1
|
Brulin L, Sanchez MP, Cai Z, Ducrocq S, Even G, Martel S, Merlin S, Audebert C, Estellé J, Sahana G, Croiseau P. Sequence-based genome-wide association study reveals host genomic regions and candidate genes influencing the fecal microbiota of Holstein cows. J Dairy Sci 2025:S0022-0302(25)00361-3. [PMID: 40383381 DOI: 10.3168/jds.2024-26203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
In recent decades, the digestive tract microbiota of livestock has been extensively studied, revealing associations with host phenotypes, including production- and health-related traits. The effect of host genetics on gut microbes has been documented in several species; however, in dairy cattle, the specific genomic regions that influence microbial communities remain relatively unexplored. This study aimed to conduct a sequence-based GWAS and a gene-based association study to identify the genomic regions and candidate genes affecting fecal microbiota diversity and composition in a population of 1,875 commercial Holstein cows. From the sequence-based GWAS conducted on 116 fecal microbiota taxonomic levels, 6 QTL were significantly associated with the abundances of Paeniclostridium, an unclassified genus from the Paludibacteraceae family, Sutterella, Turicibacter, and Akkermansia genera, as well as the associated family Akkermansiaceae. These QTL explained between 2.0% and 25.5% of the phenotypic variances of the taxa abundances. Conversely, no genomic variants were found significant for either the α- or the β-diversity of the fecal microbiota. A gene-based association study subsequently conducted on the sequence-based GWAS results revealed significant effects of 90 genes across the bovine genome, effecting the relative abundances of some fecal taxa. Many of these genes were located within the major histocompatibility complex and enriched in immune response pathways. By combining GWAS with gene-based association studies, we specifically identified an association between the ABO gene and the fecal abundance of Akkermansia and Akkermansiaceae. The study represents a significant step forward in understanding the genetic determinism of the complex interactions between the fecal microbiota and their host. It provides new insights into the biological mechanisms underlying host-microbiota interaction in dairy cattle and unveils strong associations between host genomic regions and fecal microbiota in a commercial population. This study holds promise for large-scale breeding strategies to shape the fecal microbiota in Holstein cows and benefit from the host-microbiota interactions.
Collapse
Affiliation(s)
- L Brulin
- GD Biotech - Gènes Diffusion, Lille, 59000, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France.
| | - M-P Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Z Cai
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark
| | - S Ducrocq
- GD Biotech - Gènes Diffusion, Lille, 59000, France; PEGASE-Biosciences, Institut Pasteur de Lille, Lille, 59019, France
| | - G Even
- GD Biotech - Gènes Diffusion, Lille, 59000, France; PEGASE-Biosciences, Institut Pasteur de Lille, Lille, 59019, France
| | - S Martel
- GD Biotech - Gènes Diffusion, Lille, 59000, France; PEGASE-Biosciences, Institut Pasteur de Lille, Lille, 59019, France
| | - S Merlin
- GD Biotech - Gènes Diffusion, Lille, 59000, France; PEGASE-Biosciences, Institut Pasteur de Lille, Lille, 59019, France
| | - C Audebert
- GD Biotech - Gènes Diffusion, Lille, 59000, France; PEGASE-Biosciences, Institut Pasteur de Lille, Lille, 59019, France
| | - J Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - G Sahana
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark
| | - P Croiseau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| |
Collapse
|
2
|
Zhou M, Ling C, Xiao H, Zhang Z. Identification of Gene Expression and Splicing QTLs in Porcine Muscle Associated with Meat Quality Traits. Animals (Basel) 2025; 15:1209. [PMID: 40362025 PMCID: PMC12071002 DOI: 10.3390/ani15091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Understanding the genetic regulation of gene expression and splicing in muscle tissues is critical for elucidating the molecular mechanisms of meat quality traits. In this study, we integrated large-scale whole-genome sequencing and strand-specific RNA-seq data from 582 F2 hybrid pigs (White Duroc × Erhualian) to characterize the expression and splicing quantitative trait loci (eQTLs/sQTL) in longissimus dorsi muscle. We identified 11,058 cis-eQTL-associated genes (eGenes) and 5139 cis-sQTL-associated genes (sGenes), of which 29% of eGenes and 80% of sGenes were previously unreported in the PigGTEx database. Functional analyses revealed distinct genomic features: eQTLs were enriched near transcription start sites (TSSs) and associated with active TSS-proximal transcribed regions and enhancers, whereas sQTLs clustered at splice junctions, underscoring their distinct roles in gene expression and splicing regulation. Colocalization analysis of e/sQTLs with GWAS signals prioritized PHKG1 as a key candidate gene (PPH4 > 0.9) for glycogen metabolism. Notably, we confirmed that an sQTL-driven alternative splicing event in exon 10 of PHKG1 was significantly correlated with phenotypic variation (R = -0.39, p = 9.5 × 10-21). Collectively, this study provides novel insights into the genetic regulation of gene expression and alternative splicing in porcine muscle tissue, advancing our understanding of the molecular mechanisms underlying economically important meat quality traits.
Collapse
Affiliation(s)
- Meng Zhou
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation Technology, Jiangxi Agricultural University, Nanchang 330045, China; (C.L.); (H.X.); (Z.Z.)
| | | | | | | |
Collapse
|
3
|
Zhou M, Wu L, Sun X, Liu M, Wang Y, Yang B, Ai H, Chen C, Huang L. Assessing the relationship between the gut microbiota and growth traits in Chinese indigenous pig breeds. BMC Vet Res 2025; 21:284. [PMID: 40264132 PMCID: PMC12013187 DOI: 10.1186/s12917-025-04739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Gut microbiota plays crucial roles in host metabolism, diseases and development. It has also been reported to be associated with growth performance in pigs. However, the bacterial species influencing pig growth performance have not been isolated, and the mechanisms remain unclear. RESULTS In this study, we collected 500 gut microbial samples from two Chinese indigenous pig breeds, including 244 fecal samples from Bamaxiang (BMX) pigs and 256 cecum content samples from Erhualian (EHL) pigs, to investigate the relationship between gut microbiota and pig growth traits. Bacterial compositions were determined by 16 S rRNA gene sequencing, and association analysis was performed using a two-part model. We found that the Firmicutes-to-Bacteroidota ratio in fecal samples from BMX pigs was negatively associated with average daily gain (P = 0.0085). Amplicon sequence variants (ASVs) belonging to Prevotella and three ASVs annotated to Oscillospiraceae were negatively associated with pig growth traits, while ASVs annotated to Muribaculaceae and Rikenellaceae showed positive correlations with growth traits in BMX fecal samples. In cecum content samples from EHL pigs, ASVs belonging to Prevotella, Lactobacillus delbrueckii, and Lachnospiraceae were negatively associated with growth performance, whereas one ASV belonging to Rikenellaceae demonstrated a positive association. Predicted functional capacity analysis revealed that metabolic pathways related to the digestive system, glycan biosynthesis and metabolism, signaling molecules and interactions, and xenobiotics biodegradation and metabolism were positively associated with pig growth traits. Conversely, the excretory system pathway showed a negative correlation. These pathways were found to correlate with growth trait-associated bacterial ASVs, suggesting that alterations in gut bacterial composition led to functional capacity shifts in the gut microbiome, subsequently affecting porcine growth. CONCLUSIONS Our results gave significant insights about the effect of gut microbiota on pig growth and provided important evidence to support further isolation of bacterial taxa that influence pig growth for elucidating their mechanisms.
Collapse
Affiliation(s)
- Mengqing Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Lin Wu
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Xiao Sun
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Min Liu
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Yaxiang Wang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Bin Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Huashui Ai
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Congying Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China.
| | - Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China.
| |
Collapse
|
4
|
Tonnele H, Chen D, Morillo F, Garcia-Calleja J, Chitre AS, Johnson BB, Sanches TM, Bonder MJ, Gonzalez A, Kosciolek T, George AM, Han W, Holl K, Horvath A, Ishiwari K, King CP, Lamparelli AC, Martin CD, Martinez AG, Netzley AH, Tripi JA, Wang T, Bosch E, Doris PA, Stegle O, Chen H, Flagel SB, Meyer PJ, Richards JB, Robinson TE, Woods LCS, Polesskaya O, Knight R, Palmer AA, Baud A. Novel insights into the genetic architecture and mechanisms of host/microbiome interactions from a multi-cohort analysis of outbred laboratory rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644349. [PMID: 40166210 PMCID: PMC11957159 DOI: 10.1101/2025.03.20.644349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The intestinal microbiome influences health and disease. Its composition is affected by host genetics and environmental exposures. Understanding host genetic effects is critical but challenging in humans, due to the difficulty of detecting, mapping and interpreting them. To address this, we analysed host genetic effects in four cohorts of outbred laboratory rats exposed to distinct but controlled environments. We found that polygenic host genetic effects were consistent across environments. We identified three replicated microbiome-associated loci. One involved a sialyltransferase gene and Paraprevotella and we found a similar association, between ST6GAL1 and Paraprevotella, in a human cohort. Given Paraprevotella's known immunity-potentiating functions, this suggests ST6GAL1's effects on IgA nephropathy and COVID-19 breakthrough infections may be mediated by Paraprevotella. Moreover, we found evidence of indirect genetic effects on microbiome phenotypes, which substantially increased their total genetic variance. Finally, we identified a novel mechanism whereby indirect genetic effects can contribute to "missing heritability".
Collapse
Affiliation(s)
- Helene Tonnele
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Felipe Morillo
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jorge Garcia-Calleja
- Institute of Evolutionary Biology (CSIC-UPF), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Benjamin B Johnson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Anthony M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA8
| | - Wenyan Han
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Katie Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aidan Horvath
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA8
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | | | | | - Connor D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA8
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Alesa H Netzley
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, NY, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Elena Bosch
- Institute of Evolutionary Biology (CSIC-UPF), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Peter A Doris
- Center for Human Genetics, Institute of Molecular Medicine, McGovern Medical School, University of Texas at Houston, TX, USA
| | - Oliver Stegle
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Shelly B. Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, NY, USA
| | - Jerry B Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA8
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Terry E. Robinson
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, La Jolla, CA, San Diego, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Amelie Baud
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
5
|
Liao W, Cao L, Jiang X, Che L, Fang Z, Xu S, Lin Y, Zhuo Y, Hua L, Li J, Liu G, Sun M, Wu D, Wang H, Feng B. Intestinal overexpression of Pla2g10 alters the composition, diversity and function of gut microbiota in mice. Front Cell Infect Microbiol 2025; 15:1535204. [PMID: 40160470 PMCID: PMC11949945 DOI: 10.3389/fcimb.2025.1535204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
The intestinal microbiota is important for the health of the host and recent studies have shown that some genes of the host regulated the composition of the intestinal microbiota. Group 10 phospholipase A2 (PLA2G10) is a member of the lipolytic enzyme family PLA2, which hydrolyze the ester bond at the sn-2 position of phospholipids to produce free fatty acids and lysophospholipids. PLA2G10 is secreted into the intestinal lumen, but its impact on the gut microbiota remains unclear. In this study, we generated intestine-specific Pla2g10 knock-in mice, and used 16S RNA sequencing to compare their gut microbiota with that of their wild-type (WT) littermates. Results showed that gut-specific Pla2g10 knock-in induced both PLA2G10 mRNA and protein levels in the colon. Moreover, intestinal Pla2g10 overexpression reduced the α-diversity of the gut microbiota relative to that of WT mice. The abundance of Bacteroidetes was lower in the Pla2g10 knock-in mice than that in the control mice, while the ratio of Firmicutes/Bacteroidetes was higher. Furthermore, the abundance of the genus Allobaculum was reduced, whereas the abundance of beneficial bacteria genera, including Enterorhabdus, Dubosiella, and Lactobacillus, was increased by host intestinal Pla2g10 overexpression. In summary, intestinal Pla2g10 overexpression increased the proportions of beneficial bacterial in the colonic chyme of mice, providing a potential therapeutic target for future improvement of the gut microbiota.
Collapse
Affiliation(s)
- Wenhao Liao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lei Cao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hairui Wang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Lan F, Wang X, Zhou Q, Li X, Jin J, Zhang W, Wen C, Wu G, Li G, Yan Y, Yang N, Sun C. Deciphering the coordinated roles of the host genome, duodenal mucosal genes, and microbiota in regulating complex traits in chickens. MICROBIOME 2025; 13:62. [PMID: 40025569 PMCID: PMC11871680 DOI: 10.1186/s40168-025-02054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/01/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The complex interactions between host genetics and the gut microbiome are well documented. However, the specific impacts of gene expression patterns and microbial composition on each other remain to be further explored. RESULTS Here, we investigated this complex interplay in a sizable population of 705 hens, employing integrative analyses to examine the relationships among the host genome, mucosal gene expression, and gut microbiota. Specific microbial taxa, such as the cecal family Christensenellaceae, which showed a heritability of 0.365, were strongly correlated with host genomic variants. We proposed a novel concept of regulatability ( r b 2 ), which was derived from h2, to quantify the cumulative effects of gene expression on the given phenotypes. The duodenal mucosal transcriptome emerged as a potent influencer of duodenal microbial taxa, with much higher r b 2 values (0.17 ± 0.01, mean ± SE) than h2 values (0.02 ± 0.00). A comparative analysis of chickens and humans revealed similar average microbiability values of genes (0.18 vs. 0.20) and significant differences in average r b 2 values of microbes (0.17 vs. 0.04). Besides, cis ( h cis 2 ) and trans heritability ( h trans 2 ) were estimated to assess the effects of genetic variations inside and outside the cis window of the gene on its expression. Higher h trans 2 values than h cis 2 values and a greater prevalence of trans-regulated genes than cis-regulated genes underscored the significant role of loci outside the cis window in shaping gene expression levels. Furthermore, our exploration of the regulatory effects of duodenal mucosal genes and the microbiota on 18 complex traits enhanced our understanding of the regulatory mechanisms, in which the CHST14 gene and its regulatory relationships with Lactobacillus salivarius jointly facilitated the deposition of abdominal fat by modulating the concentration of bile salt hydrolase, and further triglycerides, total cholesterol, and free fatty acids absorption and metabolism. CONCLUSIONS Our findings highlighted a novel concept of r b 2 to quantify the phenotypic variance attributed to gene expression and emphasize the superior role of intestinal mucosal gene expressions over host genomic variations in elucidating host‒microbe interactions for complex traits. This understanding could assist in devising strategies to modulate host-microbe interactions, ultimately improving economic traits in chickens.
