1
|
Li W, Ji B, Li B, Du M, Wang L, Tuo J, Zhou H, Gong J, Zhao Y. Nitazoxanide inhibits pili assembly by targeting BamB to synergize with polymyxin B against drug-resistant Escherichia coli. Biochimie 2025; 233:47-59. [PMID: 39984113 DOI: 10.1016/j.biochi.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/18/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Gram-negative bacteria rely on pili assembly for pathogenicity, with the chaperone-usher (CU) pathway regulating pilus biogenesis. Nitazoxanide (NTZ) inhibits CU pathway-mediated P pilus biogenesis by specifically interfering with the proper folding of the outer membrane protein (OMP) usher, primarily mediated by the β-barrel assembly machinery (BAM) complex. In this study, we identified the BAM complex components BamB and the BamA POTRA2 domain as key binding targets for NTZ. Molecular dynamics simulations and Bio-Layer Interferometry revealed that BamB residues S61 and R195 are critical for NTZ binding. NTZ activated the Cpx two-component system and induced inner membrane perturbations, which resulted from the accumulation of misfolded P pilus subunits. Upregulation of the ibpAB gene, which protects the bacteria against NTZ-induced oxidative stress, was also observed. Importantly, NTZ combined with polymyxin B enhanced the latter's antibacterial activity against both susceptible and MCR-positive E. coli strains. This enhancement was achieved through NTZ-induced increases in inner membrane permeability, oxidative stress, and inhibition of efflux pump activity and biofilm formation. This study provides new insights into the antimicrobial mechanism of NTZ and highlights its potential as an antibiotic adjuvant by targeting BamB to inhibit the CU pathway, restoring the efficacy of polymyxin B against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Bingjie Ji
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Boyu Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Minghui Du
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Linwei Wang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Jiale Tuo
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Hongmei Zhou
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Jian Gong
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China.
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China.
| |
Collapse
|
2
|
Sleutel M, Sonani RR, Miller JG, Wang F, Socorro AG, Chen Y, Martin R, Demeler B, Rudolph MJ, Alva V, Remaut H, Egelman EH, Conticello VP. Donor Strand Complementation and Calcium Ion Coordination Drive the Chaperone-free Polymerization of Archaeal Cannulae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630787. [PMID: 39803462 PMCID: PMC11722229 DOI: 10.1101/2024.12.30.630787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon Pyrodictium abyssi during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of ex vivo cannulae and of in vitro protein assemblies derived from recombinant cannula-like proteins. Three-dimensional reconstructions of P. abyssi cannulae revealed that the structural interactions between protomers in the native and recombinant filaments were based on donor strand complementation, a form of non-covalent polymerization in which a donor β-strand from one subunit is inserted into an acceptor groove in a β-sheet of a neighboring subunit. Donor strand complementation in cannulae is reinforced through calcium ion coordination at the interfaces between structural subunits in the respective assemblies. While donor strand complementation occurs during the assembly of chaperone-usher pili, this process requires the participation of accessory proteins that are localized in the outer membrane. In contrast, we demonstrate that calcium ions can induce assembly of cannulae in the absence of other co-factors. Crystallographic analysis of a recombinant cannula-like protein monomer provided evidence that calcium ion binding primes the precursor for donor strand invasion through unblocking of the acceptor groove. Bioinformatic analysis suggested that structurally homologous cannula-like proteins occurred within the genomes of other hyperthermophilic archaea and were encompassed within the TasA superfamily of biomatrix proteins. CryoEM structural analyses of tubular filaments derived from in vitro assembly of a recombinant cannula-like protein from an uncultured Hyperthermus species revealed a common mode of assembly to the Pyrodictium cannulae, in which donor strand complementation and calcium ion binding stabilized longitudinal and lateral assembly in tubular 2D sheets.
