1
|
Liu F, Staskawicz BJ. Wheat tandem kinase-NLR immune modules: Novel insights and engineering opportunities. Dev Cell 2025; 60:1398-1399. [PMID: 40393392 DOI: 10.1016/j.devcel.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
In a recent issue of Science, Chen et al. and Lu et al. define a wheat immune module comprising tandem kinase (TK)-NLR protein pairs that recognize fungal effectors and activate defense responses. These findings reveal previously unknown immune signaling mechanisms and provide a foundation for engineering disease resistance through molecular breeding.
Collapse
Affiliation(s)
- Furong Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Tian Y, Yang F, Zargar M, Liu YG, Chen MX, Zhu FY. Integration of structural study and machine learning to elucidate the RNA-SFs interaction atlas in eukaryotic cells. Biotechnol Adv 2025:108608. [PMID: 40398644 DOI: 10.1016/j.biotechadv.2025.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/15/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
Alternative splicing (AS) occupies a central position in plant growth and development, stress response, and animal growth and disease processes. Mutations in SF (splicing factor) trigger aberrant AS activities that disrupt these fine biological processes. Although cryo electron microscopy (cryoEM) technology has successfully revealed the fine structure of multiple spliceosomes, the dynamic and complex network of RNA-SFs remains to be fully resolved. This review summarizes the binding patterns of RNA and SFs through machine learning's powerful computational capabilities, the deep structural analysis using cryoEM, and experimental validation of RNA protein binding. Connect RNA protein interaction experiments, high-resolution imaging capabilities of cryoEM, and powerful analytical capabilities of machine learning to jointly construct a detailed RNA-SFs interaction map, forming a powerful toolkit. These knowledge help us better understand the complexity and working mechanisms of biological systems. This article not only has profound significance in revealing the molecular mechanisms of diseases and developing multi-target efficient drugs but also provides in-depth insights into molecular breeding and plant resistance enhancement.
Collapse
Affiliation(s)
- Yuan Tian
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, China.
| | - Feng Yang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow 117198, Russia
| | - Ying-Gao Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, China; Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow 117198, Russia
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
3
|
Khan M, Srivastava AK, Nizamani MM, Asif M, Kamran A, Luo L, Yang S, Chen S, Li Z, Xie X. The battle within: Discovering new insights into phytopathogen interactions and effector dynamics. Microbiol Res 2025; 298:128220. [PMID: 40398012 DOI: 10.1016/j.micres.2025.128220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/23/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Phytopathogen interactions are complicated and constantly evolving, driven by a never-ending war amongst the host's immune defenses and the pathogen's virulence strategies. This comprehensive review examines the intricate mechanisms of effector-triggered immunity (ETI) and how pathogen effectors use host cellular progressions to promote infection. This review article investigates the modification of Phytopathogen effectors and plant resistance proteins, highlighting the role of meta-population dynamics and rapid adaptation. Additionally, it highlights the influence of environmental impact and climate change on host-pathogen interactions, describing their significant impact on disease dynamics and pathogen evolution. Effector proteins are crucial in sabotaging plant immunity, with bacterial, fungal, oomycete, and nematode effectors targeting common host protein networks and phytohormone pathways. Additionally, the review discusses advanced approaches for classifying effector targets, such as bioinformatics and single-cell transcriptomics, highlighting their importance in developing effective disease management strategies. Further insights are described into how effectors control phytohormone pathways, shedding light on how pathogens exploit host signaling. This review covers structural studies and protein modeling that have advanced effector prediction and our understanding of their functions and evolution, while providing an overview of phytopathogen interactions and future directions for effector research.
Collapse
Affiliation(s)
- Mehran Khan
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | | | | | - Muhammad Asif
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Ali Kamran
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Lingfeng Luo
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Songshu Chen
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
4
|
Sutherland CA, Stevens DM, Seong K, Wei W, Krasileva KV. The resistance awakens: Diversity at the DNA, RNA, and protein levels informs engineering of plant immune receptors from Arabidopsis to crops. THE PLANT CELL 2025; 37:koaf109. [PMID: 40344182 DOI: 10.1093/plcell/koaf109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
Plants rely on germline-encoded, innate immune receptors to sense pathogens and initiate the defense response. The exponential increase in quality and quantity of genomes, RNA-seq datasets, and protein structures has underscored the incredible biodiversity of plant immunity. Arabidopsis continues to serve as a valuable model and theoretical foundation of our understanding of wild plant diversity of immune receptors, while expansion of study into agricultural crops has also revealed distinct evolutionary trajectories and challenges. Here, we provide the classical context for study of both intracellular nucleotide-binding, leucine-rich repeat receptors and surface-localized pattern recognition receptors at the levels of DNA sequences, transcriptional regulation, and protein structures. We then examine how recent technology has shaped our understanding of immune receptor evolution and informed our ability to efficiently engineer resistance. We summarize current literature and provide an outlook on how researchers take inspiration from natural diversity in bioengineering efforts for disease resistance from Arabidopsis and other model systems to crops.
Collapse
Affiliation(s)
- Chandler A Sutherland
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Danielle M Stevens
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Wei Wei
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Le Naour‐‐Vernet M, Lahfa M, Maidment JHR, Padilla A, Roumestand C, de Guillen K, Kroj T, Césari S. Structure-guided insights into the biology of fungal effectors. THE NEW PHYTOLOGIST 2025; 246:1460-1477. [PMID: 40130672 PMCID: PMC12018790 DOI: 10.1111/nph.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025]
Abstract
Phytopathogenic fungi cause enormous yield losses in many crops, threatening both agricultural production and global food security. To infect plants, they secrete effectors targeting various cellular processes in the host. Putative effector genes are numerous in fungal genomes, and they generally encode proteins with no sequence homology to each other or to other known proteins or domains. Recent studies have elucidated and predicted three-dimensional structures of effectors from a wide diversity of plant pathogenic fungi, revealing a limited number of conserved folds. Effectors with very diverse amino acid sequences can thereby be grouped into families based on structural homology. Some structural families are conserved in many different fungi, and some are expanded in specific fungal taxa. Here, we describe the features of these structural families and discuss recent advances in predicting new structural families. We highlight the contribution of structural analyses to deepen our understanding of the function and evolution of fungal effectors. We also discuss prospects offered by advances in structural modeling for predicting and studying the virulence targets of fungal effectors in plants.
Collapse
Affiliation(s)
- Marie Le Naour‐‐Vernet
- PHIM Plant Health InstituteUniv Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Mounia Lahfa
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Josephine H. R. Maidment
- PHIM Plant Health InstituteUniv Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - André Padilla
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Christian Roumestand
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Karine de Guillen
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Thomas Kroj
- PHIM Plant Health InstituteUniv Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Stella Césari
- PHIM Plant Health InstituteUniv Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| |
Collapse
|
6
|
Guo G, Bai K, Hou Y, Gong Z, Zhang H, Wu Q, Lu P, Li M, Dong L, Xie J, Chen Y, Zhang P, Zhu K, Li B, Li W, Dong L, Yang Y, Qiu D, Wang G, Ahn H, Zhao H, Yuan C, Shi W, Xue M, Yang L, Yu D, Zhao Y, Chen Y, Li H, Hu T, Han G, Jones JDG, Liu Z. The wheat NLR pair RXL/Pm5e confers resistance to powdery mildew. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1260-1276. [PMID: 39840722 PMCID: PMC11933841 DOI: 10.1111/pbi.14584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/22/2024] [Accepted: 12/31/2024] [Indexed: 01/23/2025]
Abstract
Powdery mildew poses a significant threat to global wheat production and most cloned and deployed resistance genes for wheat breeding encode nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Although two genetically linked NLRs function together as an NLR pair have been reported in other species, this phenomenon has been relatively less studied in wheat. Here, we demonstrate that two tightly linked NLR genes, RXL and Pm5e, arranged in a head-to-head orientation, function together as an NLR pair to mediate powdery mildew resistance in wheat. The resistance function of the RXL/Pm5e pair is validated by mutagenesis, gene silencing, and gene-editing assays. Interestingly, both RXL and Pm5e encode atypical NLRs, with RXL possessing a truncated NB-ARC (nucleotide binding adaptor shared by APAF-1, plant R proteins and CED-4) domain and Pm5e featuring an atypical coiled-coil (CC) domain. Notably, RXL and Pm5e lack an integrated domain associated with effector recognition found in all previously reported NLR pairs. Additionally, RXL and Pm5e exhibit a preference for forming hetero-complexes rather than homo-complexes, highlighting their cooperative role in disease resistance. We further show that the CC domain of Pm5e specifically suppresses the hypersensitive response induced by the CC domain of RXL through competitive interaction, revealing regulatory mechanisms within this NLR pair. Our study sheds light on the molecular mechanism underlying RXL/Pm5e-mediated powdery mildew resistance and provides a new example of an NLR pair in wheat disease resistance.
Collapse
Affiliation(s)
- Guanghao Guo
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Kaihong Bai
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Yikun Hou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhen Gong
- College of Life SciencesNanjing Normal UniversityNanjingJiangsuChina
| | - Huaizhi Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Qiuhong Wu
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Ping Lu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Miaomiao Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Lingli Dong
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jingzhong Xie
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yongxing Chen
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Panpan Zhang
- Tea Research InstituteYunnan Academy of Agricultural SciencesKunmingYunnanChina
| | - Keyu Zhu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Beibei Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Wenling Li
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Lei Dong
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yijun Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Dan Qiu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Gaojie Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Hee‐Kyung Ahn
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
- Present address:
Institute of Molecular Plant Sciences, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - He Zhao
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Wenqi Shi
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Minfeng Xue
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Lijun Yang
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Dazao Yu
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural SciencesWuhanChina
| | - Yusheng Zhao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yuhang Chen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Hongjie Li
- Institute of BiotechnologyXianghu LaboratoryHangzhouZhejiangChina
| | - Tiezhu Hu
- Henan Institute of Science and TechnologyXinxiangHenan ProvinceChina
| | - Guan‐Zhu Han
- College of Life SciencesNanjing Normal UniversityNanjingJiangsuChina
| | | | - Zhiyong Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
- Hainan Seed Industry LaboratorySanya CityHainan ProvinceChina
| |
Collapse
|
7
|
Guan H, Zhang P, Park RF, Ding Y. Genomics Research on the Road of Studying Biology and Virulence of Cereal Rust Fungi. MOLECULAR PLANT PATHOLOGY 2025; 26:e70082. [PMID: 40181494 PMCID: PMC11968332 DOI: 10.1111/mpp.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
Rust fungi are highly destructive pathogens that pose a significant threat to crop production worldwide, especially cereals. Obligate biotrophy and, in many cases, complex life cycles make rust fungi particularly challenging to study. However, recent rapid advances in sequencing technologies and genomic analysis tools have revolutionised rust fungal research. It is anticipated that the increasing availability and ongoing substantial improvements in genome assemblies will propel the field of rust biology into the post-genomic era, instigating a cascade of research endeavours encompassing multi-omics and gene discoveries. This is especially the case for many cereal rust pathogens, for which continental-scale studies of virulence have been conducted over many years and historical collections of viable isolates have been sequenced and assembled. Genomic analysis plays a crucial role in uncovering the underlying causes of the high variability of virulence and the complexity of population dynamics in rust fungi. Here, we provide an overview of progress in rust genomics, discuss the strategies employed in genomic analysis, and elucidate the strides that will drive cereal rust biology into the post-genomic era.