Collapse
Affiliation(s)
- Fangren Lan
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiqiong Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaochang Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenxin Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Yiyuan Yan
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Jin S, Wu J, Wang C, He Y, Tang Y, Huang L, Zhou H, Liu D, Wu Z, Feng Y, Chen H, He X, Yang G, Peng C, Qiu J, Li T, Yin Y, He L. Aspartate Metabolism-Driven Gut Microbiota Dynamics and RIP-Dependent Mitochondrial Function Counteract Oxidative Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404697. [PMID: 39874197 PMCID: PMC11923965 DOI: 10.1002/advs.202404697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/18/2024] [Indexed: 01/30/2025]
Abstract
Aspartate (Asp) metabolism-mediated antioxidant functions have important implications for neonatal growth and intestinal health; however, the antioxidant mechanisms through which Asp regulates the gut microbiota and influences RIP activation remain elusive. This study reports that chronic oxidative stress disrupts gut microbiota and metabolite balance and that such imbalance is intricately tied to the perturbation of Asp metabolism. Under normal conditions, in vivo and in vitro studies reveal that exogenous Asp improves intestinal health by regulating epithelial cell proliferation, nutrient uptake, and apoptosis. During oxidative stress, Asp reduces Megasphaera abundance while increasing Ruminococcaceae. This reversal effect depends on the enhanced production of the antioxidant eicosapentaenoic acid mediated through Asp metabolism and microbiota. Mechanistically, the application of exogenous Asp orchestrates the antioxidant responses in enterocytes via the modulation of the RIP3-MLKL and RIP1-Nrf2-NF-κB pathways to eliminate excessive reactive oxygen species and maintain mitochondrial functionality and cellular survival. These results demonstrate that Asp signaling alleviates oxidative stress by dynamically modulating the gut microbiota and RIP-dependent mitochondrial function, providing a potential therapeutic strategy for oxidative stress disease treatment.
Collapse
Affiliation(s)
- Shunshun Jin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and RegulationHunan international joint laboratory of Animal Intestinal Ecology and HealthLaboratory of Animal Nutrition and Human HealthCollege of Life SciencesHunan Normal UniversityChangsha410081China
- Department of Animal ScienceUniversity of ManitobaWinnipegManitobaR3T2N2Canada
| | - Jian Wu
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessChangsha410125China
| | - Chenyu Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and RegulationHunan international joint laboratory of Animal Intestinal Ecology and HealthLaboratory of Animal Nutrition and Human HealthCollege of Life SciencesHunan Normal UniversityChangsha410081China
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessChangsha410125China
| | - Yiwen He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and RegulationHunan international joint laboratory of Animal Intestinal Ecology and HealthLaboratory of Animal Nutrition and Human HealthCollege of Life SciencesHunan Normal UniversityChangsha410081China
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessChangsha410125China
| | - Yulong Tang
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessChangsha410125China
| | - Le Huang
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessChangsha410125China
| | - Hui Zhou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and RegulationHunan international joint laboratory of Animal Intestinal Ecology and HealthLaboratory of Animal Nutrition and Human HealthCollege of Life SciencesHunan Normal UniversityChangsha410081China
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessChangsha410125China
| | - Di Liu
- Heilongjiang Academy of Agricultural SciencesHarbin150086China
| | - Ziping Wu
- Agricultural and Food EconomicsQueen's University BelfastNorthern IrelandBT95PXUK
| | - Yanzhong Feng
- Heilongjiang Academy of Agricultural SciencesHarbin150086China
| | - Heshu Chen
- Heilongjiang Academy of Agricultural SciencesHarbin150086China
| | - Xinmiao He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and RegulationHunan international joint laboratory of Animal Intestinal Ecology and HealthLaboratory of Animal Nutrition and Human HealthCollege of Life SciencesHunan Normal UniversityChangsha410081China
- Heilongjiang Academy of Agricultural SciencesHarbin150086China
| | - Guan Yang
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong SAR999077China
| | - Can Peng
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessChangsha410125China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infections DiseaseKey Laboratory for Zoonosis Research of the Ministry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130025China
| | - Tiejun Li
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessChangsha410125China
| | - Yulong Yin
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessChangsha410125China
- Yuelushan LaboratoryNo. 246 Hongqi Road, Furong DistrictChangsha410128China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and RegulationHunan international joint laboratory of Animal Intestinal Ecology and HealthLaboratory of Animal Nutrition and Human HealthCollege of Life SciencesHunan Normal UniversityChangsha410081China
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessChangsha410125China
| |
Collapse
|
8
|
Du H, Hu J, Zhang Z, Wu Z. Chromosome-Level Genome Assembly of the Meishan Pig and Insights into Its Domestication Mechanisms. Animals (Basel) 2025; 15:603. [PMID: 40003085 PMCID: PMC11851914 DOI: 10.3390/ani15040603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Pigs are essential agricultural animals, and among the various breeds, the Meishan pig, a native breed of China, is renowned for its high reproductive performance. This breed has been introduced to many countries to enhance local pig breeding programs. However, there have been limited genomic and population genetics studies focusing on Meishan pigs. We created a chromosomal-level genomic assembly using high-depth PacBio sequencing and Illumina sequencing data collected from a Meishan pig. Additionally, we analyzed whole-genome sequencing (WGS) data from Chinese boars and Meishan pigs to identify domestication selection signals within the Meishan breed. The assembled genome of the Meishan pig (MSjxau) was found to be 2.45 Gb in size, with a scaffold length of 139.17 Mb. The quality value was 37.06, and the BUSCO score was 96.2%, indicating good completeness, continuity, and accuracy. We annotated transposable elements, segmental duplication, and genes in the MSjxau genome. By combining these data with 28 publicly available genomes, we provide a high-quality structural variants resource for pigs. Furthermore, we identified 716 selective sweep intervals between Chinese wild pigs and Meishan pigs, where the selected gene PGR may be linked to the high fertility observed in Meishan pigs. Our study offers valuable genomic and variation resources for pig breeding and identifies several genes associated with the domestication of the Meishan pig. This lays the groundwork for further investigation into the genetic mechanisms behind complex traits in pigs.
Collapse
Affiliation(s)
| | | | | | - Zhongzi Wu
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang 330029, China; (H.D.); (J.H.); (Z.Z.)
| |
Collapse
|
9
|
Han J, Wang M, Zhou S, Wang Z, Duan D, Li M, Li X, Xin W, Li X. The Joint Contribution of Host Genetics and Probiotics to Pig Growth Performance. Microorganisms 2025; 13:358. [PMID: 40005725 PMCID: PMC11857988 DOI: 10.3390/microorganisms13020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Intestinal probiotics significantly regulate the growth performance of their host, with their composition being influenced by various factors. While many studies have explored how gut microbiota composition affects growth traits such as body weight and BMI, the research on probiotics influenced by host genetic factors, and their subsequent impact on host growth performance, remains limited. To address this research gap, we collected fecal and tissue samples, as well as phenotypic data, from 193 Yunong black pigs at 280 days of age. We then sequenced and genotyped all 193 subjects using the 50K SNP BeadChip, yielding a comprehensive dataset for genetic and microbiome analyses. We then employed microbiome-wide association studies (MWAS), a meta-analysis, and microbiome-wide genetic association studies (MGWASs) to examine the relationship between host genetics, gut microbiota, and growth performance. Four key microbial taxa, namely Coprococcus, Blautia, Ruminococcaceae, and RF16, were identified as being significantly associated with body weight and BMI. The MGWAS analysis revealed that both Coprococcus and Ruminococcaceae were significantly associated with host genomic variations. A total of four important single nucleotide polymorphisms (SNPs) were mapped to two chromosomal regions, corresponding to three candidate genes. Among them, the candidate genes INPP4B, SCOC, and PABPC4L were identified as being related to the abundance of key microbes. This study provides new insights into the joint contributions of host genetics and probiotics to host growth traits, offering theoretical guidance and data support for the development of efficient and targeted breeding strategies.
Collapse
Affiliation(s)
- Jinyi Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingyu Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Shenping Zhou
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Zhenyu Wang
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Dongdong Duan
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Mengyu Li
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenshui Xin
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| |
Collapse
|
10
|
Zuo H, Jiang W, Gao J, Ma Z, Li C, Peng Y, Jin J, Zhan X, Lv W, Liu X, Hu J, Zhang M, Jia Y, Xu Z, Tang J, Zheng R, Zuo B. SYISL Knockout Promotes Embryonic Muscle Development of Offspring by Modulating Maternal Gut Microbiota and Fetal Myogenic Cell Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410953. [PMID: 39680624 PMCID: PMC11809340 DOI: 10.1002/advs.202410953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Embryonic muscle fiber formation determines post-birth muscle fiber totals. The previous research shows SYISL knockout significantly increases muscle fiber numbers and mass in mice, but the mechanism remains unclear. This study confirms that the SYISL gene, maternal gut microbiota, and their interaction significantly affect the number of muscle fibers in mouse embryos through distinct mechanisms, as SYISL knockout alters maternal gut microbiota composition and boosts butyrate levels in embryonic serum. Both fecal microbiota transplantation and butyrate feeding significantly increase muscle fiber numbers in offspring, with butyrate inhibiting histone deacetylases and increasing histone acetylation in embryonic muscle. Combined analysis of RNA-seq between wild-type and SYISL knockout mice with ChIP-seq for H3K9ac and H3K27ac reveals that SYISL and maternal microbiota interaction regulates myogenesis via the butyrate-HDAC-H3K9ac/H3K27ac pathway. Furthermore, scRNA-seq analysis shows that SYISL knockout alone significantly increases the number and proportion of myogenic cells and their dynamics, independently of regulating histone acetylation levels. Cell communication analysis suggests that this may be due to the downregulation of signaling pathways such as MSTN and TGFβ. Overall, multiple pathways are highlighted through which SYISL influences embryonic muscle development, offering valuable insights for treating muscle diseases and improving livestock production.
Collapse
Affiliation(s)
- Hao Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Wei Jiang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Jianwei Gao
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Zhibo Ma
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Chen Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Yaxin Peng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Xizhen Zhan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Wei Lv
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Xiao Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Jingjing Hu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Mengdi Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Yiming Jia
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Department of Basic Veterinary MedicineCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Junming Tang
- Hubei Key Laboratory of Embryonic Stem Cell ResearchSchool of Basic Medicine ScienceHubei University of MedicineShiyan442000China
| | - Rong Zheng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| |
Collapse
|
11
|
Du H, Zhuo Y, Lu S, Li W, Zhou L, Sun F, Liu G, Liu JF. Pangenome Reveals Gene Content Variations and Structural Variants Contributing to Pig Characteristics. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae081. [PMID: 39535885 PMCID: PMC12017589 DOI: 10.1093/gpbjnl/qzae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Pigs are one of the most essential sources of high-quality proteins in human diets. Structural variants (SVs) are a major source of genetic variants associated with diverse traits and evolutionary events. However, the current linear reference genome of pigs restricts the accurate presentation of position information for SVs. In this study, we generated a pangenome of pigs and a genome variation map of 599 deeply sequenced genomes across Eurasia. Additionally, we established a section-wide gene repertoire, revealing that core genes are more evolutionarily conserved than variable genes. Furthermore, we identified 546,137 SVs, their enrichment regions, and relationships with genomic features and found significant divergence across Eurasian pigs. More importantly, the pangenome-detected SVs could complement heritability estimates and genome-wide association studies based only on single nucleotide polymorphisms. Among the SVs shaped by selection, we identified an insertion in the promoter region of the TBX19 gene, which may be related to the development, growth, and timidity traits of Asian pigs and may affect the gene expression. The constructed pig pangenome and the identified SVs in this study provide rich resources for future functional genomic research on pigs.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yue Zhuo
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shiyu Lu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wanying Li
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Zhou
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feizhou Sun
- National Animal Husbandry Service, Beijing 100125, China
| | - Gang Liu
- National Animal Husbandry Service, Beijing 100125, China
| | - Jian-Feng Liu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Wang S, Kong F, Dai D, Li C, Hao Y, Wang E, Cao Z, Wang Y, Wang W, Li S. Deterministic succession patterns in the rumen and fecal microbiome associate with host metabolic shifts in peripartum dairy cattle. Gigascience 2025; 14:giaf042. [PMID: 40388308 PMCID: PMC12087452 DOI: 10.1093/gigascience/giaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Metabolic disorders in peripartum ruminants affect health and productivity, with gut microbiota playing a key role in host metabolism. Therefore, our study aimed to characterize the gut microbiota of peripartum dairy cows to better understand the relationship between metabolic phenotypes and the rumen and fecal microbiomes during the peripartum period. RESULTS In a longitudinal study of 91 peripartum cows, we analyzed rumen and fecal microbiomes via 16S rRNA and metagenomic sequencing across six time points. By using enterotype classification, ecological model, and random forest analysis, we identified distinct deterministic succession patterns in the rumen and fecal microbiomes (rumen: rapid transition-transition-stable; hindgut: stable-transition-stable). Key microbes, such as Succiniclasticum and Bifidobacterium, were found to drive microbial succession by balancing stochastic and deterministic processes. Notably, we observed that changes in gut microbiota succession patterns significantly influenced metabolic phenotypes (e.g., serum non-esterified fatty acid, glucose, and insulin levels). Mediation analysis suggested that specific gut microbes (e.g., Prevotella sp900315525 in the rumen and Alistipes sp015059845 in the hindgut) and metabolic pathways (e.g., glucose-related pathway) were associated with host metabolic phenotypes. CONCLUSIONS Overall, utilizing a large gut microbiome dataset and enterotype- and ecological model-based microbiome analyses, we comprehensively elucidated the succession and assembly of the gut microbiota in peripartum dairy cows. We further confirmed that changes in gut microbiota succession patterns were significantly related to the metabolic phenotypes of peripartum dairy cows. These findings provide valuable insights for developing health management strategies for peripartum ruminants.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fanlin Kong
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dongwen Dai
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chen Li
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yangyi Hao
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Erdan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Hu J, Gui L, Wu Z, Huang L. Construction of the porcine genome mobile element variations and investigation of its role in population diversity and gene expression. J Anim Sci Biotechnol 2024; 15:162. [PMID: 39627810 PMCID: PMC11616153 DOI: 10.1186/s40104-024-01121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Mobile element variants (MEVs) have a significant and complex impact on genomic diversity and phenotypic traits. However, the quantity, distribution, and relationship with gene expression and complex traits of MEVs in the pig genome remain poorly understood. RESULTS We constructed the most comprehensive porcine MEV library based on high-depth whole genome sequencing (WGS) data from 747 pigs across 59 breeds worldwide. This database identified a total of 147,993 polymorphic MEVs, including 121,099 short interspersed nuclear elements (SINEs), 26,053 long interspersed nuclear elements (LINEs), 802 long terminal repeats (LTRs), and 39 other transposons, among which 54% are newly discovered. We found that MEVs are unevenly distributed across the genome and are strongly influenced by negative selection effects. Importantly, we identified 514, 530, and 584 candidate MEVs associated with population differentiation, domestication, and breed formation, respectively. For example, a significantly differentiated MEV is located in the ATRX intron between Asian and European pigs, whereas ATRX is also differentially expressed between Asian and European pigs in muscle tissue. In addition, we identified 4,169 expressed MEVs (eMEVs) significantly associated with gene expression and 6,914 splicing MEVs (sMEVs) associated with gene splicing based on RNA-seq data from 266 porcine liver tissues. These eMEVs and sMEVs explain 6.24% and 9.47%, respectively, of the observed cis-heritability and highlight the important role of MEVs in the regulation of gene expression. Finally, we provide a high-quality SNP-MEV reference haplotype panel to impute MEV genotypes from genome-wide SNPs. Notably, we identified a candidate MEV significantly associated with total teat number, demonstrating the functionality of this reference panel. CONCLUSIONS The present investigation demonstrated the importance of MEVs in pigs in terms of population diversity, gene expression and phenotypic traits, which may provide useful resources and theoretical support for pig genetics and breeding.
