1
|
Moravec Ž, Haanen JBAG, Schumacher TN, Scheper W. Learning the language of T cell receptors through large-scale screening. Cancer Cell 2025:S1535-6108(25)00133-3. [PMID: 40250445 DOI: 10.1016/j.ccell.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/20/2025]
Abstract
T cells perform critical roles in orchestrating immunity in health and disease. However, decoding what individual T cells recognize has long been challenging due to the immense diversity of both T cell receptors (TCRs) and potential antigens. Recent advances in high-throughput TCR screening approaches now provide an opportunity to map the antigen specificity landscape of T cells with unprecedented depth. Here, we outline these recent developments in screening methodologies and discuss how these can help advance our fundamental understanding of T cell-based immunity.
Collapse
Affiliation(s)
- Živa Moravec
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - John B A G Haanen
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton N Schumacher
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| | - Wouter Scheper
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Moravec Z, Zhao Y, Voogd R, Cook DR, Kinrot S, Capra B, Yang H, Raud B, Ou J, Xuan J, Wei T, Ren L, Hu D, Wang J, Haanen JBAG, Schumacher TN, Chen X, Porter E, Scheper W. Discovery of tumor-reactive T cell receptors by massively parallel library synthesis and screening. Nat Biotechnol 2025; 43:214-222. [PMID: 38653798 DOI: 10.1038/s41587-024-02210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
T cell receptor (TCR) gene therapy is a potent form of cellular immunotherapy in which patient T cells are genetically engineered to express TCRs with defined tumor reactivity. However, the isolation of therapeutic TCRs is complicated by both the general scarcity of tumor-specific T cells among patient T cell repertoires and the patient-specific nature of T cell epitopes expressed on tumors. Here we describe a high-throughput, personalized TCR discovery pipeline that enables the assembly of complex synthetic TCR libraries in a one-pot reaction, followed by pooled expression in reporter T cells and functional genetic screening against patient-derived tumor or antigen-presenting cells. We applied the method to screen thousands of tumor-infiltrating lymphocyte (TIL)-derived TCRs from multiple patients and identified dozens of CD4+ and CD8+ T-cell-derived TCRs with potent tumor reactivity, including TCRs that recognized patient-specific neoantigens.
Collapse
Affiliation(s)
- Ziva Moravec
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Yue Zhao
- RootPath, Inc. (Guangzhou), Guangzhou, China
| | - Rhianne Voogd
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - Haiyan Yang
- RootPath, Inc. (Guangzhou), Guangzhou, China
| | - Brenda Raud
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jiayu Ou
- RootPath, Inc. (Guangzhou), Guangzhou, China
| | - Jiekun Xuan
- RootPath, Inc. (US), Watertown, MA, USA
- RootPath, Inc. (Hangzhou), Hangzhou, China
| | - Teng Wei
- Cytotherapy Laboratory, People's Hospital, Shenzhen, Guangdong, China
| | - Lili Ren
- Cytotherapy Laboratory, People's Hospital, Shenzhen, Guangdong, China
| | - Dandan Hu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - John B A G Haanen
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ton N Schumacher
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Xi Chen
- RootPath, Inc. (Guangzhou), Guangzhou, China.
- RootPath, Inc. (US), Watertown, MA, USA.
- RootPath, Inc. (Hangzhou), Hangzhou, China.
| | - Ely Porter
- RootPath, Inc. (US), Watertown, MA, USA.
| | - Wouter Scheper
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Nagano Y, Pyo AGT, Milighetti M, Henderson J, Shawe-Taylor J, Chain B, Tiffeau-Mayer A. Contrastive learning of T cell receptor representations. Cell Syst 2025; 16:101165. [PMID: 39778580 DOI: 10.1016/j.cels.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Computational prediction of the interaction of T cell receptors (TCRs) and their ligands is a grand challenge in immunology. Despite advances in high-throughput assays, specificity-labeled TCR data remain sparse. In other domains, the pre-training of language models on unlabeled data has been successfully used to address data bottlenecks. However, it is unclear how to best pre-train protein language models for TCR specificity prediction. Here, we introduce a TCR language model called SCEPTR (simple contrastive embedding of the primary sequence of T cell receptors), which is capable of data-efficient transfer learning. Through our model, we introduce a pre-training strategy combining autocontrastive learning and masked-language modeling, which enables SCEPTR to achieve its state-of-the-art performance. In contrast, existing protein language models and a variant of SCEPTR pre-trained without autocontrastive learning are outperformed by sequence alignment-based methods. We anticipate that contrastive learning will be a useful paradigm to decode the rules of TCR specificity. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Yuta Nagano
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; Division of Medicine, University College London, London WC1E 6BT, UK
| | - Andrew G T Pyo
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544, USA
| | - Martina Milighetti
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; Cancer Institute, University College London, London WC1E 6DD, UK
| | - James Henderson
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - John Shawe-Taylor
- Department of Computer Science, University College London, London WC1E 6BT, UK
| | - Benny Chain
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; Department of Computer Science, University College London, London WC1E 6BT, UK
| | - Andreas Tiffeau-Mayer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
| |
Collapse
|
4
|
Lin P, Lin Y, Mai Z, Zheng Y, Zheng J, Zhou Z, Zhao X, Cui L. Targeting cancer with precision: strategical insights into TCR-engineered T cell therapies. Theranostics 2025; 15:300-323. [PMID: 39744228 PMCID: PMC11667231 DOI: 10.7150/thno.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
T cell receptor-engineered T (TCR-T) cell therapies are at the forefront of cancer immunotherapy, offering a transformative approach that significantly enhances the ability of T cells to recognize and eliminate cancer cells. This innovative method involves genetically modifying TCRs to increase their affinity for tumor-specific antigens. While these enhancements improve the ability of T cells to recognize and bind to antigens on cancer cells, rigorous assessment of specificity remains crucial to ensure safety and targeted responses. This dual focus on affinity and specificity holds significant promise for the treatment of solid tumors, enabling precise and efficient cancer cell recognition. Despite rapid advancements in TCR engineering and notable progress in TCR screening technologies, as evidenced by the growing number of specific TCRs entering clinical trials, several technical and clinical challenges remain. These challenges primarily pertain to the specificity, affinity, and safety of engineered TCRs. Moreover, the accurate identification and selection of TCRs that are both effective and safe are essential for the success of TCR-T cell therapies in cancer treatment. This review provides a comprehensive examination of the theoretical foundations of TCR therapy, explores strategies for screening specific TCRs and antigens, and highlights the ongoing challenges in this evolving therapeutic landscape.