Collapse
Affiliation(s)
- Haixia Guan
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Peng Zhang
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Robert F. Park
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Yi Ding
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| |
Collapse
|
8
|
Chen R, Chen J, Powell OR, Outram MA, Arndell T, Gajendiran K, Wang YL, Lubega J, Xu Y, Ayliffe MA, Blundell C, Figueroa M, Sperschneider J, Vanhercke T, Kanyuka K, Tang D, Zhong G, Gardener C, Yu G, Gourdoupis S, Jaremko Ł, Matny O, Steffenson BJ, Boshoff WHP, Meyer WB, Arold ST, Dodds PN, Wulff BBH. A wheat tandem kinase activates an NLR to trigger immunity. Science 2025; 387:1402-1408. [PMID: 40146821 DOI: 10.1126/science.adp5034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/26/2024] [Accepted: 02/14/2025] [Indexed: 03/29/2025]
Abstract
The role of nucleotide-binding leucine-rich repeat (NLR) receptors in plant immunity is well studied, but the function of a class of tandem kinases (TKs) that confer disease resistance in wheat and barley remains unclear. In this study, we show that the SR62 locus is a digenic module encoding the Sr62TK TK and an NLR (Sr62NLR), and we identify the corresponding AvrSr62 effector. AvrSr62 binds to the N-terminal kinase 1 of Sr62TK, triggering displacement of kinase 2, which activates Sr62NLR. Modeling and mutation analysis indicated that this is mediated by overlapping binding sites (i) on kinase 1 for binding AvrSr62 and kinase 2 and (ii) on kinase 2 for binding kinase 1 and Sr62NLR. Understanding this two-component resistance complex may help engineering and breeding plants for durable resistance.
Collapse
Affiliation(s)
- Renjie Chen
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jian Chen
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Oliver R Powell
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Megan A Outram
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Taj Arndell
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Karthick Gajendiran
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yan L Wang
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jibril Lubega
- National Institute of Agricultural Botany (NIAB), 93 Lawrence Weaver Road, Cambridge, UK
| | - Yang Xu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Michael A Ayliffe
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Cheryl Blundell
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Melania Figueroa
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Jana Sperschneider
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Thomas Vanhercke
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Kostya Kanyuka
- National Institute of Agricultural Botany (NIAB), 93 Lawrence Weaver Road, Cambridge, UK
| | - Dingzhong Tang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guitao Zhong
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Catherine Gardener
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guotai Yu
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Spyridon Gourdoupis
- Bioscience Program, Smart Health Initiative, BESE, KAUST, Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- Bioscience Program, Smart Health Initiative, BESE, KAUST, Thuwal, Saudi Arabia
| | - Oadi Matny
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Wilku B Meyer
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Stefan T Arold
- Bioscience Program, Smart Health Initiative, BESE, KAUST, Thuwal, Saudi Arabia
| | - Peter N Dodds
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Brande B H Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
9
|
Lu P, Zhang G, Li J, Gong Z, Wang G, Dong L, Zhang H, Guo G, Su M, Wang K, Wang Y, Zhu K, Wu Q, Chen Y, Li M, Huang B, Li B, Li W, Dong L, Hou Y, Cui X, Fu H, Qiu D, Yuan C, Li H, Zhou JM, Han GZ, Chen Y, Liu Z. A wheat tandem kinase and NLR pair confers resistance to multiple fungal pathogens. Science 2025; 387:1418-1424. [PMID: 40146830 DOI: 10.1126/science.adp5469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/26/2024] [Accepted: 02/14/2025] [Indexed: 03/29/2025]
Abstract
Tandem kinase proteins underlie the innate immune systems of cereal plants, but how they initiate plant immune responses remains unclear. This report identifies wheat protein wheat tandem NBD 1 (WTN1), a noncanonical nucleotide-binding leucine-rich repeat (NLR) receptor featuring tandem nucleotide binding adaptor shared by APAF-1, plant R proteins, and CED-4 (NB-ARC) domains, required for WTK3-mediated disease resistance. Both WTK3 and its allelic variant Rwt4-known for conferring resistance to wheat powdery mildew and blast, respectively-are capable of recognizing the blast effector PWT4. They activate WTN1 to form calcium-permeable channels, akin to ZAR1 and Sr35. Thus, tandem kinase proteins and their associated NLRs operate as "sensor-executor" pairs against fungal pathogens. Additionally, evolutionary analyses reveal a coevolutionary trajectory of the tandem kinase-NLR module, highlighting their cooperative role in triggering plant immunity.
Collapse
Affiliation(s)
- Ping Lu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Gaohua Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Gaojie Wang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lingli Dong
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huaizhi Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghao Guo
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ke Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yueming Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Keyu Zhu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiuhong Wu
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Yongxing Chen
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Miaomiao Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Baoge Huang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Beibei Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenling Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Dong
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yikun Hou
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejia Cui
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongkui Fu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Qiu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | - Hongjie Li
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Jian-Min Zhou
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| | - Yuhang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hainan Seed Industry Laboratory, Sanya, Hainan, China
| |
Collapse
|
10
|
Hao W, Wu Y, Guo Q, Wu J, Lin M, Hu Q, Tandayu E, Lu J, Si H, Ma C, Wang X, Chen C. Fine mapping of stripe rust resistance gene YrAn1589 in common wheat using Wheat660K SNP array and BSR-Seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:63. [PMID: 40021553 DOI: 10.1007/s00122-025-04838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
KEY MESSAGE A new stripe rust resistance gene YrAn1589 in Chinese wheat Annong1589 was mapped to a 160.9-166.6 kb interval on chromosome arm 3BL and co-segregated with a marker CAPS9 developed from candidate gene TraesCS3B03G1054600. Stripe rust, caused by Puccinia. striiformis f. sp. tritici (Pst), is a devastating fungal disease that can significantly reduce wheat yield. The Chinese wheat cultivar Annong1589 demonstrates high resistance against the predominant Pst races in the Huang-Huai valley wheat region. The present study aimed to identify the stripe rust resistance gene in Annong1589. Genetic analysis indicated that the resistance in Annong1589 was conferred by a single dominant gene, provisionally designated YrAn1589. Using Wheat660K SNP array, bulked segregant RNA sequencing and new molecular markers developed, the resistance gene was mapped to a 160.9-166.6 kb region between CAPS8 and CAPS10 on chromosome 3BL based on IWGSC CS RefSeq v2.1 and eight other reference genome sequences, including eight high-confidence annotated genes. Transcriptome and qRT-PCR analyses revealed significantly upregulated expression of TraesCS3B03G1054600 in resistant plants following CYR32 inoculation, suggesting it is a potential candidate gene for YrAn1589. A functional marker CAPS9 developed from a A/G polymorphic SNP in the candidate co-segregated with YrAn1589 in the F2 population. Subcellular localization experiments showed that TraesCS3B03G1054600 protein was localized in the cytoplasm and nucleus, implying its role in immune response and resistance. Our findings establish YrAn1589 as a new stripe rust resistance gene, providing valuable gene resource and molecular markers for improvement of stripe rust resistance in wheat.
Collapse
Affiliation(s)
- Weihao Hao
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yingjie Wu
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Jingchun Wu
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
| | - Meng Lin
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Qiwei Hu
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Erwin Tandayu
- Agriculture Victoria, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Jie Lu
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Hongqi Si
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Chuanxi Ma
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Can Chen
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Xiao Y, Wu X, Wang Z, Ji K, Zhao Y, Zhang Y, Wan L. Activation and inhibition mechanisms of a plant helper NLR. Nature 2025; 639:438-446. [PMID: 39939758 DOI: 10.1038/s41586-024-08517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/11/2024] [Indexed: 02/14/2025]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) receptors sense pathogen effectors and form resistosomes to confer immunity1. Some sensor NLR resistosomes produce small molecules to induce formation of a heterotrimer complex with two lipase-like proteins, EDS1 and SAG101, and a helper NLR called NRG1 (refs. 2,3). Activation of sensor NLR resistosomes also triggers NRG1 oligomerization and resistosome formation at the plasma membrane4,5. We demonstrate that the Arabidopsis AtEDS1-AtSAG101-AtNRG1A heterotrimer formation is stabilized by the AtNRG1A loss-of-oligomerization mutant L134E5,6. We report structures of AtEDS1-AtSAG101-AtNRG1A L134E and AtEDS1-AtSAG101-AtNRG1C heterotrimers with similar assembly mechanisms. AtNRG1A signalling is activated by the interaction with the AtEDS1-AtSAG101 heterodimer in complex with their small-molecule ligand. The truncated AtNRG1C maintains core interacting domains of AtNRG1A but develops further interactions with AtEDS1-AtSAG101 to outcompete AtNRG1A. Moreover, AtNRG1C lacks an N-terminal signalling domain and shows nucleocytoplasmic localization, facilitating its sequestration of AtEDS1-AtSAG101, which is also nucleocytoplasmic. Our study shows the activation and inhibition mechanisms of a plant helper NLR.
Collapse
Affiliation(s)
- Yinyan Xiao
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxian Wu
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zaiqing Wang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kexin Ji
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhao
- Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Li Wan
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
12
|
Asghar R, Wu N, Ali N, Wang Y, Akkaya M. Computational studies reveal structural characterization and novel families of Puccinia striiformis f. sp. tritici effectors. PLoS Comput Biol 2025; 21:e1012503. [PMID: 40153705 PMCID: PMC11952758 DOI: 10.1371/journal.pcbi.1012503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025] Open
Abstract
Understanding the biological functions of Puccinia striiformis f. sp. tritici (Pst) effectors is fundamental for uncovering the mechanisms of pathogenicity and variability, thereby paving the way for developing durable and effective control strategies for stripe rust. However, due to the lack of an efficient genetic transformation system in Pst, progress in effector function studies has been slow. Here, we modeled the structures of 15,201 effectors from twelve Pst races or isolates, a Puccinia striiformis isolate, and one Puccinia striiformis f. sp. hordei isolate using AlphaFold2. Of these, 8,102 folds were successfully predicted, and we performed sequence- and structure-based annotations of these effectors. These effectors were classified into 410 structure clusters and 1,005 sequence clusters. Sequence lengths varied widely, with a concentration between 101-250 amino acids, and motif analysis revealed that 47% and 5.81% of the predicted effectors contain known effector motifs [Y/F/W]xC and RxLR, respectively highlighting the structural conservation across a substantial portion of the effectors. Subcellular localization predictions indicated a predominant cytoplasmic localization, with notable chloroplast and nuclear presence. Structure-guided analysis significantly enhances effector prediction efficiency as demonstrated by the 75% among 8,102 have structural annotation. The clustering and annotation prediction both based on the sequence and structure homologies allowed us to determine the adopted folding or fold families of the effectors. A common feature observed was the formation of structural homologies from different sequences. In our study, one of the comparative structural analyses revealed a new structure family with a core structure of four helices, including Pst27791, PstGSRE4, and PstSIE1, which target key wheat immune pathway proteins, impacting the host immune functions. Further comparative structural analysis showed similarities between Pst effectors and effectors from other pathogens, such as AvrSr35, AvrSr50, Zt-KP4-1, and MoHrip2, highlighting a possibility of convergent evolutionary strategies, yet to be supported by further data encompassing on some evolutionarily distant species. Currently, our initial analysis is the most one on Pst effectors' sequence, structural and annotation relationships providing a novel foundation to advance our future understanding of Pst pathogenicity and evolution.
