1
|
Wang X, Huang Z, Xing L, Shang L, Jiang J, Deng C, Yu W, Peng L, Yang H, Zheng X, Liu X, Yang H, Chen Y, Li Y, Liu J, Xie X, Xu W, Xia X, Liu Z, Liu W, Jiang S, Zeng Y, Lu L, Wang J. STING agonist-based ER-targeting molecules boost antigen cross-presentation. Nature 2025; 641:202-210. [PMID: 40140567 PMCID: PMC12043507 DOI: 10.1038/s41586-025-08758-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
CD8+ T cell immune responses are critical for combating infectious diseases and tumours1-3. Antigen cross-presentation, primarily occurring at the endoplasmic reticulum (ER) of dendritic cells, is essential for protein-based vaccines to induce CD8+ T cell responses4. Current efforts have focused on antigen delivery at the tissue and cellular levels, whereas subcellular delivery has been limited to facilitating antigen escape from lysosomes into the cytosol. In the absence of a small-sized high-affinity ER-targeting molecule, the importance of the 'last mile' from the cytosol to the ER remains elusive. Here we developed stimulator of interferon genes (STING) agonist-based ER-targeting molecules (SABER), which effectively deliver antigens to the ER and cluster key machinery in cross-presentation to form microreactors by folding the ER membrane. Conjugation of SABER to various antigens substantially enhances the induction of CD8+ T cell immune responses to tumour neoantigens and conserved viral epitopes, far exceeding that achieved by mixtures of antigens with STING agonists or conventional adjuvants. SABER also retains a potent adjuvant effect, effectively enhancing the ability of a SARS-CoV-2 subunit vaccine to induce broadly neutralizing antibodies. This study provides a high-affinity ER-targeting delivery system and vaccine adjuvant, demonstrating that precise subcellular delivery targeting the last mile of cross-presentation can lead to a qualitative leap.
Collapse
Affiliation(s)
- Xiafeng Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhangping Huang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lixiao Xing
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| | - Liru Shang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Jiang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Caiguanxi Deng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Xiaohong Zheng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinmin Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haolan Yang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yixin Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongyong Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zezhong Liu
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| | - Yingyue Zeng
- School of Life Sciences, Liaoning University, Shenyang, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China.
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Yuan L, Zhong L, Krummenacher C, Zhao Q, Zhang X. Epstein-Barr virus-mediated immune evasion in tumor promotion. Trends Immunol 2025; 46:386-402. [PMID: 40240193 DOI: 10.1016/j.it.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Epstein-Barr virus (EBV) was the first DNA virus identified to be tightly associated with multiple human tumors. It promotes malignant progression of tumors - including related lymphomas, nasopharyngeal carcinoma, and gastric adenocarcinoma - in part by evading surveillance and attack by the host immune system. In this article we review the main molecular mechanisms by which EBV-encoded proteins and RNAs interact with key molecules of the host immune system to inhibit Toll-like receptor (TLR)-nuclear factor κB (NF-κB), retinoic acid-inducible gene I (RIG-I), and interferon (IFN) signaling pathways, affect antigen presentation, prevent the cytotoxic effects of CD8+ effector cells, regulate the tumor microenvironment (TME) and cell metastasis and invasion, and inhibit cell apoptosis. These interactions not only contribute to the persistence of the virus but also provide potential targets for developing new immunotherapy strategies.
Collapse
Affiliation(s)
- Lie Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ling Zhong
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Claude Krummenacher
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, USA.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Luri-Rey C, Teijeira Á, Wculek SK, de Andrea C, Herrero C, Lopez-Janeiro A, Rodríguez-Ruiz ME, Heras I, Aggelakopoulou M, Berraondo P, Sancho D, Melero I. Cross-priming in cancer immunology and immunotherapy. Nat Rev Cancer 2025; 25:249-273. [PMID: 39881005 DOI: 10.1038/s41568-024-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
Cytotoxic T cell immune responses against cancer crucially depend on the ability of a subtype of professional antigen-presenting cells termed conventional type 1 dendritic cells (cDC1s) to cross-present antigens. Cross-presentation comprises redirection of exogenous antigens taken from other cells to the major histocompatibility complex class I antigen-presenting machinery. In addition, once activated and having sensed viral moieties or T helper cell cooperation via CD40-CD40L interactions, cDC1s provide key co-stimulatory ligands and cytokines to mount and sustain CD8+ T cell immune responses. This regulated process of cognate T cell activation is termed cross-priming. In cancer mouse models, CD8+ T cell cross-priming by cDC1s is crucial for the efficacy of most, if not all, immunotherapy strategies. In patients with cancer, the presence and abundance of cDC1s in the tumour microenvironment is markedly associated with the level of T cell infiltration and responsiveness to immune checkpoint inhibitors. Therapeutic strategies to increase the numbers of cDC1s using FMS-like tyrosine kinase 3 ligand (FLT3L) and/or their activation status show evidence of efficacy in cancer mouse models and are currently being tested in initial clinical trials with promising results so far.
Collapse
Affiliation(s)
- Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Stefanie K Wculek
- Innate Immune Biology Laboratory, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos de Andrea
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Claudia Herrero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Ignacio Heras
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Departments of Immunology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
4
|
Yang L, Gui J, Sheng Y, Liu J, Wang C, Fang Z, Huang L, Tu Z, Zhu X, Huang K. Identification of TAP2 as a novel immune target in human cancers: insights from integrated bioinformatics and experimental approaches. Eur J Med Res 2025; 30:163. [PMID: 40075453 PMCID: PMC11905508 DOI: 10.1186/s40001-025-02360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Transporter 2, ATP binding cassette (ABC) subfamily B member (TAP2), encodes a protein within the ABC transporter superfamily. TAP2 plays a role in the progression of cancers, such as cervical, breast, and lung cancers. However, the relationship between TAP2 and cancer prognosis, immune cell infiltration, tumor microenvironment, and immunotherapy remains unexplored. Therefore, this study aims to investigate the effect of TAP2 expression on its role in predicting tumor prognosis and immunotherapy efficacy. METHODS Bioinformatics analyses such as Gene Set Enrichment Analysis, single-cell, and Connectivity Map analyses were used to comprehensively assess TAP2-related genomic alterations, prognostic value, enrichment pathways, single-cell expression patterns, and potential targeting inhibitors. In addition, molecular docking techniques were used to simulate drug binding to TAP2. WB and RT-qPCR were used to detect differences in TAP2 expression in glioma cell lines. The U251MG cell line was established with TAP2 overexpression. The effects of elevated TAP2 expression on GBM cell function was evaluated using various assays, including the Transwell migration, scratch, and clonal formation assays. RESULTS TAP2 exhibited aberrantly expression in tumor tissues with genomic alterations. TAP2 significantly correlates with poor prognosis across various cancers. It was also involved in immune-related pathways, immune infiltration, and immune checkpoint regulation, thereby influencing the tumor microenvironment and immune response to cancer. TAP2 was identified as a potential predictor of immunotherapy response and screened for potential targeted inhibitors for future therapeutic interventions. CONCLUSIONS Our findings suggest that TAP2 may serve as a promising prognostic marker and immune target in human cancers, warranting further investigation into its role in tumor immunity.