Collapse
Affiliation(s)
- Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA
| |
Collapse
|
5
|
Wang Z, Sarkar A, Ge X. De novo functional discovery of peptide-MHC restricted CARs from recombinase-constructed large-diversity monoclonal T cell libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625413. [PMID: 39651191 PMCID: PMC11623653 DOI: 10.1101/2024.11.27.625413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Chimeric antigen receptors (CAR) that mimic T cell receptors (TCR) on eliciting peptide-major histocompatibility complex (pMHC) specific T cell responses hold great promise in the development of immunotherapies against solid tumors, infections, and autoimmune diseases. However, broad applications of TCR-mimic (TCRm) CARs are hindered to date largely due to lack of a facile approach for the effective isolation of TCRm CARs. Here, we establish a highly efficient process for de novo discovery of TCRm CARs from human naïve antibody repertories by combining recombinase-mediated large-diversity monoclonal library construction with T cell activation-based positive and negative screenings. Panels of highly functional TCRm CARs with peptide-specific recognition, minimal cross-reactivity, and low tonic signaling were rapidly identified towards MHC-restricted intracellular tumor-associated antigens MAGE-A3, NY-ESO-1, and MART-1. Transduced TCRm CAR-T cells exhibited pMHC-specific functional avidity, potent cytokine release, and efficacious and persistent cytotoxicity. The developed approach could be used to generate safe and potent immunotherapies targeting MHC-restricted antigens.
Collapse
|
6
|
ZHENG WEITAO, JIANG DONG, CHEN SONGEN, WU MEILING, YAN BAOQI, ZHAI JIAHUI, SHI YUNQIANG, XIE BIN, XIE XINGWANG, HU KANGHONG, MA WENXUE. Exploring the therapeutic potential of precision T-Cell Receptors (TCRs) in targeting KRAS G12D cancer through in vitro development. Oncol Res 2024; 32:1837-1850. [PMID: 39574477 PMCID: PMC11576958 DOI: 10.32604/or.2024.056565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 11/24/2024] Open
Abstract
OBJECTIVES The Kirsten rat sarcoma virus (KRAS) G12D oncogenic mutation poses a significant challenge in treating solid tumors due to the lack of specific and effective therapeutic interventions. This study aims to explore innovative approaches in T cell receptor (TCR) engineering and characterization to target the KRAS G12D7-16 mutation, providing potential strategies for overcoming this therapeutic challenge. METHODS In this innovative study, we engineered and characterized two T cell receptors (TCRs), KDA11-01 and KDA11-02 with high affinity for the KRAS G12D7-16 mutation. These TCRs were isolated from tumor-infiltrating lymphocytes (TILs) derived from tumor tissues of patients with the KRAS G12D mutation. We assessed their specificity and anti-tumor activity in vitro using various cancer cell lines. RESULTS KDA11-01 and KDA11-02 demonstrated exceptional specificity for the HLA-A*11:01-restricted KRAS G12D7-16 epitope, significantly inducing IFN-γ release and eliminating tumor cells without cross-reactivity or alloreactivity. CONCLUSIONS The successful development of KDA11-01 and KDA11-02 introduces a novel and precise TCR-based therapeutic strategy against KRAS G12D mutation, showing potential for significant advancements in cancer immunotherapy.
Collapse
Affiliation(s)
- WEITAO ZHENG
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education of China & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - DONG JIANG
- Center of Research & Development, Beijing CorreGene Biotechnology Co., Ltd., Beijing, 102206, China
| | - SONGEN CHEN
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education of China & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - MEILING WU
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education of China & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - BAOQI YAN
- Center of Research & Development, Beijing CorreGene Biotechnology Co., Ltd., Beijing, 102206, China
| | - JIAHUI ZHAI
- Center of Research & Development, Beijing CorreGene Biotechnology Co., Ltd., Beijing, 102206, China
| | - YUNQIANG SHI
- Center of Research & Development, Beijing CorreGene Biotechnology Co., Ltd., Beijing, 102206, China
| | - BIN XIE
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education of China & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - XINGWANG XIE
- Center of Research & Development, Beijing CorreGene Biotechnology Co., Ltd., Beijing, 102206, China
| | - KANGHONG HU
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education of China & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - WENXUE MA
- Department of Medicine, Sanford Stem Cell Institute and Moores Cancer Center, University of California San Diego, La Jolla, CA92093, USA
| |
Collapse
|
7
|
Pogorelyy MV, Kirk AM, Adhikari S, Minervina AA, Sundararaman B, Vegesana K, Brice DC, Scott ZB, Thomas PG. TIRTL-seq: Deep, quantitative, and affordable paired TCR repertoire sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613345. [PMID: 39345544 PMCID: PMC11430070 DOI: 10.1101/2024.09.16.613345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
ɑ/β T cells are key players in adaptive immunity. The specificity of T cells is determined by the sequences of the hypervariable T cell receptor (TCR) ɑ and β chains. Although bulk TCR sequencing offers a cost-effective approach for in-depth TCR repertoire profiling, it does not provide chain pairings, which are essential for determining T cell specificity. In contrast, single-cell TCR sequencing technologies produce paired chain data, but are limited in throughput to thousands of cells and are cost-prohibitive for cohort-scale studies. Here, we present TIRTL-seq (Throughput-Intensive Rapid TCR Library sequencing), a novel approach that generates ready-to-sequence TCR libraries from live cells in less than 7 hours. The protocol is optimized for use with non-contact liquid handlers in an automation-friendly 384-well plate format. Reaction volume miniaturization reduces library preparation costs to <$0.50 per well. The core principle of TIRTL-seq is the parallel generation of hundreds of libraries providing multiple biological replicates from a single sample that allows precise inference of both frequencies of individual clones and TCR chain pairings from well-occurrence patterns. We demonstrate scalability of our approach up to 1 million unique paired αβTCR clonotypes corresponding to over 30 million T cells per sample at a cost of less than $2000. For a sample of 10 million cells the cost is ~$200. We benchmarked TIRTL-seq against state-of-the-art 5'RACE bulk TCR-seq and 10x Genomics Chromium technologies on longitudinal samples. We show that TIRTL-seq is able to quantitatively identify expanding and contracting clonotypes between timepoints while providing accurate TCR chain pairings, including distinct temporal dynamics of SARS-CoV-2-specific and EBV-specific CD8+ T cell responses after infection. While clonal expansion was followed by sharp contraction for SARS-CoV-2 specific TCRs, EBV-specific TCRs remained stable once established. The sequences of both ɑ and β TCR chains are essential for determining T cell specificity. As the field moves towards greater applications in diagnostics and immunotherapy that rely on TCR specificity, we anticipate that our scalable paired TCR sequencing methodology will be instrumental for collecting large paired-chain datasets and ultimately extracting therapeutically relevant information from the TCR repertoire.
Collapse
Affiliation(s)
| | | | | | | | | | - Kasi Vegesana
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Brice
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Paul G Thomas
- St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
8
|
Yao Z, Zeng Y, Liu C, Jin H, Wang H, Zhang Y, Ding C, Chen G, Wu D. Focusing on CD8 + T-cell phenotypes: improving solid tumor therapy. J Exp Clin Cancer Res 2024; 43:266. [PMID: 39342365 PMCID: PMC11437975 DOI: 10.1186/s13046-024-03195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.