Collapse
Affiliation(s)
- Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jessalyn G Miller
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
- Biochemistry and Molecular Genetics Department, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | | | - Yang Chen
- New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027
| | - Reece Martin
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Michael J Rudolph
- New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology Tübingen, Tübingen 72076, Germany
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Vincent P Conticello
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- The Robert P. Apkarian Integrated Electron Microscopy Core (IEMC), Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
3
|
Lucidi M, Visaggio D, Migliaccio A, Capecchi G, Visca P, Imperi F, Zarrilli R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024; 15:2289769. [PMID: 38054753 PMCID: PMC10732645 DOI: 10.1080/21505594.2023.2289769] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of healthcare-associated infections and hospital outbreaks, particularly in intensive care units. Much of the success of A. baumannii relies on its genomic plasticity, which allows rapid adaptation to adversity and stress. The capacity to acquire novel antibiotic resistance determinants and the tolerance to stresses encountered in the hospital environment promote A. baumannii spread among patients and long-term contamination of the healthcare setting. This review explores virulence factors and physiological traits contributing to A. baumannii infection and adaptation to the hospital environment. Several cell-associated and secreted virulence factors involved in A. baumannii biofilm formation, cell adhesion, invasion, and persistence in the host, as well as resistance to xeric stress imposed by the healthcare settings, are illustrated to give reasons for the success of A. baumannii as a hospital pathogen.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Ochner H, Böhning J, Wang Z, Tarafder AK, Caspy I, Bharat TAM. Structure of the Pseudomonas aeruginosa PAO1 Type IV pilus. PLoS Pathog 2024; 20:e1012773. [PMID: 39666767 DOI: 10.1371/journal.ppat.1012773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/26/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
Type IV pili (T4Ps) are abundant in many bacterial and archaeal species, where they play important roles in both surface sensing and twitching motility, with implications for adhesion, biofilm formation and pathogenicity. While Type IV pilus (T4P) structures from other organisms have been previously solved, a high-resolution structure of the native, fully assembled T4P of Pseudomonas aeruginosa, a major human pathogen, would be valuable in a drug discovery context. Here, we report a 3.2 Å-resolution structure of the P. aeruginosa PAO1 T4P determined by electron cryomicroscopy (cryo-EM). PilA subunits constituting the T4P exhibit a classical pilin fold featuring an extended N-terminal α-helix linked to a C-terminal globular β-sheet-containing domain, which are packed tightly along the pilus, in line with models derived from previous cryo-EM data of the P. aeruginosa PAK strain. The N-terminal helices constitute the pilus core where they stabilise the tubular assembly via hydrophobic interactions. The α-helical core of the pilus is surrounded by the C-terminal globular domain of PilA that coats the outer surface of the pilus, mediating interactions with the surrounding environment. Comparison of the P. aeruginosa PAO1 T4P with T4P structures from other organisms, both at the level of the pilin subunits and the fully assembled pili, confirms previously described common architectural principles whilst highlighting key differences between members of this abundant class of prokaryotic filaments. This study provides a structural framework for understanding the molecular and cell biology of these important cellular appendages mediating interaction of prokaryotes to surfaces.
Collapse
Affiliation(s)
- Hannah Ochner
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Zhexin Wang
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Abul K Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Ido Caspy
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| |
Collapse
|
5
|
Qin M, Zhang X, Ding H, Chen Y, He W, Wei Y, Chen W, Chan YK, Shi Y, Huang D, Deng Y. Engineered Probiotic Bio-Heterojunction with Robust Antibiofilm Modality via "Eating" Extracellular Polymeric Substances for Wound Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402530. [PMID: 38924628 DOI: 10.1002/adma.202402530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The compact three-dimensional (3D) structure of extracellular polymeric substances (EPS) within biofilms significantly hinders the penetration of antimicrobial agents, making biofilm eradication challenging and resulting in persistent biofilm-associated infections. To address this challenge, a solution is proposed: a probiotic bio-heterojunction (P-bioHJ) combining Lactobacillus rhamnosus with MXene (Ti3C2) quantum dots (MQDs)/FeS heterojunction. This innovation aims to break down the saccharides in EPS, enabling effective combat against biofilm-associated infections. Initially, the P-bioHJ targets saccharides through metabolic processes, causing the collapse of EPS and allowing infiltration into bacterial colonies. Simultaneously, upon exposure to near-infrared (NIR) irradiation, the P-bioHJ produces reactive oxygen species (ROS) and thermal energy, deploying physical mechanisms to combat bacterial biofilms effectively. Following antibiofilm treatment, the P-bioHJ adjusts the oxidative environment, reduces wound inflammation by scavenging ROS, boosts antioxidant enzyme activity, and mitigates the NF-κB inflammatory pathway, thereby accelerating wound healing. In vitro and in vivo experiments confirm the exceptional antibiofilm, antioxidant/anti-inflammatory, and wound-regeneration properties of P-bioHJ. In conclusion, this study provides a promising approach for treating biofilm-related infections.
