1
|
Mekureyaw MF, Junker AL, Bai L, Zhang Y, Wei Z, Guo Z. Laccase based per- and polyfluoroalkyl substances degradation: Status and future perspectives. WATER RESEARCH 2025; 271:122888. [PMID: 39637694 DOI: 10.1016/j.watres.2024.122888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) with stable carbon-fluorine bonds are used in a wide range of industrial and commercial applications. Due to their extreme environmental persistence, PFAS have the potential to bioaccumulate, cause adverse effects, and present challenges regarding remediation. Recently, microbial and enzymatic reactions for sustainable degradation of PFAS have gained attention from researchers, although biological decomposition of PFAS remains challenging. Surprisingly, laccases, the multi-copper oxidases produced by various organisms, showed potential for PFAS degradation. Mediators play key roles in initiating laccase induced PFAS degradation and defluorination reactions. The laccase-catalyzed PFAS degradation reactions are relatively slower than normal biocatalytic reactions and the low activity of native laccases constrains their capacity to complete defluorination. With their low redox potential and narrow substrate scope, an innovative remediation strategy must be taken to accelerate this reaction. In this review we have summarized the status, challenges, and future perspectives of enzymatic PFAS degradation. The knowledge of laccase-based defluorination and the molecular basis of the reaction mechanisms overviewed in this study could inform future applications of laccases for sustainable PFAS remediation.
Collapse
Affiliation(s)
- Mengistu F Mekureyaw
- Section of Industrial Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Allyson Leigh Junker
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Denmark
| | - Lu Bai
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Denmark
| | - Yan Zhang
- Section of Industrial Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Zongsu Wei
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Denmark.
| | - Zheng Guo
- Section of Industrial Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark.
| |
Collapse
|
2
|
Flament J, Pépin J, Maugard M, Gaudin M, Cohen L, Jan C, Valette J, Piluso S, Delzescaux T, Bonvento G. Noninvasive Imaging of Transgene Expression in Neurons Using Chemical Exchange Saturation Transfer MRI. NMR IN BIOMEDICINE 2025; 38:e5297. [PMID: 39573979 PMCID: PMC11831584 DOI: 10.1002/nbm.5297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 02/18/2025]
Abstract
Advances in gene therapy, especially for brain diseases, have created new imaging demands for noninvasive monitoring of gene expression. While reporter gene imaging using co-expression of fluorescent protein-encoding gene has been widely developed, these conventional methods face significant limitations in longitudinal in vivo applications. Magnetic resonance imaging (MRI), specifically chemical exchange saturation transfer (CEST) MRI, provides a robust noninvasive alternative that offers unlimited depth penetration, reliable spatial resolution, and specificity toward particular molecules. In this study, we explore the potential of CEST-MRI for monitoring gene expression in neurons. We designed a CEST polypeptide reporter expressing 150 arginine residues and evaluated its expression in the living brain after viral vector delivery. A longitudinal study performed at one and 2 months postinjection showed that specific CEST signal was observable. In particular, the CEST contrast exhibited distinct peaks at 0.75 and 1.75 ppm, consistent with the expected hydroxyl and guanidyl protons resonance frequencies. Histological study confirmed the specific neuronal expression of the transgene evidenced by the fluorescence signal from the td-Tomato fluorophore fused to the polypeptide. The ability to image noninvasively a neuron-specific CEST-MRI reporter gene could offer valuable insights for further developments of gene therapy for neurological disorders.