Collapse
Affiliation(s)
- Zhouchi Yao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yayun Zeng
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huimin Jin
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Wang
- Department of Scientific Research, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Zhang
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
9
|
Slavny P, Hegde M, Doerner A, Parthiban K, McCafferty J, Zielonka S, Hoet R. Advancements in mammalian display technology for therapeutic antibody development and beyond: current landscape, challenges, and future prospects. Front Immunol 2024; 15:1469329. [PMID: 39381002 PMCID: PMC11459229 DOI: 10.3389/fimmu.2024.1469329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The evolving development landscape of biotherapeutics and their growing complexity from simple antibodies into bi- and multi-specific molecules necessitates sophisticated discovery and engineering platforms. This review focuses on mammalian display technology as a potential solution to the pressing challenges in biotherapeutic development. We provide a comparative analysis with established methodologies, highlighting key aspects of mammalian display technology, including genetic engineering, construction of display libraries, and its pivotal role in hit selection and/or developability engineering. The review delves into the mechanisms underpinning developability-driven selection via mammalian display and their broader implications. Applications beyond antibody discovery are also explored, alongside advancements towards function-first screening technologies, precision genome engineering and AI/ML-enhanced libraries, situating them in the context of mammalian display. Overall, the review provides a comprehensive overview of the current mammalian display technology landscape, underscores the expansive potential of the technology for biotherapeutic development, addresses the critical challenges for the full realisation of this potential, and examines advances in related disciplines that might impact the future application of mammalian display technologies.
Collapse
Affiliation(s)
- Peter Slavny
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - Manjunath Hegde
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Kothai Parthiban
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - John McCafferty
- Maxion Therapeutics, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rene Hoet
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
- Technology Division, FairJourney Biologics, Porto, Portugal
| |
Collapse
|
10
|
Raybould MIJ, Greenshields-Watson A, Agarwal P, Aguilar-Sanjuan B, Olsen TH, Turnbull OM, Quast NP, Deane CM. The Observed T Cell Receptor Space database enables paired-chain repertoire mining, coherence analysis, and language modeling. Cell Rep 2024; 43:114704. [PMID: 39216000 DOI: 10.1016/j.celrep.2024.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
T cell activation is governed through T cell receptors (TCRs), heterodimers of two sequence-variable chains (often an α and β chain) that synergistically recognize antigen fragments presented on cell surfaces. Despite this, there only exist repositories dedicated to collecting single-chain, not paired-chain, TCR sequence data. We addressed this gap by creating the Observed TCR Space (OTS) database, a source of consistently processed and annotated, full-length, paired-chain TCR sequences. Currently, OTS contains 5.35 million redundant (1.63 million non-redundant), predominantly human sequences from across 50 studies and at least 75 individuals. Using OTS, we identify pairing biases, public TCRs, and distinct chain coherence patterns relative to antibodies. We also release a paired-chain TCR language model, providing paired embedding representations and a method for residue in-filling conditional on the partner chain. OTS will be updated as a central community resource and is freely downloadable and available as a web application.
Collapse
Affiliation(s)
- Matthew I J Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK.
| | - Alexander Greenshields-Watson
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Parth Agarwal
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Broncio Aguilar-Sanjuan
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Tobias H Olsen
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Oliver M Turnbull
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Nele P Quast
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK.
| |
Collapse
|
11
|
Shao W, Yao Y, Yang L, Li X, Ge T, Zheng Y, Zhu Q, Ge S, Gu X, Jia R, Song X, Zhuang A. Novel insights into TCR-T cell therapy in solid neoplasms: optimizing adoptive immunotherapy. Exp Hematol Oncol 2024; 13:37. [PMID: 38570883 PMCID: PMC10988985 DOI: 10.1186/s40164-024-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Adoptive immunotherapy in the T cell landscape exhibits efficacy in cancer treatment. Over the past few decades, genetically modified T cells, particularly chimeric antigen receptor T cells, have enabled remarkable strides in the treatment of hematological malignancies. Besides, extensive exploration of multiple antigens for the treatment of solid tumors has led to clinical interest in the potential of T cells expressing the engineered T cell receptor (TCR). TCR-T cells possess the capacity to recognize intracellular antigen families and maintain the intrinsic properties of TCRs in terms of affinity to target epitopes and signal transduction. Recent research has provided critical insight into their capability and therapeutic targets for multiple refractory solid tumors, but also exposes some challenges for durable efficacy. In this review, we describe the screening and identification of available tumor antigens, and the acquisition and optimization of TCRs for TCR-T cell therapy. Furthermore, we summarize the complete flow from laboratory to clinical applications of TCR-T cells. Last, we emerge future prospects for improving therapeutic efficacy in cancer world with combination therapies or TCR-T derived products. In conclusion, this review depicts our current understanding of TCR-T cell therapy in solid neoplasms, and provides new perspectives for expanding its clinical applications and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Weihuan Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiaoran Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Qiuyi Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
12
|
Chen C, Wang Z, Kang M, Lee KB, Ge X. High-fidelity large-diversity monoclonal mammalian cell libraries by cell cycle arrested recombinase-mediated cassette exchange. Nucleic Acids Res 2023; 51:e113. [PMID: 37941133 PMCID: PMC10711435 DOI: 10.1093/nar/gkad1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Mammalian cells carrying defined genetic variations have shown great potentials in both fundamental research and therapeutic development. However, their full use was limited by lack of a robust method to construct large monoclonal high-quality combinatorial libraries. This study developed cell cycle arrested recombinase-mediated cassette exchange (aRMCE), able to provide monoclonality, precise genomic integration and uniform transgene expression. Via optimized nocodazole-mediated mitotic arrest, 20% target gene replacement efficiency was achieved without antibiotic selection, and the improved aRMCE efficiency was applicable to a variety of tested cell clones, transgene targets and transfection methods. As a demonstration of this versatile method, we performed directed evolution of fragment crystallizable (Fc), for which error-prone libraries of over 107 variants were constructed and displayed as IgG on surface of CHO cells. Diversities of constructed libraries were validated by deep sequencing, and panels of novel Fc mutants were identified showing improved binding towards specific Fc gamma receptors and enhanced effector functions. Due to its large cargo capacity and compatibility with different mutagenesis approaches, we expect this mammalian cell platform technology has broad applications for directed evolution, multiplex genetic assays, cell line development and stem cell engineering.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
| | - Zening Wang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Minhyo Kang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
| | - Ki Baek Lee
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
13
|
Fast E, Dhar M, Chen B. TAPIR: a T-cell receptor language model for predicting rare and novel targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557285. [PMID: 37745475 PMCID: PMC10515850 DOI: 10.1101/2023.09.12.557285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
T-cell receptors (TCRs) are involved in most human diseases, but linking their sequences with their targets remains an unsolved grand challenge in the field. In this study, we present TAPIR (T-cell receptor and Peptide Interaction Recognizer), a T-cell receptor (TCR) language model that predicts TCR-target interactions, with a focus on novel and rare targets. TAPIR employs deep convolutional neural network (CNN) encoders to process TCR and target sequences across flexible representations (e.g., beta-chain only, unknown MHC allele, etc.) and learns patterns of interactivity via several training tasks. This flexibility allows TAPIR to train on more than 50k either paired (alpha and beta chain) or unpaired TCRs (just alpha or beta chain) from public and proprietary databases against 1933 unique targets. TAPIR demonstrates state-of-the-art performance when predicting TCR interactivity against common benchmark targets and is the first method to demonstrate strong performance when predicting TCR interactivity against novel targets, where no examples are provided in training. TAPIR is also capable of predicting TCR interaction against MHC alleles in the absence of target information. Leveraging these capabilities, we apply TAPIR to cancer patient TCR repertoires and identify and validate a novel and potent anti-cancer T-cell receptor against a shared cancer neoantigen target (PIK3CA H1047L). We further show how TAPIR, when extended with a generative neural network, is capable of directly designing T-cell receptor sequences that interact with a target of interest.