Collapse
MESH Headings
- Humans
- Computational Biology/methods
- Prognosis
- Tumor Microenvironment/immunology
- Gene Expression Regulation, Neoplastic
- Neoplasms/immunology
- Neoplasms/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Molecular Docking Simulation
- Immunotherapy/methods
- ATP Binding Cassette Transporter, Subfamily B, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 3
Collapse
Affiliation(s)
- Lufei Yang
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jiawei Gui
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Yilei Sheng
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Junzhe Liu
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Chong Wang
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zhansheng Fang
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Le Huang
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Zewei Tu
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xingen Zhu
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Kai Huang
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
5
|
Cruz FM, Orellano LAA, Chan A, Rock KL. Alternate MHC I Antigen Presentation Pathways Allow CD8+ T-cell Recognition and Killing of Cancer Cells in the Absence of β2M or TAP. Cancer Immunol Res 2025; 13:98-108. [PMID: 39485834 PMCID: PMC11717633 DOI: 10.1158/2326-6066.cir-24-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/05/2024] [Accepted: 10/30/2024] [Indexed: 11/03/2024]
Abstract
MHC I antigen presentation allows CD8+ T cells to detect and eliminate cancerous or virally infected cells. The MHC I pathway is not essential for cell growth and viability, so cancers and viruses can evade control by CD8+ T cells by inactivating antigen presentation. In cancers, two common ways for this evasion are the loss of either the MHC I light chain [β2 microglobulin (β2M)] or the transporter-associated with antigen processing (TAP). β2M-null cells are generally thought to lack the MHC I pathway because the MHC I heavy chain by itself lacks the proper conformation for peptide display. TAP-null cells are thought to have severely defective MHC I antigen presentation because they are incapable of supplying peptides from the cytosol to MHC I molecules in the endoplasmic reticulum (ER). However, we have found that highly reactive memory CD8+ T cells could still recognize cells that completely lacked β2M or TAP. This was at least in part because in TAP-null cells, the Sec62 component of the Sec61 translocon supported the transfer of cytosolic peptides into the ER. In β2M-negative cells, free MHC I heavy chains were able to bind peptides and assume a conformation that was sufficiently recognized by CD8+ T cells. This process required ER chaperones and the peptide-loading complex. We found that these mechanisms supported antigen presentation at a level that was sufficient for memory CD8+ T cells to kill melanoma cells both in vitro and in tumor-bearing mice. The implications for tumor immunotherapy are discussed.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of Pathology, UMass Chan Medical School, Worcester, Massachusetts
| | - Laura A A Orellano
- Department of Pathology, UMass Chan Medical School, Worcester, Massachusetts
| | - Amanda Chan
- Department of Pathology, UMass Chan Medical School, Worcester, Massachusetts
| | - Kenneth L Rock
- Department of Pathology, UMass Chan Medical School, Worcester, Massachusetts
| |
Collapse
|
6
|
Löffler M, Frühschulz S, Rockel Z, Pečak M, Tampé R, Wieneke R. Antigen Delivery Controlled by an On-Demand Photorelease. Angew Chem Int Ed Engl 2024; 63:e202405035. [PMID: 38818622 DOI: 10.1002/anie.202405035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
To eliminate infected and cancerous cells, antigen processing and presentation play a pivotal role through the recognition of antigenic peptides displayed on Major Histocompatibility Complex class I (MHC I) molecules. Here, we developed a photostimulated antigen release system that enables the temporal inception of antigen flux. Simple and effective photocaging of the human immunodeficiency virus (HIV)-Nef73-derived epitope, a representative high-affinity MHC I ligand, was provided by steric hindrance to block the recognition by the transporter associated with antigen processing (TAP) in the peptide loading complex (PLC). In response to light, a heteronomous release of antigens and subsequent translocation in various scenarios is demonstrated, including a TAP-related ATP-binding cassette (ABC) transporter reconstituted in liposomes and the native PLC in the endoplasmic reticulum (ER) membrane of human cells. The photochemically induced 'burst' of antigens opens new opportunities for a mechanistic analysis of the antigen translocation machinery and will help to provide insights into antigen processing pathways via an on-demand, subcellular pulse-chase release of antigens.
Collapse
Affiliation(s)
- Max Löffler
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Stefan Frühschulz
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Zoe Rockel
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Matija Pečak
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Ralph Wieneke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Liu H, Dang R, Zhang W, Hong J, Li X. SNARE proteins: Core engines of membrane fusion in cancer. Biochim Biophys Acta Rev Cancer 2024:189148. [PMID: 38960006 DOI: 10.1016/j.bbcan.2024.189148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Vesicles are loaded with a variety of cargoes, including membrane proteins, secreted proteins, signaling molecules, and various enzymes, etc. Not surprisingly, vesicle transport is essential for proper cellular life activities including growth, division, movement and cellular communication. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion of vesicles with their target compartments that is fundamental for cargo delivery. Recent studies have shown that multiple SNARE family members are aberrantly expressed in human cancers and actively contribute to malignant proliferation, invasion, metastasis, immune evasion and treatment resistance. Here, the localization and function of SNARE proteins in eukaryotic cells are firstly mapped. Then we summarize the expression and regulation of SNAREs in cancer, and describe their contribution to cancer progression and mechanisms, and finally we propose engineering botulinum toxin as a strategy to target SNAREs for cancer treatment.