Collapse
Affiliation(s)
- Julien Flament
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies NeurodégénérativesUniversité Paris‐SaclayFontenay‐aux‐RosesFrance
| | - Jérémy Pépin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies NeurodégénérativesUniversité Paris‐SaclayFontenay‐aux‐RosesFrance
| | - Marianne Maugard
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies NeurodégénérativesUniversité Paris‐SaclayFontenay‐aux‐RosesFrance
| | - Mylène Gaudin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies NeurodégénérativesUniversité Paris‐SaclayFontenay‐aux‐RosesFrance
| | - Léa Cohen
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies NeurodégénérativesUniversité Paris‐SaclayFontenay‐aux‐RosesFrance
| | - Caroline Jan
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies NeurodégénérativesUniversité Paris‐SaclayFontenay‐aux‐RosesFrance
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies NeurodégénérativesUniversité Paris‐SaclayFontenay‐aux‐RosesFrance
| | - Sébastien Piluso
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies NeurodégénérativesUniversité Paris‐SaclayFontenay‐aux‐RosesFrance
| | - Thierry Delzescaux
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies NeurodégénérativesUniversité Paris‐SaclayFontenay‐aux‐RosesFrance
| | - Gilles Bonvento
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies NeurodégénérativesUniversité Paris‐SaclayFontenay‐aux‐RosesFrance
- CNRS, Institut des Neurosciences Paris‐SaclayUniversité Paris‐SaclaySaclayFrance
| |
Collapse
|
3
|
Allouche-Arnon H, Montrazi ET, Subramani B, Fisler M, Spigel I, Frydman L, Mehlman T, Brandis A, Harris T, Bar-Shir A. A Genetically Engineered Reporter System Designed for 2H-MRI Allows Quantitative In Vivo Mapping of Transgene Expression. J Am Chem Soc 2024; 146:31624-31632. [PMID: 39527270 PMCID: PMC11583250 DOI: 10.1021/jacs.4c09572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The ability to obtain quantitative spatial information on subcellular processes of deep tissues in vivo has been a long-standing challenge for molecular magnetic resonance imaging (MRI) approaches. This challenge remains even more so for quantifying readouts of genetically engineered MRI reporters. Here, we set to overcome this challenge with a molecular system designed to obtain quantitative 2H-MRI maps of a gene reporter. To this end, we synthesized deuterated thymidine, d3-thy, with three magnetically equivalent deuterons at its methyl group (-CD3), showing a singlet peak with a characteristic 2H-NMR frequency (δ = 1.7 ppm). The upfield 3.0 ppm offset from the chemical shift of the HDO signal (δ = 4.7 ppm) allows for spectrally resolving the two 2H NMR signals and quantifying the concentration of d3-thy based on the known concentration of a tissue's HDO. Following systemic administration of d3-thy, its accumulation as d3-thy monophosphate in cells expressing the human thymidine kinase 1 (hTK1) transgene was mapped with 2H-MRI. The data obtained in vivo show the ability to use the d3-thy/hTK1 pair as a reporter probe/reporter gene system to quantitatively map transgene expression with MRI. Relying on a structurally unmodified reporter probe (d3-thy) to image the expression of unmutated human protein (hTK1) shows the potential of molecular imaging with 2H-MRI to monitor gene reporters and other relevant biological targets.
Collapse
Affiliation(s)
- Hyla Allouche-Arnon
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elton T. Montrazi
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Balamurugan Subramani
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Fisler
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inbal Spigel
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lucio Frydman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Tevie Mehlman
- Department
of Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Alexander Brandis
- Department
of Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Talia Harris
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Listov D, Goverde CA, Correia BE, Fleishman SJ. Opportunities and challenges in design and optimization of protein function. Nat Rev Mol Cell Biol 2024; 25:639-653. [PMID: 38565617 PMCID: PMC7616297 DOI: 10.1038/s41580-024-00718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
The field of protein design has made remarkable progress over the past decade. Historically, the low reliability of purely structure-based design methods limited their application, but recent strategies that combine structure-based and sequence-based calculations, as well as machine learning tools, have dramatically improved protein engineering and design. In this Review, we discuss how these methods have enabled the design of increasingly complex structures and therapeutically relevant activities. Additionally, protein optimization methods have improved the stability and activity of complex eukaryotic proteins. Thanks to their increased reliability, computational design methods have been applied to improve therapeutics and enzymes for green chemistry and have generated vaccine antigens, antivirals and drug-delivery nano-vehicles. Moreover, the high success of design methods reflects an increased understanding of basic rules that govern the relationships among protein sequence, structure and function. However, de novo design is still limited mostly to α-helix bundles, restricting its potential to generate sophisticated enzymes and diverse protein and small-molecule binders. Designing complex protein structures is a challenging but necessary next step if we are to realize our objective of generating new-to-nature activities.