Collapse
Affiliation(s)
- Ethan Fast
- Vcreate, Inc., Menlo Park, CA, 94025, USA
| | | | | |
Collapse
|
14
|
Fahad AS, Chung CY, López Acevedo SN, Boyle N, Madan B, Gutiérrez-González MF, Matus-Nicodemos R, Laflin AD, Ladi RR, Zhou J, Wolfe J, Llewellyn-Lacey S, Koup RA, Douek DC, Balfour HH, Price DA, DeKosky BJ. Cell activation-based screening of natively paired human T cell receptor repertoires. Sci Rep 2023; 13:8011. [PMID: 37198258 PMCID: PMC10192375 DOI: 10.1038/s41598-023-31858-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 03/20/2023] [Indexed: 05/19/2023] Open
Abstract
Adoptive immune therapies based on the transfer of antigen-specific T cells have been used successfully to treat various cancers and viral infections, but improved techniques are needed to identify optimally protective human T cell receptors (TCRs). Here we present a high-throughput approach to the identification of natively paired human TCRα and TCRβ (TCRα:β) genes encoding heterodimeric TCRs that recognize specific peptide antigens bound to major histocompatibility complex molecules (pMHCs). We first captured and cloned TCRα:β genes from individual cells, ensuring fidelity using a suppression PCR. We then screened TCRα:β libraries expressed in an immortalized cell line using peptide-pulsed antigen-presenting cells and sequenced activated clones to identify the cognate TCRs. Our results validated an experimental pipeline that allows large-scale repertoire datasets to be annotated with functional specificity information, facilitating the discovery of therapeutically relevant TCRs.
Collapse
Affiliation(s)
- Ahmed S Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - Cheng Yu Chung
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - Sheila N López Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - Nicoleen Boyle
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | | | - Rodrigo Matus-Nicodemos
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy D Laflin
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - Rukmini R Ladi
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - John Zhou
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - Jacy Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, CF14 4XN, UK
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Henry H Balfour
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, CF14 4XN, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, CF14 4XN, UK
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA.
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, 66044, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
| |
Collapse
|
15
|
Grailer J, Cheng ZJ, Hartnett J, Slater M, Fan F, Cong M. A Novel Cell-based Luciferase Reporter Platform for the Development and Characterization of T-Cell Redirecting Therapies and Vaccine Development. J Immunother 2023; 46:96-106. [PMID: 36809225 PMCID: PMC9988225 DOI: 10.1097/cji.0000000000000453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
T-cell immunotherapies are promising strategies to generate T-cell responses towards tumor-derived or pathogen-derived antigens. Adoptive transfer of T cells genetically modified to express antigen receptor transgenes has shown promise for the treatment of cancer. However, the development of T-cell redirecting therapies relies on the use of primary immune cells and is hampered by the lack of easy-to-use model systems and sensitive readouts to facilitate candidate screening and development. Particularly, testing T-cell receptor (TCR)-specific responses in primary T cells and immortalized T cells is confounded by the presence of endogenous TCR expression which results in mixed alpha/beta TCR pairings and compresses assay readouts. Herein, we describe the development of a novel cell-based TCR knockout (TCR-KO) reporter assay platform for the development and characterization of T-cell redirecting therapies. CRISPR/Cas9 was used to knockout the endogenous TCR chains in Jurkat cells stably expressing a human interleukin-2 promoter-driven luciferase reporter gene to measure TCR signaling. Reintroduction of a transgenic TCR into the TCR-KO reporter cells results in robust antigen-specific reporter activation compared with parental reporter cells. The further development of CD4/CD8 double-positive and double-negative versions enabled low-avidity and high-avidity TCR screening with or without major histocompatibility complex bias. Furthermore, stable TCR-expressing reporter cells generated from TCR-KO reporter cells exhibit sufficient sensitivity to probe in vitro T-cell immunogenicity of protein and nucleic acid-based vaccines. Therefore, our data demonstrated that TCR-KO reporter cells can be a useful tool for the discovery, characterization, and deployment of T-cell immunotherapy.
Collapse
|
16
|
Abstract
Single-cell technologies open up new opportunities to explore the behavior of cells at the individual level. For solid organ transplantation, single-cell technologies can provide in-depth insights into the underlying mechanisms of the immunological processes involved in alloimmune responses after transplantation by investigating the role of individual cells in tolerance and rejection. Here, we review the value of single-cell technologies, including cytometry by time-of-flight and single-cell RNA sequencing, in the context of solid organ transplantation research. Various applications of single-cell technologies are addressed, such as the characterization and identification of immune cell subsets involved in rejection or tolerance. In addition, we explore the opportunities for analyzing specific alloreactive T- or B-cell clones by linking phenotype data to T- or B-cell receptor data, and for distinguishing donor- from recipient-derived immune cells. Moreover, we discuss the use of single-cell technologies in biomarker identification and risk stratification, as well as the remaining challenges. Together, this review highlights that single-cell approaches contribute to a better understanding of underlying immunological mechanisms of rejection and tolerance, thereby potentially accelerating the development of new or improved therapies to avoid allograft rejection.
Collapse
|
17
|
Vazquez-Lombardi R, Jung JS, Schlatter FS, Mei A, Mantuano NR, Bieberich F, Hong KL, Kucharczyk J, Kapetanovic E, Aznauryan E, Weber CR, Zippelius A, Läubli H, Reddy ST. High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity. Immunity 2022; 55:1953-1966.e10. [PMID: 36174557 DOI: 10.1016/j.immuni.2022.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
A major challenge in adoptive T cell immunotherapy is the discovery of natural T cell receptors (TCRs) with high activity and specificity to tumor antigens. Engineering synthetic TCRs for increased tumor antigen recognition is complicated by the risk of introducing cross-reactivity and by the poor correlation that can exist between binding affinity and activity of TCRs in response to antigen (peptide-MHC). Here, we developed TCR-Engine, a method combining genome editing, computational design, and deep sequencing to engineer the functional activity and specificity of TCRs on the surface of a human T cell line at high throughput. We applied TCR-Engine to successfully engineer synthetic TCRs for increased potency and specificity to a clinically relevant tumor-associated antigen (MAGE-A3) and validated their translational potential through multiple in vitro and in vivo assessments of safety and efficacy. Thus, TCR-Engine represents a valuable technology for engineering of safe and potent synthetic TCRs for immunotherapy applications.