Collapse
Affiliation(s)
- Raheel Asghar
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Noman Ali
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yulei Wang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Mahinur Akkaya
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
13
|
Prigozhin DM, Sutherland CA, Rangavajjhala S, Krasileva KV. Majority of the Highly Variable NLRs in Maize Share Genomic Location and Contain Additional Target-Binding Domains. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:275-284. [PMID: 39013614 DOI: 10.1094/mpmi-05-24-0047-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Nucleotide-binding, leucine-rich repeat (LRR) proteins (NLRs) are a major class of immune receptors in plants. NLRs include both conserved and rapidly evolving members; however, their evolutionary trajectory in crops remains understudied. Availability of crop pan-genomes enables analysis of the recent events in the evolution of this highly complex gene family within domesticated species. Here, we investigated the NLR complement of 26 nested association mapping (NAM) founder lines of maize. We found that maize has just four main subfamilies containing rapidly evolving highly variable NLR (hvNLR) receptors. Curiously, three of these phylogenetically distinct hvNLR lineages are located in adjacent clusters on chromosome 10. Members of the same hvNLR clade show variable expression and methylation across lines and tissues, which is consistent with their rapid evolution. By combining sequence diversity analysis and AlphaFold2 computational structure prediction, we predicted ligand-binding sites in the hvNLRs. We also observed novel insertion domains in the LRR regions of two hvNLR subfamilies that likely contribute to target recognition. To make this analysis accessible, we created NLRCladeFinder, a Google Colaboratory notebook, that accepts any newly identified NLR sequence, places it in the evolutionary context of the maize pan-NLRome, and provides an updated clade alignment, phylogenetic tree, and sequence diversity information for the gene of interest. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Daniil M Prigozhin
- Molecular Biophysics and Integrated Bioimaging Division, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Chandler A Sutherland
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Sanjay Rangavajjhala
- Molecular Biophysics and Integrated Bioimaging Division, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
14
|
Zhu M, Feng M, Tao X. NLR-mediated antiviral immunity in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:786-800. [PMID: 39777907 DOI: 10.1111/jipb.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Plant viruses cause substantial agricultural devastation and economic losses worldwide. Plant nucleotide-binding domain leucine-rich repeat receptors (NLRs) play a pivotal role in detecting viral infection and activating robust immune responses. Recent advances, including the elucidation of the interaction mechanisms between NLRs and pathogen effectors, the discovery of helper NLRs, and the resolution of the ZAR1 resistosome structure, have significantly deepened our understanding of NLR-mediated immune responses, marking a new era in NLR research. In this scenario, significant progress has been made in the study of NLR-mediated antiviral immunity. This review comprehensively summarizes the progress made in plant antiviral NLR research over the past decades, with a focus on NLR recognition of viral pathogen effectors, NLR activation and regulation, downstream immune signaling, and the engineering of NLRs.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingfeng Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
15
|
Huang S, Wang J, Song R, Jia A, Xiao Y, Sun Y, Wang L, Mahr D, Wu Z, Han Z, Li X, Parker JE, Chai J. Balanced plant helper NLR activation by a modified host protein complex. Nature 2025; 639:447-455. [PMID: 39939760 DOI: 10.1038/s41586-024-08521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/12/2024] [Indexed: 02/14/2025]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) receptors play crucial roles in plant immunity by sensing pathogen effectors1. In Arabidopsis, certain sensor NLRs function as NADases to catalyse the production of second messengers2,3, which can be recognized by enhanced disease susceptibility 1 (EDS1) with its partner senescence-associated gene 101 (SAG101), to activate helper NLR N requirement gene 1 (NRG1)4. A cryoelectron microscopy structure shows that second-messenger-activated EDS1-SAG101 mainly contacts the leucine-rich repeat domain of NRG1A to mediate the formation of an induced EDS1-SAG101-NRG1A complex. Structural comparisons show that binding of a second messenger induces conformational changes in EDS1-SAG101, which are recognized by NRG1A, leading to its allosteric activation. We further show that an inhibitory NRG1 family member, NRG1C, efficiently outcompetes NRG1A for binding to second-messenger-activated EDS1-SAG101. These findings uncover mechanisms for NRG1A activation through its recognition of a modified host EDS1-SAG101 complex, and NRG1A inhibition by NRG1C through sequestration of the activated EDS1-SAG101, thus shedding light on the activation and constraint of a central plant immune response system.
Collapse
Affiliation(s)
- Shijia Huang
- Research Center for Industries of the Future and School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Junli Wang
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ridan Song
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Aolin Jia
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT-China Wheat and Maize Joint Research Centre, Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Yu Xiao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yue Sun
- Research Center for Industries of the Future and School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Lin Wang
- Research Center for Industries of the Future and School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Dennis Mahr
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhifu Han
- Research Center for Industries of the Future and School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences, Max-Planck Institute for Plant Breeding Research, Cologne, Germany.
| | - Jijie Chai
- Research Center for Industries of the Future and School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
16
|
Zhong C, Li W, Zhang X, Zhang D, Wen Z, Song W, Jiang Z, Gao Z, Guo H, Bi G, Liu Z, Li D, Dinesh-Kumar SP, Zhang Y. A cell wall-associated kinase phosphorylates NLR immune receptor to negatively regulate resistosome formation. NATURE PLANTS 2025; 11:561-579. [PMID: 40119183 DOI: 10.1038/s41477-025-01949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/21/2025] [Indexed: 03/24/2025]
Abstract
Plants deploy intracellular nucleotide-binding leucine-rich repeats (NLRs) to detect pathogen effectors and initiate immune responses. Although the activation mechanism of some plant NLRs forming resistosomes has been elucidated, whether NLR resistosome assembly is regulated to fine-tune immunity remains enigmatic. Here we used an antiviral coiled coil-nucleotide-binding site-leucine rich repeat, Barley Stripe Resistance 1 (BSR1), as a model and demonstrate that BSR1 is phosphorylated. Using a proximity labelling approach, we identified a wall-associated kinase-like protein 20 (WAKL20) which negatively regulates BSR1-mediated immune responses by directly phosphorylating the Ser470 residue in the NB-ARC domain of BSR1. Mechanistically, Ser470 phosphorylation results in a steric clash of intramolecular domains of BSR1, thereby compromising BSR1 oligomerization. The phosphorylation site is conserved among multiple plant NLRs and our results show that WAKL20 participates in other NLR-mediated immune responses besides BSR1. Together, our data reveal phosphorylation as a mechanism for modulating plant resistosome assembly, and provide new insight into NLR-mediated plant immunity.
Collapse
Affiliation(s)
- Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Song
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhihao Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zongyu Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hailong Guo
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Guozhi Bi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
17
|
Chen Z, Huang J, Li J, Menke FLH, Jones JDG, Guo H. Reversible ubiquitination conferred by domain shuffling controls paired NLR immune receptor complex homeostasis in plant immunity. Nat Commun 2025; 16:1984. [PMID: 40011440 PMCID: PMC11865428 DOI: 10.1038/s41467-025-57231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Plant intracellular NLR immune receptors can function individually or in pairs to detect pathogen effectors and activate immune responses. NLR homeostasis has to be tightly regulated to ensure proper defense without triggering autoimmunity. However, in contrast to singleton NLRs, the mechanisms controlling the paired NLRs complex homeostasis are less understood. The paired Arabidopsis RRS1/RPS4 immune receptor complex confers disease resistance through effector recognition mediated by the integrated WRKY domain of RRS1. Here, through proximity labeling, we reveal a ubiquitination-deubiquitination cycle that controls the homeostasis of the RRS1/RPS4 complex. E3 ligase RARE directly binds and ubiquitinates RRS1's WRKY domain to promote its proteasomal degradation, thereby destabilizing RPS4 indirectly and compromising the stability and function of the RRS1/RPS4 complex. Conversely, the deubiquitinating enzymes UBP12/UBP13 deubiquitinate RRS1's WRKY domain, counteracting RARE's effects. Interestingly, the abundance of WRKY transcription factors WRKY70 and WRKY41 is also regulated by RARE and UBP12/UBP13. Phylogenetic analysis suggests this regulation likely transferred from WRKY70/WRKY41 to RRS1 upon WRKY domain integration. Our findings improve our understanding of homeostatic regulation of paired NLR complex and uncover a paradigm whereby domain integration can co-opt preexisting post-translational modification to regulate novel protein functions.
Collapse
Affiliation(s)
- Zhiyi Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jianhua Huang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jianyu Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Hailong Guo
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China.
| |
Collapse
|
18
|
Waites J, Achary VMM, Syombua ED, Hearne SJ, Bandyopadhyay A. CRISPR-mediated genome editing of wheat for enhancing disease resistance. Front Genome Ed 2025; 7:1542487. [PMID: 40070798 PMCID: PMC11893844 DOI: 10.3389/fgeed.2025.1542487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Wheat is cultivated across diverse global environments, and its productivity is significantly impacted by various biotic stresses, most importantly but not limited to rust diseases, Fusarium head blight, wheat blast, and powdery mildew. The genetic diversity of modern cultivars has been eroded by domestication and selection, increasing their vulnerability to biotic stress due to uniformity. The rapid spread of new highly virulent and aggressive pathogen strains has exacerbated this situation. Three strategies can be used for enhancing disease resistance through genome editing: introducing resistance (R) gene-mediated resistance, engineering nucleotide-binding leucine-rich repeat receptors (NLRs), and manipulating susceptibility (S) genes to stop pathogens from exploiting these factors to support infection. Utilizing R gene-mediated resistance is the most common strategy for traditional breeding approaches, but the continuous evolution of pathogen effectors can eventually overcome this resistance. Moreover, modifying S genes can confer pleiotropic effects that hinder their use in agriculture. Enhancing disease resistance is paramount for sustainable wheat production and food security, and new tools and strategies are of great importance to the research community. The application of CRISPR-based genome editing provides promise to improve disease resistance, allowing access to a broader range of solutions beyond random mutagenesis or intraspecific variation, unlocking new ways to improve crops, and speeding up resistance breeding. Here, we first summarize the major disease resistance strategies in the context of important wheat diseases and their limitations. Next, we turn our attention to the powerful applications of genome editing technology in creating new wheat varieties against important wheat diseases.