Collapse
Affiliation(s)
- Hongyi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ruiyue Dang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Sengupta D, Galicia-Pereyra R, Han P, Graham M, Liu X, Arshad N, Cresswell P. Cutting Edge: Phagosome-associated Autophagosomes Containing Antigens and Proteasomes Drive TAP-Independent Cross-Presentation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1063-1068. [PMID: 38353614 PMCID: PMC10948299 DOI: 10.4049/jimmunol.2200446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/17/2024] [Indexed: 03/20/2024]
Abstract
Activation of naive CD8-positive T lymphocytes is mediated by dendritic cells that cross-present MHC class I (MHC-I)-associated peptides derived from exogenous Ags. The most accepted mechanism involves the translocation of Ags from phagosomes or endolysosomes into the cytosol, where antigenic peptides generated by cytosolic proteasomes are delivered by the transporter associated with Ag processing (TAP) to the endoplasmic reticulum, or an endocytic Ag-loading compartment, where binding to MHC-I occurs. We have described an alternative pathway where cross-presentation is independent of TAP but remains dependent on proteasomes. We provided evidence that active proteasomes found within the lumen of phagosomes and endolysosomal vesicles locally generate antigenic peptides that can be directly loaded onto trafficking MHC-I molecules. However, the mechanism of active proteasome delivery to the endocytic compartments remained unknown. In this study, we demonstrate that phagosome-associated LC3A/B structures deliver proteasomes into subcellular compartments containing exogenous Ags and that autophagy drives TAP-independent, proteasome-dependent cross-presentation.
Collapse
Affiliation(s)
- Debrup Sengupta
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | | | - Patrick Han
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Morven Graham
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Xinran Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Najla Arshad
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Peter Cresswell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
9
|
Zhou C, Ma J, Luo W, Hu J, Chen J, Liang S, He S. A Novel Platinum Resistance-Related Immune Gene Signature for Overall Survival Prediction in Patients with Ovarian Cancer. Biochem Genet 2024; 62:112-124. [PMID: 37270714 PMCID: PMC10901932 DOI: 10.1007/s10528-023-10379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 06/05/2023]
Abstract
Ovarian cancer (OV) is a highly heterogeneous gynecological tumor that makes the prognostic prediction challenging. Resistance to platinum-based chemotherapy is associated with a poor prognosis in OV. There seems to be an overlap between molecular mechanisms responsible for platinum resistance and immunogenicity in OV. However, the predictive role of platinum resistance-related immune genes for OV prognosis needs to be further explored. In our study, the mRNA expression data of OV patients with corresponding clinical information were collected from The Cancer Genome Atlas (TCGA) cohort and International Cancer Genome Consortium (ICGC) cohort. A multigene signature was constructed for OV patients in the TCGA cohort using the least absolute shrinkage and selection operator (LASSO) Cox regression model according to the optimal value of λ and was validated in the ICGC cohort. Furthermore, we performed functional analysis to explore the immune status between low- and high-risk groups based on the median value of the risk score for the multigene signature. Our data showed that there were 41.1% of the platinum resistance-related genes which differentially expressed between immune score low- and high-OV patients in the TCGA cohort. Univariate Cox regression analysis identified 30 differentially expressed genes (DEGs) associated with overall survival (OS) (P < 0.05). 14 genes were identified to construct a novel platinum resistance-related immune model for classifying OV patients into the low- and high- risk groups. Patients in the low-risk group showed significantly higher OS than those in the high-risk group (P < 0.0001 in the both TCGA and ICGC cohort), which was associated with different immune status for the two risk groups. A novel platinum resistance-related immune model can be used for prognostic prediction in OV. Targeting tumor immunity may be a therapeutic alternative for OV with platinum resistance.
Collapse
Affiliation(s)
- Chenfei Zhou
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, People's Republic of China
- Guangdong Provincial People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Junnan Ma
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, People's Republic of China
- Guangdong Cardiovascular Institute, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Wanjun Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, Guangdong, People's Republic of China
| | - Jiemei Hu
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, People's Republic of China
- Guangdong Provincial People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Jing Chen
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, People's Republic of China
- Guangdong Provincial People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Suiying Liang
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, People's Republic of China
- Guangdong Provincial People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Shanyang He
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, People's Republic of China.
- Guangdong Provincial People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Niu L, Miao Y, Cao Z, Wei T, Zhu J, Li M, Bai B, Chen L, Liu N, Pan F, Zhu J, Wang C, Yang Y, Chen Q. Minimalist Nanovaccine with Optimized Amphiphilic Copolymers for Cancer Immunotherapy. ACS NANO 2024; 18:3349-3361. [PMID: 38230639 DOI: 10.1021/acsnano.3c10174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Cancer vaccines with the ability to elicit tumor-specific immune responses have attracted significant interest in cancer immunotherapy. A key challenge for effective cancer vaccines is the spatiotemporal codelivery of antigens and adjuvants. Herein, we synthesized a copolymer library containing nine poly(ethylene glycol) methyl ether methacrylate-co-butyl methacrylate-co-2-(azepan-1-yl)ethyl methacrylate (PEGMA-co-BMA-co-C7AMA) graft copolymers with designed proportions of different components to regulate their properties. Among these polymers, C-25, with a C7AMA:BMA ratio at 1.5:1 and PEG wt % of 25%, was screened as the most effective nanovaccine carrier with enhanced ability to induce mouse bone marrow-derived dendritic cell (BMDC) maturation. Additionally, RNA-sequencing (RNA-Seq) analysis revealed that C-25 could activate dendritic cells (DCs) through multisignaling pathways to trigger potent immune effects. Then, the screened C-25 was used to encapsulate the model peptide antigen, OVA257-280, to form nanovaccine C-25/OVA257-280. It was found that the C-25/OVA257-280 nanovaccine could effectively facilitate DC maturation and antigen cross-presentation without any other additional adjuvant and exhibited excellent prophylactic efficacy in the B16F10-OVA tumor model. Moreover, in combination with antiprogrammed cell death protein-ligand 1 (anti-PD-L1), the C-25/OVA257-280 nanovaccine could significantly delay the growth of pre-existing tumors. Therefore, this work developed a minimalist nanovaccine with a simple formulation and high efficiency in activating tumor-specific immune responses, showing great potential for further application in cancer immunotherapy.