Collapse
Affiliation(s)
- Dina Listov
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Casper A Goverde
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Sarel Jacob Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Yun J, Huang Y, Miller ADC, Chang BL, Baldini L, Dhanabalan KM, Li E, Li H, Mukherjee A. Destabilized reporters for background-subtracted, chemically-gated, and multiplexed deep-tissue imaging. Chem Sci 2024; 15:11108-11121. [PMID: 39027298 PMCID: PMC11253201 DOI: 10.1039/d4sc00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024] Open
Abstract
Tracking gene expression in deep tissues requires genetic reporters that can be unambiguously detected using tissue penetrant techniques. Magnetic resonance imaging (MRI) is uniquely suited for this purpose; however, there is a dearth of reporters that can be reliably linked to gene expression with minimal interference from background tissue signals. Here, we present a conceptually new method for generating background-subtracted, drug-gated, multiplex images of gene expression using MRI. Specifically, we engineered chemically erasable reporters consisting of a water channel, aquaporin-1, fused to destabilizing domains, which are stabilized by binding to cell-permeable small-molecule ligands. We showed that this approach allows for highly specific detection of gene expression through differential imaging. In addition, by engineering destabilized aquaporin-1 variants with orthogonal ligand requirements, it is possible to distinguish distinct subpopulations of cells in mixed cultures. Finally, we demonstrated this approach in a mouse tumor model through differential imaging of gene expression with minimal background.
Collapse
Affiliation(s)
- Jason Yun
- Department of Chemistry, University of California Santa Barbara CA 93106 USA
| | - Yimeng Huang
- Department of Chemistry, University of California Santa Barbara CA 93106 USA
| | - Austin D C Miller
- Biomolecular Science and Engineering Graduate Program, University of California Santa Barbara CA 93106 USA
| | - Brandon L Chang
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Barbara CA 93106 USA
| | - Logan Baldini
- Department of Chemical Engineering, University of California Santa Barbara CA 93106 USA
| | - Kaamini M Dhanabalan
- Department of Chemical Engineering, University of California Santa Barbara CA 93106 USA
| | - Eugene Li
- Department of Chemical Engineering, University of California Santa Barbara CA 93106 USA
| | - Honghao Li
- Department of Chemistry, University of California Santa Barbara CA 93106 USA
| | - Arnab Mukherjee
- Department of Chemistry, University of California Santa Barbara CA 93106 USA
- Biomolecular Science and Engineering Graduate Program, University of California Santa Barbara CA 93106 USA
- Department of Chemical Engineering, University of California Santa Barbara CA 93106 USA
| |
Collapse
|
6
|
Chen Y, Yang H, Luo Y, Niu Y, Yu M, Deng S, Wang X, Deng H, Chen H, Gao L, Li X, Xu P, Xue F, Miao J, Shi SH, Zhong Y, Ma C, Lei B. Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN) for cross-modal individual analysis of the whole brain. Nat Commun 2024; 15:4228. [PMID: 38762498 PMCID: PMC11102525 DOI: 10.1038/s41467-024-48393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
Cross-modal analysis of the same whole brain is an ideal strategy to uncover brain function and dysfunction. However, it remains challenging due to the slow speed and destructiveness of traditional whole-brain optical imaging techniques. Here we develop a new platform, termed Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN), for non-destructive, high-speed, 3D imaging of ex vivo rodent, ferret, and non-human primate brains. Using an optimally designed image acquisition scheme and an accompanying machine-learning algorithm, PATTERN extracts signals of genetically-encoded probes from photobleaching-based temporal modulation and enables reliable visualization of neural projection in the whole central nervous system with 3D isotropic resolution. Without structural and biological perturbation to the sample, PATTERN can be combined with other whole-brain imaging modalities to acquire the whole-brain image with both high resolution and morphological fidelity. Furthermore, cross-modal transcriptome analysis of an individual brain is achieved by PATTERN imaging. Together, PATTERN provides a compatible and versatile strategy for brain-wide cross-modal analysis at the individual level.