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Ting Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhenglin Hu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Aoxuan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jiayan Luo
- School of Materials Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Chao W, Skog R, Frandsen BN, Jones GH, Pham KT, Okumura M, Sulbaek Andersen MP, Percival CJ, Winiberg FAF. The UV-Vis spectrum of the ClCO radical in the catalytic cycle of Cl-initiated CO oxidation. Commun Chem 2025; 8:163. [PMID: 40413352 PMCID: PMC12103620 DOI: 10.1038/s42004-025-01520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/07/2025] [Indexed: 05/27/2025] Open
Abstract
In Venus's mesosphere, the observation/model discrepancy of molecular oxygen, O2, abundance has been a long-standing puzzle. Chlorine atoms have been proposed as a catalyst to oxidize carbon monoxide through the formation of chloroformyl radicals (ClCO), removing O2 and ultimately generating CO2. However, relevant kinetic studies of this catalytic cycle are scarce and highly uncertain. In this work, we report the spectrum of the ClCO radical between 210-520 nm using a multipass UV-Vis spectrometer coupled to a pulsed-laser photolysis flow reactor at 236-294 K temperature and 50-491 Torr pressure ranges. High-level ab initio calculations were performed to simulate the observed spectrum and to investigate the electronic structure. In addition, we observed the formation of molecular chlorine, Cl2, and phosgene, Cl2CO, suggesting that both the terminal chlorine and the central carbon in the ClCO radical are reactive towards chlorine atoms. Most importantly, the reported spectrum will enable future measurements of essential kinetic parameters related to ClCO radicals, which are important in regulating the O2 abundance in Venus's mesosphere.
Collapse
Affiliation(s)
- Wen Chao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert Skog
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Benjamin N Frandsen
- Department of Chemistry, University of Helsinki, Helsinki, Finland
- Aerosol Physics Laboratory, Tampere University, Tampere, Finland
| | - Gregory H Jones
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kayla T Pham
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Mitchio Okumura
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mads P Sulbaek Andersen
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, USA
- Copenhagen Center for Atmospheric Research, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Carl J Percival
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Frank A F Winiberg
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
3
|
Liang P, Zhu G, Wang W, Huang CL, Wu SC, Zhou J, Zhou X, Wu Y, Wang S, Wang M, Zhang L, Ming CC, Li J, Wang F, Sun M, Li YY, Hwang BJ, Dai H. Carbon Nanotubes for Rechargeable Na/Cl 2 Batteries. J Am Chem Soc 2025. [PMID: 40388675 DOI: 10.1021/jacs.4c18070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Rechargeable Na/Cl2 batteries were developed for the first time using multiwalled carbon nanotube (MWCNT) positive electrodes in SOCl2-based electrolytes. At room temperature, these batteries delivered high cycling specific capacities up to 3500 mA h g-1 (normalized to CNT mass) with ∼3.9 V discharge voltage at up to 2 C rates over >140 cycles. In situ Raman spectroscopy experiments combined with real-time optical microscopy imaging revealed reversible formation and reduction of SCl2 and S2Cl2 species during battery operation, responsible for the additional plateaus to the main Cl-/Cl2 redox reactions. Cryo-TEM revealed NaCl nanocrystals inside the hollow inner space of CNTs through battery cycling, suggesting Cl-/Cl2 redox reactions reaching hollow CNTs likely through defects and open ends on MWCNTs. High-resolution electron energy loss spectroscopy (EELS) mapping revealed Cl uniformly distributed along CNTs in the charged state, suggesting CNTs as a novel carbon material to host Cl-/Cl2 redox and store chlorine for reversible conversion between NaCl and Cl2 and battery rechargeability.
Collapse
Affiliation(s)
- Peng Liang
- Department of Chemistry, Mechanical Engineering and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
- Material Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518048, China
- JC STEM Lab of Nanoscience and Nanomedicine, Department of Chemistry and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Guanzhou Zhu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Weize Wang
- Department of Chemistry, Mechanical Engineering and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Cheng-Liang Huang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan
| | - Shu-Chi Wu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jingwen Zhou
- Department of Chemistry, Mechanical Engineering and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
- Material Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518048, China
- JC STEM Lab of Nanoscience and Nanomedicine, Department of Chemistry and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Xichen Zhou
- Department of Chemistry, Mechanical Engineering and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
- Material Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518048, China
- JC STEM Lab of Nanoscience and Nanomedicine, Department of Chemistry and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Yan Wu
- Department of Chemistry, Mechanical Engineering and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
- Material Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518048, China
- JC STEM Lab of Nanoscience and Nanomedicine, Department of Chemistry and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Shixin Wang
- Department of Chemistry, Mechanical Engineering and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
- Material Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518048, China
- JC STEM Lab of Nanoscience and Nanomedicine, Department of Chemistry and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Mingyue Wang
- Department of Chemistry, Mechanical Engineering and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
- Material Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518048, China
- JC STEM Lab of Nanoscience and Nanomedicine, Department of Chemistry and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Lei Zhang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen 518000, China
| | - Chan Cheong Ming
- Department of Chemistry, Mechanical Engineering and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Jiachen Li
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Feifei Wang
- Department of Chemistry, Mechanical Engineering and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
- Material Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518048, China
- JC STEM Lab of Nanoscience and Nanomedicine, Department of Chemistry and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Mengdie Sun
- Material Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518048, China
| | - Yuan-Yao Li
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan
| | - Bing-Joe Hwang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hongjie Dai
- Department of Chemistry, Mechanical Engineering and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
- Material Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518048, China
- JC STEM Lab of Nanoscience and Nanomedicine, Department of Chemistry and School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Bernini F, Bertoni G, Mucci A, Marchetti A, Malferrari D, Gazzadi GC, Ricci M, Marras S, Proietti Zaccaria R, Rotunno E, Nicolini A, Yamini N, Cornia A, Borsari M, Paolella A. Water-Assisted Electrosynthesis of a Lithium-Aluminum Intermetallic from a Lithium Chloride-Ionic Liquid Melt. ACS ELECTROCHEMISTRY 2025; 1:599-606. [PMID: 40331009 PMCID: PMC12051454 DOI: 10.1021/acselectrochem.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 05/08/2025]
Abstract
Although water is considered detrimental for Li-ion battery technology, a 1% w/w amount of water in a melt of LiCl in ionic liquid 1-butyl-3-methylimidazolium chloride promotes the reduction of lithium into a LiAl intermetallic along with water oxidation to O2 gas. The electrodeposition of an intermetallic layer of several micrometers thickness is demonstrated by combining complementary techniques, such as galvanostatics, X-ray diffraction, electron energy-loss spectroscopy, mass spectrometry, and 1H nuclear magnetic resonance. The concentration of water in the ionic liquid is found to be a critical feature, as no Li is deposited when ionic liquid is dried. Our findings highlight an innovative and simple method to produce a LiAl intermetallic by using water and lithium chloride as chemical reagents.
Collapse
Affiliation(s)
- Fabrizio Bernini
- Dipartimento
di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Giovanni Bertoni
- CNR
− Istituto Nanoscienze, Via G. Campi 213/A, 41125 Modena, Italy
| | - Adele Mucci
- Dipartimento
di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Andrea Marchetti
- Dipartimento
di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Daniele Malferrari
- Dipartimento
di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | | | - Marco Ricci
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sergio Marras
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Enzo Rotunno
- CNR
− Istituto Nanoscienze, Via G. Campi 213/A, 41125 Modena, Italy
| | - Alessio Nicolini
- Dipartimento
di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Nassima Yamini
- Dipartimento
di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Andrea Cornia
- Dipartimento
di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Marco Borsari
- Dipartimento
di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Andrea Paolella
- Dipartimento
di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
5
|
Shi Y, Pikul JH. Achieving animal endurance in robots through advanced energy storage. Sci Robot 2025; 10:eadr6125. [PMID: 40305577 DOI: 10.1126/scirobotics.adr6125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Abstract
Bioinspired mobile robots move with comparable efficiency to their animal counterparts but lag by more than an order of magnitude in system-level energy density because of battery limitations. This Review quantifies this energy gap, evaluates hardware strengths and current battery weaknesses, and proposes benchmarking frameworks for future technologies. Using Spot as a case study, we identify the battery chemistries needed to match the energy storage in animals and propose technologies to unleash robotic endurance.
Collapse
Affiliation(s)
- Yichao Shi
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - James H Pikul
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Huang J, Xu L, Wang Y, Wu X, Zhang M, Zhang H, Tong X, Guo C, Han K, Li J, Meng J, Wang X. Ultrafast Rechargeable Aluminum-Chlorine Batteries Enabled by a Confined Chlorine Conversion Chemistry in Molten Salts. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1868. [PMID: 40333541 PMCID: PMC12028977 DOI: 10.3390/ma18081868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
Rechargeable metal chloride batteries, with their high discharge voltage and specific capacity, are promising for next-generation sustainable energy storage. However, sluggish solid-to-gas conversion kinetics between solid metal chlorides and gaseous Cl2 cause unsatisfactory rate capability and limited cycle life, hindering their further applications. Here we present a rechargeable aluminum-chlorine (Al-Cl2) battery that relies on a confined chlorine conversion chemistry in a molten salt electrolyte, exhibiting ultrahigh rate capability and excellent cycling stability. Both experimental analysis and theoretical calculations reveal a reversible solution-to-gas conversion reaction between AlCl4- and Cl2 in the cathode. The designed nitrogen-doped porous carbon cathode enhances Cl2 adsorption, thereby improving the cycling lifespan and coulombic efficiency of the battery. The resulting Al-Cl2 battery demonstrates a high discharge plateau of 1.95 V, remarkable rate capability without capacity decay at different rates from 5 to 50 A g-1, and good cycling stability with over 1200 cycles at a rate of 10 A g-1. Additionally, we implemented a carbon nanofiber membrane on the anode side to mitigate dendrite growth, which further extends the cycle life to 3000 cycles at an ultrahigh rate of 30 A g-1. This work provides a new perspective on the advancement of high-rate metal chloride batteries.