Collapse
Affiliation(s)
| | | | | | | | - Anindya Bandyopadhyay
- Genetic Resource Program, International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
| |
Collapse
|
19
|
Lawson AW, Flores-Ibarra A, Cao Y, An C, Neumann U, Gunkel M, Saur IML, Chai J, Behrmann E, Schulze-Lefert P. The barley MLA13-AVR A13 heterodimer reveals principles for immunoreceptor recognition of RNase-like powdery mildew effectors. EMBO J 2025:10.1038/s44318-025-00373-9. [PMID: 39948409 DOI: 10.1038/s44318-025-00373-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 05/09/2025] Open
Abstract
Co-evolution between cereals and pathogenic grass powdery mildew fungi is exemplified by sequence diversification of an allelic series of barley resistance genes encoding Mildew Locus A (MLA) nucleotide-binding leucine-rich repeat (NLR) immunoreceptors with an N-terminal coiled-coil domain (CNLs). Each immunoreceptor recognises a matching, strain-specific powdery mildew effector encoded by an avirulence gene (AVRa). We present here the cryo-EM structure of barley MLA13 in complex with its cognate effector AVRA13-1. The effector adopts an RNase-like fold when bound to MLA13 in planta, similar to crystal structures of other RNase-like AVRA effectors unbound to receptors. AVRA13-1 interacts via its basal loops with MLA13 C-terminal leucine-rich repeats (LRRs) and the central winged helix domain (WHD). Co-expression of structure-guided MLA13 and AVRA13-1 substitution variants show that the receptor-effector interface plays an essential role in mediating immunity-associated plant cell death. Furthermore, by combining structural information from the MLA13-AVRA13-1 heterocomplex with sequence alignments of other MLA receptors, we engineered a single amino acid substitution in MLA7 that enables expanded effector detection of AVRA13-1 and the virulent variant AVRA13-V2. In contrast to the pentameric conformation of previously reported effector-activated CNL resistosomes, MLA13 was purified and resolved as a stable heterodimer from an in planta expression system. Our study suggests a common structural principle for RNase-like effector binding to MLAs and highlights the utility of structure-guided engineering of plant immune receptors for broadening their pathogen effector recognition capabilities.
Collapse
Affiliation(s)
- Aaron W Lawson
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Andrea Flores-Ibarra
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, 50674, Cologne, Germany
| | - Yu Cao
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, 50674, Cologne, Germany
- School of Life Sciences, Westlake University, 310031, Hangzhou, China
| | - Chunpeng An
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Monika Gunkel
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, 50674, Cologne, Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research and University of Cologne, 50829, Cologne, Germany
| | - Jijie Chai
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, 50674, Cologne, Germany.
- School of Life Sciences, Westlake University, 310031, Hangzhou, China.
| | - Elmar Behrmann
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, 50674, Cologne, Germany.
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research and University of Cologne, 50829, Cologne, Germany.
| |
Collapse
|
20
|
Seong K, Wei W, Sent SC, Vega B, Dee A, Ramirez-Bernardino G, Kumar R, Parra L, Saur IML, Krasileva K. Resurrection of the Plant Immune Receptor Sr50 to Overcome Pathogen Immune Evasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.07.607039. [PMID: 39149390 PMCID: PMC11326300 DOI: 10.1101/2024.08.07.607039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Pathogen-driven plant diseases cause significant crop losses worldwide. The introgression of intracellular nucleotide-binding leucine-rich repeat receptor (NLR) genes into elite crop cultivars is a common strategy for disease control, yet pathogens rapidly evolve to evade NLR-mediated immunity. The NLR gene Sr50 protects wheat against stem rust, a devastating disease caused by the fungal pathogen Puccinia graminis f. sp. tritici (Pgt). However, mutations in AvrSr50 allowed Pgt to evade Sr50 recognition, leading to resistance breakdown. Advances in protein structure modeling can enable targeted NLR engineering to restore recognition of escaped effectors. Here, we combined iterative computational structural analyses and site-directed mutagenesis to engineer Sr50 recognition of AvrSr50QCMJC, a Pgt effector variant that evades wild-type Sr50 detection. Derived by molecular docking, our initial structural model identified the K711D substitution in Sr50, which partially restored AvrSr50QCMJC recognition. Enhancing Sr50K711D expression via strong promoters compensated for weak recognition and restored robust immune responses. Further structural refinements led to the generation of five double and two triple receptor mutants. These engineered mutants, absent in nature, showed robust dual recognition for AvrSr50 and AvrSr50QCMJC in both Nicotiana benthamiana and wheat protoplasts. Notably, the K711D substitution was essential and synergistic with the additional substitutions for AvrSr50QCMJC recognition, demonstrating protein epistasis. Furthermore, this single substitution altered AlphaFold 2 predictions, enabling accurate modeling of the Sr50K711D-AvrSr50 complex structure, consistent with our final structural hypothesis. Collectively, this study outlines a framework for NLR engineering to counteract pathogen adaptation and provides novel Sr50 variants with potential for stem rust resistance.
Collapse
Affiliation(s)
- Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Wei Wei
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Sophie C Sent
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| | - Brandon Vega
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Amanda Dee
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | - Rakesh Kumar
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Lorena Parra
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Isabel ML Saur
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Ksenia Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94704
| |
Collapse
|
21
|
Han X, Li S, Zeng Q, Sun P, Wu D, Wu J, Yu X, Lai Z, Milne RJ, Kang Z, Xie K, Li G. Genetic engineering, including genome editing, for enhancing broad-spectrum disease resistance in crops. PLANT COMMUNICATIONS 2025; 6:101195. [PMID: 39568207 PMCID: PMC11897464 DOI: 10.1016/j.xplc.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Plant diseases, caused by a wide range of pathogens, severely reduce crop yield and quality, posing a significant threat to global food security. Developing broad-spectrum resistance (BSR) in crops is a key strategy for controlling crop diseases and ensuring sustainable crop production. Cloning disease-resistance (R) genes and understanding their underlying molecular mechanisms provide new genetic resources and strategies for crop breeding. Novel genetic engineering and genome editing tools have accelerated the study and engineering of BSR genes in crops, which is the primary focus of this review. We first summarize recent advances in understanding the plant immune system, followed by an examination of the molecular mechanisms underlying BSR in crops. Finally, we highlight diverse strategies employed to achieve BSR, including gene stacking to combine multiple R genes, multiplexed genome editing of susceptibility genes and promoter regions of executor R genes, editing cis-regulatory elements to fine-tune gene expression, RNA interference, saturation mutagenesis, and precise genomic insertions. The genetic studies and engineering of BSR are accelerating the breeding of disease-resistant cultivars, contributing to crop improvement and enhancing global food security.
Collapse
Affiliation(s)
- Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Jianguo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
22
|
Guo S, Zhang F, Du X, Zhang X, Huang X, Li Z, Zhang Y, Gan P, Li H, Li M, Wang X, Tang C, Wang X, Kang Z, Zhang X. TaANK-TPR1 enhances wheat resistance against stripe rust via controlling gene expression and protein activity of NLR protein TaRPP13L1. Dev Cell 2025:S1534-5807(25)00037-1. [PMID: 39954677 DOI: 10.1016/j.devcel.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/22/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Nucleotide-binding site, leucine-rich repeat (NLR) proteins activate a robust immune response on recognition of pathogen invasion. However, the function and regulatory mechanisms of NLRs during Puccinia striiformis f. sp. tritici (Pst) infection in wheat remain elusive. Here, we identify an ankyrin (ANK) repeat and tetratricopeptide repeat (TPR)-containing protein, TaANK-TPR1, which plays a positive role in the regulation of wheat resistance against Pst and the immune response of NLR. TaANK-TPR1 targets the NLR protein TaRPP13L1 (Recognition of PeronosporaParasitica 13-like 1) to facilitate its homodimerization and cell death to enhance the resistance of wheat against Pst. Meanwhile, TaANK-TPR1 binds to the TGACGT motif (methyl jasmonate-responsive element) of the TaRPP13L1 promoter and activates TaRPP13L1 transcription. Both TaANK-TPR1 and TaRPP13L1 respond to jasmonic acid (JA) signaling via the TGACGT element. Importantly, overexpressing TaRPP13L1 confers robust rust resistance without impacting important agronomic traits in the field. These findings identify a regulatory mechanism of NLR protein and provide targets for improving crop disease resistance.
Collapse
Affiliation(s)
- Shuangyuan Guo
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Feng Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoya Du
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinmei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueling Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zelong Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanqin Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Gan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huankun Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyue Wang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojie Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xinmei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
23
|
Guo BC, Zhang YR, Liu ZG, Li XC, Yu Z, Ping BY, Sun YQ, van den Burg H, Ma FW, Zhao T. Deciphering Plant NLR Genomic Evolution: Synteny-Informed Classification Unveils Insights into TNL Gene Loss. Mol Biol Evol 2025; 42:msaf015. [PMID: 39835721 PMCID: PMC11789945 DOI: 10.1093/molbev/msaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Nucleotide-binding leucine-rich repeat receptor (NLR) genes encode a pivotal class of plant immune receptors. However, their rampant duplication and loss have made inferring their genomic evolutionary trajectory difficult, exemplified by the loss of TNL family genes in monocots. In this study, we introduce a novel classification system for angiosperm NLR genes, grounded in network analysis of microsynteny information. This refined classification categorizes these genes into five classes: CNL_A, CNL_B, CNL_C, TNL, and RNL. Compared to the previous classification, we further subdivided CNLs into three subclasses. The credibility of this classification is supported by phylogenetic analysis and examination of protein domain structures. Importantly, this classification enabled a model to explain the extinction of TNL genes in monocots. Compelling microsynteny evidence underscores this revelation, indicating a clear synteny correspondence between the non-TNLs in monocots and the extinct TNL subclass. Our study provides crucial insights into the genomic origin and divergence of plant NLR subfamilies, unveiling the malleability-driven journey that has shaped the functionality and diversity of plant NLR genes.
Collapse
Affiliation(s)
- Bo-Cheng Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yi-Rong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhi-Guang Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xin-Chu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ze Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Bo-Ya Ping
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
- Agricultural Characteristic Industry Development Center, Qujiang District Agriculture and Rural Bureau, Quzhou, China
| | - Ya-Qiang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Harrold van den Burg
- Innovation for Crops, KeyGene, Wageningen, The Netherlands
- Molecular Plant Pathology, Swammerdam institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, The Netherlands
| | - Feng-Wang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Tao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
24
|
Jiang R, Chen W, Li Q, Guo J, Lv Z, Chen W. Genome-wide identification of the WD40 protein family and functional characterization of AaTTG1 in Artemisia annua. Int J Biol Macromol 2025; 289:138834. [PMID: 39689807 DOI: 10.1016/j.ijbiomac.2024.138834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/19/2024]
Abstract
Sweet wormwood (Artemisia annua), an annual herb belonging to the Compositae family, is the main source of the potent anti-malarial drug artemisinin, which is mainly produced in glandular trichomes of A. annua leaves. The WD40 protein family is one of the largest protein families in eukaryotes and plays crucial roles in regulating plant growth and development, stress responses, and secondary metabolite biosynthesis. However, WD40 proteins have not been comprehensively identified in A. annua. In this study, we identified 236 WD40 proteins in the A. annua genome and examined their conserved domains, motifs, and cis-regulatory elements, gene structures, chromosomal distribution, duplication events of their encoding genes. Furthermore, we isolated and characterized TRANSPARENT TESTA GLABROUS 1 (AaTTG1), a homolog of Arabidopsis TTG1, and confirmed that AaTTG1 was localized to the nucleus and cytoplasm. Indeed, AaTTG1 can rescue the glabrous phenotype of the Arabidopsis ttg1 mutant and enhanced trichome production when heterologously expressed in wild-type Arabidopsis plants. Transgenic A. annua lines overexpressing AaTTG1 displayed a significantly higher density of glandular trichomes and higher artemisinin contents. Transgenic A. annua lines with inhibited AaTTG1 function had fewer glandular trichomes and lower artemisinin levels. Moreover, we demonstrated that AaTTG1 positively regulates glandular trichome development in A. annua through interactions with AaSPL9. This study thus provides fundamental insights into the role of WD40 proteins in A. annua and introduces a promising approach to enhance artemisinin production by manipulating glandular trichome development in this valuable medicinal plant.