Collapse
Affiliation(s)
- Rodrigo Vazquez-Lombardi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Engimmune Therapeutics AG, Hegenheimermattweg 167A, 4123 Allschwil, Switzerland.
| | - Johanna S Jung
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Fabrice S Schlatter
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Anna Mei
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | - Florian Bieberich
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jakub Kucharczyk
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Erik Aznauryan
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| | - Heinz Läubli
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
18
|
Jiang J, Xia M, Zhang L, Chen X, Zhao Y, Zeng C, Yang H, Liang P, Li G, Li N, Qi H, Wei T, Ren L. Rapid generation of genetically engineered T cells for the treatment of virus-related cancers. Cancer Sci 2022; 113:3686-3697. [PMID: 35950597 DOI: 10.1111/cas.15528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022] Open
Abstract
Adoptive transfer of T cell receptor (TCR) engineered T cells targeting viral epitopes represents a promising approach for treating virus-related cancers. However, efficient identification of epitopes for T cells and corresponding TCR remains challenging. Here, we report a workflow permitting rapid generation of human papillomavirus (HPV)-specific TCR-T cells. Six epitopes of viral proteins belonged to HPV16 or HPV18 were predicted of high affinity to A11:01 according to bioinformatic analysis. Subsequently, cytotoxic T cells (CTLs) induction were performed with these six antigen peptides separately, and antigen-specific T cells were sorted by FACS. TCR clonotypes of these virus-specific T cells were determined by next-generation sequencing. To improve the efficiency of TCRαβ pairs validation, a lentiviral vector library containing 116 TCR constructs was generated, which was consisted of predominant TCRs according to TCR repoertire analysis. Later, TCR library transduced T cells were simulated with peptide pool-pulsed antigen presenting cells, then CD137-positive cells were sorted and subjected to TCR repoertire analysis. The top-hit TCRs and corresponding antigen peptides were deduced and validated. Through this workflow, a TCR targeting the E692-101 of HPV16 was identified. This HPV16-specific TCR-T cells showed high activities to HPV16-positive human cervical cancer cells in vitro and efficiently repressed tumor growth in murine model. This study provides a HPV16-specific TCR fitted to HLA-A11:01 population, and exemplifies an efficient approach which can be applied in large-scale screen of virus-specific TCRs, further encouraging researchers to exploit the therapeutic potential of TCR-T cell technique in treating virus-related cancers.
Collapse
Affiliation(s)
- Jinxing Jiang
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Ming Xia
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Lijie Zhang
- Department of Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Xi Chen
- RootPath, Inc. 65 Grove Street, Suite 203, 02472, Watertown, MA, USA
| | - Yue Zhao
- RootPath, Inc. 65 Grove Street, Suite 203, 02472, Watertown, MA, USA
| | - Chenquan Zeng
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Haiyan Yang
- RootPath, Inc. 65 Grove Street, Suite 203, 02472, Watertown, MA, USA
| | - Peng Liang
- RootPath, Inc. 65 Grove Street, Suite 203, 02472, Watertown, MA, USA
| | - Guanghe Li
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Ning Li
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Hui Qi
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Teng Wei
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Lili Ren
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| |
Collapse
|
19
|
Quality Control: Chain Pairing Precision and Monitoring of Cross-Sample Contamination: A Method by the AIRR Community. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2453:423-437. [PMID: 35622337 DOI: 10.1007/978-1-0716-2115-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
New approaches in high-throughput analysis of immune receptor repertoires are enabling major advances in immunology and for the discovery of precision immunotherapeutics. Commensurate with growth of the field, there has been an increased need for the establishment of techniques for quality control of immune receptor data. Our laboratory has standardized the use of multiple quality control techniques in immunoglobulin (IG) and T-cell receptor (TR) sequencing experiments to ensure quality control throughout diverse experimental conditions. These quality control methods can also validate the development of new technological approaches and accelerate the training of laboratory personnel. This chapter describes multiple quality control techniques, including split-replicate cell preparations that enable repeat analyses and bioinformatic methods to quantify and ensure high sample quality. We hope that these quality control approaches can accelerate the technical adoption and validated use of unpaired and natively paired immune receptor data.
Collapse
|
20
|
Dobson CS, Reich AN, Gaglione S, Smith BE, Kim EJ, Dong J, Ronsard L, Okonkwo V, Lingwood D, Dougan M, Dougan SK, Birnbaum ME. Antigen identification and high-throughput interaction mapping by reprogramming viral entry. Nat Methods 2022; 19:449-460. [PMID: 35396484 PMCID: PMC9012700 DOI: 10.1038/s41592-022-01436-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/01/2022] [Indexed: 01/11/2023]
Abstract
Deciphering immune recognition is critical for understanding a broad range of diseases and for the development of effective vaccines and immunotherapies. Efforts to do so are limited by a lack of technologies capable of simultaneously capturing the complexity of adaptive immunoreceptor repertoires and the landscape of potential antigens. To address this, we present receptor-antigen pairing by targeted retroviruses, which combines viral pseudotyping and molecular engineering approaches to enable one-pot library-on-library interaction screens by displaying antigens on the surface of lentiviruses and encoding their identity in the viral genome. Antigen-specific viral infection of cell lines expressing human T or B cell receptors allows readout of both antigen and receptor identities via single-cell sequencing. The resulting system is modular, scalable and compatible with any cell type. These techniques provide a suite of tools for targeted viral entry, molecular engineering and interaction screens with broad potential applications.
Collapse
Affiliation(s)
- Connor S Dobson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Anna N Reich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Stephanie Gaglione
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Blake E Smith
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Ellen J Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Jiayi Dong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | | | - Vintus Okonkwo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Michael Dougan
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephanie K Dougan
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael E Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore.
| |
Collapse
|
21
|
Fahad AS, Chung CY, Lopez Acevedo SN, Boyle N, Madan B, Gutiérrez-González MF, Matus-Nicodemos R, Laflin AD, Ladi RR, Zhou J, Wolfe J, Llewellyn-Lacey S, Koup RA, Douek DC, Balfour Jr HH, Price DA, DeKosky BJ. Immortalization and functional screening of natively paired human T cell receptor repertoires. Protein Eng Des Sel 2022; 35:gzab034. [PMID: 35174859 PMCID: PMC9005053 DOI: 10.1093/protein/gzab034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Functional analyses of the T cell receptor (TCR) landscape can reveal critical information about protection from disease and molecular responses to vaccines. However, it has proven difficult to combine advanced next-generation sequencing technologies with methods to decode the peptide-major histocompatibility complex (pMHC) specificity of individual TCRs. We developed a new high-throughput approach to enable repertoire-scale functional evaluations of natively paired TCRs. In particular, we leveraged the immortalized nature of physically linked TCRα:β amplicon libraries to analyze binding against multiple recombinant pMHCs on a repertoire scale, and to exemplify the utility of this approach, we also performed affinity-based functional mapping in conjunction with quantitative next-generation sequencing to track antigen-specific TCRs. These data successfully validated a new immortalization and screening platform to facilitate detailed molecular analyses of disease-relevant antigen interactions with human TCRs.