Collapse
Affiliation(s)
- Junling Huang
- Department of Physical Science & Technology, School of Physics and Mechanics, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
| | - Linhan Xu
- Institute of Materials Plainification, Liaoning Academy of Materials, Shenyang 110167, China
| | - Yu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
| | - Xiaolin Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
| | - Hao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
| | - Xin Tong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
| | - Changyuan Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
| | - Kang Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
| | - Jianwei Li
- Zhongyu Feima New Material Technology Innovation Center (Zhengzhou) Co., Ltd., Zhengzhou 450001, China;
| | - Jiashen Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
- Zhongyu Feima New Material Technology Innovation Center (Zhengzhou) Co., Ltd., Zhengzhou 450001, China;
| | - Xuanpeng Wang
- Department of Physical Science & Technology, School of Physics and Mechanics, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
- Zhongyu Feima New Material Technology Innovation Center (Zhengzhou) Co., Ltd., Zhengzhou 450001, China;
| |
Collapse
|
7
|
Li P, Ma C, Wang Y, Zhai S, Ma G, Kong D, Li Z. Co Single-Atom Catalysis for High-Efficiency LiCl/Cl 2 Conversion in Rechargeable Lithium-Chlorine Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418990. [PMID: 40033976 DOI: 10.1002/adma.202418990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Indexed: 03/05/2025]
Abstract
Lithium-chlorine (Li-Cl2) secondary batteries are emerging as promising candidates for high-energy-density power sources and an extensive operational temperature range. However, conventional electrode materials suffer from weak adsorption for chlorine gas (Cl2) and low conversion efficiency of lithium chloride (LiCl), leading to significant loss of chlorine-based active materials. This issue hampers the cyclability of Li-Cl2 batteries. In this work, it is demonstrated that synergistic Cl2 adsorption on the electrode surface and the energy barrier for LiCl reactions are crucial for enhancing Cl2/LiCl conversion efficiency. Consequently, a cobalt (Co) single-atom site catalyst with a Co-N4 coordination environment has been developed, which significantly diminishes the transformation barrier of solid LiCl particles into Cl2 and concurrently enhances the chemical adsorption of Cl2, facilitating uniform nucleation of LiCl. As a result, the Li-Cl2@Co-NC battery developed has achieved a 0.6 V reduction in polarization voltage under high current densities, effectively addressing the issue of low conversion efficiency between Cl2 and LiCl. At room temperature, the Li-Cl2@Co-NC battery achieves over 600 cycles at 1500 mA g-1; At -40 °C, it reaches 650 cycles at 500 mA g-1. The research overcomes the cycle stability barrier in high-current Li-Cl2 batteries and offers a strategy for batteries with a wide temperature range and long cycle life.
Collapse
Affiliation(s)
- Peicai Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Chenyu Ma
- College of New Energy, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yufeng Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Shibo Zhai
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Guanzhong Ma
- College of New Energy, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Debing Kong
- College of New Energy, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Zhongtao Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
8
|
Fei W, Sui Y, Wang Y, Sun K, Zhang X, Deng M, Tao C, Liu L, Wang R, Wu L. Regulating Na/Mn Antisite Defects and Reactivating Anomalous Jahn-Teller Behavior for Na 4Fe 1.5Mn 1.5(PO 4) 2(P 2O 7) Cathode Material with Superior Performance. ACS NANO 2025; 19:8303-8315. [PMID: 39968894 DOI: 10.1021/acsnano.4c18614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Na4Fe3-xMnx(PO4)2(P2O7) is considered a promising candidate for commercial-scale applications due to its significantly improved energy density compared to Na4Fe3(PO4)2(P2O7). However, challenges such as intractable impurities, voltage hysteresis/decay, and sluggish Na+ kinetics hinder their practical application. In this study, failure mechanisms of Na4Fe1.5Mn1.5(PO4)2(P2O7) are intensively investigated and demystified. It is found that the issues of this material are mainly caused by surface element segregation, Na/Mn antisite defects, and the closure of Na+ channels. To address these problems, a nonhomogeneous Mg doping engineering strategy is proposed, which effectively eliminates inert impurity phases, decreases the concentration of Na/Mn antisite defects, reactivates the anomalous Jahn-Teller behavior, and inhibits Mn dissolution. The synthesized ternary polyanionic cathode material, Na4Fe1.5Mn1.35Mg0.15(PO4)2(P2O7)@C-N, demonstrates significant improvements, featuring an average operating voltage of approximately 3.5 V, an energy density of 430 Wh kg-1 at 0.2C, and an ultralong cycle life (>12,000 cycles). This work highlights the nonhomogeneous Mg doping engineering strategy and provides a promising approach for developing cathode materials with high energy density for commercial-scale sodium-ion batteries.
Collapse
Affiliation(s)
- Wenbin Fei
- School of Iron and Steel, Soochow University, Suzhou 215000, P. R. China
| | - Yulei Sui
- School of Iron and Steel, Soochow University, Suzhou 215000, P. R. China
| | - Yian Wang
- School of Iron and Steel, Soochow University, Suzhou 215000, P. R. China
| | - Keyi Sun
- School of Iron and Steel, Soochow University, Suzhou 215000, P. R. China
| | - Xiaoping Zhang
- School of Iron and Steel, Soochow University, Suzhou 215000, P. R. China
| | - Mengting Deng
- School of Iron and Steel, Soochow University, Suzhou 215000, P. R. China
| | - Chengdong Tao
- School of Iron and Steel, Soochow University, Suzhou 215000, P. R. China
| | - Luzhi Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Renheng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ling Wu
- School of Iron and Steel, Soochow University, Suzhou 215000, P. R. China
| |
Collapse
|
9
|
Xu Q, Tang S, Li N, Wang Y, Zhao X, Zhang X, Geng S, Yuan B, Wang S, Ouyang Z, Liao M, Ma L, Shang M, Sun Y, Peng H, Sun H. Harnessing organic electrolyte for non-corrosive and wide-temperature Na-Cl 2 battery. Nat Commun 2025; 16:1946. [PMID: 39994293 PMCID: PMC11850892 DOI: 10.1038/s41467-025-57316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Rechargeable sodium-chlorine (Na-Cl2) batteries show great promise in grid energy storage applications due to their high electrochemical performance. However, the use of highly corrosive thionyl chloride (SOCl2)-based electrolytes has severely hindered their real-world applications. Here we show a non-corrosive ester (methyl dichloroacetate) as a promising alternative to SOCl2, which can form a non-corrosive electrolyte with aluminum chloride and sodium bis(fluorosulfonyl)imide for high-performance rechargeable Na-Cl2 batteries. The resultant battery shows a reversible capacity of up to 1200 mAh g-1 at a current density of 100 mA g-1 calculated based on the mass of carbon with a discharge voltage of ~2.5 V, a wide temperature range from -40 to 80 °C, and long-term cycling stability of 700 cycles at -40 °C, which outperforms conventional rechargeable Na-Cl2 batteries and state-of-the-art Na metal batteries. The electrochemical performance and safety have been further extended to fibre batteries, which realize wearable applications of rechargeable Na-Cl2 batteries. Based on donor number and charge transfer as two key descriptors, we further propose the design principle of organic electrolytes for rechargeable Na-Cl2 batteries, which can fully unlock the designability and sustainability of organic solvents towards practical Na-Cl2 batteries.
Collapse
Affiliation(s)
- Qiuchen Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Tang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Nachuan Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoju Zhao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Shitao Geng
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Yuan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofeng Ouyang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Liao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Institute of Fiber Materials and Devices, Fudan University, Shanghai, China
| | - Linlin Ma
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Shang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Institute of Fiber Materials and Devices, Fudan University, Shanghai, China
| | - Hao Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Liu Z, Ma Y, Ali Khan N, Jiang T, Zhu Z, Li K, Zhang K, Liu S, Xie Z, Yuan Y, Wang M, Zheng X, Sun J, Wang W, Meng Y, Xu Y, Chuai M, Yang J, Chen W. Rechargeable Lithium-Hydrogen Gas Batteries. Angew Chem Int Ed Engl 2025; 64:e202419663. [PMID: 39614687 DOI: 10.1002/anie.202419663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
The global clean energy transition and carbon neutrality call for developing high-performance batteries. Here we report a rechargeable lithium metal - catalytic hydrogen gas (Li-H) battery utilizing two of the lightest elements, Li and H. The Li-H battery operates through redox of H2/H+ on the cathode and Li/Li+ on the anode. The universal properties of the H2 cathode enable the battery to demonstrate attractive electrochemical performance, including high theoretical specific energy up to 2825 Wh kg-1, discharge voltage of 3 V, round-trip efficiency of 99.7 %, reversible areal capacity of 5-20 mAh cm-2, all-climate characteristics with a wide operational temperature range of -20-80 °C, and high utilization of active materials. A rechargeable anode-free Li-H battery is further constructed by plating Li metal from cost-effective lithium salts under a low catalyst loading of <0.1 mg cm-2. This work presents a route to design batteries based on catalytic hydrogen gas cathode for high-performance energy storage applications.
Collapse
Affiliation(s)
- Zaichun Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Yirui Ma
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Nawab Ali Khan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ke Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuan Yuan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinhua Zheng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jifei Sun
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiping Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Xu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mingyan Chuai
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jinlong Yang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Chen G, Liu X, Hou H, Gao X, Hu L, Dong S, Cui G. Regulating reversibility of Li-SOCl 2 batteries by elucidating intrinsic charging conversion strategy. Sci Bull (Beijing) 2025; 70:140-143. [PMID: 39490327 DOI: 10.1016/j.scib.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/21/2024] [Accepted: 09/29/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Guodong Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoqi Hou
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Gao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Hu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Shanmu Dong
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Li X, Liu T, Li P, Liang G, Huang Z, Chen Z, Chen A, Su Y, Yang L, Cao D, Zhi C. Aqueous Alkaline Zinc-Iodine Battery with Two-Electron Transfer. ACS NANO 2025; 19:2900-2908. [PMID: 39772478 DOI: 10.1021/acsnano.4c16550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
While many cathode materials have been developed for mild electrolyte-based Zn batteries, the lack of cathode materials hinders the progress of alkaline zinc batteries. Halide iodine, with its copious valence nature and redox possibilities, is considered a promising candidate. However, energetic alkaline iodine redox chemistry is impeded by an alkali-unadapted I2 element cathode and thermodynamically unstable reaction products. Here, we formulated and evaluated an aqueous alkaline Zn-iodine battery with a two-electron transfer employing an organic iodized salt cathode and a Cl--manipulated electrolyte. The single-step redox reaction of the I-/I+ couple resulted in a high discharge plateau of 1.68 V and a capacity of 385 mA h g-1. Our battery reached an energy density of 577 W h kg-1, superior to that of reported counterparts. Theoretical and experimental characterizations determined the redox chemistry between alkaline and iodine. We believe the developed iodine chemistry in alkaline environments can enrich cathode materials for alkaline batteries.