Collapse
Affiliation(s)
- Rui Jiang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhua Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Li
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 610075, China.
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China.
| |
Collapse
|
25
|
Li SX, Liu Y, Zhang YM, Chen JQ, Shao ZQ. Convergent reduction of immune receptor repertoires during plant adaptation to diverse special lifestyles and habitats. NATURE PLANTS 2025; 11:248-262. [PMID: 39821112 DOI: 10.1038/s41477-024-01901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Plants deploy cell-surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding site-leucine-rich repeat receptors (NLRs) to recognize pathogens. However, how plant immune receptor repertoires evolve in responding to changed pathogen burdens remains elusive. Here we reveal the convergent reduction of NLR repertoires in plants with diverse special lifestyles/habitats (SLHs) encountering low pathogen burdens. Furthermore, a parallel but milder reduction of PRR genes in SLH species was observed. The reduction of PRR and NLR genes was attributed to both increased gene loss and decreased gene duplication. Notably, pronounced loss of immune receptors was associated with the complete absence of signalling components from the enhanced disease susceptibility 1 (EDS1) and the resistance to powdery mildew 8 (RPW8)-NLR (RNL) families. In addition, evolutionary pattern analysis suggested that the conserved toll/interleukin-1 receptor (TIR)-only proteins might function tightly with EDS1/RNL. Taken together, these results reveal the hierarchically adaptive evolution of the two-tiered immune receptor repertoires during plant adaptation to diverse SLHs.
Collapse
Affiliation(s)
- Sai-Xi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
26
|
Leng Y, Kümmel F, Zhao M, Molnár I, Doležel J, Logemann E, Köchner P, Xi P, Yang S, Moscou MJ, Fiedler JD, Du Y, Steuernagel B, Meinhardt S, Steffenson BJ, Schulze-Lefert P, Zhong S. A barley MLA immune receptor is activated by a fungal nonribosomal peptide effector for disease susceptibility. THE NEW PHYTOLOGIST 2025; 245:1197-1215. [PMID: 39641654 DOI: 10.1111/nph.20289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
The barley Mla locus contains functionally diversified genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) and confer strain-specific immunity to biotrophic and hemibiotrophic fungal pathogens. In this study, we isolated a barley gene Scs6, which is an allelic variant of Mla genes but confers susceptibility to the isolate ND90Pr (BsND90Pr) of the necrotrophic fungus Bipolaris sorokiniana. We generated Scs6 transgenic barley lines and showed that Scs6 is sufficient to confer susceptibility to BsND90Pr in barley genotypes naturally lacking the receptor. The Scs6-encoded NLR (SCS6) is activated by a nonribosomal peptide (NRP) effector produced by BsND90Pr to induce cell death in barley and Nicotiana benthamiana. Domain swaps between MLAs and SCS6 reveal that the SCS6 leucine-rich repeat domain is a specificity determinant for receptor activation by the NRP effector. Scs6 is maintained in both wild and domesticated barley populations. Our phylogenetic analysis suggests that Scs6 is a Hordeum-specific innovation. We infer that SCS6 is a bona fide immune receptor that is likely directly activated by the nonribosomal peptide effector of BsND90Pr for disease susceptibility in barley. Our study provides a stepping stone for the future development of synthetic NLR receptors in crops that are less vulnerable to modification by necrotrophic pathogens.
Collapse
Affiliation(s)
- Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Florian Kümmel
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Mingxia Zhao
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, 261000, China
| | - István Molnár
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Martonvásár, 2462, Hungary
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, CZ-77900, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, CZ-77900, Czech Republic
| | - Elke Logemann
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Petra Köchner
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Pinggen Xi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shengming Yang
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Matthew J Moscou
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, 55108, USA
| | - Jason D Fiedler
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Yang Du
- Department of Computer Systems and Software Engineering, Valley City State University, Valley City, ND, 58072, USA
| | - Burkhard Steuernagel
- John Innes Centre, Computational and Systems Biology, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steven Meinhardt
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
27
|
Ikram AU, Khan MSS, Islam F, Ahmed S, Ling T, Feng F, Sun Z, Chen H, Chen J. All Roads Lead to Rome: Pathways to Engineering Disease Resistance in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412223. [PMID: 39691979 PMCID: PMC11792000 DOI: 10.1002/advs.202412223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Unlike animals, plants are unable to move and lack specialized immune cells and circulating antibodies. As a result, they are always threatened by a large number of microbial pathogens and harmful pests that can significantly reduce crop yield worldwide. Therefore, the development of new strategies to control them is essential to mitigate the increasing risk of crops lost to plant diseases. Recent developments in genetic engineering, including efficient gene manipulation and transformation methods, gene editing and synthetic biology, coupled with the understanding of microbial pathogenicity and plant immunity, both at molecular and genomic levels, have enhanced the capabilities to develop disease resistance in plants. This review comprehensively explains the fundamental mechanisms underlying the tug-of-war between pathogens and hosts, and provides a detailed overview of different strategies for developing disease resistance in plants. Additionally, it provides a summary of the potential genes that can be employed in resistance breeding for key crops to combat a wide range of potential pathogens and pests, including fungi, oomycetes, bacteria, viruses, nematodes, and insects. Furthermore, this review addresses the limitations associated with these strategies and their possible solutions. Finally, it discusses the future perspectives for producing plants with durable and broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Aziz Ul Ikram
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | | | - Faisal Islam
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | - Sulaiman Ahmed
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | - Tengfang Ling
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeon34141Republic of Korea
| | - Feng Feng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Huan Chen
- Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jian Chen
- International Genome CenterJiangsu UniversityZhenjiang212013China
| |
Collapse
|
28
|
Huang S, Li E, Jia F, Han Z, Chai J. Assembly and functional mechanisms of plant NLR resistosomes. Curr Opin Struct Biol 2025; 90:102977. [PMID: 39808854 DOI: 10.1016/j.sbi.2024.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Nucleotide-binding and leucine-rich repeat (NLR) proteins are essential intracellular immune receptors in both animal and plant kingdoms. Sensing of pathogen-derived signals induces oligomerization of NLR proteins, culminating in the formation of higher-order protein complexes known as resistosomes in plants. The NLR resistosomes play a pivotal role in mediating the plant immune response against invading pathogens. Over the past few years, our understanding of NLR biology has significantly advanced, particularly in the structural and biochemical aspects of the NLR resistosomes. Here, we highlight the recent advancements in the structural knowledge of how NLR resistosomes are activated and assembled, and how the structural knowledge provides insights into the biochemical functions of these NLR resistosomes, which converge on Ca2+ signals. Signaling mechanisms of the resistosomes that underpin plant immunity are also briefly discussed.
Collapse
Affiliation(s)
- Shijia Huang
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Ertong Li
- School of Pharmaceutical Sciences, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450000, China.
| | - Fangshuai Jia
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhifu Han
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Jijie Chai
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
29
|
Nobori T, Monell A, Lee TA, Sakata Y, Shirahama S, Zhou J, Nery JR, Mine A, Ecker JR. A rare PRIMER cell state in plant immunity. Nature 2025; 638:197-205. [PMID: 39779856 PMCID: PMC11798839 DOI: 10.1038/s41586-024-08383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Plants lack specialized and mobile immune cells. Consequently, any cell type that encounters pathogens must mount immune responses and communicate with surrounding cells for successful defence. However, the diversity, spatial organization and function of cellular immune states in pathogen-infected plants are poorly understood1. Here we infect Arabidopsis thaliana leaves with bacterial pathogens that trigger or supress immune responses and integrate time-resolved single-cell transcriptomic, epigenomic and spatial transcriptomic data to identify cell states. We describe cell-state-specific gene-regulatory logic that involves transcription factors, putative cis-regulatory elements and target genes associated with disease and immunity. We show that a rare cell population emerges at the nexus of immune-active hotspots, which we designate as primary immune responder (PRIMER) cells. PRIMER cells have non-canonical immune signatures, exemplified by the expression and genome accessibility of a previously uncharacterized transcription factor, GT-3A, which contributes to plant immunity against bacterial pathogens. PRIMER cells are surrounded by another cell state (bystander) that activates genes for long-distance cell-to-cell immune signalling. Together, our findings suggest that interactions between these cell states propagate immune responses across the leaf. Our molecularly defined single-cell spatiotemporal atlas provides functional and regulatory insights into immune cell states in plants.
Collapse
Affiliation(s)
- Tatsuya Nobori
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Alexander Monell
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Travis A Lee
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yuka Sakata
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shoma Shirahama
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Joseph R Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
30
|
Lu S, Sun Y, Ma L, Luan S, Yang G. Advancing insights into calcium homeostasis and signaling in plant growth and resilience. Sci Bull (Beijing) 2025; 70:125-127. [PMID: 39366825 DOI: 10.1016/j.scib.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Affiliation(s)
- Songchong Lu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lichao Ma
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | - Guofeng Yang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
31
|
Nie JA, Ding XH, Zhong XRY, Shi WC, Gao Z. Transcellular regulation of ETI-induced cell death. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00005-6. [PMID: 39884915 DOI: 10.1016/j.tplants.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/10/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
To address the persistent challenge of cell death spread and limitation during effector-triggered immunity (ETI), we propose a 'concentric circle' model. This model outlines a regulatory framework, integrating multiple cells and diverse signaling molecules, including salicylic acid (SA), jasmonic acid (JA), and Ca2+. By accounting for the varying concentrations and spatiotemporal distributions of these molecules, our model aims for precision in immune defense and regulated cell death. To validate this model, a pathosystem-triggering ETI without pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is required. Here, we review potential ETI elicitors, including victorin, thaxtomin A, and second messengers. We anticipate that future discovery of 'pure' ETI-triggering effectors will provide deeper insights into the transcellular regulation of immune response in plants.
Collapse
Affiliation(s)
- Ji-Ang Nie
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Xin-Hua Ding
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Xie-Ruo-Ying Zhong
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Wen-Chong Shi
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an, 271018, China.