Collapse
Affiliation(s)
- Le Niu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yu Miao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhiqin Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ting Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jiafei Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Maoyi Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Boxiong Bai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Nanhui Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Feng Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Cheng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
MacNabb BW, Kline J. MHC cross-dressing in antigen presentation. Adv Immunol 2023; 159:115-147. [PMID: 37996206 DOI: 10.1016/bs.ai.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Dendritic cells (DCs) orchestrate T cell responses by presenting antigenic peptides on major histocompatibility complex (MHC) and providing costimulation and other instructive signals. Professional antigen presenting cells (APCs), including DCs, are uniquely capable of generating and presenting peptide antigens derived from exogenous proteins. In addition to these canonical cross-presentation and MHC-II presentation pathways, APCs can also display exogenous peptide/MHC (p/MHC) acquired from neighboring cells and extracellular vesicles (EVs). This process, known as MHC cross-dressing, has been implicated in the regulation of T cell responses in a variety of in vivo contexts, including allogeneic solid organ transplantation, tumors, and viral infection. Although the occurrence of MHC cross-dressing has been clearly demonstrated, the importance of this antigen presentation mechanism continues to be elucidated. The contribution of MHC cross-dressing to overall antigen presentation has been obfuscated by the fact that DCs express the same MHC alleles as all other cells in the host, making it difficult to distinguish p/MHC generated within the DC from p/MHC acquired from another cell. As a result, much of what is known about MHC cross-dressing comes from studies using allogeneic organ transplantation and bone marrow chimeric mice, though recent development of mice bearing conditional knockout MHC and β2-microglobulin alleles should facilitate substantial progress in the coming years. In this review, we highlight recent advances in our understanding of MHC cross-dressing and its role in activating T cell responses in various contexts, as well as the experimental insights into the mechanism by which it occurs.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| | - Justin Kline
- Department of Medicine, Committee on Immunology, and Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
12
|
Li X, Duan Z, Li Z, Gu L, Li Y, Gong Q, Gu Z, Luo K. Dendritic polymer-functionalized nanomedicine potentiates immunotherapy via lethal energy crisis-induced PD-L1 degradation. Biomaterials 2023; 302:122294. [PMID: 37657175 DOI: 10.1016/j.biomaterials.2023.122294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
The advent of immune checkpoint inhibitors ushers in a new era of anti-tumor immunity. However, current clinical anti-PD-L1 antibodies only interdict PD-L1 on the membrane, which cannot diminish the complex cancer-promoting effects of intracellular PD-L1. Therefore, directly reducing the PD-L1 abundance of cancer cells might be a potential PD-L1 inhibitory strategy to circumvent the issues of current anti-PD-L1 antibodies. Herein, we develop a dendritic polymer-functionalized nanomedicine with a potent cellular energy depletion effect on colon cancer cells. Treatment with the nanomedicine significantly promotes phosphorylation of AMPK, which in turn leads to PD-L1 degradation and eventual T cell activation. Meanwhile, the nanomedicine can potently induce immunogenic cell death (ICD) to enhance the anti-cancer immunity. Moreover, the combination of the nanomedicine with PD-1 blockade further enhances the activity of cytotoxic T lymphocytes, and dramatically inhibits tumor growth in vivo without distinct side effects. Overall, this study provides a promising nanoplatform to induce lethal energy crisis and ICD, and suppress PD-L1 expression, thus potentiating cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| |
Collapse
|
13
|
Tondeur EG, Voerman JS, Geleijnse MA, van Hofwegen LS, van Krimpen A, Koerner J, Mishra G, Song Z, Schliehe C. Sec22b and Stx4 Depletion Has No Major Effect on Cross-Presentation of PLGA Microsphere-Encapsulated Antigen and a Synthetic Long Peptide In Vitro. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1203-1215. [PMID: 37638825 PMCID: PMC10592162 DOI: 10.4049/jimmunol.2200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The induction of CTL responses by vaccines is important to combat infectious diseases and cancer. Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres and synthetic long peptides are efficiently internalized by professional APCs and prime CTL responses after cross-presentation of Ags on MHC class I molecules. Specifically, they mainly use the cytosolic pathway of cross-presentation that requires endosomal escape, proteasomal processing, and subsequent MHC class I loading of Ags in the endoplasmic reticulum (ER) and/or the endosome. The vesicle SNARE protein Sec22b has been described as important for this pathway by mediating vesical trafficking for the delivery of ER-derived proteins to the endosome. As this function has also been challenged, we investigated the role of Sec22b in cross-presentation of the PLGA microsphere-encapsulated model Ag OVA and a related synthetic long peptide. Using CRISPR/Cas9-mediated genome editing, we generated Sec22b knockouts in two murine C57BL/6-derived APC lines and found no evidence for an essential role of Sec22b. Although pending experimental evidence, the target SNARE protein syntaxin 4 (Stx4) has been suggested to promote cross-presentation by interacting with Sec22b for the fusion of ER-derived vesicles with the endosome. In the current study, we show that, similar to Sec22b, Stx4 knockout in murine APCs had very limited effects on cross-presentation under the conditions tested. This study contributes to characterizing cross-presentation of two promising Ag delivery systems and adds to the discussion about the role of Sec22b/Stx4 in related pathways. Our data point toward SNARE protein redundancy in the cytosolic pathway of cross-presentation.
Collapse
Affiliation(s)
- Emma G.M. Tondeur
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jane S.A. Voerman
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mitchell A.A. Geleijnse
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laure S. van Hofwegen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anneloes van Krimpen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gunja Mishra
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ziye Song
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christopher Schliehe
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
15
|
Olson E, Raghavan M. Major histocompatibility complex class I assembly within endolysosomal pathways. Curr Opin Immunol 2023; 84:102356. [PMID: 37379719 PMCID: PMC11759227 DOI: 10.1016/j.coi.2023.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
Major histocompatibility complex class I (MHC class I) molecules facilitate subcellular immune surveillance by presenting peptides on the cell surface. MHC class I assembly with peptides generally happens in the endoplasmic reticulum (ER). Peptides are processed in the cytosol, transported into the ER, and assembled with MHC class I heavy and light chains. However, as many pathogens reside within multiple subcellular organelles, peptide sampling across non-cytosolic compartments is also important. MHC class I molecules internalize from the cell surface into endosomes and constitutively traffic between endosomes and the cell surface. Within endosomes, MHC class I molecules assemble with both exogenous and endogenous antigens processed within these compartments. Human MHC classI polymorphisms, well known to affect ER assembly modes, also influence endosomal assembly outcomes, an area of current interest to the field.