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, PR China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, 100084, PR China
| | - Haoyu Yang
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Yan Luo
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, PR China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, 100084, PR China
| | - Yijun Niu
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China
| | - Muzhou Yu
- School of Computer Science, Xi'an Jiaotong University, Xi'an, 713599, PR China
| | - Shanjun Deng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xuanhao Wang
- Research Center for Humanoid Sensing, Zhejiang Laboratory, Hangzhou, 311100, PR China
| | - Handi Deng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, PR China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, 100084, PR China
| | - Haichao Chen
- School of Medicine, Tsinghua University, Beijing, 100084, PR China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, PR China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, PR China
| | - Pingyong Xu
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Fudong Xue
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Jing Miao
- Canterbury School, New Milford, CT, 06776, USA
| | - Song-Hai Shi
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Yi Zhong
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Cheng Ma
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, PR China.
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, 100084, PR China.
| | - Bo Lei
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
- IDG/McGovern Institute of Brain Research, Beijing, 100084, PR China.
- Beijing Academy of Artificial Intelligence, Beijing, 100084, PR China.
| |
Collapse
|
7
|
Huang Y, Chen X, Zhu Z, Mukherjee A. A Dual-Gene Reporter-Amplifier Architecture for Enhancing the Sensitivity of Molecular MRI by Water Exchange. Chembiochem 2024; 25:e202400087. [PMID: 38439618 PMCID: PMC11604348 DOI: 10.1002/cbic.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/06/2024]
Abstract
The development of genetic reporters for magnetic resonance imaging (MRI) is essential for investigating biological functions in vivo. However, current MRI reporters have low sensitivity, making it challenging to create significant contrast against the tissue background, especially when only a small fraction of cells express the reporter. To overcome this limitation, we developed an approach for amplifying the sensitivity of molecular MRI by combining a chemogenetic contrast mechanism with a biophysical approach to increase water diffusion through the co-expression of a dual-gene construct comprising an organic anion transporting polypeptide, Oatp1b3, and a water channel, Aqp1. We first show that the expression of Aqp1 amplifies MRI contrast in cultured cells engineered to express Oatp1b3. We demonstrate that the contrast amplification is caused by Aqp1-driven increase in water exchange, which provides the gadolinium ions internalized by Oatp1b3-expressing cells with access to a larger water pool compared with exchange-limited conditions. We further show that our methodology allows cells to be detected using approximately 10-fold lower concentrations of gadolinium than that in the Aqp1-free scenario. Finally, we show that our approach enables the imaging of mixed-cell cultures containing a low fraction of Oatp1b3-labeled cells that are undetectable on the basis of Oatp1b3 expression alone.
