1
|
Biar CG, Bodkin N, Carvill GL, Calhoun JD. Protocol to perform multiplexed assays of variant effect using curated loci prime editing. STAR Protoc 2025; 6:103851. [PMID: 40418630 DOI: 10.1016/j.xpro.2025.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/26/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
Multiplexed assays of variant effect (MAVEs) perform simultaneous characterization of many variants. Here, we present a protocol to perform MAVEs using curated loci prime editing (cliPE), an accessible experimental pipeline that enables prime editing of a target gene. We describe steps for designing prime editing reagents, screening for genome editing efficiency, selecting a pool of cells edited to harbor different genetic variants, and sequencing. Lastly, we detail procedures for performing enrichment analysis to identify variants with normal or aberrant activity.
Collapse
Affiliation(s)
- Carina G Biar
- Ken and Ruth Davee Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA; Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Bodkin
- Ken and Ruth Davee Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey D Calhoun
- Ken and Ruth Davee Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Zhao Y, Lan T, Zhong G, Hagen J, Pan H, Chung WK, Shen Y. A probabilistic graphical model for estimating selection coefficients of nonsynonymous variants from human population sequence data. Nat Commun 2025; 16:4670. [PMID: 40393980 PMCID: PMC12092651 DOI: 10.1038/s41467-025-59937-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
Accurately predicting the effect of missense variants is important in discovering disease risk genes and clinical genetic diagnostics. Commonly used computational methods predict pathogenicity, which does not capture the quantitative impact on fitness in humans. We develop a method, MisFit, to estimate missense fitness effect using a graphical model. MisFit jointly models the effect at a molecular level ( d ) and a population level (selection coefficient, s ), assuming that in the same gene, missense variants with similar d have similar s . We train it by maximizing probability of observed allele counts in 236,017 individuals of European ancestry. We show that s is informative in predicting allele frequency across ancestries and consistent with the fraction of de novo mutations in sites under strong selection. Further, s outperforms previous methods in prioritizing de novo missense variants in individuals with neurodevelopmental disorders. In conclusion, MisFit accurately predicts s and yields new insights from genomic data.
Collapse
Affiliation(s)
- Yige Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- The Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Tian Lan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Guojie Zhong
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- The Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Jake Hagen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hongbing Pan
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
- JP Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Andreatta F, Hendriks D, Artegiani B. Human Organoids as an Emerging Tool for Genome Screenings. Annu Rev Biomed Eng 2025; 27:157-183. [PMID: 40310889 DOI: 10.1146/annurev-bioeng-103023-122327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Over the last decade, a plethora of organoid models have been generated to recapitulate aspects of human development, disease, tissue homeostasis, and repair. Organoids representing multiple tissues have emerged and are typically categorized based on their origin. Tissue-derived organoids are established directly from tissue-resident stem/progenitor cells of either adult or fetal origin. Starting from pluripotent stem cells (PSCs), PSC-derived organoids instead recapitulate the developmental trajectory of a given organ. Gene editing technologies, particularly the CRISPR-Cas toolbox, have greatly facilitated gene manipulation experiments with considerable ease and scalability, revolutionizing organoid-based human biology research. Here, we review the recent adaptation of CRISPR-based screenings in organoids. We examine the strategies adopted to perform CRISPR screenings in organoids, discuss different screening scopes and readouts, and highlight organoid-specific challenges. We then discuss individual organoid-based genome screening studies that have uncovered novel genes involved in a variety of biological processes. We close by providing an outlook on how widespread adaptation of CRISPR screenings across the organoid field may be achieved, to ultimately leverage our understanding of human biology.
Collapse
Affiliation(s)
| | - Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; ,
| | | |
Collapse
|
4
|
Martyn GE, Montgomery MT, Jones H, Guo K, Doughty BR, Linder J, Bisht D, Xia F, Cai XS, Chen Z, Cochran K, Lawrence KA, Munson G, Pampari A, Fulco CP, Sahni N, Kelley DR, Lander ES, Kundaje A, Engreitz JM. Rewriting regulatory DNA to dissect and reprogram gene expression. Cell 2025:S0092-8674(25)00352-6. [PMID: 40245860 DOI: 10.1016/j.cell.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/16/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025]
Abstract
Regulatory DNA provides a platform for transcription factor binding to encode cell-type-specific patterns of gene expression. However, the effects and programmability of regulatory DNA sequences remain difficult to map or predict. Here, we develop variant effects from flow-sorting experiments with CRISPR targeting screens (Variant-EFFECTS) to introduce hundreds of designed edits to endogenous regulatory DNA and quantify their effects on gene expression. We systematically dissect and reprogram 3 regulatory elements for 2 genes in 2 cell types. These data reveal endogenous binding sites with effects specific to genomic context, transcription factor motifs with cell-type-specific activities, and limitations of computational models for predicting the effect sizes of variants. We identify small edits that can tune gene expression over a large dynamic range, suggesting new possibilities for prime-editing-based therapeutics targeting regulatory DNA. Variant-EFFECTS provides a generalizable tool to dissect regulatory DNA and to identify genome editing reagents that tune gene expression in an endogenous context.
Collapse
Affiliation(s)
- Gabriella E Martyn
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Michael T Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Hank Jones
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Katherine Guo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Benjamin R Doughty
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johannes Linder
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Deepa Bisht
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Fan Xia
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Xiangmeng S Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ziwei Chen
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Kelly Cochran
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Kathryn A Lawrence
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Glen Munson
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Kelley
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Jesse M Engreitz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Zhao Y, Lan T, Zhong G, Hagen J, Pan H, Chung WK, Shen Y. A probabilistic graphical model for estimating selection coefficient of nonsynonymous variants from human population sequence data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2023.12.11.23299809. [PMID: 38168397 PMCID: PMC10760286 DOI: 10.1101/2023.12.11.23299809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Accurately predicting the effect of missense variants is important in discovering disease risk genes and clinical genetic diagnostics. Commonly used computational methods predict pathogenicity, which does not capture the quantitative impact on fitness in humans. We developed a method, MisFit, to estimate missense fitness effect using a graphical model. MisFit jointly models the effect at a molecular level (𝑑) and a population level (selection coefficient, 𝑠), assuming that in the same gene, missense variants with similar 𝑑 have similar 𝑠. We trained it by maximizing probability of observed allele counts in 236,017 European individuals. We show that 𝑠 is informative in predicting allele frequency across ancestries and consistent with the fraction of de novo mutations in sites under strong selection. Further, 𝑠 outperforms previous methods in prioritizing de novo missense variants in individuals with neurodevelopmental disorders. In conclusion, MisFit accurately predicts 𝑠 and yields new insights from genomic data.
Collapse
Affiliation(s)
- Yige Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- The Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032
| | - Tian Lan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Guojie Zhong
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- The Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032
| | - Jake Hagen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- . Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Hongbing Pan
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032
| | - Wendy K. Chung
- . Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032
- JP Sulzberger Columbia Genome Center, Columbia University, New York, NY 10032
| |
Collapse
|
6
|
Herger M, Kajba CM, Buckley M, Cunha A, Strom M, Findlay GM. High-throughput screening of human genetic variants by pooled prime editing. CELL GENOMICS 2025; 5:100814. [PMID: 40120586 PMCID: PMC12008803 DOI: 10.1016/j.xgen.2025.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/10/2025] [Accepted: 02/13/2025] [Indexed: 03/25/2025]
Abstract
Multiplexed assays of variant effect (MAVEs) enable scalable functional assessment of human genetic variants. However, established MAVEs are limited by exogenous expression of variants or constraints of genome editing. Here, we introduce a pooled prime editing (PE) platform to scalably assay variants in their endogenous context. We first improve efficiency of PE in HAP1 cells, defining optimal prime editing guide RNA (pegRNA) designs and establishing enrichment of edited cells via co-selection. We next demonstrate negative selection screening by testing over 7,500 pegRNAs targeting SMARCB1 and observing depletion of efficiently installed loss-of-function (LoF) variants. We then screen for LoF variants in MLH1 via 6-thioguanine selection, testing 65.3% of all possible SNVs in a 200-bp region including exon 10 and 362 non-coding variants from ClinVar spanning a 60-kb region. The platform's overall accuracy for discriminating pathogenic variants indicates that it will be highly valuable for identifying new variants underlying diverse human phenotypes across large genomic regions.
Collapse
Affiliation(s)
- Michael Herger
- The Genome Function Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Christina M Kajba
- The Genome Function Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Megan Buckley
- The Genome Function Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ana Cunha
- Viral Vector Core, Human Biology Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Molly Strom
- Viral Vector Core, Human Biology Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Gregory M Findlay
- The Genome Function Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
7
|
Hemker SL, Marsh A, Hernandez F, Glick E, Clark G, Bashir A, Jiang K, Kitzman JO. Saturation mapping of MUTYH variant effects using DNA repair reporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640912. [PMID: 40093110 PMCID: PMC11908140 DOI: 10.1101/2025.03.01.640912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Variants of uncertain significance (VUS) limit the actionability of genetic testing. A prominent example is MUTYH, a base excision repair factor associated with polyposis and colorectal cancer, which has a pathogenic variant carrier rate approaching 1 in 50 individuals in some populations. To systematically interrogate variant function in MUTYH, we coupled deep mutational scanning with a DNA repair reporter containing its lesion substrate, 8OG:A. Our variant-to-function map covers >97% of all possible MUTYH point variants (n=10,941) and achieves 100% accuracy classifying the pathogenicity of known clinical variants (n=247). Leveraging a large clinical registry, we observe significant associations with colorectal polyps and cancer, with more severely impaired missense variants conferring greater risk. We recapitulate known functional differences between pathogenic founder alleles, and highlight sites of complete missense intolerance, including residues that intercalate DNA and coordinate essential Zn2+ or Fe-S clusters. This map provides a resource to resolve the 1,032 existing missense VUS and 90 variants with conflicting interpretations in MUTYH, and demonstrates a scalable strategy to interrogate other clinically relevant DNA repair factors.
