1
|
Sun H, Lu B, Zhang Z, Xiao Y, Zhou Z, Xi L, Li Z, Jiang Z, Zhang J, Wang M, Liu C, Ma Y, Peng J, Wang XJ, Yi C. Mild and ultrafast GLORI enables absolute quantification of m 6A methylome from low-input samples. Nat Methods 2025:10.1038/s41592-025-02680-9. [PMID: 40325216 DOI: 10.1038/s41592-025-02680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 03/24/2025] [Indexed: 05/07/2025]
Abstract
Methods for absolute quantification of N6-methyladenosine (m6A) have emerged as powerful tools in epitranscriptomics. We previously reported GLORI, a chemical-assisted approach to achieve unbiased and precise m6A measurement. However, its lengthy reaction time and severe RNA degradation have limited its applicability, particularly for low-input samples. Here, we present two updated GLORI approaches that are ultrafast, mild and enable absolute m6A quantification from one to two orders of magnitude less than the RNA starting material: GLORI 2.0 is compatible with RNA from ~10,000 cells and enhances sensitivity for both transcriptome-wide and locus-specific m6A detection; GLORI 3.0 further utilizes a reverse transcription-silent carrier RNA to achieve m6A quantification from as low as 500-1,000 cells. Using limited RNA from mouse dorsal hippocampus, we reveal a high modification level in synapse-related gene sets. We envision that the updated GLORI methods will greatly expand the applicability of absolute quantification of m6A in biology.
Collapse
Affiliation(s)
- Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Bo Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Zeyu Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ye Xiao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhe Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Lin Xi
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhichao Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Zhe Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jiayi Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Meng Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yichen Ma
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xiu-Jie Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China.
| |
Collapse
|
2
|
Liu K, Wang X, Wang J, Wang S, Bai H, Dong W, Qiao L, Jin Q, Zhang Z, Luo GZ, Wang Z. N 6-methyladenosine modifications stabilize phosphate starvation response-related mRNAs in plant adaptation to nutrient-deficient stress. Nat Commun 2025; 16:4093. [PMID: 40312414 PMCID: PMC12045979 DOI: 10.1038/s41467-025-59331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/16/2025] [Indexed: 05/03/2025] Open
Abstract
N6-methyladenosine (m6A), an abundant internal mRNA modification, is induced by various stress conditions and post-transcriptionally regulates gene expression. However, how m6A modifications help plants respond to nutrient-deficiency stress remains unclear. Here, we profile high-confidence m6A modifications in Arabidopsis transcriptome-wide under normal and inorganic orthophosphate (Pi)-deficient conditions (-P). High-confidence m6A modifications are identified using synthetic modification-free RNA libraries for systematic calibration. Pi starvation induces widespread m6A modifications, mediated by the Pi starvation response (PSR) master regulator PHOSPHATE STARVATION RESPONSE1 (PHR1) and its family members. Many Pi starvation-induced (PSI) m6A modifications occur on PSR-related mRNAs, including PHR1. In addition, PHR1 proteins interact with the m6A writers MRNA ADENOSINE METHYLASE (MTA) and METHYLTRANSFERASE B (MTB) in nuclei under -P conditions. m6A modifications facilitate systemic PSR signaling, as reflected by the reduced Pi content and PSR signaling in a knockdown artificial miRNA line targeting MTA, which shows a global decrease in m6A. Transcriptome-wide mRNA decay analysis reveals that PSI-m6A increases the stability of PSR-related mRNAs, but not through alternative polyadenylation site shifts. Analysis of transgenic plants with mutations in m6A loci demonstrates that m6A stabilizes PHR1 transcripts via a positive feedback loop. Our findings indicate that PSI-m6A modifications facilitate PSR signaling by enhancing the stability of certain mRNAs, shedding light on the role of m6A modifications in nutrient stress responses in plants.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojia Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyi Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuman Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Weiguo Dong
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lulu Qiao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiongli Jin
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiye Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Park D, Cenik C. Long-read RNA sequencing reveals allele-specific N 6-methyladenosine modifications. Genome Res 2025; 35:999-1011. [PMID: 39472020 PMCID: PMC12047277 DOI: 10.1101/gr.279270.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024]
Abstract
Long-read sequencing technology enables highly accurate detection of allele-specific RNA expression, providing insights into the effects of genetic variation on splicing and RNA abundance. Furthermore, the ability to directly sequence RNA enables the detection of RNA modifications in tandem with ascertaining the allelic origin of each molecule. Here, we leverage these advantages to determine allele-biased patterns of N 6-methyladenosine (m6A) modifications in native mRNA. We used human and mouse cells with known genetic variants to assign the allelic origin of each mRNA molecule combined with a supervised machine learning model to detect read-level m6A modification ratios. Our analyses reveal the importance of sequences adjacent to the DRACH motif in determining m6A deposition, in addition to allelic differences that directly alter the motif. Moreover, we discover allele-specific m6A modification events with no genetic variants in close proximity to the differentially modified nucleotide, demonstrating the unique advantage of using long-reads and surpassing the capabilities of antibody-based short-read approaches. This technological advance will further our understanding of the role of genetics in determining mRNA modifications.