Collapse
Affiliation(s)
| | - Xinyue Chen
- Department of Molecular, Cellular, and Developmental Biology
| | - Ziyue Zhu
- Department of Molecular, Cellular, and Developmental Biology
| | - Arnab Mukherjee
- Department of Chemistry
- Department of Molecular, Cellular, and Developmental Biology
- Department of Chemical Engineering
| |
Collapse
|
8
|
Miller ADC, Chowdhury SP, Hanson HW, Linderman SK, Ghasemi HI, Miller WD, Morrissey MA, Richardson CD, Gardner BM, Mukherjee A. Engineering water exchange is a safe and effective method for magnetic resonance imaging in diverse cell types. J Biol Eng 2024; 18:30. [PMID: 38649904 PMCID: PMC11035135 DOI: 10.1186/s13036-024-00424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Aquaporin-1 (Aqp1), a water channel, has garnered significant interest for cell-based medicine and in vivo synthetic biology due to its ability to be genetically encoded to produce magnetic resonance signals by increasing the rate of water diffusion in cells. However, concerns regarding the effects of Aqp1 overexpression and increased membrane diffusivity on cell physiology have limited its widespread use as a deep-tissue reporter. In this study, we present evidence that Aqp1 generates strong diffusion-based magnetic resonance signals without adversely affecting cell viability or morphology in diverse cell lines derived from mice and humans. Our findings indicate that Aqp1 overexpression does not induce ER stress, which is frequently associated with heterologous expression of membrane proteins. Furthermore, we observed that Aqp1 expression had no detrimental effects on native biological activities, such as phagocytosis, immune response, insulin secretion, and tumor cell migration in the analyzed cell lines. These findings should serve to alleviate any lingering safety concerns regarding the utilization of Aqp1 as a genetic reporter and should foster its broader application as a noninvasive reporter for in vivo studies.
Collapse
Affiliation(s)
- Austin D C Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA
| | - Soham P Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Hadley W Hanson
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA
| | - Sarah K Linderman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Hannah I Ghasemi
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Wyatt D Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA
| | - Meghan A Morrissey
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Arnab Mukherjee
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA.
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
- Department of Bioengineering, University of California, Santa Barbara, CA, 93106, USA.
- Department of Chemistry, University of California, Santa Barbara, CA, 93106, USA.
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
9
|
Grady CJ, Castellanos Franco EA, Schossau J, Ashbaugh RC, Pelled G, Gilad AA. A putative design for the electromagnetic activation of split proteins for molecular and cellular manipulation. Front Bioeng Biotechnol 2024; 12:1355915. [PMID: 38605993 PMCID: PMC11007078 DOI: 10.3389/fbioe.2024.1355915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
The ability to manipulate cellular function using an external stimulus is a powerful strategy for studying complex biological phenomena. One approach to modulate the function of the cellular environment is split proteins. In this method, a biologically active protein or an enzyme is fragmented so that it reassembles only upon a specific stimulus. Although many tools are available to induce these systems, nature has provided other mechanisms to expand the split protein toolbox. Here, we show a novel method for reconstituting split proteins using magnetic stimulation. We found that the electromagnetic perceptive gene (EPG) changes conformation due to magnetic field stimulation. By fusing split fragments of a certain protein to both termini of the EPG, the fragments can be reassembled into a functional protein under magnetic stimulation due to conformational change. We show this effect with three separate split proteins: NanoLuc, APEX2, and herpes simplex virus type-1 thymidine kinase. Our results show, for the first time, that reconstitution of split proteins can be achieved only with magnetic fields. We anticipate that this study will be a starting point for future magnetically inducible split protein designs for cellular perturbation and manipulation. With this technology, we can help expand the toolbox of the split protein platform and allow better elucidation of complex biological systems.
Collapse
Affiliation(s)
- Connor J. Grady
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | | | - Jory Schossau
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Ryan C. Ashbaugh
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
10
|
Huang Y, Chen X, Zhu Z, Mukherjee A. A dual-gene reporter-amplifier architecture for enhancing the sensitivity of molecular MRI by water exchange. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576672. [PMID: 38328134 PMCID: PMC10849537 DOI: 10.1101/2024.01.22.576672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The development of genetic reporters for magnetic resonance imaging (MRI) is essential for investigating biological functions in intact animals. However, current MRI reporters have low sensitivity, making it challenging to create significant contrast against the tissue background, especially when only a small percentage of cells express the reporter. To overcome this limitation, we developed an approach that amplifies signals by co-expressing an MRI reporter gene, Oatp1b3, with a water channel, aquaporin-1 (Aqp1). We first show that the expression of Aqp1 amplifies the paramagnetic relaxation effect of Oatp1b3 by facilitating transmembrane water exchange. This mechanism provides Oatp1b3-expressing cells with access to a larger water pool compared with typical exchange-limited conditions. We further demonstrated that our methodology allows dual-labeled cells to be detected using approximately 10-fold lower concentrations of contrast agent than that in the Aqp1-free scenario. Finally, we show that our approach enables the imaging of mixed-cell populations containing a low fraction of Oatp1b3-labeled cells that are otherwise undetectable based on Oatp1b3 expression alone.