Collapse
Affiliation(s)
- Shelby L. Hemker
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | - Elena Glick
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Grace Clark
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alyssa Bashir
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Krystal Jiang
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jacob O. Kitzman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Gilbert S. Omenn Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Gould SI, Sánchez-Rivera FJ. Using Prime Editing Guide Generator (PEGG) for high-throughput generation of prime editing sensor libraries. Methods Enzymol 2025; 712:437-451. [PMID: 40121083 DOI: 10.1016/bs.mie.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Prime editing enables the generation of nearly any small genetic variant. However, the process of prime editing guide RNA (pegRNA) design is challenging and requires automated computational design tools. We developed Prime Editing Guide Generator (PEGG), a fast, flexible, and user-friendly Python package that enables the rapid generation of pegRNA and pegRNA-sensor libraries. Here, we describe the installation and use of PEGG (https://pegg.readthedocs.io) to rapidly generate custom pegRNA-sensor libraries for use in high-throughput prime editing screens.
Collapse
Affiliation(s)
- Samuel I Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Francisco J Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
9
|
Xiong K, Wang X, Feng C, Zhang K, Chen D, Yang S. Vectors in CRISPR Gene Editing for Neurological Disorders: Challenges and Opportunities. Adv Biol (Weinh) 2025; 9:e2400374. [PMID: 39950370 DOI: 10.1002/adbi.202400374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/13/2025] [Indexed: 03/18/2025]
Abstract
Diseases of the nervous system are recognized as the second leading cause of death worldwide. The global prevalence of neurological diseases, such as Huntington's disease, Alzheimer's disease, and Parkinson's disease has seen a significant rise due to the increasing proportion of the aging population. The discovery of the clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technique has paved way for universal neurological diseases treatment. However, finding a safe and effective method to deliver CRISPR gene-editing tools remains a main challenge for genome editing therapies in vivo. Adeno-associated virus (AAV) is currently one of the most commonly used vector systems, but some issues remain unresolved, including capsid immunogenicity, off-target mutations, and potential genotoxicity. To address these concerns, researchers are actively encouraging the development of new delivery systems, like virus-like particles and nanoparticles. These novel systems have the potential to enhance targeting efficiency, thereby offering possible solutions to the current challenges. This article reviews CRISPR delivery vectors for neurological disorders treatment and explores potential solutions to overcome limitations in vector systems. Additionally, the delivery strategies of CRISPR systems are highlighted as valuable tools for studying neurological diseases, and the challenges and opportunities that these vectors present.
Collapse
Affiliation(s)
- Kexin Xiong
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Xiaxia Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Caicai Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Sen Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| |
Collapse
|
10
|
Acosta J, Johnson GA, Gould SI, Dong K, Lendner Y, Detrés D, Atwa O, Bulkens J, Gruber S, Contreras ME, Wuest AN, Narendra VK, Hemann MT, Sánchez-Rivera FJ. Multiplexed in vivo base editing identifies functional gene-variant-context interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639770. [PMID: 40060482 PMCID: PMC11888363 DOI: 10.1101/2025.02.23.639770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Human genome sequencing efforts in healthy and diseased individuals continue to identify a broad spectrum of genetic variants associated with predisposition, progression, and therapeutic outcomes for diseases like cancer1-6. Insights derived from these studies have significant potential to guide clinical diagnoses and treatment decisions; however, the relative importance and functional impact of most genetic variants remain poorly understood. Precision genome editing technologies like base and prime editing can be used to systematically engineer and interrogate diverse types of endogenous genetic variants in their native context7-9. We and others have recently developed and applied scalable sensor-based screening approaches to engineer and measure the phenotypes produced by thousands of endogenous mutations in vitro 10-12. However, the impact of most genetic variants in the physiological in vivo setting, including contextual differences depending on the tissue or microenvironment, remains unexplored. Here, we integrate new cross-species base editing sensor libraries with syngeneic cancer mouse models to develop a multiplexed in vivo platform for systematic functional analysis of endogenous genetic variants in primary and disseminated malignancies. We used this platform to screen 13,840 guide RNAs designed to engineer 7,783 human cancer-associated mutations mapping to 489 endogenous protein-coding genes, allowing us to construct a rich compendium of putative functional interactions between genes, mutations, and physiological contexts. Our findings suggest that the physiological in vivo environment and cellular organotropism are important contextual determinants of specific gene-variant phenotypes. We also show that many mutations and their in vivo effects fail to be detected with standard CRISPR-Cas9 nuclease approaches and often produce discordant phenotypes, potentially due to site-specific amino acid selection- or separation-of-function mechanisms. This versatile platform could be deployed to investigate how genetic variation impacts diverse in vivo phenotypes associated with cancer and other genetic diseases, as well as identify new potential therapeutic avenues to treat human disease.
Collapse
Affiliation(s)
- Jonuelle Acosta
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Grace A. Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samuel I. Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kexin Dong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yovel Lendner
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diego Detrés
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ondine Atwa
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jari Bulkens
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Utrecht University, Utrecht, The Netherlands
| | - Samuel Gruber
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manuel E. Contreras
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra N. Wuest
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Varun K. Narendra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael T. Hemann
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Francisco J. Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
11
|
Sahu S, Galloux M, Southon E, Caylor D, Sullivan T, Arnaudi M, Zanti M, Geh J, Chari R, Michailidou K, Papaleo E, Sharan SK. Saturation genome editing-based clinical classification of BRCA2 variants. Nature 2025; 638:538-545. [PMID: 39779848 DOI: 10.1038/s41586-024-08349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 11/05/2024] [Indexed: 01/11/2025]
Abstract
Sequencing-based genetic tests have uncovered a vast array of BRCA2 sequence variants1. Owing to limited clinical, familial and epidemiological data, thousands of variants are considered to be variants of uncertain significance2-4 (VUS). Here we have utilized CRISPR-Cas9-based saturation genome editing in a humanized mouse embryonic stem cell line to determine the functional effect of VUS. We have categorized nearly all possible single nucleotide variants (SNVs) in the region that encodes the carboxylate-terminal DNA-binding domain of BRCA2. We have generated function scores for 6,551 SNVs, covering 96.4% of possible SNVs in exons 15-26 spanning BRCA2 residues 2479-3216. These variants include 1,282 SNVs that are categorized as missense VUS in the clinical variant database ClinVar, with 77.2% of these classified as benign and 20.4% classified as pathogenic using our functional score. Our assay provides evidence that 3,384 of the SNVs in the region are benign and 776 are pathogenic. Our classification aligns closely with pathogenicity data from ClinVar, orthogonal functional assays and computational meta predictors. We have integrated our embryonic stem cell-based BRCA2-saturation genome editing dataset with other available evidence and utilized the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines for clinical classification of all possible SNVs. This classification is available as a sequence-function map and serves as a valuable resource for interpreting unidentified variants in the population and for physicians and genetic counsellors to assess BRCA2 VUS in patients.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Dylan Caylor
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Matteo Arnaudi
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
- Cancer Structural Biology, Danish Cancer Institute, Copenhagen, Denmark
| | - Maria Zanti
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Josephine Geh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Elena Papaleo
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
- Cancer Structural Biology, Danish Cancer Institute, Copenhagen, Denmark
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
12
|
Huang H, Hu C, Na J, Hart SN, Gnanaolivu RD, Abozaid M, Rao T, Tecleab YA, Pesaran T, Lyra PCM, Karam R, Yadav S, Nathanson KL, Domchek SM, de la Hoya M, Robson M, Mehine M, Bandlamudi C, Mandelker D, Monteiro ANA, Iversen ES, Boddicker N, Chen W, Richardson ME, Couch FJ. Functional evaluation and clinical classification of BRCA2 variants. Nature 2025; 638:528-537. [PMID: 39779857 PMCID: PMC11821525 DOI: 10.1038/s41586-024-08388-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 11/12/2024] [Indexed: 01/11/2025]
Abstract
Germline BRCA2 loss-of function variants, which can be identified through clinical genetic testing, predispose to several cancers1-5. However, variants of uncertain significance limit the clinical utility of test results. Thus, there is a need for functional characterization and clinical classification of all BRCA2 variants to facilitate the clinical management of individuals with these variants. Here we analysed all possible single-nucleotide variants from exons 15 to 26 that encode the BRCA2 DNA-binding domain hotspot for pathogenic missense variants. To enable this, we used saturation genome editing CRISPR-Cas9-based knock-in endogenous targeting of human haploid HAP1 cells6. The assay was calibrated relative to nonsense and silent variants and was validated using pathogenic and benign standards from ClinVar and results from a homology-directed repair functional assay7. Variants (6,959 out of 6,960 evaluated) were assigned to seven categories of pathogenicity based on a VarCall Bayesian model8. Single-nucleotide variants that encode loss-of-function missense variants were associated with increased risks of breast cancer and ovarian cancer. The functional assay results were integrated into models from ClinGen, the American College of Medical Genetics and Genomics, and the Association for Molecular Pathology9 for clinical classification of BRCA2 variants. Using this approach, 91% were classified as pathogenic or likely pathogenic or as benign or likely benign. These classified variants can be used to improve clinical management of individuals with a BRCA2 variant.