Collapse
Affiliation(s)
- Xinliang Li
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Tong Liu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong 999077, China
| | - Ze Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Ao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yuefeng Su
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Lijiang Yang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Duanyun Cao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong 999077, China
- Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
13
|
Zhao T, Yan Z, Liu T, Ding L, Fang Y. Tetraphenylethene-Containing Nanofilm via Interfacial Confinement Self-Assembly for Fluorescent Monitoring of SOCl 2 Leakage in a Li-SOCl 2 Battery Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62944-62951. [PMID: 39496140 DOI: 10.1021/acsami.4c12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Lithium thionyl chloride (Li-SOCl2) batteries are widely used due to their high energy density and long shelf life. However, the corrosive nature of SOCl2 poses a safety hazard, necessitating effective leak detection methods. We report an approach for real-time fluorescent detection of SOCl2 leakage in Li-SOCl2 batteries using a tetraphenylethene-based nanofilm. The nanofilms were prepared through the interfacial confined self-assembly method and exhibit excellent flexibility, homogeneity, tunable size and thickness, and adaptability to various substrates, enabling easy integration into sensor devices. They possess high photochemical stability and a photoluminescence quantum yield exceeding 25%, demonstrating their potential as high-performance fluorescent sensing material. The nanofilms also exhibit high sensitivity, good reproducibility, and selectivity toward SOCl2 detection. Upon exposure to SOCl2 vapor, the nanofilm shows a red-shifted and fluorescence quenching response, attributed to the protonation of the acylhydrazone bond in the nanofilm by the hydrolysis product of SOCl2, which disrupts the electronic structure of the nanofilm and leads to a decrease in the fluorescence intensity and a shift in the emission wavelength. A detection limit of ∼1.31 ppt and excellent repeatability over 300 cycles are demonstrated, highlighting their high sensitivity and reliability. This work paves the way for a highly sensitive and reliable leak detection system for Li-SOCl2 batteries, enhancing their safety and reliability in various applications.
Collapse
Affiliation(s)
- Tianyu Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Zhen Yan
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| |
Collapse
|
14
|
Sun Y, Shen N, Chen S, Wang P, Li M, Zhang C, Li J. Bifunctional Role of High-Entropy Selenides in Accelerating Redox Conversion and Modulating Lithium Plating towards Lithium-Sulfur Batteries. Chem Asian J 2024:e202400919. [PMID: 39146243 DOI: 10.1002/asia.202400919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Lithium-sulfur (Li-S) batteries, recognized as one of the most promising next-generation energy storage systems, are still limited by the "shuttle effect" of soluble polysulfides (LiPSs) on the cathode and the uncontrolled growth of lithium dendrites on the anode. These issues are critical obstacles to their practical application. Currently, many researchers have addressed these challenges from a unilateral perspective. Herein, we propose bifunctional hosts based on high-entropy selenides (HE-Se) to simultaneously tackle the persistent problems on both the positive and negative electrodes of Li-S batteries. On the one hand, HE-Se interacts with polysulfides to promote their conversion, effectively mitigating the shuttle effect. On the other hand, HE-Se provides multiple lithophilic sites during the initial nucleation of Li+, which reduces overpotential and exhibits excellent lithophilicity and cyclic stability. As a result, Li-S batteries incorporating the HE-Se hosts demonstrate outstanding performance in terms of rate capability and cycling stability. Additionally, the porous lithophilic HE-Se structure offers sufficient nucleation sites, inhibits the growth of dendritic lithium, and accommodates volume changes during charging and discharging cycles. This study highlights the potential of sulphophilic/lithophilic high-entropy materials in designing advanced Li-S batteries and encourages further exploration in this area.
Collapse
Affiliation(s)
- Yujie Sun
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China
| | - Nan Shen
- Jiangsu Key Laboratory of New Energy Devices & Interface Science, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Sixu Chen
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China
| | - Peicheng Wang
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China
| | - Min Li
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China
| | - Chunling Zhang
- Anhui Ruiyuan Energy Technologies Co., Ltd, Wuhu, Anhui, 241000, China
| | - Jingfa Li
- Jiangsu Key Laboratory of New Energy Devices & Interface Science, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
15
|
Feng W, Wei X, Yang J, Ma C, Sun Y, Han J, Kong D, Zhi L. Iodine-induced self-depassivation strategy to improve reversible kinetics in Na-Cl 2 battery. Nat Commun 2024; 15:6904. [PMID: 39134537 PMCID: PMC11319802 DOI: 10.1038/s41467-024-51033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
Rechargeable sodium-chlorine (Na-Cl2) batteries show high theoretical specific energy density and excellent adaptability for extreme environmental applications. However, the reported cycle life is mostly less than 500 cycles, and the understanding of battery failure mechanisms is quite limited. In this work, we demonstrate that the substantially increased voltage polarization plays a critical role in the battery failure. Typically, the passivation on the porous cathode caused by the deposition of insulated sodium chloride (NaCl) is a crucial factor, significantly influencing the three-phase chlorine (NaCl/Na+, Cl-/Cl2) conversion kinetics. Here, a self-depassivation strategy enabled by iodine anion (I-)-tuned NaCl deposition was implemented to enhance the chlorine reversibility. The nucleation and growth of NaCl crystals are well balanced through strong coordination of the NaI deposition-dissolution process, achieving depassivation on the cathode and improving the reoxidation efficiency of solid NaCl. Consequently, the resultant Na-Cl2 battery delivers a super-long cycle life up to 2000 cycles.
Collapse
Affiliation(s)
- Wenting Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, China
| | - Xinru Wei
- College of New Energy, China University of Petroleum (East China), Qingdao, China
| | - Jianhang Yang
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao, China
| | - Chenyu Ma
- College of New Energy, China University of Petroleum (East China), Qingdao, China
| | - Yiming Sun
- College of New Energy, China University of Petroleum (East China), Qingdao, China
| | - Junwei Han
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, China
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao, China
| | - Debin Kong
- College of New Energy, China University of Petroleum (East China), Qingdao, China.
| | - Linjie Zhi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, China.
- College of New Energy, China University of Petroleum (East China), Qingdao, China.
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao, China.
| |
Collapse
|
16
|
Xie Z, Sun L, Sajid M, Feng Y, Lv Z, Chen W. Rechargeable alkali metal-chlorine batteries: advances, challenges, and future perspectives. Chem Soc Rev 2024; 53:8424-8456. [PMID: 39007548 DOI: 10.1039/d4cs00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The emergence of Li-SOCl2 batteries in the 1970s as a high-energy-density battery system sparked considerable interest among researchers. However, limitations in the primary cell characteristics have restricted their potential for widespread adoption in today's sustainable society. Encouragingly, recent developments in alkali/alkaline-earth metal-Cl2 (AM-Cl2) batteries have shown impressive reversibility with high specific capacity and cycle performance, revitalizing the potential of SOCl2 batteries and becoming a promising technology surpassing current lithium-ion batteries. In this review, the emerging AM-Cl2 batteries are comprehensively summarized for the first time. The development history and advantages of Li-SOCl2 batteries are traced, followed by the critical working mechanisms for achieving high rechargeability. The design concepts of electrodes and electrolytes for AM-Cl2 batteries as well as key characterization techniques are also demonstrated. Furthermore, the current challenges and corresponding strategies, as well as future directions regarding the battery are systematically discussed. This review aims to deepen the understanding of the state-of-the-art AM-Cl2 battery technology and accelerate the development of practical AM-Cl2 batteries for next-generation high-energy storage systems.
Collapse
Affiliation(s)
- Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Lidong Sun
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Muhammad Sajid
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yuancheng Feng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhenshan Lv
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
17
|
Yang J, Zhu C, Wang D. A Simple Organo-Electrocatalysis System for the Chlor-Related Industry. Angew Chem Int Ed Engl 2024; 63:e202406883. [PMID: 38783773 DOI: 10.1002/anie.202406883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Consuming a substantial quantum of energy (~165 TW h), the chlor-alkali industry garners considerable scholarly and industrial interest, with the anode reaction involving the oxidation of chloride ions being a paramount determinant of reaction rates. While the dimensionally stable anode (DSA) displays commendable catalytic activity and longevity, they rely on precious metals and exhibit a non-negligible side reaction in sodium hypochlorite (NaClO) production, underscoring the appeal of metal-free alternatives. However, the molecules and systems currently available are characterized by intricate complexity and are not amenable to large-scale production. Herein, we have successfully developed an economical and highly efficient molecular catalyst, demonstrating superior performance compared with the former organic molecules in the chloride ion oxidation process (COP) for the production of both chlorine gas (Cl2) and NaClO. The molecule of 2N only needs 92 mV to reach a current density of 1000 mA cm-2, with a small cost of only 0.002 $ g-1. Furthermore, we propose a novel mechanism underpinned by non-covalent interactions, serving as the foundation for an innovative approach to the design of efficient anodes for the COP.
Collapse
Affiliation(s)
- Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chenxi Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Ma C, Feng W, Kong D, Wei X, Gong X, Yang J, Han J, Zhi L. Vertical-Channel Cathode Host Enables Rapid Deposition Kinetics toward High-Areal-Capacity Sodium-Chlorine Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310978. [PMID: 38513253 DOI: 10.1002/smll.202310978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/06/2024] [Indexed: 03/23/2024]
Abstract
Rechargeable sodium chloride (Na-Cl2) batteries have emerged as promising alternatives for next-generation energy storage due to their superior energy density and sodium abundance. However, their practical applications are hindered by the sluggish chlorine cathode kinetics related to the aggregation of NaCl and its difficult transformation into Cl2. Herein, the study, for the first time from the perspective of electrode level in Na-Cl2 batteries, proposes a free-standing carbon cathode host with customized vertical channels to facilitate the SOCl2 transport and regulate the NaCl deposition. Accordingly, electrode kinetics are significantly enhanced, and the deposited NaCl is distributed evenly across the whole electrode, avoiding the blockage of pores in the carbon host, and facilitating its oxidation to Cl2. With this low-polarization cathode, the Na-Cl2 batteries can deliver a practically high areal capacity approaching 4 mAh cm-2 and a long cycle life of over 170 cycles. This work demonstrates the significance of pore engineering in electrodes for mediating chlorine conversion kinetics in rechargeable alkali-metal-Cl2 batteries.
Collapse
Affiliation(s)
- Chenyu Ma
- College of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| | - Wenting Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Debin Kong
- College of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xinru Wei
- College of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xuelei Gong
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jianhang Yang
- College of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junwei Han
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao, 266580, China
| | - Linjie Zhi
- College of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
19
|
Li X, Wang Y, Lu J, Li P, Huang Z, Liang G, He H, Zhi C. Constructing static two-electron lithium-bromide battery. SCIENCE ADVANCES 2024; 10:eadl0587. [PMID: 38875345 PMCID: PMC11177945 DOI: 10.1126/sciadv.adl0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
Despite their potential as conversion-type energy storage technologies, the performance of static lithium-bromide (SLB) batteries has remained stagnant for decades. Progress has been hindered by the intrinsic liquid-liquid redox mode and single-electron transfer of these batteries. Here, we developed a high-performance SLB battery based on the active bromine salt cathode and the two-electron transfer chemistry with a Br-/Br+ redox couple by electrolyte tailoring. The introduction of NO3- improved the reversible single-electron transition of Br-, and more impressively, the coordinated Cl- anions activated the Br+ conversion to provide an additional electron transfer. A voltage plateau was observed at 3.8 V, and the discharge capacity and energy density were increased by 142 and 159% compared to the one-electron reaction benchmark. This two-step conversion mechanism exhibited excellent stability, with the battery functioning for 1000 cycles. These performances already approach the state of the art of currently established Li-halogen batteries. We consider the established two-electron redox mechanism highly exemplary for diversified halogen batteries.
