1
|
Streit M, Budiarta M, Jungblut M, Beliu G. Fluorescent labeling strategies for molecular bioimaging. BIOPHYSICAL REPORTS 2025; 5:100200. [PMID: 39947326 PMCID: PMC11914189 DOI: 10.1016/j.bpr.2025.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Super-resolution microscopy (SRM) has transformed biological imaging by circumventing the diffraction limit of light and enabling the visualization of cellular structures and processes at the molecular level. Central to the capabilities of SRM is fluorescent labeling, which ensures the precise attachment of fluorophores to biomolecules and has direct impact on the accuracy and resolution of imaging. Continuous innovation and optimization in fluorescent labeling are essential for the successful application of SRM in cutting-edge biological research. In this review, we discuss recent advances in fluorescent labeling strategies for molecular bioimaging, with a special focus on protein labeling. We compare different approaches, highlight technological breakthroughs, and address challenges such as linkage error and labeling density. By evaluating both established and emerging methods, we aim to guide researchers through all aspects that should be considered before opting for any labeling technique.
Collapse
Affiliation(s)
- Marcel Streit
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Made Budiarta
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Marvin Jungblut
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Gerti Beliu
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
2
|
Mazzella L, Mangeat T, Giroussens G, Rogez B, Li H, Creff J, Saadaoui M, Martins C, Bouzignac R, Labouesse S, Idier J, Galland F, Allain M, Sentenac A, LeGoff L. Extended-depth of field random illumination microscopy, EDF-RIM, provides super-resolved projective imaging. LIGHT, SCIENCE & APPLICATIONS 2024; 13:285. [PMID: 39384765 PMCID: PMC11479626 DOI: 10.1038/s41377-024-01612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
The ultimate aim of fluorescence microscopy is to achieve high-resolution imaging of increasingly larger biological samples. Extended depth of field presents a potential solution to accelerate imaging of large samples when compression of information along the optical axis is not detrimental to the interpretation of images. We have implemented an extended depth of field (EDF) approach in a random illumination microscope (RIM). RIM uses multiple speckled illuminations and variance data processing to double the resolution. It is particularly adapted to the imaging of thick samples as it does not require the knowledge of illumination patterns. We demonstrate highly-resolved projective images of biological tissues and cells. Compared to a sequential scan of the imaged volume with conventional 2D-RIM, EDF-RIM allows an order of magnitude improvement in speed and light dose reduction, with comparable resolution. As the axial information is lost in an EDF modality, we propose a method to retrieve the sample topography for samples that are organized in cell sheets.
Collapse
Affiliation(s)
- Lorry Mazzella
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Guillaume Giroussens
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Benoit Rogez
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Hao Li
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Justine Creff
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Mehdi Saadaoui
- Aix Marseille University, CNRS, IBDM UMR7288, Turing Centre for Living Systems, Marseille, France
| | - Carla Martins
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Ronan Bouzignac
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Simon Labouesse
- LITC Core Facility, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Jérome Idier
- LS2N, CNRS UMR 6004, F44321, Nantes Cedex 3, France
| | - Frédéric Galland
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Marc Allain
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Anne Sentenac
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France.
| | - Loïc LeGoff
- Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
3
|
Zhao X, Chen H, Cui Y, Zhang X, Hao R. Dual-Mode Imaging of Dynamic Interaction between Bubbles and Single Nanoplates during the Electrocatalytic Hydrogen Evolution Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400273. [PMID: 38552218 DOI: 10.1002/smll.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Indexed: 08/17/2024]
Abstract
Gas bubble formation at electrochemical interfaces can significantly affect the efficiency and durability of electrocatalysts. However, obtaining comprehensive details on bubble evolution dynamics, particularly their dynamic interaction with high-performance structured electrocatalysts, poses a considerable challenge. Herein, dual-mode interference/total internal reflection fluorescence microscopy is introduced, which allows for the simultaneous capture of the evolution pathway of bubbles and the 3D motion of nanoplate electrocatalysts, providing high-resolution and accurate spatiotemporal information. During the hydrogen evolution reaction, the dynamics of hydrogen bubble generation and their interactions with single nanoplate electrocatalysts at the electrochemical interface are observed. The results unveiled that, under constant potential, bubbles initially manifest as fast-moving nanobubbles, transforming into stationary microbubbles subsequently. The morphology of stationary nanoplates regulates the trajectories of these moving nanobubbles while the pinned microbubbles induce the motion of the electrocatalysts. The dual-mode microscopy can be employed to scrutinize numerous multiphase electrochemical interactions with high spatiotemporal resolution, which can facilitate the rational design of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Houkai Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Cui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Qiao C, Zeng Y, Meng Q, Chen X, Chen H, Jiang T, Wei R, Guo J, Fu W, Lu H, Li D, Wang Y, Qiao H, Wu J, Li D, Dai Q. Zero-shot learning enables instant denoising and super-resolution in optical fluorescence microscopy. Nat Commun 2024; 15:4180. [PMID: 38755148 PMCID: PMC11099110 DOI: 10.1038/s41467-024-48575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Computational super-resolution methods, including conventional analytical algorithms and deep learning models, have substantially improved optical microscopy. Among them, supervised deep neural networks have demonstrated outstanding performance, however, demanding abundant high-quality training data, which are laborious and even impractical to acquire due to the high dynamics of living cells. Here, we develop zero-shot deconvolution networks (ZS-DeconvNet) that instantly enhance the resolution of microscope images by more than 1.5-fold over the diffraction limit with 10-fold lower fluorescence than ordinary super-resolution imaging conditions, in an unsupervised manner without the need for either ground truths or additional data acquisition. We demonstrate the versatile applicability of ZS-DeconvNet on multiple imaging modalities, including total internal reflection fluorescence microscopy, three-dimensional wide-field microscopy, confocal microscopy, two-photon microscopy, lattice light-sheet microscopy, and multimodal structured illumination microscopy, which enables multi-color, long-term, super-resolution 2D/3D imaging of subcellular bioprocesses from mitotic single cells to multicellular embryos of mouse and C. elegans.
Collapse
Affiliation(s)
- Chang Qiao
- Department of Automation, Tsinghua University, 100084, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography, Tsinghua University, 100084, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, 100010, Beijing, China
| | - Yunmin Zeng
- Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Quan Meng
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xingye Chen
- Department of Automation, Tsinghua University, 100084, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography, Tsinghua University, 100084, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, 100010, Beijing, China
- Research Institute for Frontier Science, Beihang University, 100191, Beijing, China
| | - Haoyu Chen
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Jiang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rongfei Wei
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jiabao Guo
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenfeng Fu
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huaide Lu
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Di Li
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yuwang Wang
- Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Hui Qiao
- Department of Automation, Tsinghua University, 100084, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography, Tsinghua University, 100084, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, 100010, Beijing, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, 100084, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography, Tsinghua University, 100084, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, 100010, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, 100084, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China.
- Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography, Tsinghua University, 100084, Beijing, China.