Collapse
Affiliation(s)
- Eli Olson
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Graduate Program In Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Ohara RA, Murphy KM. Recent progress in type 1 classical dendritic cell cross-presentation - cytosolic, vacuolar, or both? Curr Opin Immunol 2023; 83:102350. [PMID: 37276818 PMCID: PMC12013855 DOI: 10.1016/j.coi.2023.102350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Type 1 classical dendritic cells (cDC1s) have emerged as the major antigen-presenting cell performing cross-presentation (XP) in vivo, but the antigen-processing pathway in this cell remains obscure. Two competing models for in vivo XP of cell-associated antigens by cDC1 include a vacuolar pathway and cytosolic pathway. A vacuolar pathway relies on directing antigens captured in vesicles toward a class I major histocompatibility complex loading compartment independently of cytosolic entry. Alternate proposals invoke phagosomal rupture, either constitutive or triggered by spleen tyrosine kinase (SYK) signaling in response to C-type lectin domain family 9 member A (CLEC9A) engagement, that releases antigens into the cytosol for proteasomal degradation. The Beige and Chediak-Higashi (BEACH) protein WD repeat- and FYVE domain-containing protein 4 (WDFY4) is strictly required for XP of cell-associated antigens in vivo. However, the cellular mechanism for WDFY4 activity remains unknown and its requirement in XP in vivo is currently indifferent regarding the vacuolar versus cytosolic pathways. Here, we review the current status of these models and discuss the need for future investigation.
Collapse
Affiliation(s)
- Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
García-Ferreras R, Osuna-Pérez J, Ramírez-Santiago G, Méndez-Pérez A, Acosta-Moreno AM, Del Campo L, Gómez-Sánchez MJ, Iborra M, Herrero-Fernández B, González-Granado JM, Sánchez-Madrid F, Carrasco YR, Boya P, Martínez-Martín N, Veiga E. Bacteria-instructed B cells cross-prime naïve CD8 + T cells triggering effective cytotoxic responses. EMBO Rep 2023:e56131. [PMID: 37184882 DOI: 10.15252/embr.202256131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
In addition to triggering humoral responses, conventional B cells have been described in vitro to cross-present exogenous antigens activating naïve CD8+ T cells. Nevertheless, the way B cells capture these exogenous antigens and the physiological roles of B cell-mediated cross-presentation remain poorly explored. Here, we show that B cells capture bacteria by trans-phagocytosis from previously infected dendritic cells (DC) when they are in close contact. Bacterial encounter "instructs" the B cells to acquire antigen cross-presentation abilities, in a process that involves autophagy. Bacteria-instructed B cells, henceforth referred to as BacB cells, rapidly degrade phagocytosed bacteria, process bacterial antigens and cross-prime naïve CD8+ T cells which differentiate into specific cytotoxic cells that efficiently control bacterial infections. Moreover, a proof-of-concept experiment shows that BacB cells that have captured bacteria expressing tumor antigens could be useful as novel cellular immunotherapies against cancer.
Collapse
Affiliation(s)
- Raquel García-Ferreras
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Jesús Osuna-Pérez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Guillermo Ramírez-Santiago
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Almudena Méndez-Pérez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Andrés M Acosta-Moreno
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Lara Del Campo
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Departamento de Biología Celular, Facultad de Odontología, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Gómez-Sánchez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Department of Immunology, School of Medicine, Complutense University of Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Marta Iborra
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Beatriz Herrero-Fernández
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José M González-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology & Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Patricia Boya
- Department of Neuroscience, University of Fribourg, Fribourg, Switzerland
| | | | - Esteban Veiga
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
18
|
Yee Mon KJ, Blander JM. TAP-ing into the cross-presentation secrets of dendritic cells. Curr Opin Immunol 2023; 83:102327. [PMID: 37116384 DOI: 10.1016/j.coi.2023.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/30/2023]
Abstract
Viral blockade of the transporter associated with antigen processing (TAP) diminishes surface and endosomal recycling compartment levels of major histocompatibility complex class-I (MHC-I) in dendritic cells (DCs), and compromises both classical MHC-I presentation and canonical cross-presentation during infection to impair CD8 T-cell immunity. Virus-specific CD8 T cells are thought to be cross-primed mostly by uninfected TAP-sufficient DCs through cross-presentation of viral peptides from internalized virus-infected dying cells. The dilemma is that CD8 T cells primed to TAP-dependent viral peptides are mismatched to the TAP-independent epitopes presented on tissues infected with immune-evasive viruses. Noncanonical cross-presentation in DCs overcomes cell-intrinsic TAP blockade to nevertheless prime protective TAP-independent CD8 T cells best-matched against the infection. Exploitation of noncanonical cross-presentation may prevent chronic infections with immune-evasive viruses. It may also control immune-evasive cancers that have downmodulated TAP expression.
Collapse
Affiliation(s)
- Kristel Joy Yee Mon
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, USA; Department of Microbiology and Immunology, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
19
|
Cruz FM, Chan A, Rock KL. Pathways of MHC I cross-presentation of exogenous antigens. Semin Immunol 2023; 66:101729. [PMID: 36804685 PMCID: PMC10023513 DOI: 10.1016/j.smim.2023.101729] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Phagocytes, particularly dendritic cells (DCs), generate peptide-major histocompatibility complex (MHC) I complexes from antigens they have collected from cells in tissues and report this information to CD8 T cells in a process called cross-presentation. This process allows CD8 T cells to detect, respond and eliminate abnormal cells, such as cancers or cells infected with viruses or intracellular microbes. In some settings, cross-presentation can help tolerize CD8 T cells to self-antigens. One of the principal ways that DCs acquire tissue antigens is by ingesting this material through phagocytosis. The resulting phagosomes are key hubs in the cross-presentation (XPT) process and in fact experimentally conferring the ability to phagocytize antigens can be sufficient to allow non-professional antigen presenting cells (APCs) to cross-present. Once in phagosomes, exogenous antigens can be cross-presented (XPTed) through three distinct pathways. There is a vacuolar pathway in which peptides are generated and then bind to MHC I molecules within the confines of the vacuole. Ingested exogenous antigens can also be exported from phagosomes to the cytosol upon vesicular rupture and/or possibly transport. Once in the cytosol, the antigen is degraded by the proteasome and the resulting oligopeptides can be transported to MHC I molecule in the endoplasmic reticulum (ER) (a phagosome-to-cytosol (P2C) pathway) or in phagosomes (a phagosome-to-cytosol-to-phagosome (P2C2P) pathway). Here we review how phagosomes acquire the necessary molecular components that support these three mechanisms and the contribution of these pathways. We describe what is known as well as the gaps in our understanding of these processes.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amanda Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
20
|
Ohara RA, Murphy KM. The evolving biology of cross-presentation. Semin Immunol 2023; 66:101711. [PMID: 36645993 PMCID: PMC10931539 DOI: 10.1016/j.smim.2023.101711] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Cross-priming was first recognized in the context of in vivo cytotoxic T lymphocyte (CTL) responses generated against minor histocompatibility antigens induced by immunization with lymphoid cells. Even though the basis for T cell antigen recognition was still largely unclear at that time, these early studies recognized the implication that such minor histocompatibility antigens were derived from the immunizing cells and were obtained exogenously by the host's antigen presenting cells (APCs) that directly prime the CTL response. As antigen recognition by the T cell receptor became understood to involve peptides derived from antigens processed by the APCs and presented by major histocompatibility molecules, the "cross-priming" phenomenon was subsequently recast as "cross-presentation" and the scope considered for examining this process gradually broadened to include many different forms of antigens, including soluble proteins, and different types of APCs that may not be involved in in vivo CTL priming. Many studies of cross-presentation have relied on in vitro cell models that were recently found to differ from in vivo APCs in particular mechanistic details. A recent trend has focused on the APCs and pathways of cross-presentation used in vivo, especially the type 1 dendritic cells. Current efforts are also being directed towards validating the in vivo role of various putative pathways and gene candidates in cross-presentation garnered from various in vitro studies and to determine the relative contributions they make to CTL responses across various forms of antigens and immunologic settings. Thus, cross-presentation appears to be carried by different pathways in various types of cells for different forms under different physiologic settings, which remain to be evaluated in an in vivo physiologic setting.