Collapse
Affiliation(s)
- Jianchao Hu
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Lu Gui
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Zhongzi Wu
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, People's Republic of China.
| | - Lusheng Huang
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, People's Republic of China.
| |
Collapse
|
14
|
Han Y, He J, Li M, Peng Y, Jiang H, Zhao J, Li Y, Deng F. Unlocking the Potential of Metagenomics with the PacBio High-Fidelity Sequencing Technology. Microorganisms 2024; 12:2482. [PMID: 39770685 PMCID: PMC11728442 DOI: 10.3390/microorganisms12122482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Traditional methods for studying microbial communities have been limited due to difficulties in culturing and sequencing all microbial species. Recent advances in third-generation sequencing technologies, particularly PacBio's high-fidelity (HiFi) sequencing, have significantly advanced metagenomics by providing accurate long-read sequences. This review explores the role of HiFi sequencing in overcoming the limitations of previous sequencing methods, including high error rates and fragmented assemblies. We discuss the benefits and applications of HiFi sequencing across various environments, such as the human gut and soil, which provides broader context for further exploration. Key studies are discussed to highlight HiFi sequencing's ability to recover complete and coherent microbial genomes from complex microbiomes, showcasing its superior accuracy and continuity compared to other sequencing technologies. Additionally, we explore the potential applications of HiFi sequencing in quantitative microbial analysis, as well as the detection of single nucleotide variations (SNVs) and structural variations (SVs). PacBio HiFi sequencing is establishing a new benchmark in metagenomics, with the potential to significantly enhance our understanding of microbial ecology and drive forward advancements in both environmental and clinical applications.
Collapse
Affiliation(s)
- Yanhua Han
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.H.); (J.H.); (M.L.); (H.J.); (Y.L.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jinling He
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.H.); (J.H.); (M.L.); (H.J.); (Y.L.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Minghui Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.H.); (J.H.); (M.L.); (H.J.); (Y.L.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yunjuan Peng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.P.); (J.Z.)
| | - Hui Jiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.H.); (J.H.); (M.L.); (H.J.); (Y.L.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jiangchao Zhao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.P.); (J.Z.)
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.H.); (J.H.); (M.L.); (H.J.); (Y.L.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.H.); (J.H.); (M.L.); (H.J.); (Y.L.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
15
|
Fu Y, Cheng Y, Ma L, Zhou Q. Longitudinal Microbiome Investigations Reveal Core and Growth-Associated Bacteria During Early Life Stages of Scylla paramamosain. Microorganisms 2024; 12:2457. [PMID: 39770661 PMCID: PMC11678816 DOI: 10.3390/microorganisms12122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
In animals, growth and development are strongly correlated with the gut microbiota. The gut of the economically important marine crab (Scylla paramamosain) harbors a diverse microbial community, yet its associations with the surrounding environment, growth performance, and developmental stages remain obscure. In this study, we first characterized stage-specific microbiomes and shifts in the contributions of live feed and water via SourceTracker. We observed decreased microbial diversity and increased priority effects along zoea stages. Psychobacter was identified as the core genus, whereas Lactobacillus was the hub genus connecting different stages. Second, microbial correlations with various stage-specific growth traits were observed under interventions generating enhanced (probiotic mixture enrichment), normal (control), and reduced (antibiotic treatment) microbiomes. By combining machine learning regression and bioinformatics analysis, we identified four candidate growth performance-associated probiotics belonging to Rhodobacterales, Sulfitobacter, Confluentimicrobium, and Lactobacillus, respectively. Our study interpreted the dynamics and origins of the Scylla paramamosain zoea microbiome and underscored the importance of optimizing potential probiotics to increase growth performance during early life stages in marine invertebrates for effective larviculture.
Collapse
Affiliation(s)
- Yin Fu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China
| | - Yongxu Cheng
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China;
| | - Lingbo Ma
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
16
|
Du H, Zhou L, Liu Z, Zhuo Y, Zhang M, Huang Q, Lu S, Xing K, Jiang L, Liu JF. The 1000 Chinese Indigenous Pig Genomes Project provides insights into the genomic architecture of pigs. Nat Commun 2024; 15:10137. [PMID: 39578420 PMCID: PMC11584710 DOI: 10.1038/s41467-024-54471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Pigs play a central role in human livelihoods in China, but a lack of systematic large-scale whole-genome sequencing of Chinese domestic pigs has hindered genetic studies. Here, we present the 1000 Chinese Indigenous Pig Genomes Project sequencing dataset, comprising 1011 indigenous individuals from 50 pig populations covering approximately two-thirds of China's administrative divisions. Based on the deep sequencing (~25.95×) of these pigs, we identify 63.62 million genomic variants, and provide a population-specific reference panel to improve the imputation performance of Chinese domestic pig populations. Using a combination of methods, we detect an ancient admixture event related to a human immigration climax in the 13th century, which may have contributed to the formation of southeast-central Chinese pig populations. Analyzing the haplotypes of the Y chromosome shows that the indigenous populations residing around the Taihu Lake Basin exhibit a unique haplotype. Furthermore, we find a 13 kb region in the THSD7A gene that may relate to high-altitude adaptation, and a 0.47 Mb region on chromosome 7 that is significantly associated with body size traits. These results highlight the value of our genomic resource in facilitating genomic architecture and complex traits studies in pigs.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei Zhou
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Liu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Zhuo
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meilin Zhang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianqian Huang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyu Lu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Xing
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li Jiang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Feng Liu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
17
|
Zhao J, Zhao W, Dong J, Zhang H, Yang K, Gao S, Feng W, Song Y, Qi M, He X. Integrative analysis of metabolites and microbial diversity revealed metabolic mechanism of coarse feeding tolerance in Songliao Black sows during gestation. Front Microbiol 2024; 15:1484134. [PMID: 39629212 PMCID: PMC11611567 DOI: 10.3389/fmicb.2024.1484134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
Dietary fiber is a key nutritional regulatory factor that has been studied intensively for its role in improving reproduction in sows during gestation. However, the metabolic mechanism underlying the effect of interactions between metabolites and gut microbes on coarse feeding tolerance in indigenous sows remains to be elucidated. Therefore, the present study aimed to investigate the effects of dietary supplementation with alfalfa at different content ratios on the reproductive performance of pregnant Songliao Black sows. In total, 40 Songliao Black sows at 30 days of gestation were allocated to four treatments, which received the following diets: (1) a corn-soybean meal basal diet with no alfalfa meal (CON group), (2) a corn-soybean meal basal diet +10% alfalfa meal (Treatment 1 group), (3) a corn-soybean meal basal diet +20% alfalfa meal (Treatment 2 group), and (4) a corn-soybean meal basal diet +30% alfalfa meal (Treatment 3 group). Untargeted metabolomics, 16S rDNA sequencing, and enzyme-linked immunosorbent assay (ELISA) were performed to determine the possible effects of metabolites, the microbial communities in fecal samples and their functional potential, and the effects of dietary fiber on serum biochemical parameters, oxidative stress, and reproductive hormones in Songliao Black sows during gestation. The results revealed that the meals with 10 and 20% alfalfa had a beneficial effect on sows in terms of improving the reproductive performance of these sows. Bacterial 16S rDNA sequencing of the fecal samples revealed that the 10% alfalfa meal group had a higher α-diversity and higher abundance of probiotics. Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria were revealed as the most abundant groups at the phylum level and Lactobacillus, Prevotella, Ruminococcus, Streptococcus, and Clostridium were the most abundant at the genus level in the sows fed with diets containing higher fiber levels. A total of 239 differential metabolites were identified in the sows fed with alfalfa meals. These metabolites were enriched mainly in the cAMP signaling pathway, biosynthesis of amino acids, and steroid biosynthesis. Pearson correlation analysis revealed significant positive correlations between Blautia and Daizein, Fibrobacter and 5-alpha-Cholestanone, Sphaerochaeta, Sutterella, and Metaraminol. Negative correlations were revealed between Sphaerochaeta and Erucic acid, Prevotellaceae and Harmaline, and Streptococcus and 5-alpha-Cholestanone. Collectively, these findings provide novel insights into the application of dietary fiber in sow diets.
Collapse
Affiliation(s)
- Jinbo Zhao
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Wenjiang Zhao
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Jiaqiang Dong
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Hong Zhang
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Kun Yang
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Shengyue Gao
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Wanyu Feng
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Yan Song
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Meiyu Qi
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Haerbin, China
| | - Xinmiao He
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Haerbin, China
| |
Collapse
|
18
|
Lu Z, Zhang T, Zhao Y, Pang Y, Guo M, Zhu X, Li Y, Li Z. The influence of host genotype and gut microbial interactions on feed efficiency traits in pigs. Front Microbiol 2024; 15:1459773. [PMID: 39606106 PMCID: PMC11599184 DOI: 10.3389/fmicb.2024.1459773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Feed efficiency and growth performance are economically important traits in pigs. Precious studies have been revealed that both genetics and gut microbes could influence host phenotypes, however, the mechanisms by which they affect pig growth and feed efficiency remain poorly understood. In this study, 361 crossbred Duroc × (Landrace × Yorkshire) commercial pigs were genotyped using GeneSeek Porcine SNP50K BeadChip, and the microbiotas from fecal samples were acquired using microbial 16S rRNA gene sequencing technology to investigate the impact of host genetics and gut microorganisms on growth and feed efficiency. The results showed that the heritability and enterobacterial force ranged from 0.27 to 0.46 and 0 to 0.03, respectively. Genome-wide association studies (GWAS) identified seven significant SNPs to be associated with growth and feed efficiency, and several genes, including AIF1L, ASS1, and QRFP were highlighted as candidates for the analyzed traits. Additionally, microbiome-genome-wide association studies GWAS revealed potential links between CCAR2, EGR3, GSTM3, and GPR61 genes and the abundance of microorganisms, such as Trueperella, Victivallis, and Erysipelatoclostridium. In addition, six microbial genera linked to growth and feed efficiency were identified as follows Lachnospiraceae_UCG-005, Prevotellaceae_UCG-003, Prevotellaceae_NK3B31_group, Prevotella_1, Prevotella_9, and Veillonella. Our findings provide novel insights into the factors influencing host phenotypic complexity and identify potential microbial targets for enhancing pig feed efficiency through selective breeding. This could aid in the development of strategies to manipulate the gut microbiota to optimize growth rates and feed efficiency in pig breeding.