Collapse
Affiliation(s)
- Huaizhi Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Jie Na
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Steven N Hart
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Mohamed Abozaid
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Tara Rao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Yohannes A Tecleab
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Katherine L Nathanson
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Domchek
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Mark Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miika Mehine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chaitanya Bandlamudi
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Edwin S Iversen
- Department of Statistical Science, Duke University, Raleigh Durham, NC, USA
| | - Nicholas Boddicker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Wenan Chen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Choudhery MS, Arif T, Mahmood R. Bidirectional Prime Editing: Combining Precision with Versatility for Genome Editing. Cell Reprogram 2025; 27:10-23. [PMID: 39689871 DOI: 10.1089/cell.2024.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Genome editing techniques have potential to revolutionize the field of life sciences. Several limitations associated with traditional gene editing techniques have been resolved with the development of prime editors that precisely edit the DNA without double-strand breaks (DSBs). To further improve the efficiency, several modified versions of prime editing (PE) system have been introduced. Bi-directional PE (Bi-PE), for example, uses two PE guide RNAs enabling broad and improved editing efficiency. It has the potential to alter, delete, integrate, and replace larger genome sequences and edit multiple bases at the same time. This review aims to discuss the typical gene editing methods that offer DSB-mediated repair mechanisms, followed by the latest advances in genome editing technologies with non-DSB-mediated repair. The review specifically focuses on Bi-PE being an efficient tool to edit the human genome. In addition, the review discusses the applications, limitations, and future perspectives of Bi-PE for gene editing.
Collapse
Affiliation(s)
- Mahmood S Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Ruhma Mahmood
- Allama Iqbal Medical College, Jinnah Hospital, Lahore, Pakistan
| |
Collapse
|
14
|
Funk JS, Klimovich M, Drangenstein D, Pielhoop O, Hunold P, Borowek A, Noeparast M, Pavlakis E, Neumann M, Balourdas DI, Kochhan K, Merle N, Bullwinkel I, Wanzel M, Elmshäuser S, Teply-Szymanski J, Nist A, Procida T, Bartkuhn M, Humpert K, Mernberger M, Savai R, Soussi T, Joerger AC, Stiewe T. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat Genet 2025; 57:140-153. [PMID: 39774325 PMCID: PMC11735402 DOI: 10.1038/s41588-024-02039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
The mutational landscape of TP53, a tumor suppressor mutated in about half of all cancers, includes over 2,000 known missense mutations. To fully leverage TP53 mutation status for personalized medicine, a thorough understanding of the functional diversity of these mutations is essential. We conducted a deep mutational scan using saturation genome editing with CRISPR-mediated homology-directed repair to engineer 9,225 TP53 variants in cancer cells. This high-resolution approach, covering 94.5% of all cancer-associated TP53 missense mutations, precisely mapped the impact of individual mutations on tumor cell fitness, surpassing previous deep mutational scan studies in distinguishing benign from pathogenic variants. Our results revealed even subtle loss-of-function phenotypes and identified promising mutants for pharmacological reactivation. Moreover, we uncovered the roles of splicing alterations and nonsense-mediated messenger RNA decay in mutation-driven TP53 dysfunction. These findings underscore the power of saturation genome editing in advancing clinical TP53 variant interpretation for genetic counseling and personalized cancer therapy.
Collapse
Affiliation(s)
- Julianne S Funk
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Maria Klimovich
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Ole Pielhoop
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Pascal Hunold
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Anna Borowek
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Maxim Noeparast
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Michelle Neumann
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Katharina Kochhan
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Nastasja Merle
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Imke Bullwinkel
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Julia Teply-Szymanski
- Institute of Pathology, Philipps-University, Marburg University Hospital, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University, Marburg, Germany
| | - Tara Procida
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Marek Bartkuhn
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University, Giessen, Germany
| | - Katharina Humpert
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
- Bioinformatics Core Facility, Philipps-University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Rajkumar Savai
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Lung Microenvironmental Niche in Cancerogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thierry Soussi
- Centre de Recherche Saint-Antoine UMRS_938, INSERM, Sorbonne Université, Paris, France
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany.
- Genomics Core Facility, Philipps-University, Marburg, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
- Bioinformatics Core Facility, Philipps-University, Marburg, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
15
|
Cirincione A, Simpson D, Yan W, McNulty R, Ravisankar P, Solley SC, Yan J, Lim F, Farley EK, Singh M, Adamson B. A benchmarked, high-efficiency prime editing platform for multiplexed dropout screening. Nat Methods 2025; 22:92-101. [PMID: 39562753 PMCID: PMC11725502 DOI: 10.1038/s41592-024-02502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Prime editing installs precise edits into the genome with minimal unwanted byproducts, but low and variable editing efficiencies have complicated application of the approach to high-throughput functional genomics. Here we assembled a prime editing platform capable of high-efficiency substitution editing suitable for functional interrogation of small genetic variants. We benchmarked this platform for pooled, loss-of-function screening using a library of ~240,000 engineered prime editing guide RNAs (epegRNAs) targeting ~17,000 codons with 1-3 bp substitutions. Comparing the abundance of these epegRNAs across screen samples identified negative selection phenotypes for 7,996 nonsense mutations targeted to 1,149 essential genes and for synonymous mutations that disrupted splice site motifs at 3' exon boundaries. Rigorous evaluation of codon-matched controls demonstrated that these phenotypes were highly specific to the intended edit. Altogether, we established a prime editing approach for multiplexed, functional characterization of genetic variants with simple readouts.
Collapse
Affiliation(s)
- Ann Cirincione
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Danny Simpson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Weihao Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ryan McNulty
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Purnima Ravisankar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sabrina C Solley
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jun Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Fabian Lim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Emma K Farley
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Britt Adamson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
16
|
Xu W, Zhang S, Qin H, Yao K. From bench to bedside: cutting-edge applications of base editing and prime editing in precision medicine. J Transl Med 2024; 22:1133. [PMID: 39707395 DOI: 10.1186/s12967-024-05957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
CRISPR-based gene editing technology theoretically allows for precise manipulation of any genetic target within living cells, achieving the desired sequence modifications. This revolutionary advancement has fundamentally transformed the field of biomedicine, offering immense clinical potential for treating and correcting genetic disorders. In the treatment of most genetic diseases, precise genome editing that avoids the generation of mixed editing byproducts is considered the ideal approach. This article reviews the current progress of base editors and prime editors, elaborating on specific examples of their applications in the therapeutic field, and highlights opportunities for improvement. Furthermore, we discuss the specific performance of these technologies in terms of safety and efficacy in clinical applications, and analyze the latest advancements and potential directions that could influence the future development of genome editing technologies. Our goal is to outline the clinical relevance of this rapidly evolving scientific field and preview a roadmap for successful DNA base editing therapies for the treatment of hereditary or idiopathic diseases.
Collapse
Affiliation(s)
- Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
17
|
Sinnott-Armstrong N, Fields S, Roth F, Starita LM, Trapnell C, Villen J, Fowler DM, Queitsch C. Understanding genetic variants in context. eLife 2024; 13:e88231. [PMID: 39625477 PMCID: PMC11614383 DOI: 10.7554/elife.88231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
Over the last three decades, human genetics has gone from dissecting high-penetrance Mendelian diseases to discovering the vast and complex genetic etiology of common human diseases. In tackling this complexity, scientists have discovered the importance of numerous genetic processes - most notably functional regulatory elements - in the development and progression of these diseases. Simultaneously, scientists have increasingly used multiplex assays of variant effect to systematically phenotype the cellular consequences of millions of genetic variants. In this article, we argue that the context of genetic variants - at all scales, from other genetic variants and gene regulation to cell biology to organismal environment - are critical components of how we can employ genomics to interpret these variants, and ultimately treat these diseases. We describe approaches to extend existing experimental assays and computational approaches to examine and quantify the importance of this context, including through causal analytic approaches. Having a unified understanding of the molecular, physiological, and environmental processes governing the interpretation of genetic variants is sorely needed for the field, and this perspective argues for feasible approaches by which the combined interpretation of cellular, animal, and epidemiological data can yield that knowledge.
Collapse
Affiliation(s)
- Nasa Sinnott-Armstrong
- Herbold Computational Biology Program, Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Stanley Fields
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Department of Medicine, University of WashingtonSeattleUnited States
| | - Frederick Roth
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of TorontoTorontoCanada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai HospitalTorontoCanada
- Department of Computational and Systems Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Lea M Starita
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Cole Trapnell
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Judit Villen
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Douglas M Fowler
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
- Department of Bioengineering, University of WashingtonSeattleUnited States
| | - Christine Queitsch
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| |
Collapse
|
18
|
Fair T, Pavlovic BJ, Swope D, Castillo OE, Schaefer NK, Pollen AA. Mapping cis- and trans-regulatory target genes of human-specific deletions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573461. [PMID: 38234800 PMCID: PMC10793408 DOI: 10.1101/2023.12.27.573461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Deletion of functional sequence is predicted to represent a fundamental mechanism of molecular evolution1,2. Comparative genetic studies of primates2,3 have identified thousands of human-specific deletions (hDels), and the cis-regulatory potential of short (≤31 base pairs) hDels has been assessed using reporter assays4. However, how structural variant-sized (≥50 base pairs) hDels influence molecular and cellular processes in their native genomic contexts remains unexplored. Here, we design genome-scale libraries of single-guide RNAs targeting 7.2 megabases of sequence in 6,358 hDels and present a systematic CRISPR interference (CRISPRi) screening approach to identify hDels that modify cellular proliferation in chimpanzee pluripotent stem cells. By intersecting hDels with chromatin state features and performing single-cell CRISPRi (Perturb-seq) to identify their cis- and trans-regulatory target genes, we discovered 20 hDels controlling gene expression. We highlight two hDels, hDel_2247 and hDel_585, with tissue-specific activity in the brain. Our findings reveal a molecular and cellular role for sequences lost in the human lineage and establish a framework for functionally interrogating human-specific genetic variants.