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
32
|
Wu N, Jiang W, Xiang Z, Asghar R, Akkaya MS. Assessment of Self-Activation and Inhibition of Wheat Coiled-Coil Domain Containing NLR Immune Receptor Yr10 CG. PLANTS (BASEL, SWITZERLAND) 2025; 14:278. [PMID: 39861631 PMCID: PMC11768854 DOI: 10.3390/plants14020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Plant immunity is largely governed by nucleotide-binding leucine-rich repeat receptor (NLR). Here, we examine the molecular activation and inhibition mechanisms of the wheat CC-type NLR Yr10CG, a previously proposed candidate for the Yr10 resistance gene. Though recent studies have identified YrNAM as the true Yr10 gene, Yr10CG remains an important NLR in understanding NLR-mediated immunity in wheat. In this study, we found that the overexpression of either the full-length Yr10CG or its CC domain in Nicotiana benthamiana did not trigger cell death, suggesting a robust autoinhibitory mechanism within Yr10CG. However, we observed that mutations in the conserved MHD motif, specifically D502G, activated Yr10CG and induced cell death. Structural modeling indicated that this mutation disrupted key interactions within the MHD motif, promoting local flexibility and activation. We further explored the effector recognition potential of Yr10CG by creating chimeric proteins with Sr50 domains, revealing that both the NB-ARC and LRR domains are necessary for effector recognition, while the CC domain likely functions in downstream immune signaling. Additionally, disrupting membrane localization through an L11E mutation abolished Yr10CG self-activation, suggesting a requirement for membrane association in immune activation. Our findings contribute to the understanding of CC-NLR activation and autoinhibition mechanisms, highlighting the potential of Yr10CG in NLR engineering for crop resistance improvement.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (N.W.); (Z.X.); (R.A.)
| | - Wanqing Jiang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zhaoxia Xiang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (N.W.); (Z.X.); (R.A.)
| | - Raheel Asghar
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (N.W.); (Z.X.); (R.A.)
| | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (N.W.); (Z.X.); (R.A.)
| |
Collapse
|
33
|
Li D, Zhu Z, Qu K, Li J, Ma D, Lu X. A coiled-coil domain mutation in the NLR receptor SbYR1 coordinates plant growth and stress tolerance in sorghum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112246. [PMID: 39304072 DOI: 10.1016/j.plantsci.2024.112246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
NLRs are a group of specific plant receptors that recognizes effectors secreted by pathogens, activates downstream immune responses, and confers resistance to pathogens. Despite variations, the functions of some NLR genes may be conserved across species, but their role in sorghum remains unclear. In this study, we investigated the stunted and yellow ripple leaf mutant sbyr1 from sorghum BTx623. Map-based cloning revealed that SbYR1 was annotated as a coiled-coil NLR with three conserved domains, namely, RX-CC, NB-ARC, and LRR, with a Thr4Met mutation in the CC domain. Inoculation experiments revealed that the sbyr1 mutation enhanced tolerance to head smut disease in sorghum. To further verify the function of SbYR1, we analysed the transcriptomes and metabolomes of the shoots of sbyr1 and BTx623. The results indicated that both the DEGs and the DAMs were enriched in secondary metabolic pathways, such as the flavonoid, JA, and ABA pathways. The increased contents of JA and ABA as a downstream effect of sbyr1 suppressed growth, whereas the application of exogenous inhibitors of JA and ABA inhibited the endogenous hormones and thus caused sbyr1 to grow productively. Overexpression and homologous gene knockout in rice confirmed that sbyr1 affects plant growth and development. In conclusion, our study revealed that a CC domain mutation in SbYR1 influences plant growth and plays a role in resistance to head smut disease and downstream secondary metabolism. KEY MESSAGE: •The Thr4Met mutation in the coiled-coil domain of the NLR receptor SbYR1 coordinates plant growth and stress tolerance in sorghum.
Collapse
Affiliation(s)
- Dan Li
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China; Crop Molecular Improvement Laboratory, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Zhenxing Zhu
- Crop Molecular Improvement Laboratory, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Kuangzheng Qu
- Crop Molecular Improvement Laboratory, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Jinhong Li
- Crop Molecular Improvement Laboratory, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Dianrong Ma
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Liaodong University, Dandong 118001, China.
| | - Xiaochun Lu
- Crop Molecular Improvement Laboratory, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China.
| |
Collapse
|
34
|
Rao W, Ma T, Cao J, Zhang Y, Chen S, Lin S, Liu X, He G, Wan L. Recognition of a salivary effector by the TNL protein RCSP promotes effector-triggered immunity and systemic resistance in Nicotiana benthamiana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:150-168. [PMID: 39474762 DOI: 10.1111/jipb.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 01/16/2025]
Abstract
Insects secret chemosensory proteins (CSPs) into plant cells as potential effector proteins during feeding. The molecular mechanisms underlying how CSPs activate plant immunity remain largely unknown. We show that CSPs from six distinct insect orders induce dwarfism when overexpressed in Nicotiana benthamiana. Agrobacterium-mediated transient expression of Nilaparvata lugens CSP11 (NlCSP11) triggered cell death and plant dwarfism, both of which were dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), N requirement gene 1 (NRG1) and SENESCENCE-ASSOCIATED GENE 101 (SAG101), indicating the activation of effector-triggered immunity (ETI) in N. benthamiana. Overexpression of NlCSP11 led to stronger systemic resistance against Pseudomonas syringae DC3000 lacking effector HopQ1-1 and tobacco mosaic virus, and induced higher accumulation of salicylic acid (SA) in uninfiltrated leaves compared to another effector XopQ that is recognized by a Toll-interleukin-1 receptor (TIR) domain nucleotide-binding leucine-rich repeat receptor (TNL) called ROQ1 in N. benthamiana. Consistently, NlCSP11-induced dwarfism and systemic resistance, but not cell death, were abolished in N. benthamiana transgenic line expressing the SA-degrading enzyme NahG. Through large-scale virus-induced gene silencing screening, we identified a TNL protein that mediates the recognition of CSPs (RCSP), including aphid effector MP10 that triggers resistance against aphids in N. benthamiana. Co-immunoprecipitation, bimolecular fluorescence complementation and AlphaFold2 prediction unveiled an interaction between NlCSP11 and RCSP. Interestingly, RCSP does not contain the conserved catalytic glutamic acid in the TIR domain, which is required for TNL function. Our findings point to enhanced ETI and systemic resistance by a TNL protein via hyperactivation of the SA pathway. Moreover, RCSP is the first TNL identified to recognize an insect effector.
Collapse
Affiliation(s)
- Weiwei Rao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tingting Ma
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiayuan Cao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yajun Zhang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sisi Chen
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shu Lin
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoxiao Liu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guangcun He
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Wan
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Yu H, Xu W, Chen S, Wu X, Rao W, Liu X, Xu X, Chen J, Nishimura MT, Zhang Y, Wan L. Activation of a helper NLR by plant and bacterial TIR immune signaling. Science 2024; 386:1413-1420. [PMID: 39509471 DOI: 10.1126/science.adr3150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain sense pathogen effectors to initiate immune signaling. TIR domains across different kingdoms have NADase activities and can produce phosphoribosyl adenosine monophosphate/diphosphate (pRib-AMP/ADP) or cyclic ADPR (cADPR) isomers. The lipase-like proteins EDS1 and PAD4 transduce immune signals from sensor TIR-NLRs to a helper NLR called ADR1, which executes immune function. We report the structure and function of an Arabidopsis EDS1-PAD4-ADR1 (EPA) heterotrimer in complex with pRib-AMP/ADP activated by plant or bacterial TIR signaling. 2'cADPR can be hydrolyzed into pRib-AMP and thus activate EPA signaling. Bacterial TIR domains producing 2'cADPR also activate EPA function. Our findings suggest that 2'cADPR may be the storage form of the unstable signaling molecule pRib-AMP.
Collapse
Affiliation(s)
- Hua Yu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiying Xu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sisi Chen
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxian Wu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weiwei Rao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoxiao Liu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyan Xu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jingqi Chen
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Marc T Nishimura
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Yu Zhang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li Wan
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
36
|
Jewell S, Nguyen TB, Ascher DB, Robertson AA. Insights into the structure of NLR family member X1: Paving the way for innovative drug discovery. Comput Struct Biotechnol J 2024; 23:3506-3513. [PMID: 39435340 PMCID: PMC11493199 DOI: 10.1016/j.csbj.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Nucleotide-binding oligomerization domain, leucine rich repeat containing X1 (NLRX1) is a negative regulator of the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway, with a significant role in the context of inflammation. Altered expression of NLRX1 is prevalent in inflammatory diseases leading to interest in NLRX1 as a drug target. There is a lack of structural information available for NLRX1 as only the leucine-rich repeat domain of NLRX1 has been crystallised. This lack of structural data limits progress in understanding function and potential druggability of NLRX1. We have modelled full-length NLRX1 by combining experimental, homology modelled and AlphaFold2 structures. The full-length model of NLRX1 was used to explore protein dynamics, mutational tolerance and potential functions. We identified a new RNA binding site in the previously uncharacterized N-terminus, which served as a basis to model protein-RNA complexes. The structure of the adenosine triphosphate (ATP) binding domain revealed a potential catalytic functionality for the protein as a member of the ATPase Associated with Diverse Cellular Activity family of proteins. Finally, we investigated the interactions of NLRX1 with small molecule activators in development, revealing a binding site that has not previously been discussed in literature. The model generated here will help to catalyse efforts towards creating new drug molecules to target NLRX1 and may be used to inform further studies on functionality of NLRX1.
Collapse
Affiliation(s)
- Shannon Jewell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Thanh Binh Nguyen
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - David B. Ascher
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Avril A.B. Robertson
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|
37
|
Mascher M, Jayakodi M, Shim H, Stein N. Promises and challenges of crop translational genomics. Nature 2024; 636:585-593. [PMID: 39313530 PMCID: PMC7616746 DOI: 10.1038/s41586-024-07713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2024] [Indexed: 09/25/2024]
Abstract
Crop translational genomics applies breeding techniques based on genomic datasets to improve crops. Technological breakthroughs in the past ten years have made it possible to sequence the genomes of increasing numbers of crop varieties and have assisted in the genetic dissection of crop performance. However, translating research findings to breeding applications remains challenging. Here we review recent progress and future prospects for crop translational genomics in bringing results from the laboratory to the field. Genetic mapping, genomic selection and sequence-assisted characterization and deployment of plant genetic resources utilize rapid genotyping of large populations. These approaches have all had an impact on breeding for qualitative traits, where single genes with large phenotypic effects exert their influence. Characterization of the complex genetic architectures that underlie quantitative traits such as yield and flowering time, especially in newly domesticated crops, will require further basic research, including research into regulation and interactions of genes and the integration of genomic approaches and high-throughput phenotyping, before targeted interventions can be designed. Future priorities for translation include supporting genomics-assisted breeding in low-income countries and adaptation of crops to changing environments.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
38
|
Weralupitiya C, Eccersall S, Meisrimler CN. Shared signals, different fates: Calcium and ROS in plant PRR and NLR immunity. Cell Rep 2024; 43:114910. [PMID: 39471173 DOI: 10.1016/j.celrep.2024.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024] Open
Abstract
Lacking an adaptive immune system, plants rely on innate immunity comprising two main layers: PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), both utilizing Ca2+ influx and reactive oxygen species (ROS) for signaling. PTI, mediated by pattern-recognition receptors (PRRs), responds to conserved pathogen- or damage-associated molecular patterns. Some pathogens evade PTI using effectors, triggering plants to activate ETI. At the heart of ETI are nucleotide-binding leucine-rich repeat receptors (NLRs), which detect specific pathogen effectors and initiate a robust immune response. NLRs, equipped with a nucleotide-binding domain and leucine-rich repeats, drive a potent immune reaction starting with pronounced, prolonged cytosolic Ca2+ influx, followed by increased ROS levels. This sequence of events triggers the hypersensitive response-a localized cell death designed to limit pathogen spread. This intricate use of Ca2+ and ROS highlights the crucial role of NLRs in supplementing the absence of an adaptive immune system in plant innate immunity.