Collapse
Affiliation(s)
| | - Xinyue Chen
- Department of Molecular, Cellular, and Developmental Biology
| | - Ziyue Zhu
- Department of Molecular, Cellular, and Developmental Biology
| | - Arnab Mukherjee
- Department of Chemistry
- Department of Molecular, Cellular, and Developmental Biology
| |
Collapse
|
11
|
Lei S, Jiang K, Zhang C, Sun W, Pan Y, Wang D, Huang P, Lin J. A FRET-Based Ratiometric H 2S Sensor for Sensitive Optical Molecular Imaging in Second Near-Infrared Window. RESEARCH (WASHINGTON, D.C.) 2023; 6:0286. [PMID: 38162986 PMCID: PMC10755252 DOI: 10.34133/research.0286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/18/2023] [Indexed: 01/03/2024]
Abstract
Second near-infrared (NIR-II) window optical molecular imaging kicks off a new revolution in high-quality imaging in vivo, but always suffers from the hurdles of inevitable tissue autofluorescence background and NIR-II probe development. Here, we prepare a Förster resonance energy transfer-based ratiometric NIR-II window hydrogen sulfide (H2S) sensor through the combination of an H2S-responsive NIR-II cyanine dye (acceptor, LET-1055) and an H2S-inert rhodamine hybrid polymethine dye (donor, Rh930). This sensor not only exhibits high sensitivity and selectivity, but also shows rapid reaction kinetics (~20 min) and relatively low limit of detection (~96 nM) toward H2S, allowing in vivo ratiometric NIR-II fluorescence imaging of orthotopic liver and colon tumors and visualization of the drug-induced hepatic H2S fluctuations. Our findings provide the potential for advancing the feasibility of NIR-II activity-based sensing for in vivo clinical diagnosis.
Collapse
Affiliation(s)
- Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Kejia Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Chenqing Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Wei Sun
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yuantao Pan
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
12
|
Miller ADC, Chowdhury SP, Hanson HW, Linderman SK, Ghasemi HI, Miller WD, Morrissey MA, Richardson CD, Gardner BM, Mukherjee A. Engineering water exchange is a safe and effective method for magnetic resonance imaging in diverse cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566095. [PMID: 37986852 PMCID: PMC10659288 DOI: 10.1101/2023.11.07.566095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Aquaporin-1 (Aqp1), a water channel, has garnered significant interest for cell-based medicine and in vivo synthetic biology due to its ability to be genetically encoded to produce magnetic resonance signals by increasing the rate of water diffusion in cells. However, concerns regarding the effects of Aqp1 overexpression and increased membrane diffusivity on cell physiology have limited its widespread use as a deep-tissue reporter. In this study, we present evidence that Aqp1 generates strong diffusion-based magnetic resonance signals without adversely affecting cell viability or morphology in diverse cell lines derived from mice and humans. Our findings indicate that Aqp1 overexpression does not induce ER stress, which is frequently associated with heterologous expression of membrane proteins. Furthermore, we observed that Aqp1 expression had no detrimental effects on native biological activities, such as phagocytosis, immune response, insulin secretion, and tumor cell migration in the analyzed cell lines. These findings should serve to alleviate any lingering safety concerns regarding the utilization of Aqp1 as a genetic reporter and should foster its broader application as a noninvasive reporter for in vivo studies.