Collapse
Affiliation(s)
- Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bryan J Pavlovic
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Dani Swope
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Octavio E Castillo
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan K Schaefer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O'Connor CL, Brindley MA, Campbell KP, Lek M. Saturation mutagenesis-reinforced functional assays for disease-related genes. Cell 2024; 187:6707-6724.e22. [PMID: 39326416 PMCID: PMC11568926 DOI: 10.1016/j.cell.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth K Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
See WR, Yousefi M, Ooi YS. A review of virus host factor discovery using CRISPR screening. mBio 2024; 15:e0320523. [PMID: 39422472 PMCID: PMC11559068 DOI: 10.1128/mbio.03205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The emergence of genome-scale forward genetic screening techniques, such as Haploid Genetic screen and clustered regularly interspaced short palindromic repeats (CRISPR) knockout screen has opened new horizons in our understanding of virus infection biology. CRISPR screening has become a popular tool for the discovery of novel host factors for several viruses due to its specificity and efficiency in genome editing. Here, we review how CRISPR screening has revolutionized our understanding of virus-host interactions from scientific and technological viewpoints. A summary of the published screens conducted thus far to uncover virus host factors is presented, highlighting their experimental design and significant findings. We will outline relevant methods for customizing the CRISPR screening process to answer more specific hypotheses and compile a glossary of conducted CRISPR screens to show their design aspects. Furthermore, using flaviviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as examples, we hope to offer a broad-based perspective on the capabilities of CRISPR screening to serve as a reference point to guide future unbiased discovery of virus host factors.
Collapse
Affiliation(s)
- Wayne Ren See
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Meisam Yousefi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
21
|
Belli O, Karava K, Farouni R, Platt RJ. Multimodal scanning of genetic variants with base and prime editing. Nat Biotechnol 2024:10.1038/s41587-024-02439-1. [PMID: 39533106 DOI: 10.1038/s41587-024-02439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
Mutational scanning connects genetic variants to phenotype, enabling the interrogation of protein functions, interactions and variant pathogenicity. However, current methodologies cannot efficiently engineer customizable sets of diverse genetic variants in endogenous loci across cellular contexts in high throughput. Here, we combine cytosine and adenine base editors and a prime editor to assess the pathogenicity of a broad spectrum of variants in the epithelial growth factor receptor gene (EGFR). Using pooled base editing and prime editing guide RNA libraries, we install tens of thousands of variants spanning the full coding sequence of EGFR in multiple cell lines and assess the role of these variants in tumorigenesis and resistance to tyrosine kinase inhibitors. Our EGFR variant scan identifies important hits, supporting the robustness of the approach and revealing underappreciated routes to EGFR activation and drug response. We anticipate that multimodal precision mutational scanning can be applied broadly to characterize genetic variation in any genetic element of interest at high and single-nucleotide resolution.
Collapse
Affiliation(s)
- Olivier Belli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kyriaki Karava
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Rick Farouni
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Basel Research Centre for Child Health, Basel, Switzerland.
- Department of Chemistry, University of Basel, Basel, Switzerland.
- NCCR Molecular Systems Engineering, Basel, Switzerland.
| |
Collapse
|
22
|
Kim Y, Oh HC, Lee S, Kim HH. Saturation profiling of drug-resistant genetic variants using prime editing. Nat Biotechnol 2024:10.1038/s41587-024-02465-z. [PMID: 39533107 DOI: 10.1038/s41587-024-02465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Methods to characterize the functional effects of genetic variants of uncertain significance (VUSs) have been limited by incomplete coverage of the mutational space. In clinical oncology, drug resistance arising from VUSs can prevent optimal treatment. Here we introduce PEER-seq, a high-throughput method based on prime editing that can evaluate the functional effects of single-nucleotide variants (SNVs). PEER-seq introduces both intended SNVs and synonymous marker mutations using prime editing and deep sequences the endogenous target regions to identify the introduced SNVs. We generate and functionally evaluate 2,476 SNVs in the epidermal growth factor receptor gene (EGFR), including 99% of all possible variants in the canonical tyrosine kinase domain. We determined resistance profiles of 95% of all possible EGFR protein variants encoded in the whole tyrosine kinase domain against the common tyrosine kinase inhibitors afatinib, osimertinib and osimertinib in the presence of the co-occurring substitution T790M, in PC-9 cells. Our study has the potential to substantially improve the precision of therapeutic choices in clinical settings.
Collapse
Affiliation(s)
- Younggwang Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeong-Cheol Oh
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungho Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Seoul National University Hospital, Department of Surgery, Seoul, Republic of Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea.
- Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Won-Sang Lee Institute for Hearing Loss, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
23
|
van Karnebeek CDM, O'Donnell-Luria A, Baynam G, Baudot A, Groza T, Jans JJM, Lassmann T, Letinturier MCV, Montgomery SB, Robinson PN, Sansen S, Mehrian-Shai R, Steward C, Kosaki K, Durao P, Sadikovic B. Leaving no patient behind! Expert recommendation in the use of innovative technologies for diagnosing rare diseases. Orphanet J Rare Dis 2024; 19:357. [PMID: 39334316 PMCID: PMC11438178 DOI: 10.1186/s13023-024-03361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Genetic diagnosis plays a crucial role in rare diseases, particularly with the increasing availability of emerging and accessible treatments. The International Rare Diseases Research Consortium (IRDiRC) has set its primary goal as: "Ensuring that all patients who present with a suspected rare disease receive a diagnosis within one year if their disorder is documented in the medical literature". Despite significant advances in genomic sequencing technologies, more than half of the patients with suspected Mendelian disorders remain undiagnosed. In response, IRDiRC proposes the establishment of "a globally coordinated diagnostic and research pipeline". To help facilitate this, IRDiRC formed the Task Force on Integrating New Technologies for Rare Disease Diagnosis. This multi-stakeholder Task Force aims to provide an overview of the current state of innovative diagnostic technologies for clinicians and researchers, focusing on the patient's diagnostic journey. Herein, we provide an overview of a broad spectrum of emerging diagnostic technologies involving genomics, epigenomics and multi-omics, functional testing and model systems, data sharing, bioinformatics, and Artificial Intelligence (AI), highlighting their advantages, limitations, and the current state of clinical adaption. We provide expert recommendations outlining the stepwise application of these innovative technologies in the diagnostic pathways while considering global differences in accessibility. The importance of FAIR (Findability, Accessibility, Interoperability, and Reusability) and CARE (Collective benefit, Authority to control, Responsibility, and Ethics) data management is emphasized, along with the need for enhanced and continuing education in medical genomics. We provide a perspective on future technological developments in genome diagnostics and their integration into clinical practice. Lastly, we summarize the challenges related to genomic diversity and accessibility, highlighting the significance of innovative diagnostic technologies, global collaboration, and equitable access to diagnosis and treatment for people living with rare disease.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam Gastro-Enterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, USA
| | - Gareth Baynam
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Anaïs Baudot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Tudor Groza
- Rare Care Centre, Perth Children's Hospital and Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, Australia
- European Molecular Biology Laboratory (EMBL-EBI), European Bioinformatics Institute, Hinxton, UK
| | - Judith J M Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | - Ruty Mehrian-Shai
- Pediatric Brain Cancer Molecular Lab, Sheba Medical Center, Ramat Gan, Israel
| | | | | | - Patricia Durao
- The Cure and Action for Tay-Sachs (CATS) Foundation, Altringham, UK
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences, London, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| |
Collapse
|
24
|
Vercauteren S, Fiesack S, Maroc L, Verstraeten N, Dewachter L, Michiels J, Vonesch SC. The rise and future of CRISPR-based approaches for high-throughput genomics. FEMS Microbiol Rev 2024; 48:fuae020. [PMID: 39085047 PMCID: PMC11409895 DOI: 10.1093/femsre/fuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field of genome editing. To circumvent the permanent modifications made by traditional CRISPR techniques and facilitate the study of both essential and nonessential genes, CRISPR interference (CRISPRi) was developed. This gene-silencing technique employs a deactivated Cas effector protein and a guide RNA to block transcription initiation or elongation. Continuous improvements and a better understanding of the mechanism of CRISPRi have expanded its scope, facilitating genome-wide high-throughput screens to investigate the genetic basis of phenotypes. Additionally, emerging CRISPR-based alternatives have further expanded the possibilities for genetic screening. This review delves into the mechanism of CRISPRi, compares it with other high-throughput gene-perturbation techniques, and highlights its superior capacities for studying complex microbial traits. We also explore the evolution of CRISPRi, emphasizing enhancements that have increased its capabilities, including multiplexing, inducibility, titratability, predictable knockdown efficacy, and adaptability to nonmodel microorganisms. Beyond CRISPRi, we discuss CRISPR activation, RNA-targeting CRISPR systems, and single-nucleotide resolution perturbation techniques for their potential in genome-wide high-throughput screens in microorganisms. Collectively, this review gives a comprehensive overview of the general workflow of a genome-wide CRISPRi screen, with an extensive discussion of strengths and weaknesses, future directions, and potential alternatives.
Collapse
Affiliation(s)
- Silke Vercauteren
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Simon Fiesack
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Laetitia Maroc
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Liselot Dewachter
- de Duve Institute, Université catholique de Louvain, Hippokrateslaan 75, 1200 Brussels, Belgium
| | - Jan Michiels
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Sibylle C Vonesch
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
25
|
Sanchez HM, Lapidot T, Shalem O. High-throughput optimized prime editing mediated endogenous protein tagging for pooled imaging of protein localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613361. [PMID: 39345511 PMCID: PMC11429766 DOI: 10.1101/2024.09.16.613361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The subcellular organization of proteins carries important information on cellular state and gene function, yet currently there are no technologies that enable accurate measurement of subcellular protein localizations at scale. Here we develop an approach for pooled endogenous protein tagging using prime editing, which coupled with an optical readout and sequencing, provides a snapshot of proteome organization in a manner akin to perturbation-based CRISPR screens. We constructed a pooled library of 17,280 pegRNAs designed to exhaustively tag 60 endogenous proteins spanning diverse localization patterns and explore a large space of genomic and pegRNA design parameters. Pooled measurements of tagging efficiency uncovered both genomic and pegRNA features associated with increased efficiency, including epigenetic states and interactions with transcription. We integrate pegRNA features into a computational model with predictive value for tagging efficiency to constrain the design space of pegRNAs for large-scale peptide knock-in. Lastly, we show that combining in-situ pegRNA sequencing with high-throughput deep learning image analysis, enables exploration of subcellular protein localization patterns for many proteins in parallel following a single pooled lentiviral transduction, setting the stage for scalable studies of proteome dynamics across cell types and environmental perturbations.