Collapse
Affiliation(s)
- Miao Qin
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiumei Zhang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Haiyang Ding
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yanbai Chen
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenxuan He
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yan Wei
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China
| | - Weiyi Chen
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China
| | - Yau Kei Chan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Yiwei Shi
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
6
|
Singh S, Singh S, Trivedi M, Dwivedi M. An insight into MDR Acinetobacter baumannii infection and its pathogenesis: Potential therapeutic targets and challenges. Microb Pathog 2024; 192:106674. [PMID: 38714263 DOI: 10.1016/j.micpath.2024.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Acinetobacter baumannii is observed as a common species of Gram-negative bacteria that exist in soil and water. Despite being accepted as a typical component of human skin flora, it has become an important opportunistic pathogen, especially in healthcare settings. The pathogenicity of A. baumannii is attributed to its virulence factors, which include adhesins, pili, lipopolysaccharides, outer membrane proteins, iron uptake systems, autotransporter, secretion systems, phospholipases etc. These elements provide the bacterium the ability to cling to and penetrate host cells, get past the host immune system, and destroy tissue. Its infection is a major contributor to human pathophysiological conditions including pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. It is challenging to treat infections brought on by this pathogen since this bacterium has evolved to withstand numerous drugs and further emergence of drug-resistant A. baumannii results in higher rates of morbidity and mortality. The long-term survival of this bacterium on surfaces of medical supplies and hospital furniture facilitates its frequent spread in humans from one habitat to another. There is a need for urgent investigations to find effective drug targets for A. baumannii as well as designing novel drugs to reduce the survival and spread of infection. In the current review, we represent the specific features, pathogenesis, and molecular intricacies of crucial drug targets of A. baumannii. This would also assist in proposing strategies and alternative therapies for the prevention and treatment of A. baumannii infections and their spread.
Collapse
Affiliation(s)
- Sukriti Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Sushmita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow, 226028, India.
| |
Collapse
|
7
|
Brychcy M, Nguyen B, Tierney GA, Casula P, Kokodynski A, Godoy VG. The metabolite vanillic acid regulates Acinetobacter baumannii surface attachment. Mol Microbiol 2024; 121:833-849. [PMID: 38308563 DOI: 10.1111/mmi.15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
The nosocomial bacterium Acinetobacter baumannii is protected from antibiotic treatment by acquiring antibiotic resistances and by forming biofilms. Cell attachment, one of the first steps in biofilm formation, is normally induced by environmental metabolites. We hypothesized that vanillic acid (VA), the oxidized form of vanillin and a widely available metabolite, may play a role in A. baumannii cell attachment. We first discovered that A. baumannii actively breaks down VA through the evolutionarily conserved vanABKP genes. These genes are under the control of the repressor VanR, which we show binds directly to VanR binding sites within the vanABKP genes bidirectional promoter. VA in turn counteracts VanR inhibition. We identified a VanR binding site and searched for it throughout the genome, especially in pili encoding promoter genes. We found a VanR binding site in the pilus encoding csu operon promoter and showed that VanR binds specifically to it. As expected, a strain lacking VanR overproduces Csu pili and makes robust biofilms. Our study uncovers the role that VA plays in facilitating the attachment of A. baumannii cells to surfaces, a crucial step in biofilm formation. These findings provide valuable insights into a previously obscure catabolic pathway with significant clinical implications.