Collapse
Affiliation(s)
- Dayea Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
4
|
Li F, Liu T, Dong Y, Gao Q, Lu R, Deng Z. 5-Methylcytosine RNA modification and its roles in cancer and cancer chemotherapy resistance. J Transl Med 2025; 23:390. [PMID: 40181461 PMCID: PMC11966802 DOI: 10.1186/s12967-025-06217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/10/2025] [Indexed: 04/05/2025] Open
Abstract
Recent advancements in cancer therapies have improved clinical outcomes, yet therapeutic resistance remains a significant challenge because of its complex mechanisms. Among epigenetic factors, m5C RNA modification is emerging as a key player in cancer drug resistance, similar to the well-known m6A modification. m5C affects RNA metabolism processes, including splicing, export, translation, and stability, thereby influencing drug efficacy. This review highlights the critical roles of m5C in modulating resistance to chemotherapy, targeted therapy, radiotherapy, and immunotherapy. This review also discusses the functions of key regulators, including methyltransferases, demethylases, and m5C-binding proteins, as essential modulators of the m5C epigenetic landscape that contribute to its dynamic and complex regulatory network. Targeting these regulatory components offers a promising strategy to overcome resistance. We highlight the need for further research to elucidate the specific mechanisms by which m5C contributes to resistance and to develop precise m5C-targeted therapies, presenting m5C-focused strategies as potential novel anticancer treatments.
Collapse
Affiliation(s)
- Fang Li
- Science and technology department, Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, Jiangsu, China
| | - Tingting Liu
- Science and technology department, Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, Jiangsu, China
| | - Yajing Dong
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qianqian Gao
- Science and technology department, Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, Jiangsu, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, 215130, Jiangsu, China.
| | - Zhiyong Deng
- Science and technology department, Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, Jiangsu, China.
| |
Collapse
|
5
|
Ding YP, Liu CC, Yu KD. RNA modifications in the tumor microenvironment: insights into the cancer-immunity cycle and beyond. Exp Hematol Oncol 2025; 14:48. [PMID: 40176140 PMCID: PMC11963313 DOI: 10.1186/s40164-025-00648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
The chemical modification of biological molecules is a critical regulatory mechanism for controlling molecular functions. Although research has long focused on DNA and proteins, RNA modifications have recently attracted substantial interest with the advancement in detection technologies. In oncology, many studies have identified dysregulated RNA modifications including m6A, m1A, m5C, m7G, pseudouridylation and A to I editing, leading to disrupted downstream pathways. As the concept of the tumor microenvironment has gained prominence, studies have increasingly examined the role of RNA modifications in this context, focusing on interactions among cancer cells, immune cells, stromal cells, and other components. Here we review the RNA modifications in the tumor microenvironment through the perspective of the Cancer-Immunity Cycle. The extracellular RNA modifications including exosomes and influence of microbiome in RNA modifications are potential research questions. Additionally, RNA modifying enzymes including FTO, ALKBH5, METTL3, PUS7 are under investigation as potential biomarkers and targets for combination with immunotherapies. ADCs and mimetics of modified RNA could be potential novel drugs. This review discusses the regulatory roles of RNA modifications within the tumor microenvironment.