Collapse
Affiliation(s)
- Austin D C Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
| | - Soham P Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Hadley W Hanson
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
| | - Sarah K Linderman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Hannah I Ghasemi
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Wyatt D Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
| | - Meghan A Morrissey
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Bioengineering, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
13
|
Yun J, Baldini L, Huang Y, Li E, Li H, Chacko AN, Miller AD, Wan J, Mukherjee A. Engineering ligand stabilized aquaporin reporters for magnetic resonance imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543364. [PMID: 37333371 PMCID: PMC10274688 DOI: 10.1101/2023.06.02.543364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Imaging transgene expression in live tissues requires reporters that are detectable with deeply penetrant modalities, such as magnetic resonance imaging (MRI). Here, we show that LSAqp1, a water channel engineered from aquaporin-1, can be used to create background-free, drug-gated, and multiplex images of gene expression using MRI. LSAqp1 is a fusion protein composed of aquaporin-1 and a degradation tag that is sensitive to a cell-permeable ligand, which allows for dynamic small molecule modulation of MRI signals. LSAqp1 improves specificity for imaging gene expression by allowing reporter signals to be conditionally activated and distinguished from the tissue background by difference imaging. In addition, by engineering destabilized aquaporin-1 variants with different ligand requirements, it is possible to image distinct cell types simultaneously. Finally, we expressed LSAqp1 in a tumor model and showed successful in vivo imaging of gene expression without background activity. LSAqp1 provides a conceptually unique approach to accurately measure gene expression in living organisms by combining the physics of water diffusion and biotechnology tools to control protein stability.
Collapse
Affiliation(s)
- Jason Yun
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Logan Baldini
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Yimeng Huang
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Eugene Li
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Honghao Li
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Asish N. Chacko
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Austin D.C. Miller
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Jinyang Wan
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Biological Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
14
|
Gilad AA, Bar-Shir A, Bricco AR, Mohanta Z, McMahon MT. Protein and peptide engineering for chemical exchange saturation transfer imaging in the age of synthetic biology. NMR IN BIOMEDICINE 2023; 36:e4712. [PMID: 35150021 PMCID: PMC10642350 DOI: 10.1002/nbm.4712] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 05/23/2023]
Abstract
At the beginning of the millennium, the first chemical exchange saturation transfer (CEST) contrast agents were bio-organic molecules. However, later, metal-based CEST agents (paraCEST agents) took center stage. This did not last too long as paraCEST agents showed limited translational potential. By contrast, the CEST field gradually became dominated by metal-free CEST agents. One branch of research stemming from the original work by van Zijl and colleagues is the development of CEST agents based on polypeptides. Indeed, in the last 2 decades, tremendous progress has been achieved in this field. This includes the design of novel peptides as biosensors, genetically encoded recombinant as well as synthetic reporters. This was a result of extensive characterization and elucidation of the theoretical requirements for rational designing and engineering of such agents. Here, we provide an extensive overview of the evolution of more precise protein-based CEST agents, review the rationalization of enzyme-substrate pairs as CEST contrast enhancers, discuss the theoretical considerations to improve peptide selectivity, specificity and enhance CEST contrast. Moreover, we discuss the strong influence of synthetic biology on the development of the next generation of protein-based CEST contrast agents.
Collapse
Affiliation(s)
- Assaf A. Gilad
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander R. Bricco
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Zinia Mohanta
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Michael T. McMahon
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria. Nat Biotechnol 2023:10.1038/s41587-022-01581-y. [PMID: 36593411 DOI: 10.1038/s41587-022-01581-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/20/2022] [Indexed: 01/03/2023]
Abstract
Ultrasound allows imaging at a much greater depth than optical methods, but existing genetically encoded acoustic reporters for in vivo cellular imaging have been limited by poor sensitivity, specificity and in vivo expression. Here we describe two acoustic reporter genes (ARGs)-one for use in bacteria and one for use in mammalian cells-identified through a phylogenetic screen of candidate gas vesicle gene clusters from diverse bacteria and archaea that provide stronger ultrasound contrast, produce non-linear signals distinguishable from background tissue and have stable long-term expression. Compared to their first-generation counterparts, these improved bacterial and mammalian ARGs produce 9-fold and 38-fold stronger non-linear contrast, respectively. Using these new ARGs, we non-invasively imaged in situ tumor colonization and gene expression in tumor-homing therapeutic bacteria, tracked the progression of tumor gene expression and growth in a mouse model of breast cancer, and performed gene-expression-guided needle biopsies of a genetically mosaic tumor, demonstrating non-invasive access to dynamic biological processes at centimeter depth.