Collapse
Affiliation(s)
- Merlin Brychcy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Brian Nguyen
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | | | - Pranav Casula
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Alexis Kokodynski
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Veronica G Godoy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Zyla DS, Wiegand T, Bachmann P, Zdanowicz R, Giese C, Meier BH, Waksman G, Hospenthal MK, Glockshuber R. The assembly platform FimD is required to obtain the most stable quaternary structure of type 1 pili. Nat Commun 2024; 15:3032. [PMID: 38589417 PMCID: PMC11001860 DOI: 10.1038/s41467-024-47212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Type 1 pili are important virulence factors of uropathogenic Escherichia coli that mediate bacterial attachment to epithelial cells in the urinary tract. The pilus rod is comprised of thousands of copies of the main structural subunit FimA and is assembled in vivo by the assembly platform FimD. Although type 1 pilus rods can self-assemble from FimA in vitro, this reaction is slower and produces structures with lower kinetic stability against denaturants compared to in vivo-assembled rods. Our study reveals that FimD-catalysed in vitro-assembled type 1 pilus rods attain a similar stability as pilus rods assembled in vivo. Employing structural, biophysical and biochemical analyses, we show that in vitro assembly reactions lacking FimD produce pilus rods with structural defects, reducing their stability against dissociation. Overall, our results indicate that FimD is not only required for the catalysis of pilus assembly, but also to control the assembly of the most stable quaternary structure.
Collapse
Affiliation(s)
- Dawid S Zyla
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
- La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA, 92037, USA
| | - Thomas Wiegand
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Paul Bachmann
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Rafal Zdanowicz
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Christoph Giese
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Beat H Meier
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 7HX, UK
| | - Manuela K Hospenthal
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland.
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 7HX, UK.
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| |
Collapse
|
9
|
Böhning J, Tarafder AK, Bharat TA. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem J 2024; 481:245-263. [PMID: 38358118 PMCID: PMC10903470 DOI: 10.1042/bcj20210301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Abul K. Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| |
Collapse
|
10
|
Ahmad I, Nadeem A, Mushtaq F, Zlatkov N, Shahzad M, Zavialov AV, Wai SN, Uhlin BE. Csu pili dependent biofilm formation and virulence of Acinetobacter baumannii. NPJ Biofilms Microbiomes 2023; 9:101. [PMID: 38097635 PMCID: PMC10721868 DOI: 10.1038/s41522-023-00465-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Acinetobacter baumannii has emerged as one of the most common extensive drug-resistant nosocomial bacterial pathogens. Not only can the bacteria survive in hospital settings for long periods, but they are also able to resist adverse conditions. However, underlying regulatory mechanisms that allow A. baumannii to cope with these conditions and mediate its virulence are poorly understood. Here, we show that bi-stable expression of the Csu pili, along with the production of poly-N-acetyl glucosamine, regulates the formation of Mountain-like biofilm-patches on glass surfaces to protect bacteria from the bactericidal effect of colistin. Csu pilus assembly is found to be an essential component of mature biofilms formed on glass surfaces and of pellicles. By using several microscopic techniques, we show that clinical isolates of A. baumannii carrying abundant Csu pili mediate adherence to epithelial cells. In addition, Csu pili suppressed surface-associated motility but enhanced colonization of bacteria into the lungs, spleen, and liver in a mouse model of systemic infection. The screening of c-di-GMP metabolizing protein mutants of A. baumannii 17978 for the capability to adhere to epithelial cells led us to identify GGDEF/EAL protein AIS_2337, here denoted PdeB, as a major regulator of Csu pili-mediated virulence and biofilm formation. Moreover, PdeB was found to be involved in the type IV pili-regulated robustness of surface-associated motility. Our findings suggest that the Csu pilus is not only a functional component of mature A. baumannii biofilms but also a major virulence factor promoting the initiation of disease progression by mediating bacterial adherence to epithelial cells.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden.
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan.
| | - Aftab Nadeem
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
| | - Fizza Mushtaq
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Nikola Zlatkov
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Anton V Zavialov
- Department of Biochemistry, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Sun Nyunt Wai
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90187, Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
| |
Collapse
|
11
|
Giese C, Puorger C, Ignatov O, Bečárová Z, Weber ME, Schärer MA, Capitani G, Glockshuber R. Stochastic chain termination in bacterial pilus assembly. Nat Commun 2023; 14:7718. [PMID: 38001074 PMCID: PMC10673952 DOI: 10.1038/s41467-023-43449-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Adhesive type 1 pili from uropathogenic Escherichia coli strains are filamentous, supramolecular protein complexes consisting of a short tip fibrillum and a long, helical rod formed by up to several thousand copies of the major pilus subunit FimA. Here, we reconstituted the entire type 1 pilus rod assembly reaction in vitro, using all constituent protein subunits in the presence of the assembly platform FimD, and identified the so-far uncharacterized subunit FimI as an irreversible assembly terminator. We provide a complete, quantitative model of pilus rod assembly kinetics based on the measured rate constants of FimD-catalyzed subunit incorporation. The model reliably predicts the length distribution of assembled pilus rods as a function of the ratio between FimI and the main pilus subunit FimA and is fully consistent with the length distribution of membrane-anchored pili assembled in vivo. The results show that the natural length distribution of adhesive pili formed via the chaperone-usher pathway results from a stochastic chain termination reaction. In addition, we demonstrate that FimI contributes to anchoring the pilus to the outer membrane and report the crystal structures of (i) FimI in complex with the assembly chaperone FimC, (ii) the FimI-FimC complex bound to the N-terminal domain of FimD, and (iii) a ternary complex between FimI, FimA and FimC that provides structural insights on pilus assembly termination and pilus anchoring by FimI.