Collapse
Affiliation(s)
- You-Peng Ding
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Liu JF, Hawley BR, Nicholson LS, Jaffrey SR. Decoding m 6Am by simultaneous transcription-start mapping and methylation quantification. eLife 2025; 13:RP104139. [PMID: 40162895 PMCID: PMC11957539 DOI: 10.7554/elife.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
N 6,2'-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5' isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5' isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.
Collapse
Affiliation(s)
- Jianheng Fox Liu
- Department of Pharmacology, Weill Cornell Medicine, Cornell UniversityNew YorkUnited States
| | - Ben R Hawley
- Department of Pharmacology, Weill Cornell Medicine, Cornell UniversityNew YorkUnited States
| | - Luke S Nicholson
- Department of Pharmacology, Weill Cornell Medicine, Cornell UniversityNew YorkUnited States
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell UniversityNew YorkUnited States
| |
Collapse
|
7
|
Zhang X, Lu L, Yi C, Li X. Protocol for profiling RNA m 5C methylation at base resolution using m 5C-TAC-seq. STAR Protoc 2025; 6:103599. [PMID: 39893640 PMCID: PMC11835647 DOI: 10.1016/j.xpro.2025.103599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
RNA 5-methylcytosine (m5C) is a widespread modification and plays a crucial role in gene expression regulation. Here, we present a protocol for transcriptome-wide m5C methylome profiling at base resolution using bisulfite-free m5C detection strategy enabled by ten-eleven translocation (TET)-assisted chemical labeling sequencing (m5C-TAC-seq). We detail steps for TET-assisted chemical labeling, library construction, and data analysis. m5C-TAC-seq enables accurate and robust m5C detection in various RNA species. For complete details on the use and execution of this protocol, please refer to Lu et al.1.
Collapse
Affiliation(s)
- Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Liang Lu
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiaoyu Li
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
8
|
Oberdoerffer S, Gilbert WV. All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies. Nat Rev Mol Cell Biol 2025; 26:237-248. [PMID: 39433914 DOI: 10.1038/s41580-024-00784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
RNA modifications are essential for human health - too much or too little of them leads to serious illnesses ranging from neurodevelopmental disorders to cancer. Technical advances in RNA modification sequencing are beginning to uncover the RNA targets of diverse RNA-modifying enzymes that are dysregulated in disease. However, the emerging transcriptome-wide maps of modified nucleosides installed by these enzymes should be considered as first drafts. In particular, a range of technical artefacts lead to false negatives - modified sites that are overlooked owing to technique-dependent, and often sequence-context-specific, 'blind spots'. In this Review, we discuss potential sources of false negatives in sequencing-based RNA modification maps, propose mitigation strategies and suggest guidelines for transparent reporting of sensitivity to detect modified sites in profiling studies. Important considerations for recognition and avoidance of false negatives include assessment and reporting of position-specific sequencing depth, identification of protocol-dependent RNA capture biases and applying controls for false negatives as well as for false positives. Despite their limitations, emerging maps of RNA modifications reveal exciting and largely uncharted potential for post-transcriptional control of all aspects of RNA function.
Collapse
Affiliation(s)
- Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Cruciani S, Delgado-Tejedor A, Pryszcz LP, Medina R, Llovera L, Novoa EM. De novo basecalling of RNA modifications at single molecule and nucleotide resolution. Genome Biol 2025; 26:38. [PMID: 40001217 PMCID: PMC11853310 DOI: 10.1186/s13059-025-03498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
RNA modifications influence RNA function and fate, but detecting them in individual molecules remains challenging for most modifications. Here we present a novel methodology to generate training sets and build modification-aware basecalling models. Using this approach, we develop the m6ABasecaller, a basecalling model that predicts m6A modifications from raw nanopore signals. We validate its accuracy in vitro and in vivo, revealing stable m6A modification stoichiometry across isoforms, m6A co-occurrence within RNA molecules, and m6A-dependent effects on poly(A) tails. Finally, we demonstrate that our method generalizes to other RNA and DNA modifications, paving the path towards future efforts detecting other modifications.