Collapse
Affiliation(s)
| | - Sophie Eccersall
- University of Canterbury, School of Biological Science, Christchurch, New Zealand
| | - Claudia-Nicole Meisrimler
- University of Canterbury, School of Biological Science, Christchurch, New Zealand; Biomolecular Interaction Centre, Christchurch, New Zealand.
| |
Collapse
|
39
|
Zhu N, Feng Y, Shi G, Zhang Q, Yuan B, Qiao Q. Evolutionary analysis of TIR- and non-TIR-NBS-LRR disease resistance genes in wild strawberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1452251. [PMID: 39640992 PMCID: PMC11617207 DOI: 10.3389/fpls.2024.1452251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Introduction NBS-LRR genes (NLRs) are the most extensive category of plant resistance genes (R genes) and play a crucial role in pathogen defense. Understanding the diversity and evolutionary dynamics of NLRs in different plant species is essential for improving disease resistance. This study investigates the NLR gene family in eight diploid wild strawberry species to explore their structural characteristics, evolutionary relationships, and potential for enhancing disease resistance. Methods We conducted a comprehensive genome-wide identification and structural analysis of NLRs across eight diploid wild strawberry species. Phylogenetic analysis was performed to examine the relationships between TIR-NLRs (TNLs), Non-TIR-NLRs (non-TNLs), CC-NLRs (CNLs), and RPW8-NLRs (RNLs). Gene structures were compared, and gene expression was profiled across different NLR subfamilies. Additionally, in vitro leaf inoculation assays with Botrytis cinerea were performed to assess the resistance of various strawberry species. Results Our analysis revealed that non-TNLs constitute over 50% of the NLR gene family in all eight strawberry species, surpassing the proportion of TNLs. Phylogenetic analysis showed that TNLs diverged into two subclades: one grouping with CNLs and the other closely related to RNLs. A significantly higher number of non-TNLs were under positive selection compared to TNLs, indicating their rapid diversification. Gene structure analysis demonstrated that non-TNLs have shorter gene structures than TNLs and exhibit higher expression levels, particularly RNLs. Notably, non-TNLs showed dominant expression under both normal and infected conditions. In vitro leaf inoculation assays revealed that Fragaria pentaphylla and Fragaria nilgerrensis, which have the highest proportion of non-TNLs, exhibited significantly greater resistance to Botrytis cinerea compared to Fragaria vesca, which has the lowest proportion of non-TNLs. Discussion The findings of this study provide important insights into the evolutionary dynamics of NLRs in strawberries, particularly the significant role of non-TNLs in pathogen defense. The rapid diversification and higher expression levels of non-TNLs suggest their potential contribution to enhanced disease resistance. This research highlights the value of non-TNLs in strawberry breeding programs aimed at improving resistance to pathogens such as Botrytis cinerea.
Collapse
Affiliation(s)
- Ni Zhu
- School of Agriculture, Yunnan University, Kunming, China
| | - Yuxi Feng
- School of Agriculture, Yunnan University, Kunming, China
| | - Guangxin Shi
- School of Agriculture, Yunnan University, Kunming, China
| | - Qihang Zhang
- School of Agriculture, Yunnan University, Kunming, China
| | - Bo Yuan
- School of Agriculture, Yunnan University, Kunming, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
40
|
Madhuprakash J, Toghani A, Contreras MP, Posbeyikian A, Richardson J, Kourelis J, Bozkurt TO, Webster MW, Kamoun S. A disease resistance protein triggers oligomerization of its NLR helper into a hexameric resistosome to mediate innate immunity. SCIENCE ADVANCES 2024; 10:eadr2594. [PMID: 39504373 PMCID: PMC11540030 DOI: 10.1126/sciadv.adr2594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
NRCs are essential helper NLR (nucleotide-binding domain and leucine-rich repeat) proteins that execute immune responses triggered by sensor NLRs. The resting state of NbNRC2 was recently shown to be a homodimer, but the sensor-activated state remains unclear. Using cryo-EM, we determined the structure of sensor-activated NbNRC2, which forms a hexameric inflammasome-like resistosome. Mutagenesis of the oligomerization interface abolished immune signaling, confirming the functional significance of the NbNRC2 resistosome. Comparative structural analyses between the resting state homodimer and sensor-activated homohexamer revealed substantial rearrangements, providing insights into NLR activation mechanisms. Furthermore, structural comparisons between NbNRC2 hexamer and previously reported CC-NLR pentameric assemblies revealed features allowing an additional protomer integration. Using the NbNRC2 hexamer structure, we assessed the recently released AlphaFold 3 for predicting activated CC-NLR oligomers, revealing high-confidence modeling of NbNRC2 and other CC-NLR amino-terminal α1 helices, a region proven difficult to resolve structurally. Overall, our work sheds light on NLR activation mechanisms and expands understanding of NLR structural diversity.
Collapse
Affiliation(s)
- Jogi Madhuprakash
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - AmirAli Toghani
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Mauricio P. Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andres Posbeyikian
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jake Richardson
- Bioimaging Facility, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | - Michael W. Webster
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
41
|
Wen Q, Wang S, Zhang X, Zhou Z. Recent advances of NLR receptors in vegetable disease resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112224. [PMID: 39142606 DOI: 10.1016/j.plantsci.2024.112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Plants mainly depend on both cell-surface and intracellular receptors to defend against various pathogens. The nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular receptors that recognize pathogen effectors. The first NLR was cloned thirty years ago. Genomic sequencing and biotechnologies accelerated NLR gene isolation. NLR genes have been proven useful in breeding disease resistant crops. Here, we summarized the current knowledge of strategies for NLR gene isolation and provided a list of NLRs cloned in vegetables. We also discussed the mechanisms underlying NLR gene function, the challenges of NLRs in vegetable breeding and directions for future studies.
Collapse
Affiliation(s)
- Qing Wen
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoyun Wang
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Zhou
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
42
|
Liu H, Lu C, Liu XQ, Zhuo CJ, Luo RJ, Huang QT, Tang Z, Zhao CQ, Guerinot ML, Salt DE, Zhao FJ, Huang XY. A chloroplast localized heavy metal-associated domain containing protein regulates grain calcium accumulation in rice. Nat Commun 2024; 15:9265. [PMID: 39462135 PMCID: PMC11513116 DOI: 10.1038/s41467-024-53648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Calcium (Ca) is an essential mineral nutrient and plays a crucial signaling role in all living organisms. Increasing Ca content in staple foods such as rice is vital for improving Ca nutrition of humans. Here we map a quantitative trait locus that controls Ca concentration in rice grains and identify the causal gene as GCSC1 (Grain Ca and Sr Concentrations 1), which encodes a chloroplast vesicle localized homo-oligomeric protein. GCSC1 exhibits Ca2+ transport activity in heterologous assays in yeast and Xenopus laevis oocytes and is involved in the efflux of Ca2+ from the chloroplast to the cytosol. Knockout of GCSC1 results in increased chloroplast Ca concentration, lower stomatal conductance in leaves and enhanced Ca allocation to grains. Natural variation in grain Ca concentration is attributed to the variable expression of GCSC1 resulting from its promoter sequence variation. Our study identifies a chloroplast localized heavy metal-associated domain containing protein that regulates chloroplast Ca2+ efflux and provides a way to biofortify Ca in rice to benefit human nutrition.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Cun Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Qian Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chen-Jin Zhuo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Rong-Jian Luo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qiu-Tang Huang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhong Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chun-Qing Zhao
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
- Sanya Institute of Nanjing Agricultural University, Sanya, China.
| |
Collapse
|
43
|
Wang ZQ, Wang YF, Xu T, Li XY, Zhang S, Chang XQ, Yang XL, Meng S, Lv L. Transcriptomic Analysis of the CNL Gene Family in the Resistant Rice Cultivar IR28 in Response to Ustilaginoidea virens Infection. Int J Mol Sci 2024; 25:10655. [PMID: 39408984 PMCID: PMC11477166 DOI: 10.3390/ijms251910655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Rice false smut, caused by Ustilaginoidea virens, threatens rice production by reducing yields and contaminating grains with harmful ustiloxins. However, studies on resistance genes are scarce. In this study, the resistance level of IR28 (resistant cultivar) to U. virens was validated through artificial inoculation. Notably, a reactivation of resistance genes after transient down-regulation during the first 3 to 5 dpi was observed in IR28 compared to WX98 (susceptible cultivar). Cluster results of a principal component analysis and hierarchical cluster analysis of differentially expressed genes (DEGs) in the transcriptome exhibited longer expression patterns in the early infection phase of IR28, consistent with its sustained resistance response. Results of GO and KEGG enrichment analyses highlighted the suppression of immune pathways when the hyphae first invade stamen filaments at 5 dpi, but sustained up-regulated DEGs were linked to the 'Plant-pathogen interaction' (osa04626) pathway, notably disease-resistant protein RPM1 (K13457, CNLs, coil-coiled NLR). An analysis of CNLs identified 245 proteins containing Rx-CC and NB-ARC domains in the Oryza sativa Indica genome. Partial candidate CNLs were shown to exhibit up-regulation at both 1 and 5 dpi in IR28. This study provides insights into CNLs' responses to U. virens in IR28, potentially informing resistance mechanisms and genetic breeding targets.
Collapse
Affiliation(s)
- Zuo-Qian Wang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Yu-Fu Wang
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Xu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Xin-Yi Li
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Shu Zhang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Xiang-Qian Chang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Xiao-Lin Yang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Shuai Meng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Liang Lv
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| |
Collapse
|
44
|
Selvaraj M, Toghani A, Pai H, Sugihara Y, Kourelis J, Yuen ELH, Ibrahim T, Zhao H, Xie R, Maqbool A, De la Concepcion JC, Banfield MJ, Derevnina L, Petre B, Lawson DM, Bozkurt TO, Wu CH, Kamoun S, Contreras MP. Activation of plant immunity through conversion of a helper NLR homodimer into a resistosome. PLoS Biol 2024; 22:e3002868. [PMID: 39423240 PMCID: PMC11524475 DOI: 10.1371/journal.pbio.3002868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/30/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins can engage in complex interactions to detect pathogens and execute a robust immune response via downstream helper NLRs. However, the biochemical mechanisms of helper NLR activation by upstream sensor NLRs remain poorly understood. Here, we show that the coiled-coil helper NLR NRC2 from Nicotiana benthamiana accumulates in vivo as a homodimer that converts into a higher-order oligomer upon activation by its upstream virus disease resistance protein Rx. The cryo-EM structure of NbNRC2 in its resting state revealed intermolecular interactions that mediate homodimer formation and contribute to immune receptor autoinhibition. These dimerization interfaces have diverged between paralogous NRC proteins to insulate critical network nodes and enable redundant immune pathways, possibly to minimise undesired cross-activation and evade pathogen suppression of immunity. Our results expand the molecular mechanisms of NLR activation pointing to transition from homodimers to higher-order oligomeric resistosomes.