Collapse
Affiliation(s)
- Zhuoda Lu
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Tao Zhang
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Yunxiang Zhao
- Guangxi Yangxiang Co., Ltd., Guigang, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanqin Pang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Meng Guo
- Guangxi Yangxiang Co., Ltd., Guigang, China
| | - Xiaoping Zhu
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Ying Li
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Zhili Li
- School of Animal Science and Technology, Foshan University, Foshan, China
| |
Collapse
|
19
|
Zhang C, Liu H, Jiang X, Zhang Z, Hou X, Wang Y, Wang D, Li Z, Cao Y, Wu S, Huws SA, Yao J. An integrated microbiome- and metabolome-genome-wide association study reveals the role of heritable ruminal microbial carbohydrate metabolism in lactation performance in Holstein dairy cows. MICROBIOME 2024; 12:232. [PMID: 39529146 PMCID: PMC11555892 DOI: 10.1186/s40168-024-01937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Despite the growing number of studies investigating the connection between host genetics and the rumen microbiota, there remains a dearth of systematic research exploring the composition, function, and metabolic traits of highly heritable rumen microbiota influenced by host genetics. Furthermore, the impact of these highly heritable subsets on lactation performance in cows remains unknown. To address this gap, we collected and analyzed whole-genome resequencing data, rumen metagenomes, rumen metabolomes and short-chain fatty acids (SCFAs) content, and lactation performance phenotypes from a cohort of 304 dairy cows. RESULTS The results indicated that the proportions of highly heritable subsets (h2 ≥ 0.2) of the rumen microbial composition (55%), function (39% KEGG and 28% CAZy), and metabolites (18%) decreased sequentially. Moreover, the highly heritable microbes can increase energy-corrected milk (ECM) production by reducing the rumen acetate/propionate ratio, according to the structural equation model (SEM) analysis (CFI = 0.898). Furthermore, the highly heritable enzymes involved in the SCFA synthesis metabolic pathway can promote the synthesis of propionate and inhibit the acetate synthesis. Next, the same significant SNP variants were used to integrate information from genome-wide association studies (GWASs), microbiome-GWASs, metabolome-GWASs, and microbiome-wide association studies (mWASs). The identified single nucleotide polymorphisms (SNPs) of rs43470227 and rs43472732 on SLC30A9 (Zn2+ transport) (P < 0.05/nSNPs) can affect the abundance of rumen microbes such as Prevotella_sp., Prevotella_sp._E15-22, Prevotella_sp._E13-27, which have the oligosaccharide-degradation enzymes genes, including the GH10, GH13, GH43, GH95, and GH115 families. The identified SNPs of chr25:11,177 on 5s_rRNA (small ribosomal RNA) (P < 0.05/nSNPs) were linked to ECM, the abundance alteration of Pseudobutyrivibrio_sp. (a genus that was also showed to be linked to the ECM production via the mWASs analysis), GH24 (lysozyme), and 9,10,13-TriHOME (linoleic acid metabolism). Moreover, ECM, and the abundances of Pseudobutyrivibrio sp., GH24, and 9,10,13-TRIHOME were significantly greater in the GG genotype than in the AG genotype at chr25:11,177 (P < 0.05). By further the SEM analysis, GH24 was positively correlated with Pseudobutyrivibrio sp., which was positively correlated with 9,10,13-triHOME and subsequently positively correlated with ECM (CFI = 0.942). CONCLUSION Our comprehensive study revealed the distinct heritability patterns of rumen microbial composition, function, and metabolism. Additionally, we shed light on the influence of host SNP variants on the rumen microbes with carbohydrate metabolism and their subsequent effects on lactation performance. Collectively, these findings offer compelling evidence for the host-microbe interactions, wherein cows actively modulate their rumen microbiota through SNP variants to regulate their own lactation performance. Video Abstract.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Huifeng Liu
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Xingwei Jiang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Zhihong Zhang
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- JUNLEBAO-Northwest A&F University Cooperation Dairy Research Institute, Leyuan Animal Husbandry, JUNLEBAO Company, Shijiazhuang, Hebei, China
| | - Xinfeng Hou
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- JUNLEBAO-Northwest A&F University Cooperation Dairy Research Institute, Leyuan Animal Husbandry, JUNLEBAO Company, Shijiazhuang, Hebei, China
| | - Yue Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Zongjun Li
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
| | - Sharon A Huws
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
| |
Collapse
|
20
|
Jaroentomeechai T, Karlsson R, Goerdeler F, Teoh FKY, Grønset MN, de Wit D, Chen YH, Furukawa S, Psomiadou V, Hurtado-Guerrero R, Vidal-Calvo EE, Salanti A, Boltje TJ, van den Bos LJ, Wunder C, Johannes L, Schjoldager KT, Joshi HJ, Miller RL, Clausen H, Vakhrushev SY, Narimatsu Y. Mammalian cell-based production of glycans, glycopeptides and glycomodules. Nat Commun 2024; 15:9668. [PMID: 39516489 PMCID: PMC11549445 DOI: 10.1038/s41467-024-53738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Access to defined glycans and glycoconjugates is pivotal for discovery, dissection, and harnessing of a range of biological functions orchestrated by cellular glycosylation processes and the glycome. We previously employed genetic glycoengineering by nuclease-based gene editing to develop sustainable production of designer glycoprotein therapeutics and cell-based glycan arrays that display glycans in their natural context at the cell surface. However, access to human glycans in formats and quantities that allow structural studies of molecular interactions and use of glycans in biomedical applications currently rely on chemical and chemoenzymatic syntheses associated with considerable labor, waste, and costs. Here, we develop a sustainable and scalable method for production of glycans in glycoengineered mammalian cells by employing secreted Glycocarriers with repeat glycosylation acceptor sequence motifs for different glycans. The Glycocarrier technology provides a flexible production platform for glycans in different formats, including oligosaccharides, glycopeptides, and multimeric glycomodules, and offers wide opportunities for use in bioassays and biomedical applications.
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felix Goerdeler
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fallen Kai Yik Teoh
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Nørregaard Grønset
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dylan de Wit
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Venetia Psomiadou
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ramon Hurtado-Guerrero
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Elena Ethel Vidal-Calvo
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Christian Wunder
- Institut Curie, Cellular and Chemical Biology Unit, PSL Research University, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Ludger Johannes
- Institut Curie, Cellular and Chemical Biology Unit, PSL Research University, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- GlycoDisplay ApS, Copenhagen, Denmark.
| |
Collapse
|
21
|
Li G, Zhu D, Cheng C, Chu H, Wei F, Zhang Z. Multi-omics analysis reveals the genetic and environmental factors in shaping the gut resistome of a keystone rodent species. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2459-2470. [PMID: 39235557 DOI: 10.1007/s11427-024-2679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 09/06/2024]
Abstract
Understanding the emergence and spread of antibiotic resistance genes (ARGs) in wildlife is critical for the health of humans and animals from a "One Health" perspective. The gut microbiota serve as a reservoir for ARGs; however, it remains poorly understood how environmental and host genetic factors influence ARGs by affecting the gut microbiota. To elucidate this, we analyzed whole-genome resequencing data from 79 individuals of Brandt's vole in two geographic locations with different antibiotics usage, together with metabolomic data and shotgun sequencing data. A high diversity of ARGs (851 subtypes) was observed in vole's gut, with a large variation in ARG composition between individuals from Xilingol and Hulunbuir in China. The diversity and composition of ARGs were strongly correlated with variations in gut microbiota community structure. Genome-wide association studies revealed that 803 loci were significantly associated (P<5.05×10-9) with 31 bacterial species, and bipartite networks identified 906 bacterial species-ARGs associations. Structural equation modeling analysis showed that host genetic factors, air temperature, and presence of pollutants (Bisphenol A) significantly affected gut microbiota community structure, which eventually regulated the diversity of ARGs. The present study advances our understanding of the complex host-environment interactions that underlie the spread of ARGs in the natural environments.
Collapse
Affiliation(s)
- Guoliang Li
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chaoyuan Cheng
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Fuwen Wei
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Zhou M, Wu J, Wu L, Sun X, Chen C, Huang L. The utilization of N-acetylgalactosamine and its effect on the metabolism of amino acids in Erysipelotrichaceae strain. BMC Microbiol 2024; 24:397. [PMID: 39379811 PMCID: PMC11462708 DOI: 10.1186/s12866-024-03505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The metabolism of gut microbiota produces bioactive metabolites that modulate host physiology and promote self-growth. Erysipelotrichaceae is one of the most common anaerobic microorganism families in the gut, which has been discovered to play a vital role in host metabolic disorders and inflammatory diseases. Our previous study found that N-acetylgalactosamine (GalNAc) in caecal content of pigs significantly affected the abundance of Erysipelotrichaceae strains. However, it remains unknown how GalNAc feeding in vitro culture affects the expression levels of genes in the GalNAc metabolic pathway and the concentrations of intermediate metabolites in the Erysipelotrichaceae strain. Whether GalNAc feeding should influence the metabolism of other nutrients, such as amino acids, remains unrevealed. RESULTS In this study, whole-genome sequence, transcriptome, and metabolome data were analyzed to assess the utilization of a Erysipelotrichaceae strain on GalNAc. The results showed the presence of a complete GalNAc catabolism pathway in the genome of this Erysipelotrichaceae strain. GalNAc feeding to this Erysipelotrichaceae strain significantly changed the expression levels of genes involved in glycolysis and tricarboxylic acid (TCA) cycle. Meanwhile, the concentrations of lactate, pyruvate, citrate, succinate and malate from the glycolysis and TCA cycle were significantly increased. In addition, transcriptome analysis indicated that the genes involved in the metabolism of amino acids were affected by GalNAc, including lysA (a gene involved in lysine biosynthesis) that was significantly down-regulated. The intracellular concentrations of 14 amino acids in the Erysipelotrichaceae strain were significantly increased after feeding GalNAc. CONCLUSIONS Our findings comfirmed and extended our previous works that demonstrated the utilization of GalNAc by Erysipelotrichaceae strain, and explained the possible mechanism of GalNAc affecting the abundance of Erysipelotrichaceae strain in vitro.
Collapse
Affiliation(s)
- Mengqing Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, PR China
| | - Jinyuan Wu
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, PR China
| | - Lin Wu
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, PR China
| | - Xiao Sun
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, PR China
| | - Congying Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, PR China.
| | - Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, PR China.
| |
Collapse
|
23
|
Wang M, Sheng W, Zhang J, Cao Q, Du X, Li Q. A Mutation Losing an RBP-Binding Site in the LncRNA NORSF Transcript Influences Granulosa Cell Apoptosis and Sow Fertility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404747. [PMID: 39120076 PMCID: PMC11516108 DOI: 10.1002/advs.202404747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/14/2024] [Indexed: 08/10/2024]
Abstract
Sow fertility is an economically important quantitative trait. Hundreds of quantitative trait loci (QTLs) containing tens of thousands of potential candidate genes are excavated. However, among these genes, non-coding RNAs including long non-coding RNAs (lncRNAs) are often overlooked. Here, it is reported that NORSF is a novel causal lncRNA for sow fertility traits in QTLs. QTLs are characterized for sow fertility traits at the genome-wide level and identified 4,630 potential candidate lncRNAs, with 13 differentially expressed during sow follicular atresia. NORSF, a lncRNA that involved in sow granulosa cell (sGC) function, is identified as a candidate gene for sow fertility traits as a G to A transversion at 128 nt in its transcript is shown to be markedly associated with sow fertility traits. Mechanistically, after forming the RNA:dsDNA triplexes with the promoter of Caspase8, NORSF transcript with allele G binds to an RNA-binding protein (RBP) NR2C1 and recruits it to the promoter of Caspase8, to induce Caspase8 transcription in sGCs. Functionally, this leads to a loss of inducing effect of NORSF on sGC apoptosis by inactivating the death receptor-mediated apoptotic pathway. This study identified a novel causal lncRNA that can be used for the genetic improvement of sow fertility traits.
Collapse
Affiliation(s)
- Miaomiao Wang
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Wenmin Sheng
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Jiyu Zhang
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Qiuyu Cao
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Xing Du
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Qifa Li
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
24
|
Wang W, Wei Z, Li Z, Ren J, Song Y, Xu J, Liu A, Li X, Li M, Fan H, Jin L, Niyazbekova Z, Wang W, Gao Y, Jiang Y, Yao J, Li F, Wu S, Wang Y. Integrating genome- and transcriptome-wide association studies to uncover the host-microbiome interactions in bovine rumen methanogenesis. IMETA 2024; 3:e234. [PMID: 39429883 PMCID: PMC11487568 DOI: 10.1002/imt2.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 10/22/2024]
Abstract
The ruminal microbiota generates biogenic methane in ruminants. However, the role of host genetics in modifying ruminal microbiota-mediated methane emissions remains mysterious, which has severely hindered the emission control of this notorious greenhouse gas. Here, we uncover the host genetic basis of rumen microorganisms by genome- and transcriptome-wide association studies with matched genome, rumen transcriptome, and microbiome data from a cohort of 574 Holstein cattle. Heritability estimation revealed that approximately 70% of microbial taxa had significant heritability, but only 43 genetic variants with significant association with 22 microbial taxa were identified through a genome-wide association study (GWAS). In contrast, the transcriptome-wide association study (TWAS) of rumen microbiota detected 28,260 significant gene-microbe associations, involving 210 taxa and 4652 unique genes. On average, host genetic factors explained approximately 28% of the microbial abundance variance, while rumen gene expression explained 43%. In addition, we highlighted that TWAS exhibits a strong advantage in detecting gene expression and phenotypic trait associations in direct effector organs. For methanogenic archaea, only one significant signal was detected by GWAS, whereas the TWAS obtained 1703 significant associated host genes. By combining multiple correlation analyses based on these host TWAS genes, rumen microbiota, and volatile fatty acids, we observed that substrate hydrogen metabolism is an essential factor linking host-microbe interactions in methanogenesis. Overall, these findings provide valuable guidelines for mitigating methane emissions through genetic regulation and microbial management strategies in ruminants.