Collapse
Affiliation(s)
- Xinliang Li
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yanlei Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Junfeng Lu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong SAR, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Hongyan He
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong SAR, China
| |
Collapse
|
20
|
Cui M, Zhu Y, Lei H, Liu A, Mo F, Ouyang K, Chen S, Lin X, Chen Z, Li K, Jiao Y, Zhi C, Huang Y. Anion-Cation Competition Chemistry for Comprehensive High-Performance Prussian Blue Analogs Cathodes. Angew Chem Int Ed Engl 2024; 63:e202405428. [PMID: 38563631 DOI: 10.1002/anie.202405428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024]
Abstract
The extensively studied Prussian blue analogs (PBAs) in various batteries are limited by their low discharge capacity, or subpar rate etc., which are solely reliant on the cation (de)intercalation mechanism. In contrast to the currently predominant focus on cations, we report the overlooked anion-cation competition chemistry (Cl-, K+, Zn2+) stimulated by high-voltage scanning. With our designed anion-cation combinations, the KFeMnHCF cathode battery delivers comprehensively superior discharge performance, including voltage plateau >2.0 V (vs. Zn/Zn2+), capacity >150 mAh g-1, rate capability with capacity maintenance above 96 % from 0.6 to 5 A g-1, and cyclic stability exceeding 3000 cycles. We further verify that such comprehensive improvement of electrochemical performance utilizing anion-cation competition chemistry is universal for different types of PBAs. Our work would pave a new and efficient road towards the next-generation high-performance PBAs cathode batteries.
Collapse
Affiliation(s)
- Mangwei Cui
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Yilong Zhu
- School of Chemical Engineering, The University of Adelaide, 5005, Adelaide, Australia
| | - Hao Lei
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Ao Liu
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Funian Mo
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Kefeng Ouyang
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Sheng Chen
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, 610064, Chengdu, China
| | - Xi Lin
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Zuhuang Chen
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Kaikai Li
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Yan Jiao
- School of Chemical Engineering, The University of Adelaide, 5005, Adelaide, Australia
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 999077, Hong Kong, China
| | - Yan Huang
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| |
Collapse
|
21
|
Chen N, Wang W, Ma Y, Chuai M, Zheng X, Wang M, Xu Y, Yuan Y, Sun J, Li K, Meng Y, Shen C, Chen W. Aqueous Zinc-Chlorine Battery Modulated by a MnO 2 Redox Adsorbent. SMALL METHODS 2024; 8:e2201553. [PMID: 37086122 DOI: 10.1002/smtd.202201553] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Aqueous zinc-chlorine battery with high discharge voltage and attractive theoretical energy density is expected to become an important technology for large-scale energy storage. However, the practical application of Zn-Cl2 batteries has been restricted due to the Cl2 cathode with sluggish kinetics and low Coulombic efficiency (CE). Here, an aqueous Zn-Cl2 battery using an inexpensive and effective MnO2 redox adsorbent (referred to Zn-Cl2@MnO2 battery) to modulate the electrochemical performance of the Cl2 cathode is developed. Density functional theory calculations reveal that the existence of the intermediate state Clads free radical catalyzed by MnO2 on the Cl2 cathode contributes to the charge storage capacity, which is the key to modulate the electrode and improve the electrochemical performance. Further analysis of the Cl2 cathode kinetics discloses the adsorption and catalytic roles of the MnO2 redox adsorbent. The Zn-Cl2@MnO2 battery displays an enhanced discharge voltage of 2.0 V at a current density of 2.5 mA cm-2, and stable 1000 cycles with an average CE of 91.6%, much superior to the conventional Zn-Cl2 battery with an average CE of only 66.8%. The regulation strategy to the Cl2 cathode provides opportunities for the future development of aqueous Zn-Cl2 batteries.
Collapse
Affiliation(s)
- Na Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Weiping Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yirui Ma
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mingyan Chuai
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xinhua Zheng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yan Xu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuan Yuan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jifei Sun
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ke Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chunyue Shen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
22
|
Hao J, Zhang S, Wu H, Yuan L, Davey K, Qiao SZ. Advanced cathodes for aqueous Zn batteries beyond Zn 2+ intercalation. Chem Soc Rev 2024; 53:4312-4332. [PMID: 38596903 DOI: 10.1039/d3cs00771e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Aqueous zinc (Zn) batteries have attracted global attention for energy storage. Despite significant progress in advancing Zn anode materials, there has been little progress in cathodes. The predominant cathodes working with Zn2+/H+ intercalation, however, exhibit drawbacks, including a high Zn2+ diffusion energy barrier, pH fluctuation(s) and limited reproducibility. Beyond Zn2+ intercalation, alternative working principles have been reported that broaden cathode options, including conversion, hybrid, anion insertion and deposition/dissolution. In this review, we report a critical assessment of non-intercalation-type cathode materials in aqueous Zn batteries, and identify strengths and weaknesses of these cathodes in small-scale batteries, together with current strategies to boost material performance. We assess the technical gap(s) in transitioning these cathodes from laboratory-scale research to industrial-scale battery applications. We conclude that S, I2 and Br2 electrodes exhibit practically promising commercial prospects, and future research is directed to optimizing cathodes. Findings will be useful for researchers and manufacturers in advancing cathodes for aqueous Zn batteries beyond Zn2+ intercalation.
Collapse
Affiliation(s)
- Junnan Hao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaojian Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Han Wu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Libei Yuan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, NSW 2522, Australia
| | - Kenneth Davey
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
23
|
Li X, Xu W, Zhi C. Halogen-powered static conversion chemistry. Nat Rev Chem 2024; 8:359-375. [PMID: 38671189 DOI: 10.1038/s41570-024-00597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
Halogen-powered static conversion batteries (HSCBs) thrive in energy storage applications. They fall into the category of secondary non-flow batteries and operate by reversibly changing the chemical valence of halogens in the electrodes or/and electrolytes to transfer electrons, distinguishing them from the classic rocking-chair batteries. The active halide chemicals developed for these purposes include organic halides, halide salts, halogenated inorganics, organic-inorganic halides and the most widely studied elemental halogens. Aside from this, various redox mechanisms have been discovered based on multi-electron transfer and effective reaction pathways, contributing to improved electrochemical performances and stabilities of HSCBs. In this Review, we discuss the status of HSCBs and their electrochemical mechanism-performance correlations. We first provide a detailed exposition of the fundamental redox mechanisms, thermodynamics, conversion and catalysis chemistry, and mass or electron transfer modes involved in HSCBs. We conclude with a perspective on the challenges faced by the community and opportunities towards practical applications of high-energy halogen cathodes in energy-storage devices.
Collapse
Affiliation(s)
- Xinliang Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, China.
| | - Wenyu Xu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
24
|
Dai Y, Zhang S, Wen J, Song Z, Wang T, Zhang R, Fan X, Luo W. Metal chloride cathodes for next-generation rechargeable lithium batteries. iScience 2024; 27:109557. [PMID: 38623342 PMCID: PMC11016933 DOI: 10.1016/j.isci.2024.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Rechargeable lithium-ion batteries (LIBs) have prospered a rechargeable world, predominantly relying on various metal oxide cathode materials for their abilities to reversibly de-/intercalate lithium-ion, while also serving as lithium sources for batteries. Despite the success of metal oxide, issues including low energy density have raised doubts about their suitability for next-generation lithium batteries. This has sparked interest in metal chlorides, a neglected cathode material family. Metal chlorides show promise with factors like energy density, diffusion coefficient, and compressibility. Unfortunately, challenges like high solubility hamper their utilization. In this review, we highlight the opportunities for metal chlorides in the post-lithium-ion era. Subsequently, we summarize their dissolution challenges. Furthermore, we discuss recent advancements, encompassing liquid-state electrolyte engineering, solid-state electrolytes (SSEs) cooperation, and LiCl-based cathodes. Finally, we provide an outlook on future research directions of metal chlorides, emphasizing electrode fabrication, electrolyte design, the application of SSEs, and the exploration of conversion reactions.
Collapse
Affiliation(s)
- Yiming Dai
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Shuoqing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiayun Wen
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zhenyou Song
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Tengrui Wang
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Renyuan Zhang
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Xiulin Fan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Luo
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
25
|
Yang J, Zhu C, Li WH, Zheng X, Wang D. Organocatalyst Supported by a Single-Atom Support Accelerates both Electrodes used in the Chlor-Alkali Industry via Modification of Non-Covalent Interactions. Angew Chem Int Ed Engl 2024; 63:e202314382. [PMID: 38182547 DOI: 10.1002/anie.202314382] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Consuming one of the largest amount of electricity, the chlor-alkali industry supplies basic chemicals for society, which mainly consists of two reactions, hydrogen evolution (HER) and chlorine evolution reaction (CER). Till now, the state-of-the-art catalyst applied in this field is still the dimensional stable anode (DSA), which consumes a large amount of noble metal of Ru and Ir. It is thus necessary to develop new types of catalysts. In this study, an organocatalyst anchored on the single-atom support (SAS) is put forward. It exhibits high catalytic efficiency towards both HER and CER with an overpotential of 21 mV and 20 mV at 10 mA cm-2 . With this catalyst on both electrodes, the energy consumption is cut down by 1.2 % compared with the commercial system under industrial conditions. Based on this novel catalyst and the high activity, the mechanism of modifying non-covalent interaction is demonstrated to be reliable for the catalyst's design. This work not only provides efficient catalysts for the chlor-alkali industry but also points out that the SACs can also act as support, providing new twists for the development of SACs and organic molecules in the next step.
Collapse
Affiliation(s)
- Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chenxi Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
26
|
Xu Y, Wang M, Sajid M, Meng Y, Xie Z, Sun L, Jin J, Chen W, Zhang S. Organocatalytic Lithium Chloride Oxidation by Covalent Organic Frameworks for Rechargeable Lithium-Chlorine Batteries. Angew Chem Int Ed Engl 2024; 63:e202315931. [PMID: 38050465 DOI: 10.1002/anie.202315931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Rechargeable Li-Cl2 battery is a promising high energy density battery system. However, reasonable cycle life could only be achieved under low specific capacities due to the sluggish oxidation of LiCl to Cl2 . Herein, we propose an amine-functionalized covalent organic framework (COF) with catalytic activity, namely COF-NH2 , that significantly decreases the oxidation barrier of LiCl and accelerates the oxidation kinetics of LiCl in Li-Cl2 cell. The resulting Li-Cl2 cell using COF-NH2 (Li-Cl2 @COF-NH2 ) simultaneously exhibits low overpotential, ultrahigh discharge capacity up to 3500 mAh/g and a promoted utilization ratio of deposited LiCl at the first cycle (UR-LiCl) of 81.4 %, which is one of the highest reported values to date. Furthermore, the Li-Cl2 @COF-NH2 cell could be stably cycled for over 200 cycles when operating at a capacity of 2000 mAh/g at -20 °C with a Coulombic efficiency (CE) of ≈100 % and a discharge plateau of 3.5 V. Our superior Li-Cl2 batteries enabled by organocatalyst enlighten an arena towards high-energy storage applications.