Collapse
Affiliation(s)
- Henry M Sanchez
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomer Lapidot
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Zhang C, Su K, Jiang X, Tian Y, Li K. Advances in research on potential therapeutic approaches for Niemann-Pick C1 disease. Front Pharmacol 2024; 15:1465872. [PMID: 39263569 PMCID: PMC11387184 DOI: 10.3389/fphar.2024.1465872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive inherited lysosomal lipid and cholesterol storage disorder caused by mutations in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate in endosomal cholesterol transport. Characteristic clinical manifestations of NP-C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia. While the rarity of NP-C1 presents a significant obstacle to progress, researchers have developed numerous potential therapeutic approaches over the past two decades to address this condition. Various methods have been proposed and continuously improved to slow the progression of NP-C1, although they are currently at an animal or clinical experimental stage. This overview of NP-C1 therapy will delve into different theoretical treatment strategies, such as small molecule therapies, cell-based approaches, and gene therapy, highlighting the complex therapeutic challenges associated with this disorder.
Collapse
Affiliation(s)
- Caifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Keke Su
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuping Tian
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ke Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
27
|
Rubin AJ, Dao TT, Schueppert AV, Regev A, Shalek AK. LAT encodes T cell activation pathway balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609683. [PMID: 39253472 PMCID: PMC11383308 DOI: 10.1101/2024.08.26.609683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Immune cells transduce environmental stimuli into responses essential for host health via complex signaling cascades. T cells, in particular, leverage their unique T cell receptors (TCRs) to detect specific Human Leukocyte Antigen (HLA)-presented peptides. TCR activation is then relayed via linker for activation of T cells (LAT), a TCR-proximal disordered adapter protein, which organizes protein partners and mediates the propagation of signals down diverse pathways including NFAT and AP-1. Here, we studied how balanced downstream pathway activation is encoded in the amino acid sequence of LAT. To comprehensively profile the sequence-function relationship of LAT, we developed a pooled, single-cell, high-content screening approach in which a large series of mutants in the LAT protein were analyzed to characterize their effects on T cell activation. Measuring epigenetic, transcriptomic, and cell surface protein dynamics of single cells harboring distinct LAT mutants, we found functional regions spanning over 40% of the LAT amino acid sequence. Conserved sequence motifs for protein interactions along with charge distribution are critical sequence features, and contribute to interpretation of human genetic variation in LAT. While mutant defect severity spans from moderate to complete loss of function, nearly all defective mutants, irrespective of their position in LAT, confer balanced defects across all downstream pathways. To understand the molecular basis for this observation, we performed proximal protein labeling which demonstrated that disruption of LAT interaction with a single partner protein indirectly disrupts other partner interactions, likely through the dual roles of these proteins as effectors of downstream pathways and bridging factors between LAT molecules. Overall, we report widely distributed functional regions throughout a disordered adapter and a precise physical organization of LAT and interacting molecules which constrains signaling outputs. More broadly, we describe an approach for interrogating sequence-function relationships for proteins with complex activities across regulatory layers of the cell.
Collapse
Affiliation(s)
- Adam J. Rubin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
| | - Tyler T. Dao
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amelia V. Schueppert
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Current address: Genentech, South San Francisco, CA, 94080
| | - Alex K. Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Reyhani-Ardabili M, Fathi M, Ghafouri-Fard S. CRISPR/Cas9 technology in the modeling of and evaluation of possible treatments for Niemann-Pick C. Mol Biol Rep 2024; 51:828. [PMID: 39033258 DOI: 10.1007/s11033-024-09801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Niemann-Pick disease type C (NPC) is a rare neurodegenerative condition resulted from mutations in NPC1 and NPC2 genes. This cellular lipid transferring disorder mainly involves endocytosed cholesterol trafficking. The accumulation of cholesterol and glycolipids in late endosomes and lysosomes results in progressive neurodegeneration and death. Recently, genome editing technologies, particularly CRISPR/Cas9 have offered the opportunity to create disease models to screen novel therapeutic options for this disorder. Moreover, these methods have been used for the purpose of gene therapy. This review summarizes the studies that focused on the application of CRISPR/Cas9 technology for exploring the mechanism of intracellular cholesterol transferring, and screening of novel agents for treatment of NPC.
Collapse
Affiliation(s)
- Mehran Reyhani-Ardabili
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Fathi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Park J, Yu G, Seo SY, Yang J, Kim H. SynDesign: web-based prime editing guide RNA design and evaluation tool for saturation genome editing. Nucleic Acids Res 2024; 52:W121-W125. [PMID: 38682594 PMCID: PMC11223855 DOI: 10.1093/nar/gkae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Saturation genome editing (SGE) enables in-depth functional evaluation of disease-associated genes and variants by generating all possible single nucleotide variants (SNVs) within a given coding region. Although prime editing can be employed for inducing these SNVs, designing efficient prime editing guide RNAs (pegRNAs) can be challenging and time-consuming. Here, we present SynDesign, an easy-to-use webtool for the design, evaluation, and construction precision pegRNA libraries for SGE with synonymous mutation markers. SynDesign offers a simple yet powerful interface that automates the generation of all feasible pegRNA designs for a target gene or variant of interest. The pegRNAs are selected using the state-of-the-art models to predict prime editing efficiencies for various prime editors and cell types. Top-scoring pegRNA designs are further enhanced using synonymous mutation markers which improve pegRNA efficiency by diffusing the cellular mismatch repair mechanism and serve as sequence markers for improved identification of intended edits following deep sequencing. SynDesign is expected to facilitate future research using SGE to investigate genes or variants of interest associated with human diseases. SynDesign is freely available at https://deepcrispr.info/SynDesign without a login process.
Collapse
Affiliation(s)
- Jinman Park
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Goosang Yu
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang-Yeon Seo
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jinyeong Yang
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Won-Sang Lee Institute for Hearing Loss, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
30
|
Buckley M, Terwagne C, Ganner A, Cubitt L, Brewer R, Kim DK, Kajba CM, Forrester N, Dace P, De Jonghe J, Shepherd STC, Sawyer C, McEwen M, Diederichs S, Neumann-Haefelin E, Turajlic S, Ivakine EA, Findlay GM. Saturation genome editing maps the functional spectrum of pathogenic VHL alleles. Nat Genet 2024; 56:1446-1455. [PMID: 38969834 PMCID: PMC11250436 DOI: 10.1038/s41588-024-01800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/13/2024] [Indexed: 07/07/2024]
Abstract
To maximize the impact of precision medicine approaches, it is critical to identify genetic variants underlying disease and to accurately quantify their functional effects. A gene exemplifying the challenge of variant interpretation is the von Hippel-Lindautumor suppressor (VHL). VHL encodes an E3 ubiquitin ligase that regulates the cellular response to hypoxia. Germline pathogenic variants in VHL predispose patients to tumors including clear cell renal cell carcinoma (ccRCC) and pheochromocytoma, and somatic VHL mutations are frequently observed in sporadic renal cancer. Here we optimize and apply saturation genome editing to assay nearly all possible single-nucleotide variants (SNVs) across VHL's coding sequence. To delineate mechanisms, we quantify mRNA dosage effects and compare functional effects in isogenic cell lines. Function scores for 2,268 VHL SNVs identify a core set of pathogenic alleles driving ccRCC with perfect accuracy, inform differential risk across tumor types and reveal new mechanisms by which variants impact function. These results have immediate utility for classifying VHL variants encountered clinically and illustrate how precise functional measurements can resolve pleiotropic and dosage-dependent genotype-phenotype relationships across complete genes.
Collapse
Affiliation(s)
- Megan Buckley
- The Genome Function Laboratory, The Francis Crick Institute, London, UK
| | - Chloé Terwagne
- The Genome Function Laboratory, The Francis Crick Institute, London, UK
| | - Athina Ganner
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Cubitt
- The Genome Function Laboratory, The Francis Crick Institute, London, UK
| | - Reid Brewer
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dong-Kyu Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christina M Kajba
- The Genome Function Laboratory, The Francis Crick Institute, London, UK
| | - Nicole Forrester
- The Genome Function Laboratory, The Francis Crick Institute, London, UK
| | - Phoebe Dace
- The Genome Function Laboratory, The Francis Crick Institute, London, UK
| | - Joachim De Jonghe
- The Genome Function Laboratory, The Francis Crick Institute, London, UK
| | - Scott T C Shepherd
- The Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Units, The Royal Marsden Hospital, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - Chelsea Sawyer
- Scientific Computing, The Francis Crick Institute, London, UK
| | - Mairead McEwen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, A Partnership Between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Samra Turajlic
- The Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Units, The Royal Marsden Hospital, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - Evgueni A Ivakine
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Gregory M Findlay
- The Genome Function Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
31
|
Dorighi KM, Zhu A, Fortin JP, Hung-Hao Lo J, Sudhamsu J, Wendorff TJ, Durinck S, Callow M, Foster SA, Haley B. Accelerated drug-resistant variant discovery with an enhanced, scalable mutagenic base editor platform. Cell Rep 2024; 43:114313. [PMID: 38838224 DOI: 10.1016/j.celrep.2024.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Personalized cancer therapeutics bring directed treatment options to patients based on their tumor's genetic signature. Unfortunately, tumor genomes are remarkably adaptable, and acquired resistance through gene mutation frequently occurs. Identifying mutations that promote resistance within drug-treated patient populations can be cost, resource, and time intensive. Accordingly, base editing, enabled by Cas9-deaminase domain fusions, has emerged as a promising approach for rapid, large-scale gene variant screening in situ. Here, we adapt and optimize a conditional activation-induced cytidine deaminase (AID)-dead Cas9 (dCas9) system, which demonstrates greater heterogeneity of edits with an expanded footprint compared to the most commonly utilized cytosine base editor, BE4. In combination with a custom single guide RNA (sgRNA) library, we identify individual and compound variants in epidermal growth factor receptor (EGFR) and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) that confer resistance to established EGFR inhibitors. This system and analytical pipeline provide a simple, highly scalable platform for cis or trans drug-modifying variant discovery and for uncovering valuable insights into protein structure-function relationships.