Collapse
Affiliation(s)
- Wei Wang
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Zhenyu Wei
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Zhuohui Li
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Jianrong Ren
- Department of Animal Nutrition and Environmental HealthCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Yanliang Song
- Department of Clinical VeterinaryCollege of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Jingyi Xu
- Department of Animal Nutrition and Environmental HealthCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Anguo Liu
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xinmei Li
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Manman Li
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Huimei Fan
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Liangliang Jin
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Zhannur Niyazbekova
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Wen Wang
- School of Ecology and EnvironmentFaculty of Life Sciences and MedicineNorthwestern Polytechnical UniversityXi'anChina
| | - Yuanpeng Gao
- Department of Clinical VeterinaryCollege of Veterinary MedicineNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| | - Yu Jiang
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| | - Junhu Yao
- Department of Animal Nutrition and Environmental HealthCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| | - Fuyong Li
- Department of Animal Science and TechnologyCollege of Animal SciencesZhejiang UniversityHangzhouChina
| | - Shengru Wu
- Department of Animal Nutrition and Environmental HealthCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| | - Yu Wang
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
25
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
26
|
Bolner M, Bovo S, Ballan M, Schiavo G, Taurisano V, Ribani A, Bertolini F, Fontanesi L. A comprehensive atlas of nuclear sequences of mitochondrial origin (NUMT) inserted into the pig genome. Genet Sel Evol 2024; 56:64. [PMID: 39285356 PMCID: PMC11403998 DOI: 10.1186/s12711-024-00930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/26/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND The integration of nuclear mitochondrial DNA (mtDNA) into the mammalian genomes is an ongoing, yet rare evolutionary process that produces nuclear sequences of mitochondrial origin (NUMT). In this study, we identified and analysed NUMT inserted into the pig (Sus scrofa) genome and in the genomes of a few other Suinae species. First, we constructed a comparative distribution map of NUMT in the Sscrofa11.1 reference genome and in 22 other assembled S. scrofa genomes (from Asian and European pig breeds and populations), as well as the assembled genomes of the Visayan warty pig (Sus cebifrons) and warthog (Phacochoerus africanus). We then analysed a total of 485 whole genome sequencing datasets, from different breeds, populations, or Sus species, to discover polymorphic NUMT (inserted/deleted in the pig genome). The insertion age was inferred based on the presence or absence of orthologous NUMT in the genomes of different species, taking into account their evolutionary divergence. Additionally, the age of the NUMT was calculated based on sequence degradation compared to the authentic mtDNA sequence. We also validated a selected set of representative NUMT via PCR amplification. RESULTS We have constructed an atlas of 418 NUMT regions, 70 of which were not present in any assembled genomes. We identified ancient NUMT regions (older than 55 million years ago, Mya) and NUMT that appeared at different time points along the Suinae evolutionary lineage. We identified very recent polymorphic NUMT (private to S. scrofa, with < 1 Mya), and more ancient polymorphic NUMT (3.5-10 Mya) present in various Sus species. These latest polymorphic NUMT regions, which segregate in European and Asian pig breeds and populations, are likely the results of interspecies admixture within the Sus genus. CONCLUSIONS This study provided a first comprehensive analysis of NUMT present in the Sus scrofa genome, comparing them to NUMT found in other species within the order Cetartiodactyla. The NUMT-based evolutionary window that we reconstructed from NUMT integration ages could be useful to better understand the micro-evolutionary events that shaped the modern pig genome and enriched the genetic diversity of this species.
Collapse
Affiliation(s)
- Matteo Bolner
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Samuele Bovo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Mohamad Ballan
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Giuseppina Schiavo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Valeria Taurisano
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Anisa Ribani
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Francesca Bertolini
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Luca Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
27
|
Zhang W, Lan F, Zhou Q, Gu S, Li X, Wen C, Yang N, Sun C. Host genetics and gut microbiota synergistically regulate feed utilization in egg-type chickens. J Anim Sci Biotechnol 2024; 15:123. [PMID: 39245742 PMCID: PMC11382517 DOI: 10.1186/s40104-024-01076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/14/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Feed efficiency is a crucial economic trait in poultry industry. Both host genetics and gut microbiota influence feed efficiency. However, the associations between gut microbiota and host genetics, as well as their combined contributions to feed efficiency in laying hens during the late laying period, remain largely unclear. METHODS In total, 686 laying hens were used for whole-genome resequencing and liver transcriptome sequencing. 16S rRNA gene sequencing was conducted on gut chyme (duodenum, jejunum, ileum, and cecum) and fecal samples from 705 individuals. Bioinformatic analysis was performed by integrating the genome, transcriptome, and microbiome to screen for key genetic variations, genes, and gut microbiota associated with feed efficiency. RESULTS The heritability of feed conversion ratio (FCR) and residual feed intake (RFI) was determined to be 0.28 and 0.48, respectively. The ileal and fecal microbiota accounted for 15% and 10% of the FCR variance, while the jejunal, cecal, and fecal microbiota accounted for 20%, 11%, and 10% of the RFI variance. Through SMR analysis based on summary data from liver eQTL mapping and GWAS, we further identified four protein-coding genes, SUCLA2, TNFSF13B, SERTM1, and MARVELD3, that influence feed efficiency in laying hens. The SUCLA2 and TNFSF13B genes were significantly associated with SNP 1:25664581 and SNP rs312433097, respectively. SERTM1 showed significant associations with rs730958360 and 1:33542680 and is a potential causal gene associated with the abundance of Corynebacteriaceae in feces. MARVELD3 was significantly associated with the 1:135348198 and was significantly correlated with the abundance of Enterococcus in ileum. Specifically, a lower abundance of Enterococcus in ileum and a higher abundance of Corynebacteriaceae in feces were associated with better feed efficiency. CONCLUSIONS This study confirms that both host genetics and gut microbiota can drive variations in feed efficiency. A small portion of the gut microbiota often interacts with host genes, collectively enhancing feed efficiency. Therefore, targeting both the gut microbiota and host genetic variation by supporting more efficient taxa and selective breeding could improve feed efficiency in laying hens during the late laying period.
Collapse
Affiliation(s)
- Wenxin Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Fangren Lan
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaochang Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Hu Z, Yao Y, Chen F, Feng L, Yuan Z, Deng J, Huang L, Yin Y, Tang X. Integrated analyses of the intestinal microbiome and transcriptome in Ningxiang piglets. Genomics 2024; 116:110919. [PMID: 39147334 DOI: 10.1016/j.ygeno.2024.110919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Ningxiang (NX) pig has been recognized as one of the most famous Chinese indigenous breeds due to its characteristics in stress resistance. However, intestinal microbial feature and gene profiling in NX piglets have not been studied. Here, we compared the intestinal microbiome and transcriptome between NX and Duroc × Landrace × Large white (DLY) piglets and found the high enrichment of several colonic Bacteroides, Prevotella and Clostridium species in NX piglets. Further functional analyses revealed their predominant function in methane, glycolysis and gluconeogenesis metabolism. Our mRNA-sequencing data unraveled the distinct colonic gene expression between these two breeds. In particular, we showed that the improved intestinal function in NX piglets may be determined by enhanced intestinal barrier gene expression and varied immune gene expression through modulating the composition of the gut microbes. Together, our study revealed the intestinal characteristics of NX piglets, providing their potential application in improving breeding strategies and developing dietary interventions.
Collapse
Affiliation(s)
- Zhenguo Hu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| | - Yuezhou Yao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Feiyue Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Luya Feng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zian Yuan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junhao Deng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lang Huang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China; Yuelushan Laboratory, Changsha, Hunan, 410128, China.
| |
Collapse
|
29
|
Mi J, Jing X, Ma C, Yang Y, Li Y, Zhang Y, Long R, Zheng H. Massive expansion of the pig gut virome based on global metagenomic mining. NPJ Biofilms Microbiomes 2024; 10:76. [PMID: 39209853 PMCID: PMC11362615 DOI: 10.1038/s41522-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The pig gut virome plays a vital role in the gut microbial ecosystem of pigs. However, a comprehensive understanding of their diversity and a reference database for the virome are currently lacking. To address this gap, we established a Pig Virome Database (PVD) that comprised of 5,566,804 viral contig sequences from 4650 publicly available gut metagenomic samples using a pipeline designated "metav". By clustering sequences, we identified 48,299 viral operational taxonomic units (vOTUs) genomes of at least medium quality, of which 92.83% of which were not found in existing major databases. The majority of vOTUs were identified as Caudoviricetes (72.21%). The PVD database contained a total of 2,362,631 protein-coding genes across the above medium-quality vOTUs genomes that can be used to explore the functional potential of the pig gut virome. These findings highlight the extensive diversity of viruses in the pig gut and provide a pivotal reference dataset for forthcoming research concerning the pig gut virome.
Collapse
Affiliation(s)
- Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, China.
| | - Xiaoping Jing
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, China
| | | | - Yiwen Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yong Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yu Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ruijun Long
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, China.
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
30
|
Wang W, Ge Q, Wen J, Zhang H, Guo Y, Li Z, Xu Y, Ji D, Chen C, Guo L, Xu M, Shi C, Fan G, Xie C. Horizontal gene transfer and symbiotic microorganisms regulate the adaptive evolution of intertidal algae, Porphyra sense lato. Commun Biol 2024; 7:976. [PMID: 39128935 PMCID: PMC11317521 DOI: 10.1038/s42003-024-06663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Intertidal algae may adapt to environmental challenges by acquiring genes from other organisms and relying on symbiotic microorganisms. Here, we obtained a symbiont-free and chromosome-level genome of Pyropia haitanensis (47.2 Mb), a type of intertidal algae, by using multiple symbiont screening methods. We identified 286 horizontal gene transfer (HGT) genes, 251 of which harbored transposable elements (TEs), reflecting the importance of TEs for facilitating the transfer of genes into P. haitanensis. Notably, the bulked segregant analysis revealed that two HGT genes, sirohydrochlorin ferrochelatase and peptide-methionine (R)-S-oxide reductase, play a significant role in the adaptation of P. haitanensis to heat stress. Besides, we found Pseudomonas, Actinobacteria, and Bacteroidetes are the major taxa among the symbiotic bacteria of P. haitanensis (nearly 50% of the HGT gene donors). Among of them, a heat-tolerant actinobacterial strain (Saccharothrix sp.) was isolated and revealed to be associated with the heat tolerance of P. haitanensis through its regulatory effects on the genes involved in proline synthesis (proC), redox homeostasis (ggt), and protein folding (HSP20). These findings contribute to our understanding of the adaptive evolution of intertidal algae, expanding our knowledge of the HGT genes and symbiotic microorganisms to enhance their resilience and survival in challenging intertidal environments.
Collapse
Affiliation(s)
- Wenlei Wang
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Qijin Ge
- BGI Research, Qingdao, 266555, China
| | - Jian Wen
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Han Zhang
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Yanling Guo
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Zongtang Li
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Changsheng Chen
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | | | | | - Chengcheng Shi
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, 361021, China.
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China.
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| |
Collapse
|
31
|
Zhang S, Zhang H, Zhang C, Wang G, Shi C, Li Z, Gao F, Cui Y, Li M, Yang G. Composition and evolutionary characterization of the gut microbiota in pigs. Int Microbiol 2024; 27:993-1008. [PMID: 37982990 PMCID: PMC11300507 DOI: 10.1007/s10123-023-00449-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The intestinal microbiota plays significant role in the physiology and functioning of host organisms. However, there is limited knowledge of the composition and evolution of microbiota-host relationships from wild ancestors to modern domesticated species. In this study, the 16S rRNA gene V3-V4 in the intestinal contents of different pig breeds was analyzed and was compared using high-throughput sequencing. This identified 18 323 amplicon sequence variants, of which the Firmicutes and Actinobacteria phyla and Bifidobacterium and Allobaculum genera were most prevalent in wild pigs (WP). In contrast, Proteobacteria and Firmicutes predominated in Chinese Shanxi Black pigs (CSB), while Firmicutes were the most prevalent phylum in Large White pigs (LW) and Iberian pigs (IB), followed by Bacteroidetes in IB and Proteobacteria in LW. At the genus level, Shigella and Lactobacillus were most prevalent in CSB and LW, while Actinobacillus and Sarcina predominated in IB. Differential gene expression together with phylogenetic and functional analyses indicated significant differences in the relative abundance of microbial taxa between different pig breeds. Although many microbial taxa were common to both wild and domestic pigs, significant diversification was observed in bacterial genes that potentially influence host phenotypic traits. Overall, these findings suggested that both the composition and functions of the microbiota were closely associated with domestication and the evolutionary changes in the host. The members of the microbial communities were vertically transmitted in pigs, with evidence of co-evolution of both the hosts and their intestinal microbial communities. These results enhance our understanding and appreciation of the complex interactions between intestinal microbes and hosts and highlight the importance of applying this knowledge in agricultural and microbiological research.
Collapse
Affiliation(s)
- Shuhong Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Huan Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Cheng Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guan Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Chuanxing Shi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Fengyi Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yanyan Cui
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Guangli Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China.
| |
Collapse
|
32
|
Zhu L, Ma S, He C, Bai L, Tu W, Wu X. Microbial and Metabolic Profiling of Obese and Lean Luchuan Pigs: Implications for Phenotypic Divergence. Animals (Basel) 2024; 14:2111. [PMID: 39061573 PMCID: PMC11273426 DOI: 10.3390/ani14142111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Luchuan (LC) pigs are a Chinese breed renowned for their distinctive black and white coloring, superior meat quality and rapid reproduction, but their growth rate is slow. Over the course of approximately two decades of controlled breeding, the LC pigs maintained at the Shanghai Academy of Agricultural Sciences (Shanghai, China) have diverged into two phenotypes: one characterized by obesity (FLC) and the other by leanness (LLC). Recent studies indicate a correlation between microorganisms and the differentiation of host phenotypes. In this study, we examined the fecal microbiota profiles and serum metabolites of FLC and LLC pigs. The body weight, chest circumference, and alanine aminotransferase and aspartate aminotransferase enzyme activities were increased in the FLC pigs compared to the LLC pigs. Conversely, the levels of the Fusobacterium and Streptococcus genera were lower in the FLC pigs, while the number of Firmicutes, Lactobacillus, Phascolartobacterium, and Rikenellaceae_RC9_gut_group members were higher. A total of 52 metabolites were altered between the two groups, with many playing crucial roles in prolactin signaling, oocyte meiosis, and aldosterone-regulated sodium reabsorption pathways. The correlation analyses demonstrated a significant association between the modified microbiota and metabolites and the phenotypic variations observed in the LC pigs. Specifically, Jeotgalicoccus was positively correlated with the body weight and chest circumference, but was negatively correlated with metabolites such as 2-mercaptobenzothiazole and N1-pyrazin-2-yl-4-chlorobenzamide, which were positively associated with Bacteroides. These results provide compelling evidence for a novel relationship between the gut microbiome and metabolome in the phenotypic differentiation of LC pigs.