Collapse
Affiliation(s)
- Christoph Giese
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland.
| | - Chasper Puorger
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
- Institute for Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, 4132, Muttenz, Switzerland
| | - Oleksandr Ignatov
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
- V.I. Grishchenko Clinic of Reproductive Medicine, Blahovishchenska st.25, 61052, Kharkiv, Ukraine
| | - Zuzana Bečárová
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Marco E Weber
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Martin A Schärer
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Guido Capitani
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
12
|
Wang Q, Zheng S, Liu Y, Wang C, Gu B, Zhang L, Wang S. Isothermal Amplification and Hypersensitive Fluorescence Dual-Enhancement Nucleic Acid Lateral Flow Assay for Rapid Detection of Acinetobacter baumannii and Its Drug Resistance. BIOSENSORS 2023; 13:945. [PMID: 37887138 PMCID: PMC10605404 DOI: 10.3390/bios13100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is among the main pathogens that cause nosocomial infections. The ability to rapidly and accurately detect A. baumannii and its drug resistance is essential for blocking secondary infections and guiding treatments. In this study, we reported a nucleic acid fluorescent lateral flow assay (NFLFA) to identify A. baumannii and carbapenem-resistant A. baumannii (CRAB) in a rapid and quantitative manner by integrating loop-mediated isothermal amplification (LAMP) and silica-based multilayered quantum dot nanobead tag (Si@MQB). First, a rapid LAMP system was established and optimised to support the effective amplification of two bacterial genes in 35 min. Then, the antibody-modified Si@MQB was introduced to capture the two kinds of amplified DNA sequences and simultaneously detect them on two test lines of a LFA strip, which greatly improved the detection sensitivity and stability of the commonly used AuNP-based nucleic acid LFA. With these strategies, the established LAMP-NFLFA achieved detection limits of 199 CFU/mL and 287 CFU/mL for the RecA (house-keeping gene) and blaOXA-23 (drug resistance gene) genes, respectively, within 43 min. Furthermore, the assay exhibited good repeatability and specificity for detecting target pathogens in real complex specimens and environments; thus, the proposed assay undoubtedly provides a promising and low-cost tool for the on-site monitoring of nosocomial infections.
Collapse
Affiliation(s)
- Qian Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, China; (S.Z.); (Y.L.); (C.W.)
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Shuai Zheng
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, China; (S.Z.); (Y.L.); (C.W.)
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yong Liu
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, China; (S.Z.); (Y.L.); (C.W.)
- Wan Jiang New Industry Technology Development Center, Tongling 244000, China
| | - Chongwen Wang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, China; (S.Z.); (Y.L.); (C.W.)
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Long Zhang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, China; (S.Z.); (Y.L.); (C.W.)
| | - Shu Wang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, China; (S.Z.); (Y.L.); (C.W.)