Collapse
Affiliation(s)
- Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Blander JM. Different routes of MHC-I delivery to phagosomes and their consequences to CD8 T cell immunity. Semin Immunol 2023; 66:101713. [PMID: 36706521 PMCID: PMC10023361 DOI: 10.1016/j.smim.2023.101713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023]
Abstract
Dendritic cells (DCs) present internalized antigens to CD8 T cells through cross-presentation by major histocompatibility complex class I (MHC-I) molecules. While conventional cDC1 excel at cross-presentation, cDC2 can be licensed to cross-present during infection by signals from inflammatory receptors, most prominently Toll-like receptors (TLRs). At the core of the regulation of cross-presentation by TLRs is the control of subcellular MHC-I traffic. Within DCs, MHC-I are enriched within endosomal recycling compartments (ERC) and traffic to microbe-carrying phagosomes under the control of phagosome-compartmentalized TLR signals to favor CD8 T cell cross-priming to microbial antigens. Viral blockade of the transporter associated with antigen processing (TAP), known to inhibit the classic MHC-I presentation of cytoplasmic protein-derived peptides, depletes the ERC stores of MHC-I to simultaneously also block TLR-regulated cross-presentation. DCs counter this impairment in the two major pathways of MHC-I presentation to CD8 T cells by mobilizing noncanonical cross-presentation, which delivers MHC-I to phagosomes from a new location in the ER-Golgi intermediate compartment (ERGIC) where MHC-I abnormally accumulate upon TAP blockade. Noncanonical cross-presentation thus rescues MHC-I presentation and cross-primes TAP-independent CD8 T cells best-matched against target cells infected with immune evasive viruses. Because noncanonical cross-presentation relies on a phagosome delivery route of MHC-I that is not under TLR control, it risks potential cross-presentation of self-antigens during infection. Here I review these findings to illustrate how the subcellular route of MHC-I to phagosomes critically impacts the regulation of cross-presentation and the nature of the CD8 T cell response to infection and cancer. I highlight important and novel implications to CD8 T cell vaccines and immunotherapy.
Collapse
Affiliation(s)
- J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, USA; Joan and Sanford I. Weill Department of Medicine, USA; Department of Microbiology and Immunology, USA; Sandra and Edward Meyer Cancer Center, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
22
|
Zagorulya M, Spranger S. Once upon a prime: DCs shape cancer immunity. Trends Cancer 2023; 9:172-184. [PMID: 36357313 PMCID: PMC10827483 DOI: 10.1016/j.trecan.2022.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Cytotoxic CD8+ T cells are potent killers of diseased cells, but their functional capacity is often compromised in cancer. The quality of antitumor T cell immunity is determined during T cell priming in the lymph node and further influenced by the local microenvironment of the tumor. Increasing evidence indicates that dendritic cells (DCs) have the capacity to precisely regulate the functional quality of antitumor T cell responses in both locations. In this review, we discuss recent advances in our understanding of how distinct DC-derived signals influence CD8+ T cell differentiation and antitumor functions. Insight into the mechanisms of DC-mediated regulation of antitumor immunity could inspire the development of improved approaches to prevent and reverse T cell dysfunction in cancer.
Collapse
Affiliation(s)
- Maria Zagorulya
- Department of Biology, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Stefani Spranger
- Department of Biology, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Ludwig Center at MIT's Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Donnelly RP. Cytokines 2022: 10th Annual Meeting of the International Cytokine & Interferon Society. J Interferon Cytokine Res 2023; 43:55-58. [PMID: 36695718 DOI: 10.1089/jir.2022.29050.rad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Raymond P Donnelly
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
24
|
Xiao Q, Xia Y. Insights into dendritic cell maturation during infection with application of advanced imaging techniques. Front Cell Infect Microbiol 2023; 13:1140765. [PMID: 36936763 PMCID: PMC10018208 DOI: 10.3389/fcimb.2023.1140765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Dendritic cells (DCs) are crucial for the initiation and regulation of adaptive immune responses. When encountering immune stimulus such as bacterial and viral infection, parasite invasion and dead cell debris, DCs capture antigens, mature, acquire immunostimulatory activity and transmit the immune information to naïve T cells. Then activated cytotoxic CD8+ T cells directly kill the infected cells, while CD4+ T helper cells release cytokines to aid the activity of other immune cells, and help B cells produce antibodies. Thus, detailed insights into the DC maturation process are necessary for us to understand the working principle of immune system, and develop new medical treatments for infection, cancer and autoimmune disease. This review summarizes the DC maturation process, including environment sensing and antigen sampling by resting DCs, antigen processing and presentation on the cell surface, DC migration, DC-T cell interaction and T cell activation. Application of advanced imaging modalities allows visualization of subcellular and molecular processes in a super-high resolution. The spatiotemporal tracking of DCs position and migration reveals dynamics of DC behavior during infection, shedding novel lights on DC biology.