Collapse
Affiliation(s)
- Lihui Zhu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;
| | - Shengwei Ma
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.M.); (C.H.); (L.B.)
| | - Chuan He
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.M.); (C.H.); (L.B.)
| | - Lan Bai
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.M.); (C.H.); (L.B.)
| | - Weilong Tu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;
| | - Xiao Wu
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.M.); (C.H.); (L.B.)
| |
Collapse
|
33
|
Larzul C, Estellé J, Borey M, Blanc F, Lemonnier G, Billon Y, Thiam MG, Quinquis B, Galleron N, Jardet D, Lecardonnel J, Plaza Oñate F, Rogel-Gaillard C. Driving gut microbiota enterotypes through host genetics. MICROBIOME 2024; 12:116. [PMID: 38943206 PMCID: PMC11214205 DOI: 10.1186/s40168-024-01827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/01/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Population stratification based on interindividual variability in gut microbiota composition has revealed the existence of several ecotypes named enterotypes in humans and various animal species. Enterotypes are often associated with environmental factors including diet, but knowledge of the role of host genetics remains scarce. Moreover, enterotypes harbor functionalities likely associated with varying abilities and susceptibilities of their host. Previously, we showed that under controlled conditions, 60-day-old pig populations consistently split into two enterotypes with either Prevotella and Mitsuokella (PM enterotype) or Ruminococcus and Treponema (RT enterotype) as keystone taxa. Here, our aim was to rely on pig as a model to study the influence of host genetics to assemble enterotypes, and to provide clues on enterotype functional differences and their links with growth traits. RESULTS We established two pig lines contrasted for abundances of the genera pairs specifying each enterotype at 60 days of age and assessed them for fecal microbiota composition and growth throughout three consecutive generations. Response to selection across three generations revealed, per line, an increase in the prevalence of the selected enterotype and in the average relative abundances of directly and indirectly selected bacterial genera. The PM enterotype was found less diverse than the RT enterotype but more efficient for piglet growth during the post-weaning period. Shotgun metagenomics revealed differentially abundant bacterial species between the two enterotypes. By using the KEGG Orthology database, we show that functions related to starch degradation and polysaccharide metabolism are enriched in the PM enterotype, whereas functions related to general nucleoside transport and peptide/nickel transport are enriched in the RT enterotype. Our results also suggest that the PM and RT enterotypes might differ in the metabolism of valine, leucin, and isoleucine, favoring their biosynthesis and degradation, respectively. CONCLUSION We experimentally demonstrated that enterotypes are functional ecosystems that can be selected as a whole by exerting pressure on the host genetics. We also highlight that holobionts should be considered as units of selection in breeding programs. These results pave the way for a holistic use of host genetics, microbiota diversity, and enterotype functionalities to understand holobiont shaping and adaptation. Video Abstract.
Collapse
Grants
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
Collapse
Affiliation(s)
- Catherine Larzul
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, 31326, France.
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France.
| | - Marion Borey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Fany Blanc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Gaëtan Lemonnier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | | | | | - Benoît Quinquis
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, 78350, France
| | | | - Deborah Jardet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Jérôme Lecardonnel
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | | | | |
Collapse
|
34
|
Morishima N, Kamada Y, Ota H, Iwagami Y, Takahashi H, Shimosaka M, Sakon D, Kondo J, Yamada M, Kumada T, Eguchi H, Miyoshi E. Serum levels of the N-terminal fragment of connective tissue growth factor is a novel biomarker for chronic pancreatitis. Pract Lab Med 2024; 40:e00402. [PMID: 38828385 PMCID: PMC11143898 DOI: 10.1016/j.plabm.2024.e00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Chronic inflammation of the pancreas is considered to be one of the causes of pancreatic cancer. However, the diagnosis of chronic pancreatitis (CP) is very difficult in the pancreas, where biopsies are difficult to perform. The prevalence of CP is estimated to be many times more common than in patients with actual symptomatic CP. In recent years, abnormal cleavage of certain proteins has attracted attention as a biomarker for CP other than pancreatic enzymes. Connective tissue growth factor (CTGF) is one of the growth factors involved in tissue repair and other processes and is increased by stimulation of transforming growth factor-β, suggesting a relationship of CTGF with fibrosis. In this study, we measured the total length of CTGF in blood and N-terminal fragment CTGF in 48 cases of chronic pancreatitis, 64 cases of pancreatic cancer and 45 healthy volunteers (HV). Interestingly, we found that blood N-terminal fragment CTGF level was significantly increased in CP and pancreatic cancer patients. Multiple logistic regression analysis showed serum levels of N-terminal fragment CTGF, CRP and amylase were significant and independent variables for the differential diagnosis of CP from HV. Receiver operating characteristic analysis showed that area under the curve (AUC) value of serum N-terminal fragment CTGF level was 0.933, which can differentiate between CP and HV. Several factors would be involved in the increase in serum N-terminal fragment CTGF level. In conclusion, serum N-terminal fragment CTGF level is a promising new biomarker for CP.
Collapse
Affiliation(s)
- Naoki Morishima
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiyori Ota
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Munefumi Shimosaka
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Daisuke Sakon
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jumpei Kondo
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | - Takashi Kumada
- Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, 5-50, Kitagata-cho, Ogaki, 503-8550, Gifu, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
35
|
Wang Z, Li J, Zhao P, Yu Z, Yang L, Ding X, Lv H, Yi S, Sheng Q, Zhang L, Zhou F, Wang H. Integrated microbiome and metabolome analyses reveal the effects of low pH on intestinal health and homeostasis of crayfish (Procambarus clarkii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106903. [PMID: 38503037 DOI: 10.1016/j.aquatox.2024.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Low pH (LpH) poses a significant challenge to the health, immune response, and growth of aquatic animals worldwide. Crayfish (Procambarus clarkii) is a globally farmed freshwater species with a remarkable adaptability to various environmental stressors. However, the effects of LpH stress on the microbiota and host metabolism in crayfish intestines remain poorly understood. In this study, integrated analyses of antioxidant enzyme activity, histopathological damage, 16S rRNA gene sequencing, and liquid chromatography-mass spectrometry (LC-MS) were performed to investigate the physiology, histopathology, microbiota, and metabolite changes in crayfish intestines exposed to LpH treatment. The results showed that LpH stress induced obvious changes in superoxide dismutase and catalase activities and histopathological alterations in crayfish intestines. Furthermore, 16S rRNA gene sequencing analysis revealed that exposure to LpH caused significant alterations in the diversity and composition of the crayfish intestinal microbiota at the phylum and genus levels. At the genus level, 14 genera including Bacilloplasma, Citrobacter, Shewanella, Vibrio, RsaHf231, Erysipelatoclostridium, Anaerorhabdus, Dysgonomonas, Flavobacterium, Tyzzerella, Brachymonas, Muribaculaceae, Propionivibrio, and Comamonas, exhibited significant differences in their relative abundances. The LC-MS analysis revealed 859 differentially expressed metabolites in crayfish intestines in response to LpH, including 363 and 496 upregulated and downregulated metabolites, respectively. These identified metabolites exhibited significant enrichment in 24 Kyoto Encyclopedia of Genes and Genomes pathways (p < 0.05), including seven and 17 upregulated and downregulated pathways, respectively. These pathways are mainly associated with energy and amino acid metabolism. Correlation analysis revealed a strong correlation between the metabolites and intestinal microbiota of crayfish during LpH treatment. These findings suggest that LpH may induce significant oxidative stress, intestinal tissue damage, disruption of intestinal microbiota homeostasis, and alterations in the metabolism in crayfish. These findings provide valuable insights into how the microbial and metabolic processes of crayfish intestines respond to LpH stress.
Collapse
Affiliation(s)
- Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Pengfei Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zaihang Yu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xueyan Ding
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China
| | - He Lv
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - ShaoKui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qiang Sheng
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Fan Zhou
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China.
| | - Hua Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China; Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; Huzhou Key Laboratory of Medical and Environmental Application Technologies, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| |
Collapse
|
36
|
Alagiakrishnan K, Morgadinho J, Halverson T. Approach to the diagnosis and management of dysbiosis. Front Nutr 2024; 11:1330903. [PMID: 38706561 PMCID: PMC11069313 DOI: 10.3389/fnut.2024.1330903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024] Open
Abstract
All microorganisms like bacteria, viruses and fungi that reside within a host environment are considered a microbiome. The number of bacteria almost equal that of human cells, however, the genome of these bacteria may be almost 100 times larger than the human genome. Every aspect of the physiology and health can be influenced by the microbiome living in various parts of our body. Any imbalance in the microbiome composition or function is seen as dysbiosis. Different types of dysbiosis are seen and the corresponding symptoms depend on the site of microbial imbalance. The contribution of the intestinal and extra-intestinal microbiota to influence systemic activities is through interplay between different axes. Whole body dysbiosis is a complex process involving gut microbiome and non-gut related microbiome. It is still at the stage of infancy and has not yet been fully understood. Dysbiosis can be influenced by genetic factors, lifestyle habits, diet including ultra-processed foods and food additives, as well as medications. Dysbiosis has been associated with many systemic diseases and cannot be diagnosed through standard blood tests or investigations. Microbiota derived metabolites can be analyzed and can be useful in the management of dysbiosis. Whole body dysbiosis can be addressed by altering lifestyle factors, proper diet and microbial modulation. The effect of these interventions in humans depends on the beneficial microbiome alteration mostly based on animal studies with evolving evidence from human studies. There is tremendous potential for the human microbiome in the diagnosis, treatment, and prognosis of diseases, as well as, for the monitoring of health and disease in humans. Whole body system-based approach to the diagnosis of dysbiosis is better than a pure taxonomic approach. Whole body dysbiosis could be a new therapeutic target in the management of various health conditions.
Collapse
Affiliation(s)
| | - Joao Morgadinho
- Kaye Edmonton Clinic, Alberta Health Services, Edmonton, AB, Canada
| | - Tyler Halverson
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
37
|
Li X, Liu Q, Fu C, Li M, Li C, Li X, Zhao S, Zheng Z. Characterizing structural variants based on graph-genotyping provides insights into pig domestication and local adaption. J Genet Genomics 2024; 51:394-406. [PMID: 38056526 DOI: 10.1016/j.jgg.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Structural variants (SVs), such as deletions (DELs) and insertions (INSs), contribute substantially to pig genetic diversity and phenotypic variation. Using a library of SVs discovered from long-read primary assemblies and short-read sequenced genomes, we map pig genomic SVs with a graph-based method for re-genotyping SVs in 402 genomes. Our results demonstrate that those SVs harboring specific trait-associated genes may greatly shape pig domestication and local adaptation. Further characterization of SVs reveals that some population-stratified SVs may alter the transcription of genes by affecting regulatory elements. We identify that the genotypes of two DELs (296-bp DEL, chr7: 52,172,101-52,172,397; 278-bp DEL, chr18: 23,840,143-23,840,421) located in muscle-specific enhancers are associated with the expression of target genes related to meat quality (FSD2) and muscle fiber hypertrophy (LMOD2 and WASL) in pigs. Our results highlight the role of SVs in domestic porcine evolution, and the identified candidate functional genes and SVs are valuable resources for future genomic research and breeding programs in pigs.
Collapse
Affiliation(s)
- Xin Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Quan Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chong Fu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengxun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changchun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| | - Zhuqing Zheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, Hubei 448000, China.
| |
Collapse
|
38
|
Ling Z, Li J, Jiang T, Zhang Z, Zhu Y, Zhou Z, Yang J, Tong X, Yang B, Huang L. Omics-based construction of regulatory variants can be applied to help decipher pig liver-related traits. Commun Biol 2024; 7:381. [PMID: 38553586 PMCID: PMC10980749 DOI: 10.1038/s42003-024-06050-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Genetic variants can influence complex traits by altering gene expression through changes to regulatory elements. However, the genetic variants that affect the activity of regulatory elements in pigs are largely unknown, and the extent to which these variants influence gene expression and contribute to the understanding of complex phenotypes remains unclear. Here, we annotate 90,991 high-quality regulatory elements using acetylation of histone H3 on lysine 27 (H3K27ac) ChIP-seq of 292 pig livers. Combined with genome resequencing and RNA-seq data, we identify 28,425 H3K27ac quantitative trait loci (acQTLs) and 12,250 expression quantitative trait loci (eQTLs). Through the allelic imbalance analysis, we validate two causative acQTL variants in independent datasets. We observe substantial sharing of genetic controls between gene expression and H3K27ac, particularly within promoters. We infer that 46% of H3K27ac exhibit a concomitant rather than causative relationship with gene expression. By integrating GWAS, eQTLs, acQTLs, and transcription factor binding prediction, we further demonstrate their application, through metabolites dulcitol, phosphatidylcholine (PC) (16:0/16:0) and published phenotypes, in identifying likely causal variants and genes, and discovering sub-threshold GWAS loci. We provide insight into the relationship between regulatory elements and gene expression, and the genetic foundation for dissecting the molecular mechanism of phenotypes.