Collapse
Affiliation(s)
- Muniyandi Selvaraj
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - AmirAli Toghani
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Yu Sugihara
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | | | | | - He Zhao
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Rongrong Xie
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Abbas Maqbool
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | | | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Lida Derevnina
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Benjamin Petre
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - David M. Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | | | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P. Contreras
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
45
|
Sunil S, Beeh S, Stöbbe E, Fischer K, Wilhelm F, Meral A, Paris C, Teasdale L, Jiang Z, Zhang L, Urban M, Aguilar Parras E, Nürnberger T, Weigel D, Lozano-Duran R, El Kasmi F. Activation of an atypical plant NLR with an N-terminal deletion initiates cell death at the vacuole. EMBO Rep 2024; 25:4358-4386. [PMID: 39242777 PMCID: PMC11467418 DOI: 10.1038/s44319-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
Plants evolve nucleotide-binding leucine-rich repeat receptors (NLRs) to induce immunity. Activated coiled-coil (CC) domain containing NLRs (CNLs) oligomerize and form apparent cation channels promoting calcium influx and cell death, with the alpha-1 helix of the individual CC domains penetrating the plasma membranes. Some CNLs are characterized by putative N-myristoylation and S-acylation sites in their CC domain, potentially mediating permanent membrane association. Whether activated Potentially Membrane Localized NLRs (PMLs) mediate cell death and calcium influx in a similar way is unknown. We uncovered the cell-death function at the vacuole of an atypical but conserved Arabidopsis PML, PML5, which has a significant deletion in its CCG10/GA domain. Active PML5 oligomers localize in Golgi membranes and the tonoplast, alter vacuolar morphology, and induce cell death, with the short N-terminus being sufficient. Mutant analysis supports a potential role of PMLs in plant immunity. PML5-like deletions are found in several Brassicales paralogs, pointing to the evolutionary importance of this innovation. PML5, with its minimal CC domain, represents the first identified CNL utilizing vacuolar-stored calcium for cell death induction.
Collapse
Affiliation(s)
- Sruthi Sunil
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Simon Beeh
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Eva Stöbbe
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Kathrin Fischer
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Franziska Wilhelm
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Aron Meral
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Celia Paris
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Luisa Teasdale
- Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Zhihao Jiang
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Lisha Zhang
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Moritz Urban
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Emmanuel Aguilar Parras
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Depto. Biología Celular, Genética y Fisiología, 29010, Málaga, Spain
| | - Thorsten Nürnberger
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Detlef Weigel
- Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076, Tübingen, Germany
| | - Rosa Lozano-Duran
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
46
|
Hasegawa K, Timmers T, Chai J, Maekawa T. A disease resistance assay in Nicotiana benthamiana reveals the immune function of Response to HopBA1. PLANT PHYSIOLOGY 2024; 196:722-725. [PMID: 38976586 PMCID: PMC11444287 DOI: 10.1093/plphys/kiae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
A receptor protein variant lacking 2′,3′-cAMP/cGMP synthetase activity but retaining NADase activity does not induce cell death but confers resistance to Potato virus X.
Collapse
Affiliation(s)
- Keiichi Hasegawa
- Institute for Biochemistry, University of Cologne, 50674 Cologne, Germany
| | - Ton Timmers
- Central Microscopy, CEMIC, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Jijie Chai
- Institute for Biochemistry, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Takaki Maekawa
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
47
|
Liu F, Yang Z, Wang C, You Z, Martin R, Qiao W, Huang J, Jacob P, Dangl JL, Carette JE, Luan S, Nogales E, Staskawicz BJ. Activation of the helper NRC4 immune receptor forms a hexameric resistosome. Cell 2024; 187:4877-4889.e15. [PMID: 39094568 PMCID: PMC11380581 DOI: 10.1016/j.cell.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024]
Abstract
Innate immune responses to microbial pathogens are regulated by intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) in both the plant and animal kingdoms. Across plant innate immune systems, "helper" NLRs (hNLRs) work in coordination with "sensor" NLRs (sNLRs) to modulate disease resistance signaling pathways. Activation mechanisms of hNLRs based on structures are unknown. Our research reveals that the hNLR, known as NLR required for cell death 4 (NRC4), assembles into a hexameric resistosome upon activation by the sNLR Bs2 and the pathogenic effector AvrBs2. This conformational change triggers immune responses by facilitating the influx of calcium ions (Ca2+) into the cytosol. The activation mimic alleles of NRC2, NRC3, or NRC4 alone did not induce Ca2+ influx and cell death in animal cells, suggesting that unknown plant-specific factors regulate NRCs' activation in plants. These findings significantly advance our understanding of the regulatory mechanisms governing plant immune responses.
Collapse
Affiliation(s)
- Furong Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Zhenlin Yang
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Zhang You
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Raoul Martin
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Pierre Jacob
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffery L Dangl
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
48
|
Goh FJ, Huang CY, Derevnina L, Wu CH. NRC Immune receptor networks show diversified hierarchical genetic architecture across plant lineages. THE PLANT CELL 2024; 36:3399-3418. [PMID: 38922300 PMCID: PMC11371147 DOI: 10.1093/plcell/koae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Plants' complex immune systems include nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins, which help recognize invading pathogens. In solanaceous plants, the NRC (NLR required for cell death) family includes helper NLRs that form a complex genetic network with multiple sensor NLRs to provide resistance against pathogens. However, the evolution and function of NRC networks outside solanaceous plants are currently unclear. Here, we conducted phylogenomic and macroevolutionary analyses comparing NLRs identified from different asterid lineages and found that NRC networks expanded significantly in most lamiids but not in Ericales and campanulids. Using transient expression assays in Nicotiana benthamiana, we showed that NRC networks are simple in Ericales and campanulids, but have high complexity in lamiids. Phylogenetic analyses grouped the NRC helper NLRs into three NRC0 subclades that are conserved, and several family-specific NRC subclades of lamiids that show signatures of diversifying selection. Functional analyses revealed that members of the NRC0 subclades are partially interchangeable, whereas family-specific NRC members in lamiids lack interchangeability. Our findings highlight the distinctive evolutionary patterns of the NRC networks in asterids and provide potential insights into transferring disease resistance across plant lineages.
Collapse
Affiliation(s)
- Foong-Jing Goh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 115201, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402202, Taiwan
| | - Ching-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Lida Derevnina
- Crop Science Centre, Department of Plant Science, University of Cambridge, Cambridge CB3 0LE, UK
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 115201, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
49
|
Sakai T, Contreras MP, Martinez-Anaya C, Lüdke D, Kamoun S, Wu CH, Adachi H. The NRC0 gene cluster of sensor and helper NLR immune receptors is functionally conserved across asterid plants. THE PLANT CELL 2024; 36:3344-3361. [PMID: 38833594 PMCID: PMC11371149 DOI: 10.1093/plcell/koae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat-containing receptor (NLR) proteins can form complex receptor networks to confer innate immunity. An NLR-REQUIRED FOR CELL DEATH (NRC) is a phylogenetically related node that functions downstream of a massively expanded network of disease resistance proteins that protect against multiple plant pathogens. In this study, we used phylogenomic methods to reconstruct the macroevolution of the NRC family. One of the NRCs, termed NRC0, is the only family member shared across asterid plants, leading us to investigate its evolutionary history and genetic organization. In several asterid species, NRC0 is genetically clustered with other NLRs that are phylogenetically related to NRC-dependent disease resistance genes. This prompted us to hypothesize that the ancestral state of the NRC network is an NLR helper-sensor gene cluster that was present early during asterid evolution. We provide support for this hypothesis by demonstrating that NRC0 is essential for the hypersensitive cell death that is induced by its genetically linked sensor NLR partners in 4 divergent asterid species: tomato (Solanum lycopersicum), wild sweet potato (Ipomoea trifida), coffee (Coffea canephora), and carrot (Daucus carota). In addition, activation of a sensor NLR leads to higher-order complex formation of its genetically linked NRC0, similar to other NRCs. Our findings map out contrasting evolutionary dynamics in the macroevolution of the NRC network over the last 125 million years, from a functionally conserved NLR gene cluster to a massive genetically dispersed network.
Collapse
Affiliation(s)
- Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Claudia Martinez-Anaya
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62110, México
| | - Daniel Lüdke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
50
|
Zhang D, Yang X, Wen Z, Li Z, Zhang X, Zhong C, She J, Zhang Q, Zhang H, Li W, Zhao X, Xu M, Su Z, Li D, Dinesh-Kumar SP, Zhang Y. Proxitome profiling reveals a conserved SGT1-NSL1 signaling module that activates NLR-mediated immunity. MOLECULAR PLANT 2024; 17:1369-1391. [PMID: 39066482 DOI: 10.1016/j.molp.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Suppressor of G2 allele of skp1 (SGT1) is a highly conserved eukaryotic protein that plays a vital role in growth, development, and immunity in both animals and plants. Although some SGT1 interactors have been identified, the molecular regulatory network of SGT1 remains unclear. SGT1 serves as a co-chaperone to stabilize protein complexes such as the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, thereby positively regulating plant immunity. SGT1 has also been found to be associated with the SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex. However, whether SGT1 targets immune repressors to coordinate plant immune activation remains elusive. In this study, we constructed a toolbox for TurboID- and split-TurboID-based proximity labeling (PL) assays in Nicotiana benthamiana and used the PL toolbox to explore the SGT1 interactome during pre- and post-immune activation. The comprehensive SGT1 interactome network we identified highlights a dynamic shift from proteins associated with plant development to those linked with plant immune responses. We found that SGT1 interacts with Necrotic Spotted Lesion 1 (NSL1), which negatively regulates salicylic acid-mediated defense by interfering with the nucleocytoplasmic trafficking of non-expressor of pathogenesis-related genes 1 (NPR1) during N NLR-mediated response to tobacco mosaic virus. SGT1 promotes the SCF-dependent degradation of NSL1 to facilitate immune activation, while salicylate-induced protein kinase-mediated phosphorylation of SGT1 further potentiates this process. Besides N NLR, NSL1 also functions in several other NLR-mediated immunity. Collectively, our study unveils the regulatory landscape of SGT1 and reveals a novel SGT1-NSL1 signaling module that orchestrates plant innate immunity.
Collapse
Affiliation(s)
- Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xinxin Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiajie She
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianshen Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - He Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|