Collapse
Affiliation(s)
- Qi Xiao
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China
- *Correspondence: Qi Xiao,
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
25
|
Lee W, Suresh M. Vaccine adjuvants to engage the cross-presentation pathway. Front Immunol 2022; 13:940047. [PMID: 35979365 PMCID: PMC9376467 DOI: 10.3389/fimmu.2022.940047] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Adjuvants are indispensable components of vaccines for stimulating optimal immune responses to non-replicating, inactivated and subunit antigens. Eliciting balanced humoral and T cell-mediated immunity is paramount to defend against diseases caused by complex intracellular pathogens, such as tuberculosis, malaria, and AIDS. However, currently used vaccines elicit strong antibody responses, but poorly stimulate CD8 cytotoxic T lymphocyte (CTL) responses. To elicit potent CTL memory, vaccines need to engage the cross-presentation pathway, and this requirement has been a crucial bottleneck in the development of subunit vaccines that engender effective T cell immunity. In this review, we focus on recent insights into DC cross-presentation and the extent to which clinically relevant vaccine adjuvants, such as aluminum-based nanoparticles, water-in oil emulsion (MF59) adjuvants, saponin-based adjuvants, and Toll-like receptor (TLR) ligands modulate DC cross-presentation efficiency. Further, we discuss the feasibility of using carbomer-based adjuvants as next generation of adjuvant platforms to elicit balanced antibody- and T-cell based immunity. Understanding of the molecular mechanism of DC cross-presentation and the mode of action of adjuvants will pave the way for rational design of vaccines for infectious diseases and cancer that require balanced antibody- and T cell-based immunity.
Collapse
|
26
|
Patil ND, Domingues O, Masquelier C, Theresine M, Schlienger O, Njinju Amin Asaba C, Thomas M, Seguin-Devaux C, Slevogt H, Ollert M, Zimmer J. Imprint of Initial Education and Loss of Ly49C/I in Activated Natural Killer Cells of TAP1-KO and C57BL/6 Wildtype Mice. Front Immunol 2022; 13:818015. [PMID: 35911713 PMCID: PMC9329629 DOI: 10.3389/fimmu.2022.818015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are important effectors of the innate immune system and participate in the first line of defense against infections and tumors. Prior to being functional, these lymphocytes must be educated or licensed through interactions of their major histocompatibility complex class I molecules with self-specific inhibitory receptors that recognize them. In the absence of such contacts, caused by either the lack of expression of the inhibitory receptors or a very low level of major histocompatibility complex class I (MHC class I) proteins, NK cells are hypo-reactive at baseline (ex vivo). After stimulation (assessed through plate-bound antibodies against activating receptors or culture in the presence of cytokines such as interleukin (IL)-2 or IL-15) however, they can become cytotoxic and produce cytokines. This is particularly the case in transporter associated with antigen processing (TAP)-deficient mice, which we investigated in the present study. Transporter associated with antigen processing transports endogenous peptides from the cytosol to the endoplasmic reticulum, where they are loaded on nascent MHC class I molecules, which then become stable and expressed at the cell surface. Consequently, TAP-KO mice have very low levels of MHC class I expression. We present a study about phenotypic and functional aspects of NK cells in two mouse strains, C57BL/6 wildtype and TAP1-KO in spleen and lung. We observed that in both types of mice, on the same genetic background, the initial pattern of education, conferred to the cells via the inhibitory receptors Ly49C/I and NKG2A, was maintained even after a strong stimulation by the cytokines interleukin-2, interleukin-12, interleukin-15 and interleukin-18. Furthermore, the percentages of activated NK cells expressing Ly49C/I and Ly49I were strongly down-modulated under these conditions. We completed our investigations with phenotypic studies of NK cells from these mice.
Collapse
Affiliation(s)
- Neha D. Patil
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Doctoral School in Systems and Molecular Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Cécile Masquelier
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Maud Theresine
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Oceane Schlienger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Clinton Njinju Amin Asaba
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Marine Thomas
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Hortense Slevogt
- Centre for Innovation Competence (ZIK) Septomics, Host Septomics, Jena University Hospital, Jena, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- *Correspondence: Jacques Zimmer,
| |
Collapse
|
27
|
Wang L, Sun X, He J, Liu Z. Identification and Validation of Prognostic Related Hallmark ATP-Binding Cassette Transporters Associated With Immune Cell Infiltration Patterns in Thyroid Carcinoma. Front Oncol 2022; 12:781686. [PMID: 35837087 PMCID: PMC9273952 DOI: 10.3389/fonc.2022.781686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are a large superfamily of membrane proteins that facilitate the translocation of heterogeneous substrates. Studies indicate that ABC transporters may play important roles in various carcinomas. However, the correlation between ABC transporters and immunomodulation in thyroid carcinoma (TC), as well as the prognoses for this disease, is poorly understood.TC data from The Cancer Genome Atlas (TCGA) database were used to identify prognostic hallmark ABC transporters associated with immune cell infiltration patterns via multiple bioinformatic analyses. Thereafter, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the expression of these selected hallmark ABC transporters in both TC and para-cancerous thyroid tissues. Of a total of 49 ABC transporters, five (ABCA8, ABCA12, ABCB6, ABCB8, and ABCC10) were identified as hallmark ABC transporters. All five were differentially expressed in TC and associated with the relapse-free survival rates of patients with TC. Immunoregulation by these five hallmark ABC transporters involved the modulation of various aspects of immune cell infiltration, such as hot or cold tumor subsets and the abundances of infiltrating immune cells, as well as specific immunomodulators and chemokines. Besides the diverse significantly correlated factors, the five hallmark ABC transporters and correlated genes were most highly enriched in plasma membrane, transporter activity, and transmembrane transport of small molecules. In addition, many chemicals, namely bisphenol A and vincristine, affected the expression of these five transporters. The qRT-PCR results of collected TC and para-cancerous thyroid tissues were consistent with those of TCGA. The findings in this study may reveal the role played by these five hallmark ABC transporters in regulating immune cell infiltration patterns in TC as well as the molecular mechanisms underlying their functions, leading to a better understanding of their potential prognostic and immunotherapeutic values.