Collapse
Affiliation(s)
- Ahmed S Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Cheng-Yu Chung
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Sheila N Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Nicoleen Boyle
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | | | - Rodrigo Matus-Nicodemos
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy D Laflin
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Rukmini R Ladi
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - John Zhou
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Jacy Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry H Balfour Jr
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS 66044, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Tian G, Li M, Lv G. Analysis of T-Cell Receptor Repertoire in Transplantation: Fingerprint of T Cell-mediated Alloresponse. Front Immunol 2022; 12:778559. [PMID: 35095851 PMCID: PMC8790170 DOI: 10.3389/fimmu.2021.778559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
T cells play a key role in determining allograft function by mediating allogeneic immune responses to cause rejection, and recent work pointed their role in mediating tolerance in transplantation. The unique T-cell receptor (TCR) expressed on the surface of each T cell determines the antigen specificity of the cell and can be the specific fingerprint for identifying and monitoring. Next-generation sequencing (NGS) techniques provide powerful tools for deep and high-throughput TCR profiling, and facilitate to depict the entire T cell repertoire profile and trace antigen-specific T cells in circulation and local tissues. Tailing T cell transcriptomes and TCR sequences at the single cell level provides a full landscape of alloreactive T-cell clones development and biofunction in alloresponse. Here, we review the recent advances in TCR sequencing techniques and computational tools, as well as the recent discovery in overall TCR profile and antigen-specific T cells tracking in transplantation. We further discuss the challenges and potential of using TCR sequencing-based assays to profile alloreactive TCR repertoire as the fingerprint for immune monitoring and prediction of rejection and tolerance.
Collapse
Affiliation(s)
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Heather JM, Spindler MJ, Alonso M, Shui Y, Millar DG, Johnson D, Cobbold M, Hata A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:e68. [PMID: 35325179 PMCID: PMC9262623 DOI: 10.1093/nar/gkac190] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
The study and manipulation of T cell receptors (TCRs) is central to multiple fields across basic and translational immunology research. Produced by V(D)J recombination, TCRs are often only recorded in the literature and data repositories as a combination of their V and J gene symbols, plus their hypervariable CDR3 amino acid sequence. However, numerous applications require full-length coding nucleotide sequences. Here we present Stitchr, a software tool developed to specifically address this limitation. Given minimal V/J/CDR3 information, Stitchr produces complete coding sequences representing a fully spliced TCR cDNA. Due to its modular design, Stitchr can be used for TCR engineering using either published germline or novel/modified variable and constant region sequences. Sequences produced by Stitchr were validated by synthesizing and transducing TCR sequences into Jurkat cells, recapitulating the expected antigen specificity of the parental TCR. Using a companion script, Thimble, we demonstrate that Stitchr can process a million TCRs in under ten minutes using a standard desktop personal computer. By systematizing the production and modification of TCR sequences, we propose that Stitchr will increase the speed, repeatability, and reproducibility of TCR research. Stitchr is available on GitHub.
Collapse
Affiliation(s)
- James M Heather
- To whom correspondence should be addressed. Tel: +1 617 724 0104;
| | | | | | | | - David G Millar
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Mark Cobbold
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aaron N Hata
- Correspondence may also be addressed to Aaron N. Hata. Tel: +1 617 724 3442;
| |
Collapse
|
24
|
Ye J, Lai D, Cao D, Tan L, Hu L, Zha H, Yang J, Shu Q. Altered T-Cell Receptor β-Chain and Lactate Dehydrogenase Are Associated With the Immune Pathogenesis of Biliary Atresia. Front Med (Lausanne) 2021; 8:778500. [PMID: 35004747 PMCID: PMC8739481 DOI: 10.3389/fmed.2021.778500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/30/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Biliary atresia (BA) is considered to be an autoimmune-mediating inflammatory injury. The pathogenesis of BA has been proposed with the clonal transformation of T cells expressing analogous T-cell receptor β-chain variable regions (TRBVs). Methods: The TRBV profile of the peripheral blood mononuclear cells (PBMCs) in infants with BA and control infants (healthy donors, HDs), respectively, were characterized by using high-throughput sequencing (HTS). The diversity of T cells was analyzed based on the frequency of complementarity-determining region 3 (CDR3) or V(CDR3)J. Moreover, the correlation between absolute lymphocyte count (ALC) and lactate dehydrogenase (LDH) or diversity (clonality) indices, respectively, were analyzed for subjects with BA and HD. Results: The diversity indices of CDR3, V(CDR3)J in BA are lower than those in subjects with HD, in addition, there are significantly different levels of neutrophile, neutrophile/lymphocyte ratio (NLR), and LDH between groups of BA and HD. The correlation between ALC and diversity index is significant in subjects with HD but is not for subjects with BA. Conversely, the relationship between ALC and LDH is significant in subjects with BA but is not for subjects with HD. Moreover, 12 CDR3 motifs are deficient or lower expression in BA compared with that in the HD group. Conclusion: Our results demonstrate that the profile of TRBV repertoire is significantly different between subjects with BA and HD, and suggest that the immune imbalance and elevated LDH level are associated with the pathogenesis of BA. Moreover, the values of neutrophile, NLR, and LDH could be used for the differential diagnosis of BA.
Collapse
Affiliation(s)
- Jing Ye
- Department of Surgical ICU, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Dengming Lai
- Department of Neonatal Surgery, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linhua Tan
- Department of Surgical ICU, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Hu
- Department of Surgical ICU, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Keating SM, Mizrahi RA, Adams MS, Asensio MA, Benzie E, Carter KP, Chiang Y, Edgar RC, Gautam BK, Gras A, Leong J, Leong R, Lim YW, Manickam VA, Medina-Cucurella AV, Niedecken AR, Saini J, Simons JF, Spindler MJ, Stadtmiller K, Tinsley B, Wagner EK, Wayham N, Tracy L, Lundberg CV, Büscher D, Terencio JV, Roalfe L, Pearce E, Richardson H, Goldblatt D, Ramjag AT, Carrington CVF, Simmons G, Muench MO, Chamow SM, Monroe B, Olson C, Oguin TH, Lynch H, Jeanfreau R, Mosher RA, Walch MJ, Bartley CR, Ross CA, Meyer EH, Adler AS, Johnson DS. Generation of recombinant hyperimmune globulins from diverse B-cell repertoires. Nat Biotechnol 2021; 39:989-999. [PMID: 33859400 PMCID: PMC8355030 DOI: 10.1038/s41587-021-00894-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
Plasma-derived polyclonal antibody therapeutics, such as intravenous immunoglobulin, have multiple drawbacks, including low potency, impurities, insufficient supply and batch-to-batch variation. Here we describe a microfluidics and molecular genomics strategy for capturing diverse mammalian antibody repertoires to create recombinant multivalent hyperimmune globulins. Our method generates of diverse mixtures of thousands of recombinant antibodies, enriched for specificity and activity against therapeutic targets. Each hyperimmune globulin product comprised thousands to tens of thousands of antibodies derived from convalescent or vaccinated human donors or from immunized mice. Using this approach, we generated hyperimmune globulins with potent neutralizing activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in under 3 months, Fc-engineered hyperimmune globulins specific for Zika virus that lacked antibody-dependent enhancement of disease, and hyperimmune globulins specific for lung pathogens present in patients with primary immune deficiency. To address the limitations of rabbit-derived anti-thymocyte globulin, we generated a recombinant human version and demonstrated its efficacy in mice against graft-versus-host disease.