Collapse
Affiliation(s)
- Sonia Cruciani
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Anna Delgado-Tejedor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Leszek P Pryszcz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
| | - Rebeca Medina
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Laia Llovera
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
10
|
Liu JF, Hawley BR, Nicholson LS, Jaffrey SR. Decoding m 6Am by simultaneous transcription-start mapping and methylation quantification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.16.618717. [PMID: 39677659 PMCID: PMC11642800 DOI: 10.1101/2024.10.16.618717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
N 6,2'-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5' isoforms. Thus, gene levels annotations cannot capture the diversity of m6Am modification in the transcriptome. Here we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5' isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.
Collapse
Affiliation(s)
- Jianheng Fox Liu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Ben R. Hawley
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
- Present address: Engage Bio, San Carlos, CA, USA
| | - Luke S. Nicholson
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Samie R. Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
11
|
Zou Y, Ahsan MU, Chan J, Meng W, Gao SJ, Huang Y, Wang K. A Comparative Evaluation of Computational Models for RNA modification detection using Nanopore sequencing with RNA004 Chemistry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636352. [PMID: 39975272 PMCID: PMC11838592 DOI: 10.1101/2025.02.03.636352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Direct RNA sequencing from Oxford Nanopore Technologies (ONT) has become a valuable method for studying RNA modifications such as N6-methyladenosine (m6A), pseudouridine (ψ), and 5-methylcytosine (m5C). Recent advancements in the RNA004 chemistry substantially reduce sequencing errors compared to previous chemistries (e.g., RNA002), thereby promising enhanced accuracy for epitranscriptomic analysis. In this study, we benchmark the performance of two state-of-the-art RNA modification detection models capable of handling RNA004 data - ONT's Dorado and m6Anet - using two wild-type (WT) cell lines, HEK293T and HeLa, with respective ground truths from GLORI and eTAM-seq, and their paired in vitro transcribed (IVT) RNA as negative controls. We found that under default settings and considering sites with ≥10% modification ratio and ≥10X coverage, Dorado has higher recall (~0.92) than m6Anet (~0.51) for m6A detection. Among the overlapping methylated sites between ground truth and computational predictions, there are high correlations of site-specific m6A modification stoichiometry, with correlation coefficient of ~0.89 for Dorado-truth comparison and ~0.72 for m6Anet-truth comparison. However, combined assessment of WT and IVT datasets show that while the per-site false positive rate (FPR) can be lower (~8% for Dorado and ~33% for m6Anet), both computational tools can have high per-site false discovery rate (FDR) of m6A (~40% for Dorado and ~80% for m6Anet) due to the low prevalence of m6A in transcriptome, with a similar trend observed for pseudouridine (~95% FDR for Dorado). Additional motif analysis reveals that both Dorado and m6Anet exhibit high heterogeneity of false positive calls across sequence contexts, suggesting that sequence contexts help determine accuracy of specific modification calls. There is also a substantial overlap of false positive calls between the two IVT samples, suggesting a post-filtering strategy to improve modification calling by compiling a set of low-confidence sites with a probabilistic model from several IVT samples across diverse cells/tissues. Our analysis highlights key strengths and limitations of the current generation of m6A detection algorithms and offers insights into optimizing thresholds and interpretability. The IVT datasets generated by the RNA004 chemistry provides a publicly available benchmark resource for further development and refinement of computational methods.
Collapse
Affiliation(s)
- Yongji Zou
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Bioengineering graduate program, University of Pennsylvania, Philadelphia, PA 19104
| | - Mian Umair Ahsan
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Joe Chan
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Wen Meng
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yufei Huang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai Wang
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
12
|
Cai Z, Song P, Yu K, Jia G. Advanced reactivity-based sequencing methods for mRNA epitranscriptome profiling. RSC Chem Biol 2025; 6:150-169. [PMID: 39759443 PMCID: PMC11694185 DOI: 10.1039/d4cb00215f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Currently, over 170 chemical modifications identified in RNA introduce an additional regulatory attribute to gene expression, known as the epitranscriptome. The development of detection methods to pinpoint the location and quantify these dynamic and reversible modifications has significantly expanded our understanding of their roles. This review goes deep into the latest progress in enzyme- and chemical-assisted sequencing methods, highlighting the opportunities presented by these reactivity-based techniques for detailed characterization of RNA modifications. Our survey provides a deeper understanding of the function and biological roles of RNA modification.