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, 100010, Beijing, China.
| |
Collapse
|
5
|
Han X, Song D, Xu W, Lu L, Zhu A, Long F. CRISPR/Cas12a powered air-displacement enhanced evanescent wave fluorescence fiber-embedded microfluidic biochip for nucleic acid amplification-free detection of Escherichia coli O157:H7. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134037. [PMID: 38521032 DOI: 10.1016/j.jhazmat.2024.134037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Simple yet ultrasensitive and contamination-free quantification of environmental pathogenic bacteria is in high demand. In this study, we present a portable clustered regularly interspaced short palindromic repeats-associated protein 12a (CRISPR/Cas12a) powered Air-displacement enhanced Evanescent wave fluorescence Fiber-embedded microfluidic Biochip (AEFB) for the high-frequency and nucleic acid amplification-free ultrasensitive detection of Escherichia coli O157:H7. The performance of AEFB was dramatically enhanced upon employing a simple air-solution displacement process. Theoretical assays demonstrated that air-solution displacement significantly enhances evanescent wave field intensity on the fiber biosensor surface and increases the V-number in tapered fiber biosensors. Consequently, light-matter interaction is strengthened, and fluorescence coupling and collection efficiency are improved, considerably enhancing sensitivity. By integrating the CRISPR biosensing mechanism, AEFB facilitated rapid, accurate, nucleic acid amplification-free detection of E.coli O157:H7 with polymerase chain reaction (PCR)-level sensitivity (176 cfu/mL). To validate its practicality, AEFB was used to detect E.coli O157:H7 in surface water and wastewater. Comparison with RT-PCR showed a strong linear relationship (R2 = 0.9871), indicating the excellent accuracy and reliability of this technology in real applications. AEFB is highly versatile and can be easily extended to detect other pathogenic bacteria, which will significantly promote the high-frequency assessment and early-warning of bacterial contamination in aquatic environments.
Collapse
Affiliation(s)
- Xiangzhi Han
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Wenjuan Xu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Laiya Lu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Anna Zhu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
6
|
Cao N, Guo R, Song P, Wang S, Liu G, Shi J, Wang L, Li M, Zuo X, Yang X, Fan C, Li M, Zhang Y. DNA Framework-Programmed Nanoscale Enzyme Assemblies. NANO LETTERS 2024; 24:4682-4690. [PMID: 38563501 DOI: 10.1021/acs.nanolett.4c01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Multienzyme assemblies mediated by multivalent interaction play a crucial role in cellular processes. However, the three-dimensional (3D) programming of an enzyme complex with defined enzyme activity in vitro remains unexplored, primarily owing to limitations in precisely controlling the spatial topological configuration. Herein, we introduce a nanoscale 3D enzyme assembly using a tetrahedral DNA framework (TDF), enabling the replication of spatial topological configuration and maintenance of an identical edge-to-edge distance akin to natural enzymes. Our results demonstrate that 3D nanoscale enzyme assemblies in both two-enzyme systems (glucose oxidase (GOx)/horseradish peroxidase (HRP)) and three-enzyme systems (amylglucosidase (AGO)/GOx/HRP) lead to enhanced cascade catalytic activity compared to the low-dimensional structure, resulting in ∼5.9- and ∼7.7-fold enhancements over homogeneous diffusional mixtures of free enzymes, respectively. Furthermore, we demonstrate the enzyme assemblies for the detection of the metabolism biomarkers creatinine and creatine, achieving a low limit of detection, high sensitivity, and broad detection range.
Collapse
Affiliation(s)
- Nan Cao
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiyan Guo
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Ping Song
- State Key Laboratory of Oncogenes and Related Genes School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shaopeng Wang
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Liu
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Min Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiurong Yang
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueyue Zhang
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
7
|
Zhang XW, Qi GX, Liu MX, Yang YF, Wang JH, Yu YL, Chen S. Deep Learning Promotes Profiling of Multiple miRNAs in Single Extracellular Vesicles for Cancer Diagnosis. ACS Sens 2024; 9:1555-1564. [PMID: 38442411 DOI: 10.1021/acssensors.3c02789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Extracellular vesicle microRNAs (EV miRNAs) are critical noninvasive biomarkers for early cancer diagnosis. However, accurate cancer diagnosis based on bulk analysis is hindered by the heterogeneity among EVs. Herein, we report an approach for profiling single-EV multi-miRNA signatures by combining total internal reflection fluorescence (TIRF) imaging with a deep learning (DL) algorithm for the first time. This innovative technique allows for the precise characterization of EV miRNAs at the single-vesicle level, overcoming the challenges posed by EV heterogeneity. TIRF with high resolution and a signal-to-noise ratio can simultaneously detect multi-miRNAs in situ in individual EVs. DL algorithm avoids complicated and inaccurate artificial feature extraction, achieving automated high-resolution image analysis. Using this approach, we reveal that the main variation of EVs from 5 cancer cells and normal plasma is the triple-positive EV subpopulation, and the classification accuracy of single triple-positive EVs from 6 sources can reach above 95%. In the clinical cohort, 20 patients (5 lung cancer, 5 breast cancer, 5 cervical cancer, and 5 colon cancer) and 5 healthy controls are predicted with an overall accuracy of 100%. This single-EV strategy provides new opportunities for exploring more specific EV biomarkers to achieve cancer diagnosis and classification.
Collapse
Affiliation(s)
- Xue-Wei Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Gong-Xiang Qi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Meng-Xian Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yan-Fei Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
8
|
Zhang G, Li X, Zhang Y, Han X, Li X, Yu J, Liu B, Wu J, Yu L, Dai Q. Bio-friendly long-term subcellular dynamic recording by self-supervised image enhancement microscopy. Nat Methods 2023; 20:1957-1970. [PMID: 37957429 PMCID: PMC10703694 DOI: 10.1038/s41592-023-02058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
Fluorescence microscopy has become an indispensable tool for revealing the dynamic regulation of cells and organelles. However, stochastic noise inherently restricts optical interrogation quality and exacerbates observation fidelity when balancing the joint demands of high frame rate, long-term recording and low phototoxicity. Here we propose DeepSeMi, a self-supervised-learning-based denoising framework capable of increasing signal-to-noise ratio by over 12 dB across various conditions. With the introduction of newly designed eccentric blind-spot convolution filters, DeepSeMi effectively denoises images with no loss of spatiotemporal resolution. In combination with confocal microscopy, DeepSeMi allows for recording organelle interactions in four colors at high frame rates across tens of thousands of frames, monitoring migrasomes and retractosomes over a half day, and imaging ultra-phototoxicity-sensitive Dictyostelium cells over thousands of frames. Through comprehensive validations across various samples and instruments, we prove DeepSeMi to be a versatile and biocompatible tool for breaking the shot-noise limit.
Collapse
Affiliation(s)
- Guoxun Zhang
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Xiaopeng Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanlong Zhang
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Xiaofei Han
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Xinyang Li
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jinqiang Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Boqi Liu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
- Shanghai AI Laboratory, Shanghai, China.
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Zhang Y, Asghari P, Scriven DRL, Moore EDW, Chou KC. Structured illumination microscopy with a phase-modulated spinning disk for optical sectioning. OPTICS LETTERS 2023; 48:3933-3936. [PMID: 37527086 DOI: 10.1364/ol.494655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023]
Abstract
Among various super-resolution microscopic techniques, structured illumination microscopy (SIM) stands out for live-cell imaging because of its higher imaging speed. However, conventional SIM lacks optical sectioning capability. Here we demonstrate a new, to the best of our knowledge, approach using a phase-modulated spinning disk (PMSD) that enhances the optical sectioning capability of SIM. The PMSD consists of a pinhole array for confocal imaging and a transparent polymer layer for light phase modulation. The light phase modulation was designed to cancel the zeroth-order diffracted beam and create a sharp lattice illumination pattern using the interference of four first-order diffracted beams. In the detection optical path, the PMSD serves as a spatial filter to physically reject about 80% of the out-of-focus signals, an approach that allows for real-time optical reconstruction of super-resolved images with enhanced contrast. Furthermore, the simplicity of the design makes it easy to upgrade a conventional fluorescence microscope to a PMSD SIM system.
Collapse
|
10
|
Cottrell S, Czerski J, Adams D, Field J, Bartels R, Squier J. Single-shot spatial frequency modulation for imaging. OPTICS EXPRESS 2023; 31:24283-24297. [PMID: 37475259 DOI: 10.1364/oe.493530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
Spatial frequency modulation for imaging (SPIFI) has traditionally employed a time-varying spatial modulation of the excitation beam. Here, for the first time to our knowledge, we introduce single-shot SPIFI, where the spatial frequency modulation is imposed across the entire spatial bandwidth of the optical system simultaneously enabling single-shot operation.