Collapse
Affiliation(s)
- Kristel M Dorighi
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Anqi Zhu
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jean-Philippe Fortin
- Department of Data Science and Statistical Computing, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jerry Hung-Hao Lo
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Timothy J Wendorff
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Steffen Durinck
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Marinella Callow
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Scott A Foster
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
32
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O’Connor CL, Brindley MA, Campbell KP, Lek M. Deep Mutational Scanning in Disease-related Genes with Saturation Mutagenesis-Reinforced Functional Assays (SMuRF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548370. [PMID: 37873263 PMCID: PMC10592615 DOI: 10.1101/2023.07.12.548370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Kenneth K. Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Nicole J. Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Keryn G. Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
- Senior Authors
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Senior Authors
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Senior Authors
- Lead Contact
| |
Collapse
|
33
|
Biar CG, Pfeifer C, Carvill GL, Calhoun JD. Multimodal framework to resolve variants of uncertain significance in TSC2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597916. [PMID: 38895336 PMCID: PMC11185720 DOI: 10.1101/2024.06.07.597916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Efforts to resolve the functional impact of variants of uncertain significance (VUS) have lagged behind the identification of new VUS; as such, there is a critical need for scalable VUS resolution technologies. Computational variant effect predictors (VEPs), once trained, can predict pathogenicity for all missense variants in a gene, set of genes, or the exome. Existing tools have employed information on known pathogenic and benign variants throughout the genome to predict pathogenicity of VUS. We hypothesize that taking a gene-specific approach will improve pathogenicity prediction over globally-trained VEPs. We tested this hypothesis using the gene TSC2, whose loss of function results in tuberous sclerosis, a multisystem mTORopathy affecting about 1 in 6,000 individuals born in the United States. TSC2 has been identified as a high-priority target for VUS resolution, with (1) well-characterized molecular and patient phenotypes associated with loss-of-function variants, and (2) more than 2,700 VUS already documented in ClinVar. We developed Tuberous sclerosis classifier to Resolve variants of Uncertain Significance in T SC2 (TRUST), a machine learning model to predict pathogenicity of TSC2 missense VUS. To test whether these predictions are accurate, we further introduce curated loci prime editing (cliPE) as an accessible strategy for performing scalable multiplexed assays of variant effect (MAVEs). Using cliPE, we tested the effects of more than 200 TSC2 variants, including 106 VUS. It is highly likely this functional data alone would be sufficient to reclassify 92 VUS with most being reclassified as likely benign. We found that TRUST's classifications were correlated with the functional data, providing additional validation for the in silico predictions. We provide our pathogenicity predictions and MAVE data to aid with VUS resolution. In the near future, we plan to host these data on a public website and deposit into relevant databases such as MAVEdb as a community resource. Ultimately, this study provides a framework to complete variant effect maps of TSC1 and TSC2 and adapt this approach to other mTORopathy genes.
Collapse
Affiliation(s)
- Carina G Biar
- Ken and Ruth Davee Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Cole Pfeifer
- Ken and Ruth Davee Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Jeffrey D Calhoun
- Ken and Ruth Davee Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
34
|
Cooper S, Obolenski S, Waters AJ, Bassett AR, Coelho MA. Analyzing the functional effects of DNA variants with gene editing. CELL REPORTS METHODS 2024; 4:100776. [PMID: 38744287 PMCID: PMC11133854 DOI: 10.1016/j.crmeth.2024.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Continual advancements in genomics have led to an ever-widening disparity between the rate of discovery of genetic variants and our current understanding of their functions and potential roles in disease. Systematic methods for phenotyping DNA variants are required to effectively translate genomics data into improved outcomes for patients with genetic diseases. To make the biggest impact, these approaches must be scalable and accurate, faithfully reflect disease biology, and define complex disease mechanisms. We compare current methods to analyze the function of variants in their endogenous DNA context using genome editing strategies, such as saturation genome editing, base editing and prime editing. We discuss how these technologies can be linked to high-content readouts to gain deep mechanistic insights into variant effects. Finally, we highlight key challenges that need to be addressed to bridge the genotype to phenotype gap, and ultimately improve the diagnosis and treatment of genetic diseases.
Collapse
Affiliation(s)
- Sarah Cooper
- Cellular and Gene Editing Research, Wellcome Sanger Institute, Hinxton, UK
| | - Sofia Obolenski
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK; Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew J Waters
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Andrew R Bassett
- Cellular and Gene Editing Research, Wellcome Sanger Institute, Hinxton, UK.
| | | |
Collapse
|
35
|
Deng L, Zhou YL, Cai Z, Zhu J, Li Z, Bao Z. Massively parallel CRISPR-assisted homologous recombination enables saturation editing of full-length endogenous genes in yeast. SCIENCE ADVANCES 2024; 10:eadj9382. [PMID: 38748797 PMCID: PMC11095455 DOI: 10.1126/sciadv.adj9382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Performing saturation editing of chromosomal genes will enable the study of genetic variants in situ and facilitate protein and cell engineering. However, current in vivo editing of endogenous genes either lacks flexibility or is limited to discrete codons and short gene fragments, preventing a comprehensive exploration of genotype-phenotype relationships. To enable facile saturation editing of full-length genes, we used a protospacer adjacent motif-relaxed Cas9 variant and homology-directed repair to achieve above 60% user-defined codon replacement efficiencies in Saccharomyces cerevisiae genome. Coupled with massively parallel DNA design and synthesis, we developed a saturation gene editing method termed CRISPR-Cas9- and homology-directed repair-assisted saturation editing (CHASE) and achieved highly saturated codon swapping of long genomic regions. By applying CHASE to massively edit a well-studied global transcription factor gene, we found known and unreported genetic variants affecting an industrially relevant microbial trait. The user-defined codon editing capability and wide targeting windows of CHASE substantially expand the scope of saturation gene editing.
Collapse
Affiliation(s)
- Lei Deng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yi-Lian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhenkun Cai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jie Zhu
- Bota Biosciences, Hangzhou 311222, Zhejiang, China
| | - Zenan Li
- Bota Biosciences, Hangzhou 311222, Zhejiang, China
| | - Zehua Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
36
|
Li X, Chen W, Martin BK, Calderon D, Lee C, Choi J, Chardon FM, McDiarmid TA, Daza RM, Kim H, Lalanne JB, Nathans JF, Lee DS, Shendure J. Chromatin context-dependent regulation and epigenetic manipulation of prime editing. Cell 2024; 187:2411-2427.e25. [PMID: 38608704 PMCID: PMC11088515 DOI: 10.1016/j.cell.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/05/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
We set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing, a precise genome engineering tool. Using a highly sensitive method for mapping the genomic locations of randomly integrated reporters, we discover massive position effects, exemplified by editing efficiencies ranging from ∼0% to 94% for an identical target site and edit. Position effects on prime editing efficiency are well predicted by chromatin marks, e.g., positively by H3K79me2 and negatively by H3K9me3. Next, we developed a multiplex perturbational framework to assess the interaction of trans-acting factors with the cis-chromatin environment on editing outcomes. Applying this framework to DNA repair factors, we identify HLTF as a context-dependent repressor of prime editing. Finally, several lines of evidence suggest that active transcriptional elongation enhances prime editing. Consistent with this, we show we can robustly decrease or increase the efficiency of prime editing by preceding it with CRISPR-mediated silencing or activation, respectively.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Diego Calderon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Florence M Chardon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Troy A McDiarmid
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Haedong Kim
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jean-Benoît Lalanne
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jenny F Nathans
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - David S Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98109, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98109, USA.
| |
Collapse
|
37
|
Sánchez Rivera FJ, Dow LE. How CRISPR Is Revolutionizing the Generation of New Models for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041384. [PMID: 37487630 PMCID: PMC11065179 DOI: 10.1101/cshperspect.a041384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cancers arise through acquisition of mutations in genes that regulate core biological processes like cell proliferation and cell death. Decades of cancer research have led to the identification of genes and mutations causally involved in disease development and evolution, yet defining their precise function across different cancer types and how they influence therapy responses has been challenging. Mouse models have helped define the in vivo function of cancer-associated alterations, and genome-editing approaches using CRISPR have dramatically accelerated the pace at which these models are developed and studied. Here, we highlight how CRISPR technologies have impacted the development and use of mouse models for cancer research and discuss the many ways in which these rapidly evolving platforms will continue to transform our understanding of this disease.
Collapse
Affiliation(s)
- Francisco J Sánchez Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
38
|
Hsu JY, Lam KC, Shih J, Pinello L, Joung JK. MOSAIC enables in situ saturation mutagenesis of genes and CRISPR prime editing guide RNA optimization in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591078. [PMID: 38712243 PMCID: PMC11071466 DOI: 10.1101/2024.04.25.591078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
CRISPR prime editing offers unprecedented versatility and precision for the installation of genetic edits in situ . Here we describe the development and characterization of the Multiplexing Of Site-specific Alterations for In situ Characterization ( MOSAIC ) method, which leverages a non-viral PCR-based prime editing method to enable rapid installation of thousands of defined edits in pooled fashion. We show that MOSAIC can be applied to perform in situ saturation mutagenesis screens of: (1) the BCR-ABL1 fusion gene, successfully identifying known and potentially new imatinib drug-resistance variants; and (2) the IRF1 untranslated region (UTR), re-confirming non-coding regulatory elements involved in transcriptional initiation. Furthermore, we deployed MOSAIC to enable high-throughput, pooled screening of hundreds of systematically designed prime editing guide RNA ( pegRNA ) constructs for a large series of different genomic loci. This rapid screening of >18,000 pegRNA designs identified optimized pegRNAs for 89 different genomic target modifications and revealed the lack of simple predictive rules for pegRNA design, reinforcing the need for experimental optimization now greatly simplified and enabled by MOSAIC. We envision that MOSAIC will accelerate and facilitate the application of CRISPR prime editing for a wide range of high-throughput screens in human and other cell systems.