Collapse
Affiliation(s)
- Ziqi Ling
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China.
| | - Jing Li
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China
| | - Tao Jiang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China
| | - Zhen Zhang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China
| | - Yaling Zhu
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China
| | - Zhimin Zhou
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China
| | - Jiawen Yang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China
| | - Xinkai Tong
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China
| | - Bin Yang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China.
| | - Lusheng Huang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China.
| |
Collapse
|
39
|
Hu J, Chen J, Ma L, Hou Q, Zhang Y, Kong X, Huang X, Tang Z, Wei H, Wang X, Yan X. Characterizing core microbiota and regulatory functions of the pig gut microbiome. THE ISME JOURNAL 2024; 18:wrad037. [PMID: 38366194 PMCID: PMC10873858 DOI: 10.1093/ismejo/wrad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 02/18/2024]
Abstract
Domestic pigs (Sus scrofa) are the leading terrestrial animals used for meat production. The gut microbiota significantly affect host nutrition, metabolism, and immunity. Hence, characterization of the gut microbial structure and function will improve our understanding of gut microbial resources and the mechanisms underlying host-microbe interactions. Here, we investigated the gut microbiomes of seven pig breeds using metagenomics and 16S rRNA gene amplicon sequencing. We established an expanded gut microbial reference catalog comprising 17 020 160 genes and identified 4910 metagenome-assembled genomes. We also analyzed the gut resistome to provide an overview of the profiles of the antimicrobial resistance genes in pigs. By analyzing the relative abundances of microbes, we identified three core-predominant gut microbes (Phascolarctobacterium succinatutens, Prevotella copri, and Oscillibacter valericigenes) in pigs used in this study. Oral administration of the three core-predominant gut microbes significantly increased the organ indexes (including the heart, spleen, and thymus), but decreased the gastrointestinal lengths in germ-free mice. The three core microbes significantly enhanced intestinal epithelial barrier function and altered the intestinal mucosal morphology, as was evident from the increase in crypt depths in the duodenum and ileum. Furthermore, the three core microbes significantly affected several metabolic pathways (such as "steroid hormone biosynthesis," "primary bile acid biosynthesis," "phenylalanine, tyrosine and tryptophan biosynthesis," and "phenylalanine metabolism") in germ-free mice. These findings provide a panoramic view of the pig gut microbiome and insights into the functional contributions of the core-predominant gut microbes to the host.
Collapse
Affiliation(s)
- Jun Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Jianwei Chen
- BGI Research, Qingdao, Shandong 266555, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Libao Ma
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Qiliang Hou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Yong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Hong Wei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
40
|
Liu HY, Zhu C, Zhu M, Yuan L, Li S, Gu F, Hu P, Chen S, Cai D. Alternatives to antibiotics in pig production: looking through the lens of immunophysiology. STRESS BIOLOGY 2024; 4:1. [PMID: 38163818 PMCID: PMC10758383 DOI: 10.1007/s44154-023-00134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
In the livestock production system, the evolution of porcine gut microecology is consistent with the idea of "The Hygiene Hypothesis" in humans. I.e., improved hygiene conditions, reduced exposure to environmental microorganisms in early life, and frequent use of antimicrobial drugs drive immune dysregulation. Meanwhile, the overuse of antibiotics as feed additives for infectious disease prevention and animal growth induces antimicrobial resistance genes in pathogens and spreads related environmental pollutants. It justifies our attempt to review alternatives to antibiotics that can support optimal growth and improve the immunophysiological state of pigs. In the current review, we first described porcine mucosal immunity, followed by discussions of gut microbiota dynamics during the critical weaning period and the impacts brought by antibiotics usage. Evidence of in-feed additives with immuno-modulatory properties highlighting probiotics, prebiotics, and phytobiotics and their cellular and molecular networking are summarized and reviewed. It may provide insights into the immune regulatory mechanisms of antibiotic alternatives and open new avenues for health management in pig production.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Long Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Fang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China.
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
41
|
Zang X, Sun H, Xue M, Liang S, Guan LL, Liu J. Genotype-associated heritable rumen bacteria can be a stable microbiota passed to the offspring. ISME COMMUNICATIONS 2024; 4:ycad020. [PMID: 38328446 PMCID: PMC10848306 DOI: 10.1093/ismeco/ycad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024]
Abstract
Recent studies have reported that some rumen microbes are "heritable" (those have significant narrow sense heritability) and can significantly contribute to host phenotype variations. However, it is unknown if these heritable rumen bacteria can be passed to the next generation. In this study, the rumen bacteria from mother cows (sampled in 2016) and their offspring (sampled in 2019) were assessed to determine if vertical transmission occurred between the two generations. The analysis of relationship between host genotypes and heritable bacterial abundances showed that potential of five host genotypes can affect the relative abundances of two unclassified species level heritable bacteria (Pseudoscardovia and p-251-o5). The G allele of BTB-01532239 and A allele of ARS-BFGL-NGS-8960 were associated with a higher relative abundance of p-251-o5. The A allele of BTB-00740910 and BovineHD1300021786 and G allele of BovineHD1900005868 were associated with a higher relative abundance of Pseudoscardovia. The mother-offspring comparison revealed that the heritable rumen bacteria had higher compositional similarity than nonheritable bacteria between two generations, and the predicted heritable microbial functions had higher stability than those from nonheritable bacteria. These findings suggest that a high stability exists in heritable rumen bacteria, which could be passed to the next generation in dairy cows.
Collapse
Affiliation(s)
- Xinwei Zang
- Institute of Diary Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huizeng Sun
- Institute of Diary Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingyuan Xue
- Institute of Diary Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shulin Liang
- Institute of Diary Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Present address: Functional Genomics and Animal Microbiome, Faculty of Land and Food Systems, The University of British Columbia, MacMillan Bldg, 2357 Main Mall, Vancouver, BC V6T1Z4, Canada
| | - Jianxin Liu
- Institute of Diary Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
42
|
Zhernakova DV, Wang D, Liu L, Andreu-Sánchez S, Zhang Y, Ruiz-Moreno AJ, Peng H, Plomp N, Del Castillo-Izquierdo Á, Gacesa R, Lopera-Maya EA, Temba GS, Kullaya VI, van Leeuwen SS, Xavier RJ, de Mast Q, Joosten LAB, Riksen NP, Rutten JHW, Netea MG, Sanna S, Wijmenga C, Weersma RK, Zhernakova A, Harmsen HJM, Fu J. Host genetic regulation of human gut microbial structural variation. Nature 2024; 625:813-821. [PMID: 38172637 PMCID: PMC10808065 DOI: 10.1038/s41586-023-06893-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.
Collapse
Affiliation(s)
- Daria V Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Daoming Wang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Lei Liu
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Sergio Andreu-Sánchez
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Yue Zhang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Angel J Ruiz-Moreno
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Haoran Peng
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Niels Plomp
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Ángela Del Castillo-Izquierdo
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Ranko Gacesa
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Esteban A Lopera-Maya
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Godfrey S Temba
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vesla I Kullaya
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Sander S van Leeuwen
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen, The Netherlands
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost H W Rutten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
- Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Serena Sanna
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Cisca Wijmenga
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Rinse K Weersma
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Alexandra Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Hermie J M Harmsen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands.
| | - Jingyuan Fu
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands.
| |
Collapse
|
43
|
Bolner M, Bertolini F, Bovo S, Schiavo G, Fontanesi L. Investigation of ABO Gene Variants across More Than 60 Pig Breeds and Populations and Other Suidae Species Using Whole-Genome Sequencing Datasets. Animals (Basel) 2023; 14:5. [PMID: 38200737 PMCID: PMC10778222 DOI: 10.3390/ani14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Polymorphisms in the human ABO gene determine the major blood classification system based on the three well-known forms: A; B; and O. In pigs that carry only two main alleles in this gene (A and O), we still need to obtain a more comprehensive distribution of variants, which could also impact its function. In this study, we mined more than 500 whole-genome sequencing datasets to obtain information on the ABO gene in different Suidae species, pig breeds, and populations and provide (i) a comprehensive distribution of the A and O alleles, (ii) evolutionary relationships of ABO gene sequences across Suidae species, and (iii) an exploratory evaluation of the effect of the different ABO gene variants on production traits and blood-related parameters in Italian Large White pigs. We confirmed that allele O is likely under balancing selection, present in all Sus species investigated, without being fixed in any of them. We reported a novel structural variant in perfect linkage disequilibrium with allele O that made it possible to estimate the evolutionary time window of occurrence of this functional allele. We also identified two single nucleotide polymorphisms that were suggestively associated with plasma magnesium levels in pigs. Other studies can also be constructed over our results to further evaluate the effect of this gene on economically relevant traits and basic biological functions.
Collapse
Affiliation(s)
| | | | | | | | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (M.B.); (S.B.); (G.S.)
| |
Collapse
|
44
|
He H, Gou Y, Zeng B, Wang R, Yang J, Wang K, Jing Y, Yang Y, Liang Y, Yang Y, Lv X, He Z, Tang Q, Gu Y. Comparative evaluation of the fecal microbiota of adult hybrid pigs and Tibetan pigs, and dynamic changes in the fecal microbiota of hybrid pigs. Front Immunol 2023; 14:1329590. [PMID: 38155960 PMCID: PMC10752980 DOI: 10.3389/fimmu.2023.1329590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023] Open
Abstract
The breed of pig can affect the diversity and composition of fecal microbiota, but there is a lack of research on the fecal microbiota of hybrid pigs. In this study, feces samples from Chuanxiang black pigs (a hybrid of Tibetan and Duroc pigs) aged 3 days (n = 24), 70 days (n = 31), 10 months (n = 13) and 2 years (n = 30) and Tibetan pigs aged 10 months (n = 14) and 2 years (n = 15) were collected and sequenced by 16S rRNA gene sequencing technology. We also measured the weight of all the tested pigs and found that the 10-month-old and two-year-old Chuanxiang black pigs weighed about three times the weight of Tibetan pigs of the same age. After comparing the genus-level microbiota composition of Tibetan pigs and Chuanxiang black pigs at 10 months and two years of age, we found that Treponema and Streptococcus were the two most abundant bacteria in Chuanxiang black pigs, while Treponema and Chirstensenellaceae_R.7_group were the two most abundant bacteria in Tibetan pigs. Prediction of microbial community function in adult Chuanxiang black pigs and Tibetan pigs showed changes in nutrient absorption, disease resistance, and coarse feeding tolerance. In addition, we also studied the changes in fecal microbiota in Chuanxiang black pigs at 3 days, 70 days, 10 months, and 2 years of age. We found that the ecologically dominant bacteria in fecal microbiota of Chuanxiang black pigs changed across developmental stages. For example, the highest relative abundance of 70-day-old Chuanxiang black pigs at the genus level was Prevotella. We identified specific microbiota with high abundance at different ages for Chuanxiang black pigs, and revealed that the potential functions of these specific microbiota were related to the dominant phenotype such as fast growth rate and strong disease resistance. Our findings help to expand the understanding of the fecal microbiota of hybrid pigs and provide a reference for future breeding and management of hybrid pigs.
Collapse
Affiliation(s)
- Hengdong He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuwei Gou
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Rui Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kai Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunhan Jing
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuan Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Yuekui Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Xuebin Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Zhiping He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yiren Gu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
45
|
Mikame M, Tsuno NH, Miura Y, Kitazaki H, Uchimura D, Miyagi T, Miyazaki T, Onodera T, Ohashi W, Kameda T, Ohkawa R, Kino S, Muroi K. Anti-A and anti-B titers, age, gender, biochemical parameters, and body mass index in Japanese blood donors. Immunohematology 2023; 39:155-165. [PMID: 38179781 DOI: 10.2478/immunohematology-2023-023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
It has been reported that anti-A and anti-B (ABO antibody) titers decrease with age, but little is known about the association between ABO antibody titers and physiologic/biochemical parameters such as body mass index (BMI), gamma-glutamyl transpeptidase (GGT), and total cholesterol (T-Cho). We investigated the present situation of ABO antibody titers among healthy blood donors in Japan and the physiologic/biochemical factors that may be associated with changes in ABO antibody titers. Plasma from 7450 Japanese blood donors was tested for ABO antibody titers using ABO reverse typing reagents by an automated microplate system; donor samples were classified into low, middle, and high titers according to the agglutination results obtained with diluted plasma samples. Multivariate regression analysis was performed to analyze the association between ABO antibody titers and age, gender, biochemical parameters (alanine transaminase [ALT], GGT, globulin, T-Cho, and glycosylated albumin [GA]), and BMI according to the ABO blood groups. A significant correlation between ABO antibody titers and age/gender, except for gender in anti-A of blood group B donors, was observed. BMI showed significant but negative correlations with anti-A and anti-B (β = -0.085 and -0.062, respectively; p < 0.01) in blood group O donors. In addition, significant but negative correlations between GGT and T-Cho with anti-B of blood group A donors (β = -0.055 and -0.047, respectively; p < 0.05) were observed. Although differences existed among the ABO blood groups, ABO antibody titers seem to be associated with physiologic and biochemical parameters of healthy individuals.
Collapse
Affiliation(s)
- M Mikame
- Development Researcher, Japanese Red Cross Kanto-Koshinetsu Block Blood Center, and Central Blood Institute, Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 2-1-67, Tatsumi, Koto-ku, Tokyo, 135-8521, Japan
| | - N H Tsuno
- Deputy General Manager, Japanese Red Cross Kanto-Koshinetsu Block Blood Center, and Central Blood Institute, Tokyo, Japan
| | - Y Miura
- Clinical Laboratory Staff, Japanese Red Cross Hokkaido Block Blood Center, Hokkaido, Japan
| | - H Kitazaki
- Clinical Laboratory Staff, Japanese Red Cross Hokkaido Block Blood Center, Hokkaido, Japan
| | - D Uchimura
- Clinical Laboratory Staff, Japanese Red Cross Hokkaido Block Blood Center, Hokkaido, Japan
| | - T Miyagi
- Section Head, Japanese Red Cross Kanto-Koshinetsu Block Blood Center, and Central Blood Institute, Tokyo, Japan
| | - T Miyazaki
- Section Head, Japanese Red Cross Central Blood Institute, Tokyo, Japan
| | - T Onodera
- Head of Department, Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - W Ohashi
- Head of Department, Japanese Red Cross Hokkaido Block Blood Center, Hokkaido, Japan
| | - T Kameda
- Senior Lecturer, Department of Clinical Laboratory Science, Teikyo University, and Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - R Ohkawa
- Professor, Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - S Kino
- General Manager, Japanese Red Cross Hokkaido Block Blood Center, Hokkaido, Japan
| | - K Muroi
- General Manager, Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| |
Collapse
|
46
|
Han J, Li M, Li X, Liu C, Li XL, Wang K, Qiao R, Yang F, Han X, Li XJ. Effects of microbes in pig farms on occupational exposed persons and the environment. AMB Express 2023; 13:136. [PMID: 38032532 PMCID: PMC10689614 DOI: 10.1186/s13568-023-01631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In terms of pig farming, pig gut microbes have a significant effect on farmers and the farm environment. However, it is still unclear which microbial composition is more likely to contribute to this effect. This study collected a total of 136 samples, including pigs' faeces samples, farmers' faeces samples, samples from individuals who had no contact with any type of farm animal (referred to as 'non-exposed' persons), and environmental dust samples (collected from inside and outside pig houses and the farm) from two pig farms, pig farm A and pig farm B. Whereafter, 16S rRNA sequencing and taxonomic composition analysis were performed. According to the study, compared to non-exposed persons, pig farmers had a significantly higher abundance of 7 genera. In addition, the farmers were grouped according to the duration of their occupational exposure, and it was shown that 4 genera, including Turicibacter, Terrisporobacter, and Clostridium_sensu_stricto_1, exhibited a rise in more frequent contact with pigs. As compared to outside the pig house, the environmental dust has a greater concentration of the 3 bacteria mentioned before. Therefore, these 3 microbes can be considered as co-occurring microbes that may exist both in humans and the environment. Also, the 3 co-occurring microbes are involved in the fermentation and production of short-chain fatty acids and their effectiveness decreased as distance from the farm increased. This study shows that the 3 microbes where pig farmers co-occur with the environment come from pig farms, which provides fresh ideas for preventing the spread of microbial aerosols in pig farms and reducing pollution.