Collapse
|
11
|
Nawara TJ, Mattheyses AL. Imaging nanoscale axial dynamics at the basal plasma membrane. Int J Biochem Cell Biol 2023; 156:106349. [PMID: 36566777 PMCID: PMC10634635 DOI: 10.1016/j.biocel.2022.106349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Understanding of how energetically unfavorable plasma membrane shapes form, especially in the context of dynamic processes in living cells or tissues like clathrin-mediated endocytosis is in its infancy. Even though cutting-edge microscopy techniques that bridge this gap exist, they remain underused in biomedical sciences. Here, we demystify the perceived complexity of these advanced microscopy approaches and demonstrate their power in resolving nanometer axial dynamics in living cells. Total internal reflection fluorescence microscopy based approaches are the main focus of this review. We present clathrin-mediated endocytosis as a model system when describing the principles, data acquisition requirements, data interpretation strategies, and limitations of the described techniques. We hope this standardized description will bring the approaches for measuring nanoscale axial dynamics closer to the potential users and help in choosing the right approach to the right question.
Collapse
Affiliation(s)
- Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
12
|
Riachy L, Ferrand T, Chasserot-Golaz S, Galas L, Alexandre S, Montero-Hadjadje M. Advanced Imaging Approaches to Reveal Molecular Mechanisms Governing Neuroendocrine Secretion. Neuroendocrinology 2023; 113:107-119. [PMID: 34915491 DOI: 10.1159/000521457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022]
Abstract
Identification of the molecular mechanisms governing neuroendocrine secretion and resulting intercellular communication is one of the great challenges of cell biology to better understand organism physiology and neurosecretion disruption-related pathologies such as hypertension, neurodegenerative, or metabolic diseases. To visualize molecule distribution and dynamics at the nanoscale, many imaging approaches have been developed and are still emerging. In this review, we provide an overview of the pioneering studies using transmission electron microscopy, atomic force microscopy, total internal reflection microscopy, and super-resolution microscopy in neuroendocrine cells to visualize molecular mechanisms driving neurosecretion processes, including exocytosis and associated fusion pores, endocytosis and associated recycling vesicles, and protein-protein or protein-lipid interactions. Furthermore, the potential and the challenges of these different advanced imaging approaches for application in the study of neuroendocrine cell biology are discussed, aiming to guide researchers to select the best approach for their specific purpose around the crucial but not yet fully understood neurosecretion process.
Collapse
Affiliation(s)
- Lina Riachy
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Thomas Ferrand
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg University, Strasbourg, France
| | - Ludovic Galas
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Stéphane Alexandre
- Polymères, Biopolymères, Surfaces Laboratory, CNRS, Normandie University, UNIROUEN, UMR 6270, Rouen, France
| | - Maité Montero-Hadjadje
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| |
Collapse
|
13
|
Nieto-Garai JA, Olazar-Intxausti J, Anso I, Lorizate M, Terrones O, Contreras FX. Super-Resolution Microscopy to Study Interorganelle Contact Sites. Int J Mol Sci 2022; 23:15354. [PMID: 36499680 PMCID: PMC9739495 DOI: 10.3390/ijms232315354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Interorganelle membrane contact sites (MCS) are areas of close vicinity between the membranes of two organelles that are maintained by protein tethers. Recently, a significant research effort has been made to study MCS, as they are implicated in a wide range of biological functions, such as organelle biogenesis and division, apoptosis, autophagy, and ion and phospholipid homeostasis. Their composition, characteristics, and dynamics can be studied by different techniques, but in recent years super-resolution fluorescence microscopy (SRFM) has emerged as a powerful tool for studying MCS. In this review, we first explore the main characteristics and biological functions of MCS and summarize the different approaches for studying them. Then, we center on SRFM techniques that have been used to study MCS. For each of the approaches, we summarize their working principle, discuss their advantages and limitations, and explore the main discoveries they have uncovered in the field of MCS.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - June Olazar-Intxausti
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Itxaso Anso
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Oihana Terrones
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation of Science, 48011 Bilbao, Spain
| |
Collapse
|
14
|
Najafabadi FR, Leaver M, Grill SW. Orchestrating nonmuscle myosin II filament assembly at the onset of cytokinesis. Mol Biol Cell 2022; 33:ar74. [PMID: 35544301 PMCID: PMC9635286 DOI: 10.1091/mbc.e21-12-0599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/14/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Contractile forces in the actomyosin cortex are required for cellular morphogenesis. This includes the invagination of the cell membrane during division, where filaments of nonmuscle myosin II (NMII) are responsible for generating contractile forces in the cortex. However, how NMII heterohexamers form filaments in vivo is not well understood. To quantify NMII filament assembly dynamics, we imaged the cortex of Caenorhabditis elegans embryos at high spatial resolution around the time of the first division. We show that during the assembly of the cytokinetic ring, the number of NMII filaments in the cortex increases and more NMII motors are assembled into each filament. These dynamics are influenced by two proteins in the RhoA GTPase pathway, the RhoA-dependent kinase LET-502 and the myosin phosphatase MEL-11. We find that these two proteins differentially regulate NMII activity at the anterior and at the division site. We show that the coordinated action of these regulators generates a gradient of free NMII in the cytoplasm driving a net diffusive flux of NMII motors toward the cytokinetic ring. Our work highlights how NMII filament assembly and disassembly dynamics are orchestrated over space and time to facilitate the up-regulation of cortical contractility during cytokinesis.
Collapse
Affiliation(s)
- Fereshteh R. Najafabadi
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
- Biotechnology Centre, Technische Universität Dresden, Tatzberg 47/49, Dresden 01307
| | - Mark Leaver
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
- Biotechnology Centre, Technische Universität Dresden, Tatzberg 47/49, Dresden 01307
| | - Stephan W. Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
- Biotechnology Centre, Technische Universität Dresden, Tatzberg 47/49, Dresden 01307
- Excellence Cluster Physics of Life, Technische Universität, Dresden 01307, Germany
| |
Collapse
|
15
|
Abstract
This review discusses our understanding of platelet diversity with implications for the roles of platelets in hemostasis and thrombosis and identifies advanced technologies set to provide new insights. We use the term diversity to capture intrasubject platelet variability that can be intrinsic or governed by the environment and lead to a heterogeneous response pattern of aggregation, clot promotion, and external communication. Using choice examples, we discuss how the use of advanced technologies can provide new insights into the underlying causes of platelet molecular, structural, and functional diversity. As sources of diversity, we discuss the proliferating megakaryocytes with different allele-specific expression patterns, the asymmetrical formation of proplatelets, changes in platelets induced by aging and priming, interplatelet heterogeneity in thrombus organization and stability, and platelet-dependent communications. We provide indications how current knowledge gaps can be addressed using promising technologies, such as next-generation sequencing, proteomic approaches, advanced imaging techniques, multicolor flow and mass cytometry, multifunctional microfluidics assays, and organ-on-a-chip platforms. We then argue how this technology base can aid in characterizing platelet populations and in identifying platelet biomarkers relevant for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (J.W.M.H.)
| | - Jonathan West
- Faculty of Medicine and Centre for Hybrid Biodevices, University of Southampton, United Kingdom (J.W.)
| |
Collapse
|
16
|
Bond C, Santiago-Ruiz AN, Tang Q, Lakadamyali M. Technological advances in super-resolution microscopy to study cellular processes. Mol Cell 2022; 82:315-332. [PMID: 35063099 PMCID: PMC8852216 DOI: 10.1016/j.molcel.2021.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023]
Abstract
Since its initial demonstration in 2000, far-field super-resolution light microscopy has undergone tremendous technological developments. In parallel, these developments have opened a new window into visualizing the inner life of cells at unprecedented levels of detail. Here, we review the technical details behind the most common implementations of super-resolution microscopy and highlight some of the recent, promising advances in this field.