Collapse
|
16
|
Cohen D, Allouche‐Arnon H, Bar‐Shir A. MRI reporter genes in the era of gene transfer. Clin Transl Med 2022; 12:e1135. [PMID: 36471476 PMCID: PMC9722966 DOI: 10.1002/ctm2.1135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dan Cohen
- Department of Nuclear MedicineTel‐Aviv Sourasky Medical CenterTel AvivIsrael
| | - Hyla Allouche‐Arnon
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceRehovotIsrael
| | - Amnon Bar‐Shir
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
17
|
Brindle KM. Gene reporters for magnetic resonance imaging. Trends Genet 2022; 38:996-998. [PMID: 35641343 DOI: 10.1016/j.tig.2022.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022]
Abstract
MRI-based gene reporters allow imaging of gene expression at depth (tens of centimetres) and at relatively high resolution (~10-100 μm) and have the potential to be translated to the clinic. The reporters exploit either endogenous contrast mechanisms or they modulate the response to an introduced exogenous contrast agent.
Collapse
Affiliation(s)
- Kevin M Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK.
| |
Collapse
|
18
|
Reporter Genes for Brain Imaging Using MRI, SPECT and PET. Int J Mol Sci 2022; 23:ijms23158443. [PMID: 35955578 PMCID: PMC9368793 DOI: 10.3390/ijms23158443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
The use of molecular imaging technologies for brain imaging can not only play an important supporting role in disease diagnosis and treatment but can also be used to deeply study brain functions. Recently, with the support of reporter gene technology, optical imaging has achieved a breakthrough in brain function studies at the molecular level. Reporter gene technology based on traditional clinical imaging modalities is also expanding. By benefiting from the deeper imaging depths and wider imaging ranges now possible, these methods have led to breakthroughs in preclinical and clinical research. This article focuses on the applications of magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) reporter gene technologies for use in brain imaging. The tracking of cell therapies and gene therapies is the most successful and widely used application of these techniques. Meanwhile, breakthroughs have been achieved in the research and development of reporter genes and their imaging probe pairs with respect to brain function research. This paper introduces the imaging principles and classifications of the reporter gene technologies of these imaging modalities, lists the relevant brain imaging applications, reviews their characteristics, and discusses the opportunities and challenges faced by clinical imaging modalities based on reporter gene technology. The conclusion is provided in the last section.
Collapse
|
19
|
Khersonsky O, Fleishman SJ. What Have We Learned from Design of Function in Large Proteins? BIODESIGN RESEARCH 2022; 2022:9787581. [PMID: 37850148 PMCID: PMC10521758 DOI: 10.34133/2022/9787581] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2023] Open
Abstract
The overarching goal of computational protein design is to gain complete control over protein structure and function. The majority of sophisticated binders and enzymes, however, are large and exhibit diverse and complex folds that defy atomistic design calculations. Encouragingly, recent strategies that combine evolutionary constraints from natural homologs with atomistic calculations have significantly improved design accuracy. In these approaches, evolutionary constraints mitigate the risk from misfolding and aggregation, focusing atomistic design calculations on a small but highly enriched sequence subspace. Such methods have dramatically optimized diverse proteins, including vaccine immunogens, enzymes for sustainable chemistry, and proteins with therapeutic potential. The new generation of deep learning-based ab initio structure predictors can be combined with these methods to extend the scope of protein design, in principle, to any natural protein of known sequence. We envision that protein engineering will come to rely on completely computational methods to efficiently discover and optimize biomolecular activities.
Collapse
Affiliation(s)
- Olga Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J. Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|