Collapse
Affiliation(s)
- Jinyi Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengyu Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chuang Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiu-Ling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xin-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Sanya Institute, Hainan Academy of Agricultural Science, Sanya, China.
| |
Collapse
|
47
|
Tomofuji Y, Kishikawa T, Sonehara K, Maeda Y, Ogawa K, Kawabata S, Oguro-Igashira E, Okuno T, Nii T, Kinoshita M, Takagaki M, Yamamoto K, Arase N, Yagita-Sakamaki M, Hosokawa A, Motooka D, Matsumoto Y, Matsuoka H, Yoshimura M, Ohshima S, Nakamura S, Fujimoto M, Inohara H, Kishima H, Mochizuki H, Takeda K, Kumanogoh A, Okada Y. Analysis of gut microbiome, host genetics, and plasma metabolites reveals gut microbiome-host interactions in the Japanese population. Cell Rep 2023; 42:113324. [PMID: 37935197 DOI: 10.1016/j.celrep.2023.113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Interaction between the gut microbiome and host plays a key role in human health. Here, we perform a metagenome shotgun-sequencing-based analysis of Japanese participants to reveal associations between the gut microbiome, host genetics, and plasma metabolome. A genome-wide association study (GWAS) for microbial species (n = 524) identifies associations between the PDE1C gene locus and Bacteroides intestinalis and between TGIF2 and TGIF2-RAB5IF gene loci and Bacteroides acidifiaciens. In a microbial gene ortholog GWAS, agaE and agaS, which are related to the metabolism of carbohydrates forming the blood group A antigen, are associated with blood group A in a manner depending on the secretor status determined by the East Asian-specific FUT2 variant. A microbiome-metabolome association analysis (n = 261) identifies associations between bile acids and microbial features such as bile acid metabolism gene orthologs including bai and 7β-hydroxysteroid dehydrogenase. Our publicly available data will be a useful resource for understanding gut microbiome-host interactions in an underrepresented population.
Collapse
Affiliation(s)
- Yoshihiko Tomofuji
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi 230-0045, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan.
| | - Toshihiro Kishikawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi 230-0045, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan
| | - Yuichi Maeda
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Shuhei Kawabata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Eri Oguro-Igashira
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Takuro Nii
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Masatoshi Takagaki
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
| | - Noriko Arase
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Mayu Yagita-Sakamaki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Akiko Hosokawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Neurology, Suita Municipal Hospital, Suita 564-8567, Japan
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Hidetoshi Matsuoka
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano 586-8521, Japan
| | - Maiko Yoshimura
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano 586-8521, Japan
| | - Shiro Ohshima
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano 586-8521, Japan
| | - Shota Nakamura
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita 565-0871, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi 230-0045, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita 565-0871, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
48
|
Rao L, Cai L, Huang L. Single-cell dynamics of liver development in postnatal pigs. Sci Bull (Beijing) 2023; 68:2583-2597. [PMID: 37783617 DOI: 10.1016/j.scib.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
The postnatal development of the liver, an essential organ for metabolism and immunity, remains poorly characterized at the single-cell resolution. Here, we generated single-nucleus and single-cell transcriptomes of 84,824 pig liver cells at four postnatal time points: day 30, 42, 150, and 730. We uncovered 23 cell types, including three rare cell types: plasmacytoid dendritic cells, CAVIN3+IGF2+ endothelial cells, and EBF1+ fibroblasts. The latter two were verified by multiplex immunohistochemistry. Trajectory and gene regulatory analyses revealed 33 genes that encode transcription factors associated with hepatocyte development and function, including NFIL3 involved in regulating hepatic metabolism. We characterized the spatiotemporal heterogeneity of liver endothelial cells, identified and validated leucine zipper protein 2 (LUZP2) as a novel adult liver sinusoidal endothelial cell-specific transcription factor. Lymphoid cells (NK and T cells) governed the immune system of the pig liver since day 30. Furthermore, we identified a cluster of tissue-resident NK cells, which displayed virus defense functions, maintained proliferative features at day 730, and manifested a higher conservative transcription factor expression pattern in humans than in mouse liver. Our study presents the most comprehensive postnatal liver development single-cell atlas and demonstrates the metabolic and immune changes across the four age stages.
Collapse
Affiliation(s)
- Lin Rao
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Liping Cai
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lusheng Huang
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
49
|
TSUJIKAWA Y, NISHIYAMA K, NAMAI F, IMAMURA Y, SAKUMA T, SAHA S, SUZUKI M, SAKURAI M, IWATA R, MATSUO K, TAKAMORI H, SUDA Y, ZHOU B, FUKUDA I, VILLENA J, SAKANE I, OSAWA R, KITAZAWA H. Establishment of porcine fecal-derived ex vivo microbial communities to evaluate the impact of livestock feed on gut microbiome. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 43:100-109. [PMID: 38577893 PMCID: PMC10981943 DOI: 10.12938/bmfh.2023-085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 04/06/2024]
Abstract
Sustainable livestock production requires reducing competition for food and feed resources and increasing the utilization of food by-products in livestock feed. This study describes the establishment of an anaerobic batch culture model to simulate pig microbiota and evaluate the effects of a food by-product, wakame seaweed stalks, on ex vivo microbial communities. We selected one of the nine media to support the growth of a bacterial community most similar in composition and diversity to that observed in pig donor feces. Supplementation with wakame altered the microbial profile and short-chain fatty acid composition in the ex vivo model, and a similar trajectory was observed in the in vivo pig experimental validation. Notably, the presence of wakame increased the abundance of Lactobacillus species, which may have been due to cross-feeding with Bacteroides. These results suggest the potential of wakame as a livestock feed capable of modulating the pig microbiome. Collectively, this study highlights the ability to estimate the microbiome changes that occur when pigs are fed a specific feed using an ex vivo culture model.
Collapse
Affiliation(s)
- Yuji TSUJIKAWA
- Food and Feed Immunology Group, Laboratory of Animal Food
Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaoba,
Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
- Central Research Institute, Ito En Ltd., 21 Mekami,
Sagara-cho, Haibara-gun, Shizuoka 421-0516, Japan
- Department of Agrobioscience, Graduate School of Agricultural
Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501, Japan
| | - Keita NISHIYAMA
- Food and Feed Immunology Group, Laboratory of Animal Food
Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaoba,
Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
- Livestock Immunology Unit, International Education and
Research Center for Food and Agricultural Immunology (CFAI), Graduate School of
Agricultural Science, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai-shi, Miyagi
980-8576, Japan
| | - Fu NAMAI
- Food and Feed Immunology Group, Laboratory of Animal Food
Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaoba,
Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
- Livestock Immunology Unit, International Education and
Research Center for Food and Agricultural Immunology (CFAI), Graduate School of
Agricultural Science, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai-shi, Miyagi
980-8576, Japan
| | - Yoshiya IMAMURA
- Food and Feed Immunology Group, Laboratory of Animal Food
Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaoba,
Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
| | - Taiga SAKUMA
- Food and Feed Immunology Group, Laboratory of Animal Food
Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaoba,
Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
| | - Sudeb SAHA
- Food and Feed Immunology Group, Laboratory of Animal Food
Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaoba,
Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
- Livestock Immunology Unit, International Education and
Research Center for Food and Agricultural Immunology (CFAI), Graduate School of
Agricultural Science, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai-shi, Miyagi
980-8576, Japan
- Department of Dairy Science, Faculty of Veterinary, Animal
and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
- JSPS Fellow
| | - Masahiko SUZUKI
- Food and Feed Immunology Group, Laboratory of Animal Food
Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaoba,
Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
- Central Research Institute, Ito En Ltd., 21 Mekami,
Sagara-cho, Haibara-gun, Shizuoka 421-0516, Japan
| | - Mitsuki SAKURAI
- Food and Feed Immunology Group, Laboratory of Animal Food
Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaoba,
Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
| | - Ryo IWATA
- Department of Agrobioscience, Graduate School of Agricultural
Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501, Japan
| | - Kengo MATSUO
- Miyagi Prefecture Animal Industry Experiment Station, Osaki,
Miyagi 989-6445, Japan
| | - Hironori TAKAMORI
- Miyagi Prefecture Animal Industry Experiment Station, Osaki,
Miyagi 989-6445, Japan
| | - Yoshihito SUDA
- Department of Food, Agriculture and Environmental Science,
Miyagi University, 468-1 Aramakiaoba, Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
| | - Binghui ZHOU
- Food and Feed Immunology Group, Laboratory of Animal Food
Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaoba,
Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
- Livestock Immunology Unit, International Education and
Research Center for Food and Agricultural Immunology (CFAI), Graduate School of
Agricultural Science, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai-shi, Miyagi
980-8576, Japan
| | - Itsuko FUKUDA
- Department of Agrobioscience, Graduate School of Agricultural
Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501, Japan
| | - Julio VILLENA
- Food and Feed Immunology Group, Laboratory of Animal Food
Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaoba,
Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
- Livestock Immunology Unit, International Education and
Research Center for Food and Agricultural Immunology (CFAI), Graduate School of
Agricultural Science, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai-shi, Miyagi
980-8576, Japan
- Laboratory of Immunobiotechnology, Reference Centre for
Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
| | - Iwao SAKANE
- Central Research Institute, Ito En Ltd., 21 Mekami,
Sagara-cho, Haibara-gun, Shizuoka 421-0516, Japan
| | - Ro OSAWA
- Food and Feed Immunology Group, Laboratory of Animal Food
Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaoba,
Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
- Department of Agrobioscience, Graduate School of Agricultural
Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501, Japan
| | - Haruki KITAZAWA
- Food and Feed Immunology Group, Laboratory of Animal Food
Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaoba,
Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
- Livestock Immunology Unit, International Education and
Research Center for Food and Agricultural Immunology (CFAI), Graduate School of
Agricultural Science, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai-shi, Miyagi
980-8576, Japan
| |
Collapse
|
50
|
Vargas-Alarcón G, Pérez-Méndez O, Posadas-Sánchez R, González-Pacheco H, Arias-Mendoza A, Escobedo G, Juárez-Cedillo T, Arellano-González M, Manuel Fragoso J. ABO gene polymorphisms are associated with acute coronary syndrome and with plasma concentration of HDL-cholesterol and triglycerides. BIOMOLECULES & BIOMEDICINE 2023; 23:1125-1135. [PMID: 37334748 PMCID: PMC10655879 DOI: 10.17305/bb.2023.9244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
The role of ABO gene polymorphisms in acute coronary syndrome (ACS) and lipid metabolism is increasingly recognized. We investigated whether ABO gene polymorphisms are significantly associated with ACS and the plasma lipid profile. Six ABO gene polymorphisms (rs651007 T/C, rs579459 T/C, rs495928 T/C, rs8176746 T/G, rs8176740 A/T, and rs512770 T/C) were determined by 5'exonuclease TaqMan assays in 611 patients with ACS and 676 healthy controls. The results demonstrated that the rs8176746 T allele was associated with a lower risk of ACS under the co-dominant, dominant, recessive, over-dominant, and additive models (P = 0.0004, P = 0.0002, P = 0.039, P = 0.0009, and P = 0.0001, respectively). Furthermore, under co-dominant, dominant, and additive models, the rs8176740 A allele was associated with a lower risk of ACS (P = 0.041, P = 0.022, and P = 0.039, respectively). On the other hand, the rs579459 C allele was associated with a lower risk of ACS under the dominant, over-dominant, and additive models (P = 0.025, P = 0.035, and P = 0.037, respectively). In a subanalysis performed with the control group, rs8176746 T and rs8176740 A alleles were associated with low systolic blood pressure and with both high high-density lipoprotein-cholesterol (HDL-C) and low triglyceride plasma concentrations, respectively. In conclusion, ABO gene polymorphisms were associated with a lower risk of ACS, and lower systolic blood pressure and plasma lipid levels, suggesting a causal relationship between ABO blood groups and the incidence of ACS.
Collapse
Affiliation(s)
- Gilberto Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - Oscar Pérez-Méndez
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - Rosalinda Posadas-Sánchez
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | | | | | - Galileo Escobedo
- Unidad de Medicina Experimental, Hospital General de Mexico, Dr. Eduardo Liceaga, Mexico City, México
| | - Teresa Juárez-Cedillo
- Unidad de Investigación en Epidemiologia y Servicios de Salud-Área de Envejecimiento. Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social, Mexico City, México
| | - Marva Arellano-González
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - José Manuel Fragoso
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| |
Collapse
|