Collapse
Affiliation(s)
- Charles Bond
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adriana N Santiago-Ruiz
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qing Tang
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Singh S. Microscopes in conservative dentistry and endodontics research. J Conserv Dent 2022; 25:333-337. [PMID: 36187867 PMCID: PMC9520651 DOI: 10.4103/jcd.jcd_402_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022] Open
|
18
|
Recent advances in single-cell analysis: Encapsulation materials, analysis methods and integrative platform for microfluidic technology. Talanta 2021; 234:122671. [PMID: 34364472 DOI: 10.1016/j.talanta.2021.122671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/27/2022]
Abstract
Traditional cell biology researches on cell populations by their origin, tissue, morphology, and secretions. Because of the heterogeneity of cells, research at the single-cell level can obtain more accurate and comprehensive information that reflects the physiological state and process of the cell, increasing the significance of single-cell analysis. The application of single-cell analysis is faced with the problem of contaminated or damaged cells caused by cell sample transportation. Reversible encapsulation of a single cell can protect cells from the external environment and open the encapsulation shell to release cells, thus preserving cell integrity and improving extraction efficiency of analytes. Meanwhile, microfluidic single cell analysis (MSCA) exhibits integration, miniaturization, and high throughput, which can considerably improve the efficiency of single-cell analysis. The researches on single-cell reversible encapsulation materials, single-cell analysis methods, and the MSCA integration platform are analyzed and summarized in this review. The problems of single-cell viability, network of single-cell signal, and simultaneous detection of multiple biotoxins in food based on single-cell are proposed for future research.
Collapse
|
19
|
Abstract
For probing small distances in living cells, methods of super-resolution microscopy and molecular sensing are reported. A main requirement is low light exposure to maintain cell viability and to avoid photobleaching of relevant fluorophores. From this point of view, Structured Illumination Microscopy (SIM), Axial Tomography, Total Internal Reflection Fluorescence Microscopy (TIRFM) and often a combination of these methods are used. To show the high potential of these techniques, measurements on cell-substrate topology as well as on intracellular translocation of the glucose transporter GLUT4 are described. In addition, molecular parameters can be deduced from spectral data, fluorescence lifetimes or non-radiative energy transfer (FRET) between a donor and an acceptor molecule. As an example, FRET between the epidermal growth factor receptor (EGFR) and the growth factor receptor-bound protein 2 (Grb2) is described. Since this interaction, as well as further processes of cellular signaling (e.g., translocation of GLUT4) are sensitive to stimulation by pharmaceutical agents, methods (e.g., TIRFM) are transferred from a fluorescence microscope to a multi-well reader system for simultaneous detection of large cell populations.
Collapse
|
20
|
Han X, Su Y, White H, O'Neill KM, Morgan NY, Christensen R, Potarazu D, Vishwasrao HD, Xu S, Sun Y, Huang SY, Moyle MW, Dai Q, Pommier Y, Giniger E, Albrecht DR, Probst R, Shroff H. A polymer index-matched to water enables diverse applications in fluorescence microscopy. LAB ON A CHIP 2021; 21:1549-1562. [PMID: 33629685 PMCID: PMC8058278 DOI: 10.1039/d0lc01233e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We demonstrate diffraction-limited and super-resolution imaging through thick layers (tens-hundreds of microns) of BIO-133, a biocompatible, UV-curable, commercially available polymer with a refractive index (RI) matched to water. We show that cells can be directly grown on BIO-133 substrates without the need for surface passivation and use this capability to perform extended time-lapse volumetric imaging of cellular dynamics 1) at isotropic resolution using dual-view light-sheet microscopy, and 2) at super-resolution using instant structured illumination microscopy. BIO-133 also enables immobilization of 1) Drosophila tissue, allowing us to track membrane puncta in pioneer neurons, and 2) Caenorhabditis elegans, which allows us to image and inspect fine neural structure and to track pan-neuronal calcium activity over hundreds of volumes. Finally, BIO-133 is compatible with other microfluidic materials, enabling optical and chemical perturbation of immobilized samples, as we demonstrate by performing drug and optogenetic stimulation on cells and C. elegans.
Collapse
Affiliation(s)
- Xiaofei Han
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA. and Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA. and Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hamilton White
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA. and Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Kate M O'Neill
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA and Institute for Physical Science and Technology, University of Maryland College Park, College Park, MD 20742, USA
| | - Nicole Y Morgan
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan Christensen
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Deepika Potarazu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen Xu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shar-Yin Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark W Moyle
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dirk R Albrecht
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA. and Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Roland Probst
- ACUITYnano, Innovation in Biomedical Imaging, North Bethesda, MD 20850, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA. and Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA and Marine Biological Laboratory Fellows Program, Woods Hole, MA 02543, USA
| |
Collapse
|
21
|
Miranda A, Gómez-Varela AI, Stylianou A, Hirvonen LM, Sánchez H, De Beule PAA. How did correlative atomic force microscopy and super-resolution microscopy evolve in the quest for unravelling enigmas in biology? NANOSCALE 2021; 13:2082-2099. [PMID: 33346312 DOI: 10.1039/d0nr07203f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the invention of the Atomic Force Microscope (AFM) in 1986 and the subsequent developments in liquid imaging and cellular imaging it became possible to study the topography of cellular specimens under nearly physiological conditions with nanometric resolution. The application of AFM to biological research was further expanded with the technological advances in imaging modes where topographical data can be combined with nanomechanical measurements, offering the possibility to retrieve the biophysical properties of tissues, cells, fibrous components and biomolecules. Meanwhile, the quest for breaking the Abbe diffraction limit restricting microscopic resolution led to the development of super-resolution fluorescence microscopy techniques that brought the resolution of the light microscope comparable to the resolution obtained by AFM. The instrumental combination of AFM and optical microscopy techniques has evolved over the last decades from integration of AFM with bright-field and phase-contrast imaging techniques at first to correlative AFM and wide-field fluorescence systems and then further to the combination of AFM and fluorescence based super-resolution microscopy modalities. Motivated by the many developments made over the last decade, we provide here a review on AFM combined with super-resolution fluorescence microscopy techniques and how they can be applied for expanding our understanding of biological processes.
Collapse
Affiliation(s)
- Adelaide Miranda
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.
| | - Ana I Gómez-Varela
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal. and Department of Applied Physics, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| | - Andreas Stylianou
- Cancer Biophysics Laboratory, University of Cyprus, Nicosia, Cyprus and School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Liisa M Hirvonen
- Centre for Microscopy, Characterisation and Analysis (CMCA), The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Humberto Sánchez
- Faculty of Applied Sciences, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Pieter A A De Beule
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.
| |
Collapse
|
22
|
He Z, Wang P, Ye X. Novel endoscopic optical diagnostic technologies in medical trial research: recent advancements and future prospects. Biomed Eng Online 2021; 20:5. [PMID: 33407477 PMCID: PMC7789310 DOI: 10.1186/s12938-020-00845-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Novel endoscopic biophotonic diagnostic technologies have the potential to non-invasively detect the interior of a hollow organ or cavity of the human body with subcellular resolution or to obtain biochemical information about tissue in real time. With the capability to visualize or analyze the diagnostic target in vivo, these techniques gradually developed as potential candidates to challenge histopathology which remains the gold standard for diagnosis. Consequently, many innovative endoscopic diagnostic techniques have succeeded in detection, characterization, and confirmation: the three critical steps for routine endoscopic diagnosis. In this review, we mainly summarize researches on emerging endoscopic optical diagnostic techniques, with emphasis on recent advances. We also introduce the fundamental principles and the development of those techniques and compare their characteristics. Especially, we shed light on the merit of novel endoscopic imaging technologies in medical research. For example, hyperspectral imaging and Raman spectroscopy provide direct molecular information, while optical coherence tomography and multi-photo endomicroscopy offer a more extensive detection range and excellent spatial-temporal resolution. Furthermore, we summarize the unexplored application fields of these endoscopic optical techniques in major hospital departments for biomedical researchers. Finally, we provide a brief overview of the future perspectives, as well as bottlenecks of those endoscopic optical diagnostic technologies. We believe all these efforts will enrich the diagnostic toolbox for endoscopists, enhance diagnostic efficiency, and reduce the rate of missed diagnosis and misdiagnosis.