Collapse
Affiliation(s)
- Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Sun
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, China
- Department of 1st Gynecologic Oncology Surgery, Jilin Cancer Hospital, Changchun, China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhen Liu,
| |
Collapse
|
28
|
Torres A, Vivanco S, Lavín F, Pereda C, Chernobrovkin A, Gleisner A, Alcota M, Larrondo M, López MN, Salazar-Onfray F, Zubarev RA, González FE. Haptoglobin Induces a Specific Proteomic Profile and a Mature-Associated Phenotype on Primary Human Monocyte-Derived Dendritic Cells. Int J Mol Sci 2022; 23:ijms23136882. [PMID: 35805888 PMCID: PMC9266681 DOI: 10.3390/ijms23136882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) play a critical role in dendritic cells (DCs) ability to trigger a specific and efficient adaptive immune response for different physiological and pathological scenarios. We have previously identified constitutive DAMPs (HMGB1 and Calreticulin) as well as new putative inducible DAMPs such as Haptoglobin (HP), from a therapeutically used heat shock-conditioned melanoma cell lysate (called TRIMEL). Remarkably, HP was shown to be the most abundant protein in the proteomic profile of heat shock-conditioned TRIMEL samples. However, its relative contribution to the observed DCs phenotype has not been fully elucidated. Human DCs were generated from monocytes isolated from PBMC of melanoma patients and healthy donors. DC lineage was induced with rhIL-4 and rhGM-CSF. After additional stimulation with HP, the proteome of these HP-stimulated cells was characterized. In addition, DCs were phenotypically characterized by flow cytometry for canonical maturation markers and cytokine production. Finally, in vitro transmigration capacity was assessed using Transwell plates. Our results showed that the stimulation with HP was associated with the presence of exclusive and higher relative abundance of specific immune-; energy production-; lipid biosynthesis-; and DAMPs-related proteins. Importantly, HP stimulation enhanced the expression of specific DC maturation markers and pro-inflammatory and Th1-associated cytokines, and an in vitro transmigration of primary human DCs. Taken together, these data suggest that HP can be considered as a new inducible DAMP with an important role in in vitro DC activation for cancer immunotherapy.
Collapse
Affiliation(s)
- Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
| | - Sheilah Vivanco
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
| | - Francisca Lavín
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
| | - Cristián Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
| | - Alexey Chernobrovkin
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE17177 Stockholm, Sweden; (A.C.); (R.A.Z.)
| | - Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
| | - Marcela Alcota
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
| | - Milton Larrondo
- Blood Bank Service, University of Chile Clinical Hospital, Santiago 8380453, Chile;
| | - Mercedes N. López
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Roman A. Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE17177 Stockholm, Sweden; (A.C.); (R.A.Z.)
| | - Fermín E. González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: ; Tel.: +56-2-29781714
| |
Collapse
|
29
|
Kawasaki T, Ikegawa M, Kawai T. Antigen Presentation in the Lung. Front Immunol 2022; 13:860915. [PMID: 35615351 PMCID: PMC9124800 DOI: 10.3389/fimmu.2022.860915] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
The lungs are constantly exposed to environmental and infectious agents such as dust, viruses, fungi, and bacteria that invade the lungs upon breathing. The lungs are equipped with an immune defense mechanism that involves a wide variety of immunological cells to eliminate these agents. Various types of dendritic cells (DCs) and macrophages (MACs) function as professional antigen-presenting cells (APCs) that engulf pathogens through endocytosis or phagocytosis and degrade proteins derived from them into peptide fragments. During this process, DCs and MACs present the peptides on their major histocompatibility complex class I (MHC-I) or MHC-II protein complex to naïve CD8+ or CD4+ T cells, respectively. In addition to these cells, recent evidence supports that antigen-specific effector and memory T cells are activated by other lung cells such as endothelial cells, epithelial cells, and monocytes through antigen presentation. In this review, we summarize the molecular mechanisms of antigen presentation by APCs in the lungs and their contribution to immune response.
Collapse
Affiliation(s)
| | | | - Taro Kawai
- *Correspondence: Takumi Kawasaki, ; Taro Kawai,
| |
Collapse
|
30
|
Pishesha N, Harmand TJ, Ploegh HL. A guide to antigen processing and presentation. Nat Rev Immunol 2022; 22:751-764. [PMID: 35418563 DOI: 10.1038/s41577-022-00707-2] [Citation(s) in RCA: 343] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Antigen processing and presentation are the cornerstones of adaptive immunity. B cells cannot generate high-affinity antibodies without T cell help. CD4+ T cells, which provide such help, use antigen-specific receptors that recognize major histocompatibility complex (MHC) molecules in complex with peptide cargo. Similarly, eradication of virus-infected cells often depends on cytotoxic CD8+ T cells, which rely on the recognition of peptide-MHC complexes for their action. The two major classes of glycoproteins entrusted with antigen presentation are the MHC class I and class II molecules, which present antigenic peptides to CD8+ T cells and CD4+ T cells, respectively. This Review describes the essentials of antigen processing and presentation. These pathways are divided into six discrete steps that allow a comparison of the various means by which antigens destined for presentation are acquired and how the source proteins for these antigens are tagged for degradation, destroyed and ultimately displayed as peptides in complex with MHC molecules for T cell recognition.
Collapse
Affiliation(s)
- Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Society of Fellows, Harvard University, Cambridge, MA, USA.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Schirrmacher V. Molecular Mechanisms of Anti-Neoplastic and Immune Stimulatory Properties of Oncolytic Newcastle Disease Virus. Biomedicines 2022; 10:562. [PMID: 35327364 PMCID: PMC8945571 DOI: 10.3390/biomedicines10030562] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 12/25/2022] Open
Abstract
Oncolytic viruses represent interesting anti-cancer agents with high tumor selectivity and immune stimulatory potential. The present review provides an update of the molecular mechanisms of the anti-neoplastic and immune stimulatory properties of the avian paramyxovirus, Newcastle Disease Virus (NDV). The anti-neoplastic activities of NDV include (i) the endocytic targeting of the GTPase Rac1 in Ras-transformed human tumorigenic cells; (ii) the switch from cellular protein to viral protein synthesis and the induction of autophagy mediated by viral nucleoprotein NP; (iii) the virus replication mediated by viral RNA polymerase (large protein (L), associated with phosphoprotein (P)); (iv) the facilitation of NDV spread in tumors via the membrane budding of the virus progeny with the help of matrix protein (M) and fusion protein (F); and (v) the oncolysis via apoptosis, necroptosis, pyroptosis, or ferroptosis associated with immunogenic cell death. A special property of this oncolytic virus consists of its potential for breaking therapy resistance in human cancer cells. Eight examples of this important property are presented and explained. In healthy human cells, NDV infection activates the RIG-MAVs immune signaling pathway and establishes an anti-viral state based on a strong and uninhibited interferon α,ß response. The review also describes the molecular determinants and mechanisms of the NDV-mediated immune stimulatory effects, in which the viral hemagglutinin-neuraminidase (HN) protein plays a prominent role. The six viral proteins provide oncolytic NDV with a special profile in the treatment of cancer.
Collapse
|
32
|
Bošnjak B, Do KTH, Förster R, Hammerschmidt SI. Imaging dendritic cell functions. Immunol Rev 2021; 306:137-163. [PMID: 34859450 DOI: 10.1111/imr.13050] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155) Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | | |
Collapse
|