Collapse
Affiliation(s)
| | | | - Matthew S Adams
- GigaGen Inc., South San Francisco, CA, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | | | | | - Yao Chiang
- GigaGen Inc., South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lucy Roalfe
- Immunobiology Section, Great Ormond Street Institute of Child Health, University College London, London, England
| | - Emma Pearce
- Immunobiology Section, Great Ormond Street Institute of Child Health, University College London, London, England
| | - Hayley Richardson
- Immunobiology Section, Great Ormond Street Institute of Child Health, University College London, London, England
| | - David Goldblatt
- Immunobiology Section, Great Ormond Street Institute of Child Health, University College London, London, England
| | - Anushka T Ramjag
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Christine V F Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | | | | | | | | | | | - Thomas H Oguin
- Regional Biocontainment Laboratory, Duke University Medical Center, Durham, NC, USA
| | - Heather Lynch
- Regional Biocontainment Laboratory, Duke University Medical Center, Durham, NC, USA
| | | | - Rachel A Mosher
- Waisman Biomanufacturing, University of Wisconsin, Madison, WI, USA
| | - Matthew J Walch
- Waisman Biomanufacturing, University of Wisconsin, Madison, WI, USA
| | | | - Carl A Ross
- Waisman Biomanufacturing, University of Wisconsin, Madison, WI, USA
| | - Everett H Meyer
- Stanford Diabetes Research Center, Stanford University Medical Center, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University Medical Center, Stanford, CA, USA
| | | | | |
Collapse
|
26
|
Pearlman AH, Hwang MS, Konig MF, Hsiue EHC, Douglass J, DiNapoli SR, Mog BJ, Bettegowda C, Pardoll DM, Gabelli SB, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Targeting public neoantigens for cancer immunotherapy. NATURE CANCER 2021; 2:487-497. [PMID: 34676374 PMCID: PMC8525885 DOI: 10.1038/s43018-021-00210-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Several current immunotherapy approaches target private neoantigens derived from mutations that are unique to individual patients' tumors. However, immunotherapeutic agents can also be developed against public neoantigens derived from recurrent mutations in cancer driver genes. The latter approaches target proteins that are indispensable for tumor growth, and each therapeutic agent can be applied to numerous patients. Here we review the opportunities and challenges involved in the identification of suitable public neoantigen targets and the development of therapeutic agents targeting them.
Collapse
Affiliation(s)
- Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Genentech, Inc., South San Francisco, CA, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sandra B Gabelli
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
27
|
Raes L, De Smedt SC, Raemdonck K, Braeckmans K. Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnol Adv 2021; 49:107760. [PMID: 33932532 DOI: 10.1016/j.biotechadv.2021.107760] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
Genetically engineered T cells have sparked interest in advanced cancer treatment, reaching a milestone in 2017 with two FDA-approvals for CD19-directed chimeric antigen receptor (CAR) T cell therapeutics. It is becoming clear that the next generation of CAR T cell therapies will demand more complex engineering strategies and combinations thereof, including the use of revolutionary gene editing approaches. To date, manufacturing of CAR T cells mostly relies on γ-retroviral or lentiviral vectors, but their use is associated with several drawbacks, including safety issues, high manufacturing cost and vector capacity constraints. Non-viral approaches, including membrane permeabilization and carrier-based techniques, have therefore gained a lot of interest to replace viral transductions in the manufacturing of T cell therapeutics. This review provides an in-depth discussion on the avid search for alternatives to viral vectors, discusses key considerations for T cell engineering technologies, and provides an overview of the emerging spectrum of non-viral transfection technologies for T cells. Strengths and weaknesses of each technology will be discussed in relation to T cell engineering. Altogether, this work emphasizes the potential of non-viral transfection approaches to advance the next-generation of genetically engineered T cells.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
28
|
Yermanos A, Neumeier D, Sandu I, Borsa M, Waindok AC, Merkler D, Oxenius A, Reddy ST. Single-cell immune repertoire and transcriptome sequencing reveals that clonally expanded and transcriptionally distinct lymphocytes populate the aged central nervous system in mice. Proc Biol Sci 2021; 288:20202793. [PMID: 33622131 DOI: 10.1098/rspb.2020.2793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation plays a crucial role during ageing and various neurological conditions, including Alzheimer's disease, multiple sclerosis and infection. Technical limitations, however, have prevented an integrative analysis of how lymphocyte immune receptor repertoires and their accompanying transcriptional states change with age in the central nervous system. Here, we leveraged single-cell sequencing to simultaneously profile B cell receptor and T cell receptor repertoires and accompanying gene expression profiles in young and old mouse brains. We observed the presence of clonally expanded B and T cells in the central nervous system of aged male mice. Furthermore, many of these B cells were of the IgM and IgD isotypes, and had low levels of somatic hypermutation. Integrating gene expression information additionally revealed distinct transcriptional profiles of these clonally expanded lymphocytes. Our findings implicate that clonally related T and B cells in the CNS of elderly mice may contribute to neuroinflammation accompanying homeostatic ageing.