Collapse
Affiliation(s)
- Zhongyu He
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Peng Wang
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xuesong Ye
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- State Key Laboratory of CAD and CG, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
23
|
Abstract
Instant structured illumination microscopy (iSIM) allows for rapid multicolor three-dimensional fluorescence imaging at levels of resolution approaching twice the diffraction limit. Here we briefly describe the theory of iSIM and outline a typical hardware setup. We also provide step-by-step guides for generating a cellular-based fluorescent standard, obtaining a multicolor image with iSIM, and the post-processing steps of de-striping and deconvolution using freely distributed software to minimize time and expense. A "Notes" section is also given to inform the reader of the limitations and considerations for the methods shown. Also discussed are alternative methods, quality control checks, and considerations for two-camera alignment.
Collapse
Affiliation(s)
- Alexander Zhovmer
- Laboratory of Molecular Cardiology, National Institutes of Health, Bethesda, MD, USA
| | - Christian A Combs
- NHLBI Light Microscopy Facility, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Bondar A, Lazar J. Optical sensors of heterotrimeric G protein signaling. FEBS J 2020; 288:2570-2584. [DOI: 10.1111/febs.15655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Alexey Bondar
- Center for Nanobiology and Structural Biology Institute of Microbiology of the Czech Academy of Sciences Nove Hrady Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
- Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
| | - Josef Lazar
- Center for Nanobiology and Structural Biology Institute of Microbiology of the Czech Academy of Sciences Nove Hrady Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
25
|
Guo M, Li Y, Su Y, Lambert T, Nogare DD, Moyle MW, Duncan LH, Ikegami R, Santella A, Rey-Suarez I, Green D, Beiriger A, Chen J, Vishwasrao H, Ganesan S, Prince V, Waters JC, Annunziata CM, Hafner M, Mohler WA, Chitnis AB, Upadhyaya A, Usdin TB, Bao Z, Colón-Ramos D, La Riviere P, Liu H, Wu Y, Shroff H. Rapid image deconvolution and multiview fusion for optical microscopy. Nat Biotechnol 2020; 38:1337-1346. [PMID: 32601431 PMCID: PMC7642198 DOI: 10.1038/s41587-020-0560-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
The contrast and resolution of images obtained with optical microscopes can be improved by deconvolution and computational fusion of multiple views of the same sample, but these methods are computationally expensive for large datasets. Here we describe theoretical and practical advances in algorithm and software design that result in image processing times that are tenfold to several thousand fold faster than with previous methods. First, we show that an 'unmatched back projector' accelerates deconvolution relative to the classic Richardson-Lucy algorithm by at least tenfold. Second, three-dimensional image-based registration with a graphics processing unit enhances processing speed 10- to 100-fold over CPU processing. Third, deep learning can provide further acceleration, particularly for deconvolution with spatially varying point spread functions. We illustrate our methods from the subcellular to millimeter spatial scale on diverse samples, including single cells, embryos and cleared tissue. Finally, we show performance enhancement on recently developed microscopes that have improved spatial resolution, including dual-view cleared-tissue light-sheet microscopes and reflective lattice light-sheet microscopes.
Collapse
Affiliation(s)
- Min Guo
- Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Yue Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yijun Su
- Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Talley Lambert
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Damian Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mark W Moyle
- Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Leighton H Duncan
- Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard Ikegami
- Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Anthony Santella
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Ivan Rey-Suarez
- Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Biophysics Program, University of Maryland, College Park, MD, USA
| | - Daniel Green
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Anastasia Beiriger
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Harshad Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Victoria Prince
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL, USA
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | | | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - William A Mohler
- Department of Genetics and Genome Sciences and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Arpita Upadhyaya
- Biophysics Program, University of Maryland, College Park, MD, USA
- Department of Physics, University of Maryland, College Park, MD, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Ted B Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Daniel Colón-Ramos
- Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Marine Biological Laboratory Fellows Program, Woods Hole, MA, USA
- Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan, Puerto Rico
| | - Patrick La Riviere
- Marine Biological Laboratory Fellows Program, Woods Hole, MA, USA
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.
| | - Yicong Wu
- Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
| | - Hari Shroff
- Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- Marine Biological Laboratory Fellows Program, Woods Hole, MA, USA
| |
Collapse
|
26
|
Sai T, Saba M, Dufresne ER, Steiner U, Wilts BD. Designing refractive index fluids using the Kramers-Kronig relations. Faraday Discuss 2020; 223:136-144. [PMID: 32726379 DOI: 10.1039/d0fd00027b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For a number of optical applications, it is advantageous to precisely tune the refractive index of a liquid. Here, we harness a well-established concept in optics for this purpose. The Kramers-Kronig relation provides a physical connection between the spectral variation of the (real) refractive index and the absorption coefficient. In particular, a sharp spectral variation of the absorption coefficient gives rise to either an enhancement or reduction of the refractive index in the spectral vicinity of this variation. By using bright commodity dyes that fulfil this absorption requirement, we demonstrate the use of the Kramers-Kronig relation to predictively obtain refractive index values in water solutions that are otherwise only attained with toxic specialised liquids.
Collapse
Affiliation(s)
- Tianqi Sai
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland. and Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| | - Matthias Saba
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.
| | - Eric R Dufresne
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
27
|
Richter V, Lanzerstorfer P, Weghuber J, Schneckenburger H. Super-Resolution Live Cell Microscopy of Membrane-Proximal Fluorophores. Int J Mol Sci 2020; 21:E7099. [PMID: 32993061 PMCID: PMC7582769 DOI: 10.3390/ijms21197099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023] Open
Abstract
Here, we present a simple and robust experimental setup for the super-resolution live cell microscopy of membrane-proximal fluorophores, which is comparably easy to perform and to implement. The method is based on Structured Illumination Microscopy (SIM) with a switchable spatial light modulator (SLM) and exchangeable objective lenses for epi-illumination and total internal reflection fluorescence (TIRF) microscopy. While, in the case of SIM (upon epi-illumination), cell layers of about 1-2 µm in close proximity to the plasma membrane can be selected by software, layers in the 100 nm range are assessed experimentally by TIRF-SIM. To show the applicability of this approach, both methods are used to measure the translocation of the glucose transporter 4 (GLUT4) from intracellular vesicles to the plasma membrane upon stimulation by insulin or insulin-mimetic compounds, with a lateral resolution of around 100 nm and an axial resolution of around 200 nm. While SIM is an appropriate method to visualize the intracellular localization of GLUT4 fused with a green fluorescent protein, TIRF-SIM permits the quantitative evaluation of its fluorescence in the plasma membrane. These imaging methods are discussed in the context of fluorescence lifetime kinetics, providing additional data for the molecular microenvironment.
Collapse
Affiliation(s)
- Verena Richter
- Institute of Applied Research, Aalen University, 373430 Aalen, Germany;
| | - Peter Lanzerstorfer
- Department of Food Technology and Nutrition, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (P.L.); (J.W.)