Collapse
Affiliation(s)
- Yan Xu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Muhammad Sajid
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lidong Sun
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
27
|
Luo Z, Luo S, Yang M, Mao W, Dai C, Pan Y, Wu D, Pan J, Ouyang X. Revealing the Mechano-Electrochemical Coupling Behavior and Discharge Mechanism of Fluorinated Carbon Cathodes toward High-Power Lithium Primary Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305980. [PMID: 37800615 DOI: 10.1002/smll.202305980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Unclear reaction mechanisms and unsatisfactory power performance hinder the further development of advanced lithium/fluorinated carbon (Li/CFx ) batteries. Herein, the mechano-electrochemical coupling behavior of a CFx cathode is investigated by in situ monitoring strain/stress using digital image correlation (DIC) techniques, electrochemical methods, and theoretical equations. The DIC monitoring results present the distribution and dynamic evolution of the plane strain and indicate strong dependence toward the material structure and discharge rate. The average plane principal strain of fully discharged 2D fluorinated graphene nanosheets (FGNSs) at 0.5 C is 0.50%, which is only 38.5% that of conventional bulk-structure CFx . Furthermore, the superior structural stability of the FGNSs is demonstrated by the microstructure and component characterization before and after discharge. The plane stress evolution is calculated based on theoretical equations, and the contributions of electrochemical and mechanical factors are examined and discussed. Subsequently, a structure-dependent three-region discharge mechanism for CFx electrodes is proposed from a mechanical perspective. Additionally, the surface deformation of Li/FGNSs pouch cells formed during the discharge process is monitored using in situ DIC. This study reveals the discharge mechanism of Li/CFx batteries and facilitates the design of advanced CFx materials.
Collapse
Affiliation(s)
- Zhenya Luo
- College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Shun Luo
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Mei Yang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Weiguo Mao
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, Hunan, 410076, China
| | - Cuiying Dai
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, Hunan, 410076, China
| | - Yong Pan
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Dazhuan Wu
- College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Junan Pan
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Xiaoping Ouyang
- College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| |
Collapse
|
28
|
Chen Z, Hou Y, Wang Y, Wei Z, Chen A, Li P, Huang Z, Li N, Zhi C. Selenium-Anchored Chlorine Redox Chemistry in Aqueous Zinc Dual-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309330. [PMID: 38009647 DOI: 10.1002/adma.202309330] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Chlorine-based batteries with Cl0 to Cl- redox reaction (ClRR) are promising for high-performance energystorage due to their high redox potential and large theoretical capacity. However, the inherent gas-liquid conversion feature of ClRR together with poor Cl fixation can cause Cl2 leakage, reducing battery reversibility. Herein, we utilize a Se-based organic molecule, diphenyl diselenide (di-Ph-Se), as the Cl anchoring agent and realize an atomic level-Cl fixation through chalcogen-halogencoordinating chemistry. The promoted Cl fixation, with two oxidized Cl0 anchoring on a single Ph-Se, and the multivalence conversion of Se contributeto a six-electron conversion process with up to 507 mAh g-1 and an average voltage of 1.51 V, as well as a high energy density of 665 Wh Kg-1 . Based on the superior reversibility of thedeveloped di-Ph-Se electrode with ClRR, a remarkable rate performance (205 mAh g-1 at 5 A g-1 ) and cycling performance (capacity retention of 77.3 % after 500cycles) are achieved. Significantly, the pouch cell delivers a record arealcapacity of up to 6.87 mAh cm-2 and extraordinary self-discharge performance. This chalcogen-halogen coordination chemistry between the Se electrode and Cl provides a new insight for developing reversible and efficientbatteries with halogen redox reactions.
Collapse
Affiliation(s)
- Ze Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhaodong Huang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), NT, HKSAR, Shatin, 999077, China
| | - Nan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), NT, HKSAR, Shatin, 999077, China
- CityU-Matter Science Research Institute, Shenzhen, 518000, China
| |
Collapse
|
29
|
Liang P, Zhu G, Huang CL, Li YY, Sun H, Yuan B, Wu SC, Li J, Wang F, Hwang BJ, Dai H. Rechargeable Li/Cl 2 Battery Down to -80 °C. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307192. [PMID: 37804146 DOI: 10.1002/adma.202307192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Indexed: 10/09/2023]
Abstract
Low temperature rechargeable batteries are important to life in cold climates, polar/deep-sea expeditions, and space explorations. Here, this work reports 3.5-4 V rechargeable lithium/chlorine (Li/Cl2 ) batteries operating down to -80 °C, employing Li metal negative electrode, a novel carbon dioxide (CO2 ) activated porous carbon (KJCO2 ) as the positive electrode, and a high ionic conductivity (≈5-20 mS cm-1 from -80 °C to room-temperature) electrolyte comprised of aluminum chloride (AlCl3 ), lithium chloride (LiCl), and lithium bis(fluorosulfonyl)imide (LiFSI) in low-melting-point (-104.5 °C) thionyl chloride (SOCl2 ). Between room-temperature and -80 °C, the Li/Cl2 battery delivers up to ≈29 100-4500 mAh g-1 first discharge capacity (based on carbon mass) and a 1200-5000 mAh g-1 reversible capacity over up to 130 charge-discharge cycles. Mass spectrometry and X-ray photoelectron spectroscopy probe Cl2 trapped in the porous carbon upon LiCl electro-oxidation during charging. At -80 °C, Cl2 /SCl2 /S2 Cl2 generated by electro-oxidation in the charging step are trapped in porous KJCO2 carbon, allowing for reversible reduction to afford a high discharge voltage plateau near ≈4 V with up to ≈1000 mAh g-1 capacity for SCl2 /S2 Cl2 reduction and up to ≈4000 mAh g-1 capacity at ≈3.1 V plateau for Cl2 reduction.
Collapse
Affiliation(s)
- Peng Liang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, 94305, USA
| | - Guanzhou Zhu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, 94305, USA
| | - Cheng-Liang Huang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan
| | - Yuan-Yao Li
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan
| | - Hao Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Yuan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shu-Chi Wu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, 94305, USA
| | - Jiachen Li
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, 94305, USA
| | - Feifei Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Bing-Joe Hwang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
30
|
Geng S, Zhao X, Xu Q, Yuan B, Wang Y, Liao M, Ye L, Wang S, Ouyang Z, Wu L, Wang Y, Ma C, Zhao X, Sun H. A rechargeable Ca/Cl 2 battery. Nat Commun 2024; 15:944. [PMID: 38296971 PMCID: PMC10831116 DOI: 10.1038/s41467-024-45347-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Abstract
Rechargeable calcium (Ca) metal batteries are promising candidates for sustainable energy storage due to the abundance of Ca in Earth's crust and the advantageous theoretical capacity and voltage of these batteries. However, the development of practical Ca metal batteries has been severely hampered by the current cathode chemistries, which limit the available energy and power densities, as well as their insufficient capacity retention and low-temperature capability. Here, we describe the rechargeable Ca/Cl2 battery based on a reversible cathode redox reaction between CaCl2 and Cl2, which is enabled by the use of lithium difluoro(oxalate)borate as a key electrolyte mediator to facilitate the dissociation and distribution of Cl-based species and Ca2+. Our rechargeable Ca/Cl2 battery can deliver discharge voltages of 3 V and exhibits remarkable specific capacity (1000 mAh g-1) and rate capability (500 mA g-1). In addition, the excellent capacity retention (96.5% after 30 days) and low-temperature capability (down to 0 °C) allow us to overcome the long-standing bottleneck of rechargeable Ca metal batteries.
Collapse
Affiliation(s)
- Shitao Geng
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaoju Zhao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Qiuchen Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bin Yuan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yan Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Meng Liao
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Lei Ye
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Shuo Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhaofeng Ouyang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Liang Wu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yongyang Wang
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Chenyan Ma
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaojuan Zhao
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Hao Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
31
|
Xu Y, Zhang S, Wang M, Meng Y, Xie Z, Sun L, Huang C, Chen W. Enrichment of Chlorine in Porous Organic Nanocages for High-Performance Rechargeable Lithium-Chlorine Batteries. J Am Chem Soc 2023; 145:27877-27885. [PMID: 38053318 DOI: 10.1021/jacs.3c11726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Rechargeable Li-Cl2 batteries are recognized as promising candidates for energy storage due to their ultrahigh energy densities and superior safety features. However, Li-Cl2 batteries suffer from a short cycle life and low Coulombic efficiency (CE) at a high specific cycling capacity due to a sluggish and insufficient Cl2 supply during the redox reaction. To achieve Li-Cl2 batteries with high discharge capacity and CE, herein, we propose and design an imine-functionalized porous organic nanocage (POC) to enrich Cl2 molecules. Based on density functional theory (DFT) calculations, the imine group sites in host cages strongly interact with Cl2 molecules, facilitating the rapid capture of Cl2. As a result, the output capacity of the Li-Cl2 battery using POC (Li-Cl2@POC) is significantly boosted, achieving an ultrahigh discharge capacity of 4000 mAh/g at ∼100% CE. Benefiting from the designed POC, the highest utilization ratio of deposited LiCl at the first cycle in the Li-Cl2@POC battery reaches as high as 85%, superior to all reported values. The Li-Cl2@POC battery exhibits excellent electrochemical performance even at low temperatures, delivering stable cycling over 200 cycles under a capacity of 2000 mAh/g at -20 °C with a voltage plateau of 3.5 V and an average CE of 99.7%. We also demonstrate that the Li-Cl2@POC cells can be assembled and well-operated in a dry room, showing advantages for mass production. Our designed POC promotes the practical deployment of rechargeable Li-Cl2 batteries.