Collapse
|
39
|
Johnson GA, Gould SI, Sánchez-Rivera FJ. Deconstructing cancer with precision genome editing. Biochem Soc Trans 2024; 52:803-819. [PMID: 38629716 PMCID: PMC11088927 DOI: 10.1042/bst20230984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Recent advances in genome editing technologies are allowing investigators to engineer and study cancer-associated mutations in their endogenous genetic contexts with high precision and efficiency. Of these, base editing and prime editing are quickly becoming gold-standards in the field due to their versatility and scalability. Here, we review the merits and limitations of these precision genome editing technologies, their application to modern cancer research, and speculate how these could be integrated to address future directions in the field.
Collapse
Affiliation(s)
- Grace A. Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| | - Samuel I. Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| | - Francisco J. Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| |
Collapse
|
40
|
Zeng H, Daniel TC, Lingineni A, Chee K, Talloo K, Gao X. Recent advances in prime editing technologies and their promises for therapeutic applications. Curr Opin Biotechnol 2024; 86:103071. [PMID: 38330875 PMCID: PMC10947817 DOI: 10.1016/j.copbio.2024.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/10/2024]
Abstract
Prime editing (PE) is a groundbreaking genome editing technology offering unparalleled precision in targeted genome modifications and has great potential for therapeutic applications. This review delves into the core principles of PE and emphasizes its advancements, applications, and prospects. We begin with a brief introduction to PE principles, followed by a detailed examination of recent improvements in efficiency, precision, and the scale of feasible edits. These improvements have been made to the PE systems through guide RNA engineering, protein engineering, DNA repair pathway screening, chromosomal or epigenomic modification, and in silico design and optimization tools. Furthermore, we highlight in vivo studies showcasing the therapeutic potential of PE to model and treat genetic diseases. Moreover, we discuss PE's versatile applications in saturation genome editing and its applicability to nonhuman organisms. In conclusion, we address the challenges and opportunities linked with PE, emphasizing its profound impact on biological research and therapeutics.
Collapse
Affiliation(s)
- Hongzhi Zeng
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Tyler C Daniel
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Ananya Lingineni
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Kelly Chee
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Komal Talloo
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Cirincione A, Simpson D, Ravisankar P, Solley SC, Yan J, Singh M, Adamson B. A benchmarked, high-efficiency prime editing platform for multiplexed dropout screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.585978. [PMID: 38585933 PMCID: PMC10996517 DOI: 10.1101/2024.03.25.585978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Prime editing installs precise edits into the genome with minimal unwanted byproducts, but low and variable editing efficiencies have complicated application of the approach to high-throughput functional genomics. Leveraging several recent advances, we assembled a prime editing platform capable of high-efficiency substitution editing across a set of engineered prime editing guide RNAs (epegRNAs) and corresponding target sequences (80% median intended editing). Then, using a custom library of 240,000 epegRNAs targeting >17,000 codons with 175 different substitution types, we benchmarked our platform for functional interrogation of small substitution variants (1-3 nucleotides) targeted to essential genes. Resulting data identified negative growth phenotypes for nonsense mutations targeted to ~8,000 codons, and comparing those phenotypes to results from controls demonstrated high specificity. We also observed phenotypes for synonymous mutations that disrupted splice site motifs at 3' exon boundaries. Altogether, we establish and benchmark a high-throughput prime editing approach for functional characterization of genetic variants with simple readouts from multiplexed experiments.
Collapse
Affiliation(s)
- Ann Cirincione
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Danny Simpson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Purnima Ravisankar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Present address: Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Sabrina C Solley
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jun Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - Britt Adamson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
42
|
Gould SI, Wuest AN, Dong K, Johnson GA, Hsu A, Narendra VK, Atwa O, Levine SS, Liu DR, Sánchez Rivera FJ. High-throughput evaluation of genetic variants with prime editing sensor libraries. Nat Biotechnol 2024:10.1038/s41587-024-02172-9. [PMID: 38472508 DOI: 10.1038/s41587-024-02172-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Tumor genomes often harbor a complex spectrum of single nucleotide alterations and chromosomal rearrangements that can perturb protein function. Prime editing has been applied to install and evaluate genetic variants, but previous approaches have been limited by the variable efficiency of prime editing guide RNAs. Here we present a high-throughput prime editing sensor strategy that couples prime editing guide RNAs with synthetic versions of their cognate target sites to quantitatively assess the functional impact of endogenous genetic variants. We screen over 1,000 endogenous cancer-associated variants of TP53-the most frequently mutated gene in cancer-to identify alleles that impact p53 function in mechanistically diverse ways. We find that certain endogenous TP53 variants, particularly those in the p53 oligomerization domain, display opposite phenotypes in exogenous overexpression systems. Our results emphasize the physiological importance of gene dosage in shaping native protein stoichiometry and protein-protein interactions, and establish a framework for studying genetic variants in their endogenous sequence context at scale.
Collapse
Affiliation(s)
- Samuel I Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra N Wuest
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kexin Dong
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Grace A Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alvin Hsu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Varun K Narendra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ondine Atwa
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stuart S Levine
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Francisco J Sánchez Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
43
|
Hu C, Huang H, Na J, Lumby C, Abozaid M, Holdren MA, Rao TJ, Karam R, Pesaran T, Weyandt JD, Csuy CM, Seelaus CA, Young CC, Fulk K, Heidari Z, Morais Lyra PC, Couch RE, Persons B, Polley EC, Gnanaolivu RD, Boddicker NJ, Monteiro ANA, Yadav S, Domchek SM, Richardson ME, Couch FJ. Functional analysis and clinical classification of 462 germline BRCA2 missense variants affecting the DNA binding domain. Am J Hum Genet 2024; 111:584-593. [PMID: 38417439 PMCID: PMC10940015 DOI: 10.1016/j.ajhg.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024] Open
Abstract
Variants of uncertain significance (VUSs) in BRCA2 are a common result of hereditary cancer genetic testing. While more than 4,000 unique VUSs, comprised of missense or intronic variants, have been identified in BRCA2, the few missense variants now classified clinically as pathogenic or likely pathogenic are predominantly located in the region encoding the C-terminal DNA binding domain (DBD). We report on functional evaluation of the influence of 462 BRCA2 missense variants affecting the DBD on DNA repair activity of BRCA2 using a homology-directed DNA double-strand break repair assay. Of these, 137 were functionally abnormal, 313 were functionally normal, and 12 demonstrated intermediate function. Comparisons with other functional studies of BRCA2 missense variants yielded strong correlations. Sequence-based in silico prediction models had high sensitivity, but limited specificity, relative to the homology-directed repair assay. Combining the functional results with clinical and genetic data in an American College of Medical Genetics (ACMG)/Association for Molecular Pathology (AMP)-like variant classification framework from a clinical testing laboratory, after excluding known splicing variants and functionally intermediate variants, classified 431 of 442 (97.5%) missense variants (129 as pathogenic/likely pathogenic and 302 as benign/likely benign). Functionally abnormal variants classified as pathogenic by ACMG/AMP rules were associated with a slightly lower risk of breast cancer (odds ratio [OR] 5.15, 95% confidence interval [CI] 3.43-7.83) than BRCA2 DBD protein truncating variants (OR 8.56, 95% CI 6.03-12.36). Overall, functional studies of BRCA2 variants using validated assays substantially improved the variant classification yield from ACMG/AMP models and are expected to improve clinical management of many individuals found to harbor germline BRCA2 missense VUS.
Collapse
Affiliation(s)
- Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Huaizhi Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Jie Na
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | - Carolyn Lumby
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Mohamed Abozaid
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Megan A Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Tara J Rao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | | | | | | | | | | | | | - Kelly Fulk
- Ambry Genetics, Aliso Viejo, CA 92656, USA
| | | | | | - Ronan E Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Benjamin Persons
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Eric C Polley
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Rohan D Gnanaolivu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | - Nicholas J Boddicker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | | | - Siddhartha Yadav
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55902, USA
| | - Susan M Domchek
- Division of Hematology Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA.
| |
Collapse
|
44
|
Ely ZA, Mathey-Andrews N, Naranjo S, Gould SI, Mercer KL, Newby GA, Cabana CM, Rideout WM, Jaramillo GC, Khirallah JM, Holland K, Randolph PB, Freed-Pastor WA, Davis JR, Kulstad Z, Westcott PMK, Lin L, Anzalone AV, Horton BL, Pattada NB, Shanahan SL, Ye Z, Spranger S, Xu Q, Sánchez-Rivera FJ, Liu DR, Jacks T. A prime editor mouse to model a broad spectrum of somatic mutations in vivo. Nat Biotechnol 2024; 42:424-436. [PMID: 37169967 PMCID: PMC11120832 DOI: 10.1038/s41587-023-01783-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 04/05/2023] [Indexed: 05/13/2023]
Abstract
Genetically engineered mouse models only capture a small fraction of the genetic lesions that drive human cancer. Current CRISPR-Cas9 models can expand this fraction but are limited by their reliance on error-prone DNA repair. Here we develop a system for in vivo prime editing by encoding a Cre-inducible prime editor in the mouse germline. This model allows rapid, precise engineering of a wide range of mutations in cell lines and organoids derived from primary tissues, including a clinically relevant Kras mutation associated with drug resistance and Trp53 hotspot mutations commonly observed in pancreatic cancer. With this system, we demonstrate somatic prime editing in vivo using lipid nanoparticles, and we model lung and pancreatic cancer through viral delivery of prime editing guide RNAs or orthotopic transplantation of prime-edited organoids. We believe that this approach will accelerate functional studies of cancer-associated mutations and complex genetic combinations that are challenging to construct with traditional models.