Collapse
Affiliation(s)
- Zhihe Cai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Kemiao Yu
- Peking-Tsinghua Center for Life Sciences, Peking University Beijing 100871 China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences, Peking University Beijing 100871 China
- Beijing Advanced Center of RNA Biology, Peking University Beijing 100871 China
| |
Collapse
|
13
|
Diensthuber G, Novoa EM. Charting the epitranscriptomic landscape across RNA biotypes using native RNA nanopore sequencing. Mol Cell 2025; 85:276-289. [PMID: 39824168 DOI: 10.1016/j.molcel.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
RNA modifications are conserved chemical features found in all domains of life and across diverse RNA biotypes, shaping gene expression profiles and enabling rapid responses to environmental changes. Their broad chemical diversity and dynamic nature pose significant challenges for studying them comprehensively. These limitations can now be addressed through direct RNA nanopore sequencing (DRS), which allows simultaneous identification of diverse RNA modification types at single-molecule and single-nucleotide resolution. Here, we review recent efforts pioneering the use of DRS to better understand the epitranscriptomic landscape. We highlight how DRS can be applied to investigate different RNA biotypes, emphasizing the use of specialized library preparation protocols and downstream bioinformatic workflows to detect both natural and synthetic RNA modifications. Finally, we provide a perspective on the future role of DRS in epitranscriptomic research, highlighting remaining challenges and emerging opportunities from improved sequencing yields and accuracy enabled by the latest DRS chemistry.
Collapse
Affiliation(s)
- Gregor Diensthuber
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona 08003, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
14
|
Li Z, Mi K, Xu C. Most m5C Modifications in Mammalian mRNAs are Nonadaptive. Mol Biol Evol 2025; 42:msaf008. [PMID: 39824217 PMCID: PMC11756383 DOI: 10.1093/molbev/msaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025] Open
Abstract
5-Methylation (m5C) on mRNA molecules is a prevalent internal posttranscriptional modification in eukaryotes. Although m5C modification has been reported to regulate some biological processes, whether most mRNA m5C modifications are functional is unknown. To address this question, we analyzed the genome-wide evolutionary characteristics of m5C modifications in protein-coding genes of humans and mice. Our analysis of RNA sequencing data from 13 tissues of both species revealed that (i) the occurrence of m5C modification is exceedingly low, (ii) the fraction of m5Cs decreases with the amount of Cs across genes or tissues, (iii) m5C modifications are mostly unshared between species, and (iv) m5C sites and motifs do not exhibit greater evolutionary conservation. Additionally, we estimate that a large fraction of the observed mRNA m5C modifications may be deleterious. Together, these observations suggest that most m5C modifications in mammalian mRNAs are nonadaptive, which has important implications for understanding the biological significance of m5C and other posttranscriptional modifications.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Mi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuan Xu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
15
|
Chen X, Xu H, Shu X, Song CX. Mapping epigenetic modifications by sequencing technologies. Cell Death Differ 2025; 32:56-65. [PMID: 37658169 PMCID: PMC11742697 DOI: 10.1038/s41418-023-01213-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023] Open
Abstract
The "epigenetics" concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [1], 17 [2], and 160 [3] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells.
Collapse
Affiliation(s)
- Xiufei Chen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Haiqi Xu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Xiao Shu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
16
|
Huang D, Meng J, Chen K. AI techniques have facilitated the understanding of epitranscriptome distribution. CELL GENOMICS 2024; 4:100718. [PMID: 39667349 PMCID: PMC11701248 DOI: 10.1016/j.xgen.2024.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
N6-methyladenosine (m6A), the most prevalent internal mRNA modification in higher eukaryotes, plays diverse roles in cellular regulation. By incorporating both sequence- and genome-derived features, Fan et al.1 designed a novel Transformer-BiGRU framework that achieves superior performance in computational m6A identification, thus demonstrating the potential of AI in genomic studies.