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
| | - Julian Weghuber
- Department of Food Technology and Nutrition, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (P.L.); (J.W.)
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
| | | |
Collapse
|
28
|
Stephens DC, Powell TW, Taraska JW, Harris DA. Imaging the rapid yet transient accumulation of regulatory lipids, lipid kinases, and protein kinases during membrane fusion, at sites of exocytosis of MMP-9 in MCF-7 cells. Lipids Health Dis 2020; 19:195. [PMID: 32829709 PMCID: PMC7444259 DOI: 10.1186/s12944-020-01374-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background The regulation of exocytosis is physiologically vital in cells and requires a variety of distinct proteins and lipids that facilitate efficient, fast, and timely release of secretory vesicle cargo. Growing evidence suggests that regulatory lipids act as important lipid signals and regulate various biological processes including exocytosis. Though functional roles of many of these regulatory lipids has been linked to exocytosis, the dynamic behavior of these lipids during membrane fusion at sites of exocytosis in cell culture remains unknown. Methods Total internal reflection fluorescence microscopy (TIRF) was used to observe the spatial organization and temporal dynamics (i.e. spatial positioning and timing patterns) of several lipids, and accessory proteins, like lipid kinases and protein kinases, in the form of protein kinase C (PRKC) associated with sites of exocytosis of matrix metalloproteinase-9 (MMP-9) in living MCF-7 cancer cells. Results Following stimulation with phorbol myristate acetate (PMA) to promote exocytosis, a transient accumulation of several distinct regulatory lipids, lipid kinases, and protein kinases at exocytic sites was observed. This transient accumulation centered at the time of membrane fusion is followed by a rapid diffusion away from the fusion sites. Additionally, the synthesis of these regulatory lipids, degradation of these lipids, and the downstream effectors activated by these lipids, are also achieved by the recruitment and accumulation of key enzymes at exocytic sites (during the moment of cargo release). This includes key enzymes like lipid kinases, protein kinases, and phospholipases that facilitate membrane fusion and exocytosis of MMP-9. Conclusions This work suggests that these regulatory lipids and associated effector proteins are locally synthesized and/or recruited to sites of exocytosis, during membrane fusion and cargo release. More importantly, their enrichment at fusion sites serves as an important spatial and temporal organizing “element” defining individual exocytic sites.
Collapse
Affiliation(s)
- Dominique C Stephens
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA
| | - Tyrel W Powell
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dinari A Harris
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA.
| |
Collapse
|
29
|
Chen X, Zhanghao K, Li M, Qiao C, Liu W, Xi P, Dai Q. Enhanced reconstruction of structured illumination microscopy on a polarized specimen. OPTICS EXPRESS 2020; 28:25642-25654. [PMID: 32907080 DOI: 10.1364/oe.395092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Structured illumination microscopy (SIM) requires polarization control to guarantee the high-contrast illumination pattern. However, this modulated polarization will induce artifacts in SIM when imaging fluorescent dipoles. Here we proposed the polarization weighted recombination of frequency components to reconstruct SIM data with suppressed artifacts and better resolving power. Both the simulation results and experimental data demonstrate that our algorithm can obtain isotropic resolution on dipoles and resolve a clearer structure in high-density sections compared to the conventional algorithm. Our work reinforces the SIM theory and paves the avenue for the application of SIM on a polarized specimen.
Collapse
|
30
|
Schaefer M, Kalwa H. Theoretical background of light-emitting diode total internal reflection fluorescence microscopy and photobleaching lifetime analysis of membrane-associated proteins-Part II. JOURNAL OF BIOPHOTONICS 2020; 13:e201960181. [PMID: 31965728 DOI: 10.1002/jbio.201960181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
The selective microscopic imaging of the plasma membrane and adjacent structures by total internal reflection fluorescence (TIRF) microscopy is a versatile and frequently used technique in cell biology. A reduction of imaging artifacts in objective-type TIRF microscopy can be achieved by circular or multi-spot laser illumination or by using noncoherent light sources that are projected into the back focal plane as a light annulus. Light-emitting diode (LED)-based TIRF excitation is a recent advancement of the latter strategy. While some basic principles of LED-TIRF remain the same as in laser-based methods, the calculation of penetration depth, the flatness of illumination and the amount of available illumination power differ. This study provides the theoretical framework for the construction and adjustment of LED-TIRF. Using state-of-the art high power LED emitters, LED-TIRF achieves excitation efficiencies that are comparable to laser-based systems and homogenously illuminate the entire field of view, thus, allowing variation of the penetration depth or quantitative photobleaching-assisted imaging protocols. Using autofluorescent transmembrane, soluble and membrane-attached fusion proteins, we provide examples for a photobleaching-based assessment of the exchange kinetics of proteins within living human endothelial cells.
Collapse
Affiliation(s)
- Michael Schaefer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Hermann Kalwa
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
31
|
Huang X, Jiang C, Yu L, Yang A. Current and Emerging Approaches for Studying Inter-Organelle Membrane Contact Sites. Front Cell Dev Biol 2020; 8:195. [PMID: 32292782 PMCID: PMC7118198 DOI: 10.3389/fcell.2020.00195] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Inter-organelle membrane contact sites (MCSs) are classically defined as areas of close proximity between heterologous membranes and established by specific proteins (termed tethers). The interest on MCSs has rapidly increased in the last years, since MCSs play a crucial role in the transfer of cellular components between different organelles and have been involved in important cellular functions such as apoptosis, organelle division and biogenesis, and cell growth. Recently, an unprecedented depth and breadth in insights into the details of MCSs have been uncovered. On one hand, extensive MCSs (organelles interactome) are revealed by comprehensive analysis of organelle network with high temporal-spatial resolution at the system level. On the other hand, more and more tethers involving in MCSs are identified and further works are focusing on addressing the role of these tethers in regulating the function of MCSs at the molecular level. These enormous progresses largely depend on the powerful approaches, including several different types of microscopies and various biochemical techniques. These approaches have greatly accelerated recent advances in MCSs at the system and molecular level. In this review, we summarize the current and emerging approaches for studying MCSs, such as various microscopies, proximity-driven fluorescent signal generation and proximity-dependent biotinylation. In addition, we highlight the advantages and disadvantages of the techniques to provide a general guidance for the study of MCSs.
Collapse
Affiliation(s)
- Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chen Jiang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lihua Yu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
32
|
High spatiotemporal resolution and low photo-toxicity fluorescence imaging in live cells and in vivo. Biochem Soc Trans 2020; 47:1635-1650. [PMID: 31829403 DOI: 10.1042/bst20190020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Taking advantage of high contrast and molecular specificity, fluorescence microscopy has played a critical role in the visualization of subcellular structures and function, enabling unprecedented exploration from cell biology to neuroscience in living animals. To record and quantitatively analyse complex and dynamic biological processes in real time, fluorescence microscopes must be capable of rapid, targeted access deep within samples at high spatial resolutions, using techniques including super-resolution fluorescence microscopy, light sheet fluorescence microscopy, and multiple photon microscopy. In recent years, tremendous breakthroughs have improved the performance of these fluorescence microscopies in spatial resolution, imaging speed, and penetration. Here, we will review recent advancements of these microscopies in terms of the trade-off among spatial resolution, sampling speed and penetration depth and provide a view of their possible applications.