- Wan Jiang New Industry Technology Development Center, Tongling 244000, China
| |
Collapse
|
13
|
Zheng J, Chen W, Xiao H, Yang F, Song J, Cheng L, Liu H. Asymmetric Structure of Podophage GP4 Reveals a Novel Architecture of Three Types of Tail Fibers. J Mol Biol 2023; 435:168258. [PMID: 37660940 DOI: 10.1016/j.jmb.2023.168258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Bacteriophage tail fibers (or called tail spikes) play a critical role in the early stage of infection by binding to the bacterial surface. Podophages with known structures usually possess one or two types of fibers. Here, we resolved an asymmetric structure of the podophage GP4 to near-atomic resolution by cryo-EM. Our structure revealed a symmetry-mismatch relationship between the components of the GP4 tail with previously unseen topologies. In detail, two dodecameric adaptors (adaptors I and II), a hexameric nozzle, and a tail needle form a conserved tail body connected to a dodecameric portal occupying a unique vertex of the icosahedral head. However, five chain-like extended fibers (fiber I) and five tulip-like short fibers (fiber II) are anchored to a 15-fold symmetric fiber-tail adaptor, encircling the adaptor I, and six bamboo-like trimeric fibers (fiber III) are connected to the nozzle. Five fibers I, each composed of five dimers of the protein gp80 linked by an elongated rope protein, are attached to the five edges of the tail vertex of the icosahedral head. In this study, we identified a new structure of the podophage with three types of tail fibers, and such phages with different types of fibers may have a broad host range and/or infect host cells with considerably high efficiency, providing evolutionary advantages in harsh environments.
Collapse
Affiliation(s)
- Jing Zheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Wenyuan Chen
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China; State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Fan Yang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Jingdong Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Lingpeng Cheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| |
Collapse
|
14
|
Liu X, Chang Y, Xu Q, Zhang W, Huang Z, Zhang L, Weng S, Leptihn S, Jiang Y, Yu Y, Hua X. Mutation in the two-component regulator BaeSR mediates cefiderocol resistance and enhances virulence in Acinetobacter baumannii. mSystems 2023; 8:e0129122. [PMID: 37345941 PMCID: PMC10469669 DOI: 10.1128/msystems.01291-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Acinetobacter baumannii has become one of the most challenging pathogens in many countries with limited treatment options available. Cefiderocol, a novel siderophore-conjugated cephalosporin, shows potent in vitro activity against A. baumannii, including isolates resistant to carbapenems. To date, few reports on the mechanisms of cefiderocol resistance are available. In order to investigate potential mechanisms of cefiderocol resistance in A. baumannii, we performed in vitro evolution experiments at sub-lethal concentrations of the antibiotic. All four cefiderocol-resistant strains obtained harbored mutations in two-component system BaeS-BaeR. When we engineered the mutations of BaeS (D89V) and BaeR (S104N) into the genome of ATCC 17978, these mutations increased cefiderocol minimum inhibitory concentrations (MICs) by 8-fold to 16-fold. Transcriptome analyses showed that the expression of MacAB-TolC and MFS transporters was up-regulated in BaeSR mutants. Strains over-expressing MFS transporter and MacAB-TolC displayed higher MICs and higher median inhibition concentration (IC50) values, while MICs and IC50 decreased when efflux pump genes were knocked out. In a BaeR mutant with up-regulated csu operon, we observed a higher number of pili, enhanced surface motility, and increased biofilm formation compared to wild-type ATCC 17978. Using the Galleria mellonella infection model, we found that the BaeS mutant in which paa operon was up-regulated exhibited increased virulence. In conclusion, the mutations in BaeSR decreased cefiderocol susceptibility of A. baumannii through up-regulating efflux pumps gene expression. BaeS or BaeR also controls the expression of csu and paa, influencing biofilm formation, surface motility, and virulence in A. baumannii. IMPORTANCE The widespread prevalence of multi-drug-resistant A. baumannii (MDRAB) poses a significant therapeutic challenge. Cefiderocol is considered a promising antibiotic for the treatment of MDRAB infections. Therefore, it is necessary to study the potential resistance mechanisms of cefiderocol to delay the development of bacterial resistance. Here, we demonstrated that mutations in baeS and baeR reduced the susceptibility of A. baumannii to cefiderocol by up-regulating the expression of the MFS family efflux pump and MacAB-TolC efflux pump. We propose that BaeS mutants increase bacterial virulence by up-regulating the expression of the paa operon. This also reports the regulatory effect of BaeSR on csu operon for the first time. This study provides further insights into the role of BaeSR in developing cefiderocol resistance and virulence in A. baumannii.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunjie Chang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingye Xu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wang Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Huang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linyue Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shanshan Weng