Collapse
Affiliation(s)
- Yan Xu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, Jiangsu, China
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, Jiangsu, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Mingming Wang
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yahan Meng
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zehui Xie
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Lidong Sun
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Cheng Huang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, Jiangsu, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wei Chen
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
32
|
Du H, Song K, Yang M, Huang P, Chen W. Interface Regulation via Electric Double Layer for Rechargeable Batteries. CHEMSUSCHEM 2023; 16:e202300708. [PMID: 37624682 DOI: 10.1002/cssc.202300708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 08/27/2023]
Abstract
Interphases, especially the electrochemically formed solid electrolyte interphase (SEI), are significantly important for cycling stability, reaction kinetics and safety of rechargeable batteries. The structure and composition of the electric double layer (EDL) greatly affect the formation of the SEI and the performance of electrodes. However, as far as we know, there is no review discussing the theme specifically. Herein, the recent substantial progress for EDL and its impact on the formation of SEI in rechargeable batteries are reviewed and discussed. Firstly, the specific adsorption of electrolyte components on electrodes' surface and the ionic solvation structure are introduced. Furthermore, various methods for controlling EDL in different electrode systems are described. Finally, the potential future advancements of the SEI through the manipulation of EDL are discussed, aiming to enhance the electrochemical performance of rechargeable batteries.
Collapse
Affiliation(s)
- Haiying Du
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Keming Song
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Mingrui Yang
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Peng Huang
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Weihua Chen
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| |
Collapse
|
33
|
Xie Z, Zhu Z, Liu Z, Sajid M, Chen N, Wang M, Meng Y, Peng Q, Liu S, Wang W, Jiang T, Zhang K, Chen W. Rechargeable Hydrogen-Chlorine Battery Operates in a Wide Temperature Range. J Am Chem Soc 2023; 145:25422-25430. [PMID: 37877747 DOI: 10.1021/jacs.3c09819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Hydrogen-chlorine (H2-Cl2) fuel cells have distinct merits due to fast electrochemical kinetics but are afflicted by high cost, low efficiency, and poor reversibility. The development of a rechargeable H2-Cl2 battery is highly desirable yet challenging. Here, we report a rechargeable H2-Cl2 battery operating statically in a wide temperature ranging from -70 to 40 °C, which is enabled by a reversible Cl2/Cl- redox cathode and an electrocatalytic H2 anode. A hierarchically porous carbon cathode is designed to achieve effective Cl2 gas confinement and activate the discharge plateau of Cl2/Cl- redox at room temperature, with a discharge plateau at ∼1.15 V and steady cycling for over 500 cycles without capacity decay. Furthermore, the battery operation at an ultralow temperature is successfully achieved in a phosphoric acid-based antifreezing electrolyte, with a reversible discharge capacity of 282 mAh g-1 provided by the highly porous carbon at -70 °C and an average Coulombic efficiency of 91% for more than 300 cycles at -40 °C. This work offers a new strategy to enhance the reversibility of aqueous chlorine batteries for energy storage applications in a wide temperature range.
Collapse
Affiliation(s)
- Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zaichun Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Muhammad Sajid
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Na Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qia Peng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiping Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
34
|
Xiang L, Xu Q, Zhang H, Geng S, Cui R, Xiao T, Chen P, Wu L, Yu W, Peng H, Mai Y, Sun H. Ultrahigh-Rate Na/Cl 2 Batteries Through Improved Electron and Ion Transport by Heteroatom-Doped Bicontinuous-Structured Carbon. Angew Chem Int Ed Engl 2023; 62:e202312001. [PMID: 37806963 DOI: 10.1002/anie.202312001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/10/2023]
Abstract
Rechargeable sodium/chlorine (Na/Cl2 ) batteries are emerging candidates for sustainable energy storage owing to their superior energy densities and the high abundance of Na and Cl elements. However, their practical applications have been plagued by the poor rate performance (e.g., a maximum discharge current density of 150 mA g-1 ), as the widely used carbon nanosphere cathodes show both sluggish electron-ion transport and reaction kinetics. Here, by mimicking the sufficient mass and energy transport in a sponge, we report a bicontinuous-structured carbon cubosome with heteroatomic doping, which allows efficient Na+ and electron transport and promotes Cl2 adsorption and conversion, thus unlocking ultrahigh-rate Na/Cl2 batteries, e.g., a maximum discharge current density of 16,000 mA g-1 that is more than two orders of magnitude higher than previous reports. The optimized solid-liquid-gas (carbon-electrolyte-Cl2 ) triple interfaces further contribute to a maximum reversible capacity and cycle life of 2,000 mAh g-1 and 250 cycles, respectively. This study establishes a universal approach for improving the sluggish kinetics of conversion-type battery reactions, and provides a new paradigm to resolve the long-standing dilemma between high energy and power densities in energy storage devices.
Collapse
Affiliation(s)
- Luoxing Xiang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiuchen Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shitao Geng
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Cui
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianyu Xiao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Liang Wu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Yu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yiyong Mai
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
35
|
Sandstrom SK, Li Q, Sui Y, Lyons M, Chang CW, Zhang R, Jiang H, Yu M, Hoang D, Stickle WF, Xin HL, Feng Z, Jiang DE, Ji X. Reversible Cl/Cl - redox in a spinel Mn 3O 4 electrode. Chem Sci 2023; 14:12645-12652. [PMID: 38020363 PMCID: PMC10646864 DOI: 10.1039/d3sc04545e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
A unique prospect of using halides as charge carriers is the possibility of the halides undergoing anodic redox behaviors when serving as charge carriers for the charge-neutrality compensation of electrodes. However, the anodic conversion of halides to neutral halogen species has often been irreversible at room temperature due to the emergence of diatomic halogen gaseous products. Here, we report that chloride ions can be reversibly converted to near-neutral atomic chlorine species in the Mn3O4 electrode at room temperature in a highly concentrated chloride-based aqueous electrolyte. Notably, the Zn2+ cations inserted in the first discharge and trapped in the Mn3O4 structure create an environment to stabilize the converted chlorine atoms within the structure. Characterization results suggest that the Cl/Cl- redox is responsible for the observed large capacity, as the oxidation state of Mn barely changes upon charging. Computation results corroborate that the converted chlorine species exist as polychloride monoanions, e.g., [Cl3]- and [Cl5]-, inside the Zn2+-trapped Mn3O4, and the presence of polychloride species is confirmed experimentally. Our results point to the halogen plating inside electrode lattices as a new charge-storage mechanism.
Collapse
Affiliation(s)
- Sean K Sandstrom
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Qiuyao Li
- Interdisciplinary Materials Science Program, Vanderbilt University Nashville TN 37235 USA
| | - Yiming Sui
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Mason Lyons
- School of Chemical, Biological, and Environmental Engineering Corvallis OR 97331 USA
| | - Chun-Wai Chang
- School of Chemical, Biological, and Environmental Engineering Corvallis OR 97331 USA
| | - Rui Zhang
- Department of Physics and Astronomy, University of California Irvine CA 92697 USA
| | - Heng Jiang
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Mingliang Yu
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - David Hoang
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | | | - Huolin L Xin
- Department of Physics and Astronomy, University of California Irvine CA 92697 USA
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering Corvallis OR 97331 USA
| | - De-En Jiang
- Interdisciplinary Materials Science Program, Vanderbilt University Nashville TN 37235 USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235 USA
| | - Xiulei Ji
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
36
|
Li X, Wang Y, Lu J, Li S, Li P, Huang Z, Liang G, He H, Zhi C. Three-Electron Transfer-Based High-Capacity Organic Lithium-Iodine (Chlorine) Batteries. Angew Chem Int Ed Engl 2023; 62:e202310168. [PMID: 37656770 DOI: 10.1002/anie.202310168] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
Conversion-type batteries apply the principle that more charge transfer is preferable. The underutilized electron transfer mode within two undermines the electrochemical performance of halogen batteries. Here, we realised a three-electron transfer lithium-halogen battery based on I- /I+ and Cl- /Cl0 couples by using a common commercial electrolyte saturated with Cl- anions. The resulting Li||tetrabutylammonium triiodide (TBAI3 ) cell exhibits three distinct discharging plateaus at 2.97, 3.40, and 3.85 V. Moreover, it has a high capacity of 631 mAh g-1 I (265 mAh g-1 electrode , based on entire mass loading) and record-high energy density of up to 2013 Wh kg-1 I (845 Wh kg-1 electrode ). To support these findings, experimental characterisations and density functional theory calculations were conducted to elucidate the redox chemistry involved in this novel interhalogen strategy. We believe our paradigm presented here has a foreseeable inspiring effect on other halogen batteries for high-energy-density pursuit.
Collapse
Affiliation(s)
- Xinliang Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yanlei Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junfeng Lu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shimei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), 999077, Shatin, NT, HKSAR, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), 999077, Shatin, NT, HKSAR, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hongyan He
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), 999077, Shatin, NT, HKSAR, China
| |
Collapse
|
37
|
Chen G, Li W, Du X, Wang C, Qu X, Gao X, Dong S, Cui G, Chen L. Transforming a Primary Li-SOCl 2 Battery into a High-Power Rechargeable System via Molecular Catalysis. J Am Chem Soc 2023; 145:22158-22167. [PMID: 37779473 DOI: 10.1021/jacs.3c07927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Li-SOCl2 batteries possess ultrahigh energy densities and superior safety features at a wide range of operating temperatures. However, the Li-SOCl2 battery system suffers from poor reversibility due to the sluggish kinetics of SOCl2 reduction during discharging and the oxidation of the insulating discharge products during charging. To achieve a high-power rechargeable Li-SOCl2 battery, herein we introduce the molecular catalyst I2 into the electrolyte to tailor the charging and discharging reaction pathways. The as-assembled rechargeable cell exhibits superior power density, sustaining an ultrahigh current density of 100 mA cm-2 during discharging and delivering a reversible capacity of 1 mAh cm-2 for 200 cycles at a current density of 2 mA cm-2 and 6 mAh cm-2 for 50 cycles at a current density of 5 mA cm-2. Our results reveal the molecular catalyst-mediated reaction mechanisms that fundamentally alter the rate-determining steps of discharging and charging in Li-SOCl2 batteries and highlight the viability of transforming a primary high-energy battery into a high-power rechargeable system, which has great potential to meet the ever-increasing demand of energy-storage systems.