Collapse
Affiliation(s)
- Zackery A Ely
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Mathey-Andrews
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samuel I Gould
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kim L Mercer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Christina M Cabana
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Grissel Cervantes Jaramillo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Katie Holland
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Angelo State University, San Angelo, TX, USA
| | - Peyton B Randolph
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - William A Freed-Pastor
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Zachary Kulstad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cold Spring Harbor Laboratory, Huntington, NY, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew V Anzalone
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Brendan L Horton
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nimisha B Pattada
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sean-Luc Shanahan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Stefani Spranger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Francisco J Sánchez-Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
45
|
Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 2024; 9:47. [PMID: 38409199 PMCID: PMC10897424 DOI: 10.1038/s41392-024-01750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nathan J VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
46
|
Repo PE, Backlund MP, Kivelä TT, Turunen JA. Functional assay for assessment of pathogenicity of BAP1 variants. Hum Mol Genet 2024; 33:426-434. [PMID: 37956408 PMCID: PMC10877462 DOI: 10.1093/hmg/ddad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Pathogenic germline variants in BRCA1-Associated Protein 1 (BAP1) cause BAP1 tumor predisposition syndrome (BAP1-TPDS). Carriers run especially a risk of uveal (UM) and cutaneous melanoma, malignant mesothelioma, and clear cell renal carcinoma. Approximately half of increasingly reported BAP1 variants lack accurate classification. Correct interpretation of pathogenicity can improve prognosis of the patients through tumor screening with better understanding of BAP1-TPDS. METHODS We edited five rare BAP1 variants with differing functional characteristics identified from patients with UM in HAP1 cells using CRISPR-Cas9 and assayed their effect on cell adhesion/spreading (at 4 h) and proliferation (at 48 h), measured as cell index (CI), using xCELLigence real-time analysis system. RESULTS In BAP1 knockout HAP1 cultures, cell number was half of wild type (WT) cultures at 48 h (p = 0.00021), reaching confluence later, and CI was 78% reduced (p < 0.0001). BAP1-TPDS-associated null variants c.67+1G>T and c.1780_1781insT, and a likely pathogenic missense variant c.281A>G reduced adhesion (all p ≤ 0.015) and proliferation by 74%-83% (all p ≤ 0.032). Another likely pathogenic missense variant c.680G>A reduced both by at least 50% (all p ≤ 0.032), whereas cells edited with likely benign one c.1526C>T grew similarly to WT. CONCLUSIONS BAP1 is essential for optimal fitness of HAP1 cells. Pathogenic and likely pathogenic BAP1 variants reduced cell fitness, reflected in adhesion/spreading and proliferation properties. Further, moderate effects were quantifiable. Variant modelling in HAP1 with CRISPR-Cas9 enabled functional analysis of coding and non-coding region variants in an endogenous expression system.
Collapse
Affiliation(s)
- Pauliina E Repo
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL220, FI-00029 HUS, Helsinki, Finland
| | - Michael P Backlund
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
| | - Tero T Kivelä
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL220, FI-00029 HUS, Helsinki, Finland
| | - Joni A Turunen
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
- Ophthalmic Genetics and Rare Eye Diseases Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL220, FI-00029 HUS, Helsinki, Finland
| |
Collapse
|
47
|
Li H, Bartke R, Zhao L, Verma Y, Horacek A, Rechav Ben-Natan A, Pangilinan GR, Krishnappa N, Nielsen R, Hockemeyer D. Functional annotation of variants of the BRCA2 gene via locally haploid human pluripotent stem cells. Nat Biomed Eng 2024; 8:165-176. [PMID: 37488236 PMCID: PMC10878975 DOI: 10.1038/s41551-023-01065-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 06/15/2023] [Indexed: 07/26/2023]
Abstract
Mutations in the BRCA2 gene are associated with sporadic and familial cancer, cause genomic instability and sensitize cancer cells to inhibition by the poly(ADP-ribose) polymerase (PARP). Here we show that human pluripotent stem cells (hPSCs) with one copy of BRCA2 deleted can be used to annotate variants of this gene and to test their sensitivities to PARP inhibition. By using Cas9 to edit the functional BRCA2 allele in the locally haploid hPSCs and in fibroblasts differentiated from them, we characterized essential regions in the gene to identify permissive and loss-of-function mutations. We also used Cas9 to directly test the function of individual amino acids, including amino acids encoded by clinical BRCA2 variants of uncertain significance, and identified alleles that are sensitive to PARP inhibitors used as a standard of care in BRCA2-deficient cancers. Locally haploid human pluripotent stem cells can facilitate detailed structure-function analyses of genes and the rapid functional evaluation of clinically observed mutations.
Collapse
Affiliation(s)
- Hanqin Li
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Rebecca Bartke
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Lei Zhao
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yogendra Verma
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Anna Horacek
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Alma Rechav Ben-Natan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Gabriella R Pangilinan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Rasmus Nielsen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
48
|
Andreotti V, Vanni I, Pastorino L, Ghiorzo P, Bruno W. Germline POT1 Variants: A Critical Perspective on POT1 Tumor Predisposition Syndrome. Genes (Basel) 2024; 15:104. [PMID: 38254993 PMCID: PMC10815363 DOI: 10.3390/genes15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The Protection of Telomere 1 (POT1) gene was identified as a melanoma predisposition candidate nearly 10 years ago. Thereafter, various cancers have been proposed as associated with germline POT1 variants in the context of the so-called POT1 Predisposition Tumor Syndrome (POT1-TPD). While the key role, and related risks, of the alterations in POT1 in melanoma are established, the correlation between germline POT1 variants and the susceptibility to other cancers partially lacks evidence, due also to the rarity of POT1-TPD. Issues range from the absence of functional or segregation studies to biased datasets or the need for a revised classification of variants. Furthermore, a proposal of a surveillance protocol related to the cancers associated with POT1 pathogenic variants requires reliable data to avoid an excessive, possibly unjustified, burden for POT1 variant carriers. We propose a critical perspective regarding data published over the last 10 years that correlate POT1 variants to various types of cancer, other than cutaneous melanoma, to offer food for thought for the specialists who manage cancer predisposition syndromes and to stimulate a debate on the grey areas that have been exposed.
Collapse
Affiliation(s)
- Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
| | - Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| |
Collapse
|
49
|
Cooper SE, Coelho MA, Strauss ME, Gontarczyk AM, Wu Q, Garnett MJ, Marioni JC, Bassett AR. scSNV-seq: high-throughput phenotyping of single nucleotide variants by coupled single-cell genotyping and transcriptomics. Genome Biol 2024; 25:20. [PMID: 38225637 PMCID: PMC10789043 DOI: 10.1186/s13059-024-03169-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024] Open
Abstract
CRISPR screens with single-cell transcriptomic readouts are a valuable tool to understand the effect of genetic perturbations including single nucleotide variants (SNVs) associated with diseases. Interpretation of these data is currently limited as genotypes cannot be accurately inferred from guide RNA identity alone. scSNV-seq overcomes this limitation by coupling single-cell genotyping and transcriptomics of the same cells enabling accurate and high-throughput screening of SNVs. Analysis of variants across the JAK1 gene with scSNV-seq demonstrates the importance of determining the precise genetic perturbation and accurately classifies clinically observed missense variants into three functional categories: benign, loss of function, and separation of function.
Collapse
Affiliation(s)
- Sarah E Cooper
- Cellular and Gene Editing Research, Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Matthew A Coelho
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Magdalena E Strauss
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Aleksander M Gontarczyk
- Cellular and Gene Editing Research, Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Qianxin Wu
- Cellular and Gene Editing Research, Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Mathew J Garnett
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - John C Marioni
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Cellular Genetics, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Present Address: Genentech, South San Francisco, CA, USA
| | - Andrew R Bassett
- Cellular and Gene Editing Research, Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
50
|
Volodina OV, Fabrichnikova AR, Anuchina AA, Mishina OS, Lavrov AV, Smirnikhina SA. Evolution of Prime Editing Systems: Move Forward to the Treatment of Hereditary Diseases. Curr Gene Ther 2024; 25:46-61. [PMID: 38623982 DOI: 10.2174/0115665232295117240405070809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
The development of gene therapy using genome editing tools recently became relevant. With the invention of programmable nucleases, it became possible to treat hereditary diseases due to introducing targeted double strand break in the genome followed by homology directed repair (HDR) or non-homologous end-joining (NHEJ) reparation. CRISPR-Cas9 is more efficient and easier to use in comparison with other programmable nucleases. To improve the efficiency and safety of this gene editing tool, various modifications CRISPR-Cas9 basis were created in recent years, such as prime editing - in this system, Cas9 nickase is fused with reverse transcriptase and guide RNA, which contains a desired correction. Prime editing demonstrates equal or higher correction efficiency as HDR-mediated editing and much less off-target effect due to inducing nick. There are several studies in which prime editing is used to correct mutations in which researchers reported little or no evidence of off-target effects. The system can also be used to functionally characterize disease variants. However, prime editing still has several limitations that could be further improved. The effectiveness of the method is not yet high enough to apply it in clinical trials. Delivery of prime editors is also a big challenge due to their size. In the present article, we observe the development of the platform, and discuss the candidate proteins for efficiency enhancing, main delivery methods and current applications of prime editing.
Collapse
Affiliation(s)
- Olga V Volodina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, 115522, Moscow, Russia
| | | | - Arina A Anuchina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, 115522, Moscow, Russia
| | - Olesya S Mishina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, 115522, Moscow, Russia
| | - Alexander V Lavrov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, 115522, Moscow, Russia
| | - Svetlana A Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, 115522, Moscow, Russia
| |
Collapse
|