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sebastian Leptihn
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, Zhejiang, China
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Thairatana S, Doran M, Sonani RR, Egelman EH, Bullitt E. New Morphologies of Hib Adhesion Pili. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:937. [PMID: 37613394 DOI: 10.1093/micmic/ozad067.466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Siriratt Thairatana
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Matthew Doran
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ravi R Sonani
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Edward H Egelman
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Esther Bullitt
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
16
|
Jonsmoen UL, Malyshev D, Öberg R, Dahlberg T, Aspholm ME, Andersson M. Endospore pili: Flexible, stiff, and sticky nanofibers. Biophys J 2023; 122:2696-2706. [PMID: 37218131 PMCID: PMC10397575 DOI: 10.1016/j.bpj.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Species belonging to the Bacillus cereus group form endospores (spores) whose surface is decorated with micrometers-long and nanometers-wide endospore appendages (Enas). The Enas have recently been shown to represent a completely novel class of Gram-positive pili. They exhibit remarkable structural properties making them extremely resilient to proteolytic digestion and solubilization. However, little is known about their functional and biophysical properties. In this work, we apply optical tweezers to manipulate and assess how wild-type and Ena-depleted mutant spores immobilize on a glass surface. Furthermore, we utilize optical tweezers to extend S-Ena fibers to measure their flexibility and tensile stiffness. Finally, by oscillating single spores, we examine how the exosporium and Enas affect spores' hydrodynamic properties. Our results show that S-Enas (μm-long pili) are not as effective as L-Enas in immobilizing spores to glass surfaces but are involved in forming spore-to-spore connections, holding the spores together in a gel-like state. The measurements also show that S-Enas are flexible but tensile stiff fibers, which support structural data suggesting that the quaternary structure is composed of subunits arranged in a complex to produce a bendable fiber (helical turns can tilt against each other) with limited axial fiber extensibility. Finally, the results show that the hydrodynamic drag is 1.5 times higher for wild-type spores expressing S- and L-Enas compared with mutant spores expressing only L-Enas or "bald spores" lacking Ena, and 2 times higher compared with spores of the exosporium-deficient strain. This study unveils novel findings on the biophysics of S- and L-Enas, their role in spore aggregation, binding of spores to glass, and their mechanical behavior upon exposure to drag forces.
Collapse
Affiliation(s)
- Unni Lise Jonsmoen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå, Sweden
| | | | - Marina E Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
17
|
Böhning J, Dobbelstein AW, Sulkowski N, Eilers K, von Kügelgen A, Tarafder AK, Peak-Chew SY, Skehel M, Alva V, Filloux A, Bharat TAM. Architecture of the biofilm-associated archaic Chaperone-Usher pilus CupE from Pseudomonas aeruginosa. PLoS Pathog 2023; 19:e1011177. [PMID: 37058467 PMCID: PMC10104325 DOI: 10.1371/journal.ppat.1011177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/03/2023] [Indexed: 04/15/2023] Open
Abstract
Chaperone-Usher Pathway (CUP) pili are major adhesins in Gram-negative bacteria, mediating bacterial adherence to biotic and abiotic surfaces. While classical CUP pili have been extensively characterized, little is known about so-called archaic CUP pili, which are phylogenetically widespread and promote biofilm formation by several human pathogens. In this study, we present the electron cryomicroscopy structure of the archaic CupE pilus from the opportunistic human pathogen Pseudomonas aeruginosa. We show that CupE1 subunits within the pilus are arranged in a zigzag architecture, containing an N-terminal donor β-strand extending from each subunit into the next, where it is anchored by hydrophobic interactions, with comparatively weaker interactions at the rest of the inter-subunit interface. Imaging CupE pili on the surface of P. aeruginosa cells using electron cryotomography shows that CupE pili adopt variable curvatures in response to their environment, which might facilitate their role in promoting cellular attachment. Finally, bioinformatic analysis shows the widespread abundance of cupE genes in isolates of P. aeruginosa and the co-occurrence of cupE with other cup clusters, suggesting interdependence of cup pili in regulating bacterial adherence within biofilms. Taken together, our study provides insights into the architecture of archaic CUP pili, providing a structural basis for understanding their role in promoting cellular adhesion and biofilm formation in P. aeruginosa.
Collapse
Affiliation(s)
- Jan Böhning
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Adrian W. Dobbelstein
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Nina Sulkowski
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Kira Eilers
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Abul K. Tarafder
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sew-Yeu Peak-Chew
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Tanmay A. M. Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| |
Collapse
|