Collapse
Affiliation(s)
- Guodong Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenda Li
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaofan Du
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Chen Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelian Qu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Gao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanmu Dong
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liquan Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
38
|
Wang M, Meng Y, Gao P, Li K, Liu Z, Zhu Z, Ali M, Ahmad T, Chen N, Yuan Y, Xu Y, Chuai M, Sun J, Zheng X, Li X, Yang J, Chen W. Anions Regulation Engineering Enables a Highly Reversible and Dendrite-Free Nickel-Metal Anode with Ultrahigh Capacities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305368. [PMID: 37459236 DOI: 10.1002/adma.202305368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Indexed: 09/21/2023]
Abstract
The development of safe and high-energy metal anodes represents a crucial research direction. Here, the achievement of highly reversible, dendrite-free transition metal anodes with ultrahigh capacities by regulating aqueous electrolytes is reported. Using nickel (Ni) as a model, theoretical and experimental evidence demonstrating the beneficial role of chloride ions in inhibiting and disrupting the nickel hydroxide passivation layer on the Ni electrode is provided. As a result, Ni anodes with an ultrahigh areal capacity of 1000 mAh cm-2 (volumetric capacity of ≈6000 mAh cm-3 ), and a Coulombic efficiency of 99.4% on a carbon substrate, surpassing the state-of-the-art metal electrodes by approximately two orders of magnitude, are realized. Furthermore, as a proof-of-concept, a series of full cells based on the Ni anode is developed. The designed Ni-MnO2 full battery exhibits a long lifespan of 2000 cycles, while the Ni-PbO2 full battery achieves a high areal capacity of 200 mAh cm-2 . The findings of this study are important for enlightening a new arena toward the advancement of dendrite-free Ni-metal anodes with ultrahigh capacities and long cycle life for various energy-storage devices.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pengfei Gao
- Hefei National Research Center for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, Jiangsu, 214443, China
| | - Ke Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zaichun Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mohsin Ali
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Touqeer Ahmad
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Na Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuan Yuan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yan Xu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mingyan Chuai
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jifei Sun
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xinhua Zheng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xingxing Li
- Hefei National Research Center for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jinlong Yang
- Hefei National Research Center for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
39
|
Gong H, Patino DU, Ilavsky J, Kuzmenko I, Peña-Alcántara AE, Zhu C, Coffey AH, Michalek L, Elabd A, Gao X, Chen S, Xu C, Yan H, Jiang Y, Wang W, Peng Y, Zeng Y, Lyu H, Moon H, Bao Z. Tunable 1D and 2D Polyacrylonitrile Nanosheet Superstructures. ACS NANO 2023; 17:18392-18401. [PMID: 37668312 DOI: 10.1021/acsnano.3c05792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Carbon superstructures are widely applied in energy and environment-related areas. Among them, the flower-like polyacrylonitrile (PAN)-derived carbon materials have shown great promise due to their high surface area, large pore volume, and improved mass transport. In this work, we report a versatile and straightforward method for synthesizing one-dimensional (1D) nanostructured fibers and two-dimensional (2D) nanostructured thin films based on flower-like PAN chemistry by taking advantage of the nucleation and growth behavior of PAN. The resulting nanofibers and thin films exhibited distinct morphologies with intersecting PAN nanosheets, which formed through rapid nucleation on existing PAN. We further constructed a variety of hierarchical PAN superstructures based on different templates, solvents, and concentrations. These PAN nanosheet superstructures can be readily converted to carbon superstructures. As a demonstration, the nanostructured thin film exhibited a contact angle of ∼180° after surface modification with fluoroalkyl monolayers, which is attributed to high surface roughness enabled by the nanosheet assemblies. This study offers a strategy for the synthesis of nanostructured carbon materials for various applications.
Collapse
Affiliation(s)
- Huaxin Gong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Diego Uruchurtu Patino
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jan Ilavsky
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ivan Kuzmenko
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aidan H Coffey
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lukas Michalek
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ahmed Elabd
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xin Gao
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Shucheng Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Chengyi Xu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Weichen Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yucan Peng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Hao Lyu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hanul Moon
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
40
|
Zhu G, Liang P, Huang CL, Wu SC, Huang CC, Li YY, Jiang SK, Huang WH, Li J, Wang F, Hwang BJ, Dai H. Shedding light on rechargeable Na/Cl 2 battery. Proc Natl Acad Sci U S A 2023; 120:e2310903120. [PMID: 37729201 PMCID: PMC10523539 DOI: 10.1073/pnas.2310903120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 09/22/2023] Open
Abstract
Advancing new ideas of rechargeable batteries represents an important path to meeting the ever-increasing energy storage needs. Recently, we showed rechargeable sodium/chlorine (Na/Cl2) (or lithium/chlorine Li/Cl2) batteries that used a Na (or Li) metal negative electrode, a microporous amorphous carbon nanosphere (aCNS) positive electrode, and an electrolyte containing dissolved aluminum chloride and fluoride additives in thionyl chloride [G. Zhu et al., Nature 596, 525-530 (2021) and G. Zhu et al., J. Am. Chem. Soc. 144, 22505-22513 (2022)]. The main battery redox reaction involved conversion between NaCl and Cl2 trapped in the carbon positive electrode, delivering a cyclable capacity of up to 1,200 mAh g-1 (based on positive electrode mass) at a ~3.5 V discharge voltage [G. Zhu et al., Nature 596, 525-530 (2021) and G. Zhu et al., J. Am. Chem. Soc. 144, 22505-22513 (2022)]. Here, we identified by X-ray photoelectron spectroscopy (XPS) that upon charging a Na/Cl2 battery, chlorination of carbon in the positive electrode occurred to form carbon-chlorine (C-Cl) accompanied by molecular Cl2 infiltrating the porous aCNS, consistent with Cl2 probed by mass spectrometry. Synchrotron X-ray diffraction observed the development of graphitic ordering in the initially amorphous aCNS under battery charging when the carbon matrix was oxidized/chlorinated and infiltrated with Cl2. The C-Cl, Cl2 species and graphitic ordering were reversible upon discharge, accompanied by NaCl formation. The results revealed redox conversion between NaCl and Cl2, reversible graphitic ordering/amorphourization of carbon through battery charge/discharge, and probed trapped Cl2 in porous carbon by XPS.
Collapse
Affiliation(s)
- Guanzhou Zhu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Peng Liang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Cheng-Liang Huang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi62102, Taiwan
- Department of Electrical Engineering, National Chung Cheng University, Chia-Yi62102, Taiwan
| | - Shu-Chi Wu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Cheng-Chia Huang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi62102, Taiwan
| | - Yuan-Yao Li
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi62102, Taiwan
| | - Shi-Kai Jiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, Hsinchu30076, Taiwan
| | - Jiachen Li
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Feifei Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong999077, China
| | - Bing-Joe Hwang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| |
Collapse
|
41
|
Wang LY, Cai ZP, Ma C, Wang KX, Chen JS. Poly( p-phenylenediamine)-Coated Metal-Organic Frameworks for High-Performance Sodium-Ion Batteries: The Balance of Capacity and Stability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44364-44372. [PMID: 37668259 DOI: 10.1021/acsami.3c10751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Metal-organic frameworks (MOFs) with well-defined porous structures and highly active frameworks are considered as promising electrode materials for sodium-ion batteries (SIBs). However, the structure pulverization upon sodiation/desodiation impacts on their practical application in SIBs. To address this issue, poly(p-phenylenediamine) (PPA) was uniformly coated onto the surface of MIL-88A, a typical Fe-based MOF through in situ polymerization initiated by the metal ions (Fe3+) of MIL-88A. Used as an anode material for SIBs, the PPA-coated MIL-88A, denoted as PPA@MIL-88A, showed significantly improved electrochemical performance. A reversible capacity as high as 230 mAh g-1 was achieved at 0.2 A g-1 even after 500 cycles. MIL-88A constructed with electrochemically active Fe3+ and fumaric acid ligands guarantees the high specific capacity, while the PPA polymer coating effectively inhibits the pulverization of MIL-88A. This work provides an efficient strategy for improving the structure and cycling stability of MOFs-based electrode materials.
Collapse
Affiliation(s)
- Liang-Yu Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhi-Peng Cai
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chao Ma
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kai-Xue Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jie-Sheng Chen
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
42
|
Yuan B, Wu L, Geng S, Xu Q, Zhao X, Wang Y, Liao M, Ye L, Qu Z, Zhang X, Wang S, Ouyang Z, Tang S, Peng H, Sun H. Unlocking Reversible Silicon Redox for High-Performing Chlorine Batteries. Angew Chem Int Ed Engl 2023; 62:e202306789. [PMID: 37455280 DOI: 10.1002/anie.202306789] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Chlorine (Cl)-based batteries such as Li/Cl2 batteries are recognized as promising candidates for energy storage with low cost and high performance. However, the current use of Li metal anodes in Cl-based batteries has raised serious concerns regarding safety, cost, and production complexity. More importantly, the well-documented parasitic reactions between Li metal and Cl-based electrolytes require a large excess of Li metal, which inevitably sacrifices the electrochemical performance of the full cell. Therefore, it is crucial but challenging to establish new anode chemistry, particularly with electrochemical reversibility, for Cl-based batteries. Here we show, for the first time, reversible Si redox in Cl-based batteries through efficient electrolyte dilution and anode/electrolyte interface passivation using 1,2-dichloroethane and cyclized polyacrylonitrile as key mediators. Our Si anode chemistry enables significantly increased cycling stability and shelf lives compared with conventional Li metal anodes. It also avoids the use of a large excess of anode materials, thus enabling the first rechargeable Cl2 full battery with remarkable energy and power densities of 809 Wh kg-1 and 4,277 W kg-1 , respectively. The Si anode chemistry affords fast kinetics with remarkable rate capability and low-temperature electrochemical performance, indicating its great potential in practical applications.
Collapse
Affiliation(s)
- Bin Yuan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Wu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shitao Geng
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiuchen Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoju Zhao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meng Liao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Lei Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Zongtao Qu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuo Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaofeng Ouyang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shanshan Tang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Hao Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
43
|
Yang J, Li WH, Tang HT, Pan YM, Wang D, Li Y. CO 2-mediated organocatalytic chlorine evolution under industrial conditions. Nature 2023; 617:519-523. [PMID: 37198309 DOI: 10.1038/s41586-023-05886-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 02/24/2023] [Indexed: 05/19/2023]
Abstract
During the chlor-alkali process, in operation since the nineteenth century, electrolysis of sodium chloride solutions generates chlorine and sodium hydroxide that are both important for chemical manufacturing1-4. As the process is very energy intensive, with 4% of globally produced electricity (about 150 TWh) going to the chlor-alkali industry5-8, even modest efficiency improvements can deliver substantial cost and energy savings. A particular focus in this regard is the demanding chlorine evolution reaction, for which the state-of-the-art electrocatalyst is still the dimensionally stable anode developed decades ago9-11. New catalysts for the chlorine evolution reaction have been reported12,13, but they still mainly consist of noble metal14-18. Here we show that an organocatalyst with an amide functional group enables the chlorine evolution reaction; and that in the presence of CO2, it achieves a current density of 10 kA m-2 and a selectivity of 99.6% at an overpotential of only 89 mV and thus rivals the dimensionally stable anode. We find that reversible binding of CO2 to the amide nitrogen facilitates formation of a radical species that plays a critical role in Cl2 generation, and that might also prove useful in the context of Cl- batteries and organic synthesis19-21. Although organocatalysts are typically not considered promising for demanding electrochemical applications, this work demonstrates their broader potential and the opportunities they offer for developing industrially relevant new processes and exploring new electrochemical mechanisms.