Collapse
Affiliation(s)
- Alexander Yermanos
- Department of Biosystems and Engineering, ETH Zurich, Basel, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Daniel Neumeier
- Department of Biosystems and Engineering, ETH Zurich, Basel, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Mariana Borsa
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | | | - Sai T Reddy
- Department of Biosystems and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
29
|
Lee MN, Meyerson M. Antigen identification for HLA class I- and HLA class II-restricted T cell receptors using cytokine-capturing antigen-presenting cells. Sci Immunol 2021; 6:6/55/eabf4001. [PMID: 33483338 DOI: 10.1126/sciimmunol.abf4001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022]
Abstract
A major limitation to understanding the associations of human leukocyte antigen (HLA) and CD8+ and CD4+ T cell receptor (TCR) genes with disease pathophysiology is the technological barrier of identifying which HLA molecules, epitopes, and TCRs form functional complexes. Here, we present a high-throughput epitope identification system that combines capture of T cell-secreted cytokines by barcoded antigen-presenting cells (APCs), cell sorting, and next-generation sequencing to identify class I- and class II-restricted epitopes starting from highly complex peptide-encoding oligonucleotide pools. We engineered APCs to express anti-cytokine antibodies, a library of DNA-encoded peptides, and multiple HLA class I or II molecules. We demonstrate that these engineered APCs link T cell activation-dependent cytokines with the DNA that encodes the presented peptide. We validated this technology by showing that we could select known targets of viral epitope-, neoepitope-, and autoimmune epitope-specific TCRs, starting from mixtures of peptide-encoding oligonucleotides. Then, starting from 10 TCRβ sequences that are found commonly in humans but lack known targets, we identified seven CD8+ or CD4+ TCR-targeted epitopes encoded by the human cytomegalovirus (CMV) genome. These included known epitopes, as well as a class I and a class II CMV epitope that have not been previously described. Thus, our cytokine capture-based assay makes use of a signal secreted by both CD8+ and CD4+ T cells and allows pooled screening of thousands of encoded peptides to enable epitope discovery for orphan TCRs. Our technology may enable identification of HLA-epitope-TCR complexes relevant to disease control, etiology, or treatment.
Collapse
Affiliation(s)
- Mark N Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. .,Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. .,Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA.,Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Müller TR, Schuler C, Hammel M, Köhler A, Jutz S, Leitner J, Schober K, Busch DH, Steinberger P. A T-cell reporter platform for high-throughput and reliable investigation of TCR function and biology. Clin Transl Immunology 2020; 9:e1216. [PMID: 33251011 PMCID: PMC7681835 DOI: 10.1002/cti2.1216] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Transgenic re-expression enables unbiased investigation of T-cell receptor (TCR)-intrinsic characteristics detached from its original cellular context. Recent advancements in TCR repertoire sequencing and development of protocols for direct cloning of full TCRαβ constructs now facilitate large-scale transgenic TCR re-expression. Together, this offers unprecedented opportunities for the screening of TCRs for basic research as well as clinical use. However, the functional characterisation of re-expressed TCRs is still a complicated and laborious matter. Here, we propose a Jurkat-based triple parameter TCR signalling reporter endogenous TCR knockout cellular platform (TPRKO) that offers an unbiased, easy read-out of TCR functionality and facilitates high-throughput screening approaches. METHODS As a proof-of-concept, we transgenically re-expressed 59 human cytomegalovirus-specific TCRs and systematically investigated and compared TCR function in TPRKO cells versus primary human T cells. RESULTS We demonstrate that the TPRKO cell line facilitates antigen-HLA specificity screening via sensitive peptide-MHC-multimer staining, which was highly comparable to primary T cells. Also, TCR functional avidity in TPRKO cells was strongly correlating to primary T cells, especially in the absence of CD8αβ co-receptor. CONCLUSION Overall, our data show that the TPRKO cell lines can serve as a surrogate of primary human T cells for standardised and high-throughput investigation of TCR biology.
Collapse
Affiliation(s)
- Thomas R Müller
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
- German Center for Infection Research (DZIF)MunichGermany
| | - Corinna Schuler
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Amelie Köhler
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Sabrina Jutz
- Division of Immune Receptors and T Cell ActivationCenter for Pathophysiology, Infectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| | - Judith Leitner
- Division of Immune Receptors and T Cell ActivationCenter for Pathophysiology, Infectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
- German Center for Infection Research (DZIF)MunichGermany
- Focus Group ‘Clinical Cell Processing and Purification’Institute for Advanced StudyTUMMunichGermany
| | - Peter Steinberger
- Division of Immune Receptors and T Cell ActivationCenter for Pathophysiology, Infectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
31
|
Abstract
Advances in reading, writing, and editing DNA are providing unprecedented insights into the complexity of immunological systems. This combination of systems and synthetic biology methods is enabling the quantitative and precise understanding of molecular recognition in adaptive immunity, thus providing a framework for reprogramming immune responses for translational medicine. In this review, we will highlight state-of-the-art methods such as immune repertoire sequencing, immunoinformatics, and immunogenomic engineering and their application toward adaptive immunity. We showcase novel and interdisciplinary approaches that have the promise of transforming the design and breadth of molecular and cellular immunotherapies.
Collapse
Affiliation(s)
- Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Roy A. Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
32
|
T-cell repertoire analysis and metrics of diversity and clonality. Curr Opin Biotechnol 2020; 65:284-295. [PMID: 32889231 DOI: 10.1016/j.copbio.2020.07.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
The recent developments of high-throughput bulk and single-cell sequencing technologies accelerated the understanding of the complexity of immune repertoire dynamics combined to transcriptomics. Also, profiling of cellular repertoires in health or disease requires statistical metrics to capture clonal diversity characterized by clones frequency, repertoire richness and convergence. Here we present the common technologies of bulk and single-cell sequencing of T-cell receptors (TCRs), discuss current knowledge regarding computational tools clustering and predicting specificity of TCR repertoires based on shared structural motifs and review main indices for repertoire diversity and convergence analyses. These tools represent potential biomarkers to decipher the fitness of immune repertoires in diseased or treated patients but also the presages and promises of computational approaches to revolutionize personalized immunotherapy.
Collapse
|
33
|
Oppermans N, Kueberuwa G, Hawkins RE, Bridgeman JS. Transgenic T-cell receptor immunotherapy for cancer: building on clinical success. Ther Adv Vaccines Immunother 2020; 8:2515135520933509. [PMID: 32613155 PMCID: PMC7309387 DOI: 10.1177/2515135520933509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/18/2020] [Indexed: 12/30/2022] Open
Abstract
With the advent of immunotherapy as a realistic and promising option for cancer treatment, adoptive cellular therapies are gaining significant interest in the clinic. Whilst the recent successes of chimeric antigen receptor T-cell therapies for haematological malignancies are widely known, they have yet to show great success in solid cancers. However, immune cells transduced with T-cell receptors have been shown to traffic to and exert anti-cancer effects on solid tumour cells with some great successes. In this review, we explore the field of transgenic T-cell receptor immunotherapy, highlighting some of the key clinical trials which have paved the way for this type of cellular immunotherapy. Some trials have shown amazing clinical results, including long-term remissions and minimal toxicity, and can be looked at as an exemplar for this adoptive cell therapy. There have also been key trials where unexpected, fatal, off-tumour toxicity has occurred, and these trials have also been instrumental in shaping safer clinical trials, particularly regarding preclinical testing. In addition to previous trials, we analysed the current clinical trial space for T-cell receptor T-cell therapy, showing which trials are dominating in the clinic and which targets are being prioritised by researchers around the world. By looking at both past and current trials, we have been able to identify key drivers in developing transgenic T-cell receptor immunotherapy for the future.
Collapse
Affiliation(s)
| | - Gray Kueberuwa
- Immetacyte Ltd., University of Manchester, Manchester, Greater Manchester, UK
| | | | - John S Bridgeman
- Immetacyte Ltd., University of Manchester, Manchester, Greater Manchester, UK
| |
Collapse
|