Collapse
|
33
|
Montague SJ, Lim YJ, Lee WM, Gardiner EE. Imaging Platelet Processes and Function-Current and Emerging Approaches for Imaging in vitro and in vivo. Front Immunol 2020; 11:78. [PMID: 32082328 PMCID: PMC7005007 DOI: 10.3389/fimmu.2020.00078] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Platelets are small anucleate cells that are essential for many biological processes including hemostasis, thrombosis, inflammation, innate immunity, tumor metastasis, and wound healing. Platelets circulate in the blood and in order to perform all of their biological roles, platelets must be able to arrest their movement at an appropriate site and time. Our knowledge of how platelets achieve this has expanded as our ability to visualize and quantify discreet platelet events has improved. Platelets are exquisitely sensitive to changes in blood flow parameters and so the visualization of rapid intricate platelet processes under conditions found in flowing blood provides a substantial challenge to the platelet imaging field. The platelet's size (~2 μm), rapid activation (milliseconds), and unsuitability for genetic manipulation, means that appropriate imaging tools are limited. However, with the application of modern imaging systems to study platelet function, our understanding of molecular events mediating platelet adhesion from a single-cell perspective, to platelet recruitment and activation, leading to thrombus (clot) formation has expanded dramatically. This review will discuss current platelet imaging techniques in vitro and in vivo, describing how the advancements in imaging have helped answer/expand on platelet biology with a particular focus on hemostasis. We will focus on platelet aggregation and thrombus formation, and how platelet imaging has enhanced our understanding of key events, highlighting the knowledge gained through the application of imaging modalities to experimental models in vitro and in vivo. Furthermore, we will review the limitations of current imaging techniques, and questions in thrombosis research that remain to be addressed. Finally, we will speculate how the same imaging advancements might be applied to the imaging of other vascular cell biological functions and visualization of dynamic cell-cell interactions.
Collapse
Affiliation(s)
- Samantha J. Montague
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yean J. Lim
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, Australia
| | - Woei M. Lee
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, Australia
| | - Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
34
|
Gonschior H, Haucke V, Lehmann M. Super-Resolution Imaging of Tight and Adherens Junctions: Challenges and Open Questions. Int J Mol Sci 2020; 21:ijms21030744. [PMID: 31979366 PMCID: PMC7037929 DOI: 10.3390/ijms21030744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
The tight junction (TJ) and the adherens junction (AJ) bridge the paracellular cleft of epithelial and endothelial cells. In addition to their role as protective barriers against bacteria and their toxins they maintain ion homeostasis, cell polarity, and mechano-sensing. Their functional loss leads to pathological changes such as tissue inflammation, ion imbalance, and cancer. To better understand the consequences of such malfunctions, the junctional nanoarchitecture is of great importance since it remains so far largely unresolved, mainly because of major difficulties in dynamically imaging these structures at sufficient resolution and with molecular precision. The rapid development of super-resolution imaging techniques ranging from structured illumination microscopy (SIM), stimulated emission depletion (STED) microscopy, and single molecule localization microscopy (SMLM) has now enabled molecular imaging of biological specimens from cells to tissues with nanometer resolution. Here we summarize these techniques and their application to the dissection of the nanoscale molecular architecture of TJs and AJs. We propose that super-resolution imaging together with advances in genome engineering and functional analyses approaches will create a leap in our understanding of the composition, assembly, and function of TJs and AJs at the nanoscale and, thereby, enable a mechanistic understanding of their dysfunction in disease.
Collapse
Affiliation(s)
- Hannes Gonschior
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; (H.G.); (V.H.)
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; (H.G.); (V.H.)
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; (H.G.); (V.H.)
- Correspondence:
| |
Collapse
|
35
|
Kogel A, Kalwa H, Urban N, Schaefer M. Artifact-free objective-type multicolor total internal reflection fluorescence microscopy with light-emitting diode light sources-Part I. JOURNAL OF BIOPHOTONICS 2019; 12:e201900033. [PMID: 31148410 DOI: 10.1002/jbio.201900033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/07/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Total internal reflection fluorescence excitation (TIRF) microscopy allows the selective observation of fluorescent molecules in immediate proximity to an interface between different refractive indices. Objective-type or prism-less TIRF excitation is typically achieved with laser light sources. We here propose a simple, yet optically advantageous light-emitting diode (LED)-based implementation of objective-type TIRF (LED-TIRF). The proposed LED-TIRF condenser is affordable and easy to set up at any epifluorescence microscope to perform multicolor TIRF and/or combined TIRF-epifluorescence imaging with even illumination of the entire field of view. Electrical control of LED light sources replaces mechanical shutters or optical modulators. LED-TIRF microscopy eliminates safety burdens that are associated with laser sources, offers favorable instrument lifetime and stability without active cooling. The non-coherent light source and the type of projection eliminate interference fringing and local scattering artifacts that are associated with conventional laser-TIRF. Unlike azimuthal spinning laser-TIRF, LED-TIRF does not require synchronization between beam rotation and the camera and can be monitored with either global or rolling shutter cameras. Typical implementations, such as live cell multicolor imaging in TIRF and epifluorescence of imaging of short-lived, localized translocation events of a Ca2+ -sensitive protein kinase C α fusion protein are demonstrated.
Collapse
Affiliation(s)
- Alexander Kogel
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Hermann Kalwa
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Nicole Urban
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
36
|
Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction. Nat Commun 2019; 10:4315. [PMID: 31541134 PMCID: PMC6754501 DOI: 10.1038/s41467-019-12165-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Super-resolved structured illumination microscopy (SR-SIM) is among the fastest fluorescence microscopy techniques capable of surpassing the optical diffraction limit. Current custom-build instruments are able to deliver two-fold resolution enhancement with high acquisition speed. SR-SIM is usually a two-step process, with raw-data acquisition and subsequent, time-consuming post-processing for image reconstruction. In contrast, wide-field and (multi-spot) confocal techniques produce high-resolution images instantly. Such immediacy is also possible with SR-SIM, by tight integration of a video-rate capable SIM with fast reconstruction software. Here we present instant SR-SIM by VIGOR (Video-rate Immediate GPU-accelerated Open-Source Reconstruction). We demonstrate multi-color SR-SIM at video frame-rates, with less than 250 ms delay between measurement and reconstructed image display. This is achieved by modifying and extending high-speed SR-SIM image acquisition with a new, GPU-enhanced, network-enabled image-reconstruction software. We demonstrate high-speed surveying of biological samples in multiple colors and live imaging of moving mitochondria as an example of intracellular dynamics. Sequential acquisition and image reconstruction in super-resolved structured illumination microscopy (SR-SIM) is time-consuming. Here the authors optimise both acquisition and reconstruction software to achieve multicolour SR-SIM at video frame-rates with reconstructed images displaying with only milliseconds delay during the experiment.
Collapse
|
37
|
Oheim M, Salomon A, Weissman A, Brunstein M, Becherer U. Calibrating Evanescent-Wave Penetration Depths for Biological TIRF Microscopy. Biophys J 2019; 117:795-809. [PMID: 31439287 DOI: 10.1016/j.bpj.2019.07.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022] Open
Abstract
Roughly half of a cell's proteins are located at or near the plasma membrane. In this restricted space, the cell senses its environment, signals to its neighbors, and exchanges cargo through exo- and endocytotic mechanisms. Ligands bind to receptors, ions flow across channel pores, and transmitters and metabolites are transported against concentration gradients. Receptors, ion channels, pumps, and transporters are the molecular substrates of these biological processes, and they constitute important targets for drug discovery. Total internal reflection fluorescence (TIRF) microscopy suppresses the background from the cell's deeper layers and provides contrast for selectively imaging dynamic processes near the basal membrane of live cells. The optical sectioning of TIRF is based on the excitation confinement of the evanescent wave generated at the glass/cell interface. How deep the excitation light actually penetrates the sample is difficult to know, making the quantitative interpretation of TIRF data problematic. Nevertheless, many applications like superresolution microscopy, colocalization, Förster resonance energy transfer, near-membrane fluorescence recovery after photobleaching, uncaging or photoactivation/switching as well as single-particle tracking require the quantitative interpretation of evanescent-wave-excited images. Here, we review existing techniques for characterizing evanescent fields, and we provide a roadmap for comparing TIRF data across images, experiments, and laboratories.