Collapse
Affiliation(s)
- Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Wen-Hao Li
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
44
|
Song P, Yang J, Wang C, Wang T, Gao H, Wang G, Li J. Interface Engineering of Fe 7S 8/FeS 2 Heterostructure in situ Encapsulated into Nitrogen-Doped Carbon Nanotubes for High Power Sodium-Ion Batteries. NANO-MICRO LETTERS 2023; 15:118. [PMID: 37121953 PMCID: PMC10149539 DOI: 10.1007/s40820-023-01082-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics, improving electronic conductivity, and mitigating the huge expansion of transition metal sulfide electrodes for high-performance sodium storage. Herein, the iron sulfide-based heterostructures in situ hybridized with nitrogen-doped carbon nanotubes (Fe7S8/FeS2/NCNT) have been prepared through a successive pyrolysis and sulfidation approach. The Fe7S8/FeS2/NCNT heterostructure delivered a high reversible capacity of 403.2 mAh g-1 up to 100 cycles at 1.0 A g-1 and superior rate capability (273.4 mAh g-1 at 20.0 A g-1) in ester-based electrolyte. Meanwhile, the electrodes also demonstrated long-term cycling stability (466.7 mAh g-1 after 1,000 cycles at 5.0 A g-1) and outstanding rate capability (536.5 mAh g-1 at 20.0 A g-1) in ether-based electrolyte. This outstanding performance could be mainly attributed to the fast sodium-ion diffusion kinetics, high capacitive contribution, and convenient interfacial dynamics in ether-based electrolyte.
Collapse
Affiliation(s)
- Penghao Song
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, Jiangsu, People's Republic of China
| | - Jian Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, Jiangsu, People's Republic of China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Chengyin Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, Jiangsu, People's Republic of China
| | - Tianyi Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, Jiangsu, People's Republic of China.
| | - Hong Gao
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| | - Jiabao Li
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, Jiangsu, People's Republic of China.
| |
Collapse
|
45
|
Wang Y, Li J, Song P, Yang J, Gu Z, Wang T, Wang C. In-situ decoration of tin sulfide on Niobium carbide MXene with robust electronic coupling for improved sodium storage performance. J Colloid Interface Sci 2023; 636:255-266. [PMID: 36634395 DOI: 10.1016/j.jcis.2023.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Tin sulfide (SnS) has been considered as one of the most promising sodium storage materials because of its excellent electrochemical activity, low cost, and low-dimensional structure. However, owing to the serious volume change upon discharging/charging and poor electronic conductivity, the SnS-based electrodes often suffer from electrode pulverization and sluggish reaction kinetics, thus resulting in serious capacity fading and degraded rate capability. In this work, SnS nanoparticles uniformly distributed on the surface of the layered Niobium carbide MXene (SnS/Nb2CTx) were fabricated through a facile solvothermal approach followed by calcination, endowing the SnS/Nb2CTx with a three-dimensional interconnected framework as well as fast charge transfer. Benefitting from the excellent electronic/ionic conductivity, efficient buffering matrix, abundant active sites, and high sodium storage activity inherited from the structure design, the robust electronic coupling between SnS nanoparticle and Nb2CTx MXene results in excellent electrochemical output, which demonstrates superior reversible capacities of 479.6 (0.1 A/g up to 100 cycles) and 278.9 mAh/g (0.5 A/g up to 500 cycles) upon sodium storage, respectively. The excellent electrochemical performance manifests the promise of the combination of metal sulfides with Nb2CTx MXene to fabricate high-performance electrodes for sodium storage.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Jiabao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| | - Penghao Song
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Jian Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Zhihao Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Tianyi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| |
Collapse
|
46
|
Qu H, Li B, Ma Y, Xiao Z, Lv Z, Li Z, Li W, Wang L. Defect-Enriched Hollow Porous Carbon Nanocages Enable Highly Efficient Chlorine Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2301359. [PMID: 37029536 DOI: 10.1002/adma.202301359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Indexed: 05/30/2023]
Abstract
Metal-free carbon-based catalysts are crucial for the electrocatalytic chlorine evolution reaction (CER) to reduce the usage of noble metals and industrial cost. However, the corresponding catalytic activity of high overpotential and low durability hinders their wide application. Here, a hollow porous carbon (HPC) nanocage with a controlled oxygen electronic state around designed carbon defects for CER activity is reported. Alkali etching can bring defects in zeolite with a hollow structure. In a hard template strategy, the type of carbon defects is directly related to etching degree of the zeolite template. More importantly, the oxygen atoms can be "borrowed" from the zeolite framework by the defective carbon. The electron density around unsaturated O atoms can be decreased on the minor defects in carbon compared with that on large defects which is favorable for the adsorption of Cl- . Consequently, the as-synthesized HPC nanocages with minor defects show excellent electrocatalytic performance for CER with a low overpotential of 94 mV at current density of 10 mA cm-2 with good stability, which is superior to the commercial precious metal catalyst of dimensionally stable anode (DSA), and the best in the reported carbon materials. The designed carbon materials provide an option for metal-free industrial catalysts with significant CER activities.
Collapse
Affiliation(s)
- Huiqi Qu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bin Li
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yiru Ma
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhenyu Xiao
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhiguo Lv
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai, Shanghai, 200433, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
47
|
Liang G, Liang B, Chen A, Zhu J, Li Q, Huang Z, Li X, Wang Y, Wang X, Xiong B, Jin X, Bai S, Fan J, Zhi C. Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction. Nat Commun 2023; 14:1856. [PMID: 37012263 PMCID: PMC10070632 DOI: 10.1038/s41467-023-37565-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
The chlorine-based redox reaction (ClRR) could be exploited to produce secondary high-energy aqueous batteries. However, efficient and reversible ClRR is challenging, and it is affected by parasitic reactions such as Cl2 gas evolution and electrolyte decomposition. Here, to circumvent these issues, we use iodine as positive electrode active material in a battery system comprising a Zn metal negative electrode and a concentrated (e.g., 30 molal) ZnCl2 aqueous electrolyte solution. During cell discharge, the iodine at the positive electrode interacts with the chloride ions from the electrolyte to enable interhalogen coordinating chemistry and forming ICl3-. In this way, the redox-active halogen atoms allow a reversible three-electrons transfer reaction which, at the lab-scale cell level, translates into an initial specific discharge capacity of 612.5 mAh gI2-1 at 0.5 A gI2-1 and 25 °C (corresponding to a calculated specific energy of 905 Wh kgI2-1). We also report the assembly and testing of a Zn | |Cl-I pouch cell prototype demonstrating a discharge capacity retention of about 74% after 300 cycles at 200 mA and 25 °C (final discharge capacity of about 92 mAh).
Collapse
Affiliation(s)
- Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China
| | - Bochun Liang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China
| | - Ao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China
| | - Jiaxiong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China
| | - Qing Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China
| | - Xinliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| | - Xiaoqi Wang
- Research Institute of Petroleum Exploration & Development (RIPED), Research Center of New Energy, Beijing, PR China
| | - Bo Xiong
- Research Institute of Petroleum Exploration & Development (RIPED), Research Center of New Energy, Beijing, PR China
| | - Xu Jin
- Research Institute of Petroleum Exploration & Development (RIPED), Research Center of New Energy, Beijing, PR China
| | - Shengchi Bai
- Research Institute of Petroleum Exploration & Development (RIPED), Research Center of New Energy, Beijing, PR China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China.
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China.
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
48
|
Li X, Zhang J, Guo X, Peng C, Song K, Zhang Z, Ding L, Liu C, Chen W, Dou S. An Ultrathin Nonporous Polymer Separator Regulates Na Transfer Toward Dendrite-Free Sodium Storage Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203547. [PMID: 36649977 DOI: 10.1002/adma.202203547] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Sodium storage batteries are one of the ever-increasing next-generation large-scale energy storage systems owing to the abundant resources and low cost. However, their viability is severely hampered by dendrite-related hazards on anodes. Herein, a novel ultrathin (8 µm) exterior-nonporous separator composed of honeycomb-structured fibers is prepared for homogeneous Na deposition and suppressed dendrite penetration. The unhindered ion transmission greatly benefits from honeycomb-structured fibers with huge electrolyte uptake (376.7%) and the polymer's inherent transport ability. Additionally, polar polymer chains consisting of polyethersulfone and polyvinylidene customize the highly aggregated solvation structure of electrolytes via substantial solvent immobilization, facilitating ion-conductivity-enhanced inorganic-rich solid-electrolyte interphase with remarkable interface endurance. With the reliable mechanical strength of the separator, the assembled sodium-ion full cell delivers significantly improved energy density and high safety, enabling stable operation under cutting and rolling. The as-prepared separator can further be generalized to lithium-based batteries for which apparent dendrite inhibition and cyclability are accessible and demonstrates its potential for practical application.
Collapse
Affiliation(s)
- Xinle Li
- College of Chemistry, and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiyu Zhang
- College of Chemistry, and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoniu Guo
- College of Chemistry, and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China
| | - Chengbin Peng
- College of Chemistry, and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China
| | - Keming Song
- College of Chemistry, and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhiguo Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lina Ding
- College of Pharmacy, Zhengzhou University, Zhengzhou, 450001, China
| | - Chuntai Liu
- National Engineering and Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Weihua Chen
- College of Chemistry, and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, NSW, 2522, Australia
| |
Collapse
|
49
|
Wang C, Yang K, Xie Q, Pan J, Jiang Z, Yang H, Zhang Y, Wu Y, Han J. Tandem Efficient Bromine Removal and Silver Recovery by Resorcinol-Formaldehyde Resin Nanoparticles. NANO LETTERS 2023; 23:2239-2246. [PMID: 36857481 DOI: 10.1021/acs.nanolett.2c04877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Halogen wastewater greatly threatens the health of human beings and aquatic organisms due to its severe toxicity, corrosiveness, and volatility. Efficient bromine removal is therefore urgently required, while existing Br2-capture materials often face challenges from limited water stability and possible halogen leaking. We report a facile and efficient aqueous Br2 removal method using submicron resorcinol-formaldehyde (RF) resin nanoparticles (NPs). The abundant aromatic groups dominate the Br2 removal by substitution reactions. An excellent Br2 conversion capacity of 7441 mg gRF-1 was achieved by RF NPs that outperform state-of-the-art materials by ∼2-fold, along with advantages including good water stability, low cost, and easy fabrication. Two recycling-coupled (electrochemical or H2O2-involved) Br2 removal routes further reveal the feasibility of in-depth halogen removal by RF NPs. The brominated resin can be downstream upcycled for silver recovery, realizing the harvesting of precious metal, reducing of heavy-metal pollution, and resource utilization of brominated resin.
Collapse
Affiliation(s)
- Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Keke Yang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qihong Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jiahao Pan
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Zehui Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Han Yang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi Zhang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yutong Wu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
50
|
Tailoring fluorine-substituted cobalt phthalocyanine/activated carbon nanocomposites for stable and long-life Li/SOCl2 batteries. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|