Collapse
Affiliation(s)
- Martin Oheim
- Université de Paris, CNRS, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Paris, France.
| | - Adi Salomon
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel
| | - Adam Weissman
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel
| | - Maia Brunstein
- Université de Paris, CNRS, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Paris, France; Chaire d'Excellence Junior, Université Sorbonne Paris Cité, Paris, France
| | - Ute Becherer
- Saarland University, Department of Physiology, CIPMM, Homburg/Saar, Germany
| |
Collapse
|
38
|
Development of a Surface Plasmon Resonance and Fluorescence Imaging System for Biochemical Sensing. MICROMACHINES 2019; 10:mi10070442. [PMID: 31266259 PMCID: PMC6680379 DOI: 10.3390/mi10070442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022]
Abstract
Surface plasmon resonance (SPR) biosensors are an extremely sensitive optical technique used to detect the changes in refractive index occurring at the sensor interface. Fluorescence involves the emission of light by a substance that has absorbed light or other electromagnetic radiation, and the parameters of the absorbed and emitted radiation are used to identify the presence and the amount of specific molecules in a specimen. SPR biosensors and fluorescence analysis are both effective methods for real-time detection. The combination of these technologies would improve the quantitative detection sensitivity of fluorescence analysis and the specificity of SPR detection. We designed and developed an SPR and fluorescence synchronous detection system. The SPR module was based on two kinds of modulation methods, and the fluorescence module was capable of switching between four wavelengths. The fluorescence microspheres and A549 cells of different concentration were both detected by the SPR and fluorescence method synchronously in real time. The fluorescent signal and the optical signal of the SPR were shown to correlate. The correlation coefficient for fluorescent microspheres detection reached up to 0.9866. The system could be used in cell analysis and molecule diagnosis in the future.
Collapse
|
39
|
Taraska JW. A primer on resolving the nanoscale structure of the plasma membrane with light and electron microscopy. J Gen Physiol 2019; 151:974-985. [PMID: 31253697 PMCID: PMC6683668 DOI: 10.1085/jgp.201812227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Taraska reviews the imaging methods that are being used to understand the structure of the plasma membrane at the molecular level. The plasma membrane separates a cell from its external environment. All materials and signals that enter or leave the cell must cross this hydrophobic barrier. Understanding the architecture and dynamics of the plasma membrane has been a central focus of general cellular physiology. Both light and electron microscopy have been fundamental in this endeavor and have been used to reveal the dense, complex, and dynamic nanoscale landscape of the plasma membrane. Here, I review classic and recent developments in the methods used to image and study the structure of the plasma membrane, particularly light, electron, and correlative microscopies. I will discuss their history and use for mapping the plasma membrane and focus on how these tools have provided a structural framework for understanding the membrane at the scale of molecules. Finally, I will describe how these studies provide a roadmap for determining the nanoscale architecture of other organelles and entire cells in order to bridge the gap between cellular form and function.
Collapse
Affiliation(s)
- Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
40
|
Vogt EJ, Tokuhiro K, Guo M, Dale R, Yang G, Shin SW, Movilla MJ, Shroff H, Dean J. Anchoring cortical granules in the cortex ensures trafficking to the plasma membrane for post-fertilization exocytosis. Nat Commun 2019; 10:2271. [PMID: 31118423 PMCID: PMC6531442 DOI: 10.1038/s41467-019-10171-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/24/2019] [Indexed: 01/13/2023] Open
Abstract
Following fertilization, cortical granules exocytose ovastacin, a metalloendopeptidase that cleaves ZP2 in the zona pellucida surrounding mouse eggs to prevent additional sperm binding. Using high- and super-resolution imaging with ovastacinmCherry as a fluorescent marker, we characterize cortical granule dynamics at single granule resolution in transgenic mouse eggs. Newly-developed imaging protocols provide an unprecedented view of vesicular dynamics near the plasma membrane in mouse eggs. We discover that cortical granule anchoring in the cortex is dependent on maternal MATER and document that myosin IIA is required for biphasic trafficking to the plasma membrane. We observe local clearance of cortical actin during exocytosis and determine that pharmacologic or genetic disruption of trafficking to the plasma membrane impairs secretion of cortical granules and results in polyspermy. Thus, the regulation of cortical granule dynamics at the cortex-plasma membrane interface is critical for exocytosis and the post-fertilization block to sperm binding that ensures monospermic fertilization.
Collapse
Affiliation(s)
- Edgar-John Vogt
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
- Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Keizo Tokuhiro
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Min Guo
- Section on High Resolution Optical Imaging, NIBIB, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan Dale
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guanghui Yang
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seung-Wook Shin
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Jimenez Movilla
- Department of Cell Biology and Histology, Medical School, University of Murcia, IMIB, 30100, Murcia, Spain
| | - Hari Shroff
- Section on High Resolution Optical Imaging, NIBIB, National Institutes of Health, Bethesda, MD, 20892, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
41
|
Wu Y, Shroff H. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat Methods 2018; 15:1011-1019. [PMID: 30478322 DOI: 10.1038/s41592-018-0211-z] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/02/2018] [Indexed: 11/09/2022]
Abstract
Structured illumination microscopy (SIM) allows rapid, super-resolution (SR) imaging in live specimens. We review recent technical advances in SR-SIM, with emphasis on imaging speed, resolution, and depth. Since its introduction decades ago, the technique has grown to offer myriad implementations, each with its own strengths and weaknesses. We discuss these, aiming to provide a practical guide for biologists and to highlight which approach is best suited to a given application.
Collapse
Affiliation(s)
- Yicong Wu
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Wu J, Li S, Cao H, Lin D, Yu B, Qu J. Resolution improvement of multifocal structured illumination microscopy with sparse Bayesian learning algorithm. OPTICS EXPRESS 2018; 26:31430-31438. [PMID: 30650728 DOI: 10.1364/oe.26.031430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/28/2018] [Indexed: 05/22/2023]
Abstract
Multifocal structured illumination microscopy (MSIM) is the parallelized version of image scanning microscopy (ISM), which uses multiple diffraction limited spots, instead of a single diffraction limited spot, to increase the imaging speed. By adding pinhole, contraction and deconvolution, a twofold resolution enhancement could be achieved in theory. However, this resolution improvement is difficult to be attained in practice. In this work, without any modification of the experimental setup, we propose to use multiple measurement vector (MMV) model sparse Bayesian learning (MSBL) algorithm (MSIMMSBL) as the reconstruction algorithm of MSIM, which does not need to estimate the illumination patterns but treat the reconstruct process as an MMV signal reconstruction problem. We compare the reconstructed super-resolution images of MSIMMSBL and MSIM by using simulation and experimental raw images. The results prove that by using the MSBL algorithm, the MSIM can obtain a higher than twofold resolution enhancement compared with the wide field image. This outstanding imaging resolution combining with the primary advantages of MSIM, such as the high imaging speed, could promote the application of MSIM in super-resolution microscopy imaging technology.
Collapse
|
43
|
When can we believe what we see? Biotechniques 2018; 65:245-249. [PMID: 30394129 DOI: 10.2144/btn-2018-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abigail Sawyer and Joseph Martin investigate how microscopy is evolving in order for cells and processes to be better visualized in their native environments.
Collapse
|
44
|
Wijesooriya CS, Nyamekye CKA, Smith EA. Optical Imaging of the Nanoscale Structure and Dynamics of Biological Membranes. Anal Chem 2018; 91:425-440. [DOI: 10.1021/acs.analchem.8b04755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Charles K. A. Nyamekye
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Emily A. Smith
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| |
Collapse
|