Collapse
Affiliation(s)
- Daiyun Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou 350122, China; Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; School of Life Sciences, Fudan University, Shanghai 200092, China
| | - Jia Meng
- Department of Biosciences and Bioinformatics, Center for Intelligent RNA Therapeutics, Suzhou Key Laboratory of Cancer Biology and Chronic Diseases, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 8TX, UK
| | - Kunqi Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou 350122, China; Department of Medical Microbiology, Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
17
|
Zhang S, Huang F, Wang Y, Long Y, Li Y, Kang Y, Gao W, Zhang X, Wen Y, Wang Y, Pan L, Xia Y, Yang Z, Yang Y, Mo H, Li B, Hu J, Song Y, Zhang S, Dong S, Du X, Li Y, Liu Y, Liao W, Gao Y, Zhang Y, Chen H, Liang Y, Chen J, Weng H, Huang H. NAT10-mediated mRNA N 4-acetylcytidine reprograms serine metabolism to drive leukaemogenesis and stemness in acute myeloid leukaemia. Nat Cell Biol 2024; 26:2168-2182. [PMID: 39506072 PMCID: PMC11628400 DOI: 10.1038/s41556-024-01548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
RNA modification has emerged as an important epigenetic mechanism that controls abnormal metabolism and growth in acute myeloid leukaemia (AML). However, the roles of RNA N4-acetylcytidine (ac4C) modification in AML remain elusive. Here, we report that ac4C and its catalytic enzyme NAT10 drive leukaemogenesis and sustain self-renewal of leukaemic stem cells/leukaemia-initiating cells through reprogramming serine metabolism. Mechanistically, NAT10 facilitates exogenous serine uptake and de novo biosynthesis through ac4C-mediated translation enhancement of the serine transporter SLC1A4 and the transcription regulators HOXA9 and MENIN that activate transcription of serine synthesis pathway genes. We further characterize fludarabine as an inhibitor of NAT10 and demonstrate that pharmacological inhibition of NAT10 targets serine metabolic vulnerability, triggering substantial anti-leukaemia effects both in vitro and in vivo. Collectively, our study demonstrates the functional importance of ac4C and NAT10 in metabolism control and leukaemogenesis, providing insights into the potential of targeting NAT10 for AML therapy.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Animals
- Mice
- Serine/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- N-Terminal Acetyltransferases/metabolism
- N-Terminal Acetyltransferases/genetics
- Cell Line, Tumor
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/genetics
- Cytidine/analogs & derivatives
- Cytidine/pharmacology
- Cytidine/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Mice, Inbred NOD
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
Collapse
Affiliation(s)
- Subo Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feng Huang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Yushuai Wang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yifei Long
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanpei Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yalin Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weiwei Gao
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiuxin Zhang
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yueting Wen
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lili Pan
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Youmei Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhoutian Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Yang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Hongjie Mo
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Baiqing Li
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Jiacheng Hu
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yunda Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shilin Zhang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Shenghua Dong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao Du
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yingmin Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yadi Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenting Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongming Chen
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianjun Chen
- Department of Systems Biology & Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Hengyou Weng
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory, Guangzhou, China.
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
18
|
Teng H, Stoiber M, Bar-Joseph Z, Kingsford C. Detecting m6A RNA modification from nanopore sequencing using a semisupervised learning framework. Genome Res 2024; 34:1987-1999. [PMID: 39406497 DOI: 10.1101/gr.278960.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Direct nanopore-based RNA sequencing can be used to detect posttranscriptional base modifications, such as N6-methyladenosine (m6A) methylation, based on the electric current signals produced by the distinct chemical structures of modified bases. A key challenge is the scarcity of adequate training data with known methylation modifications. We present Xron, a hybrid encoder-decoder framework that delivers a direct methylation-distinguishing basecaller by training on synthetic RNA data and immunoprecipitation (IP)-based experimental data in two steps. First, we generate data with more diverse modification combinations through in silico cross-linking. Second, we use this data set to train an end-to-end neural network basecaller followed by fine-tuning on IP-based experimental data with label smoothing. The trained neural network basecaller outperforms existing methylation detection methods on both read-level and site-level prediction scores. Xron is a standalone, end-to-end m6A-distinguishing basecaller capable of detecting methylated bases directly from raw sequencing signals, enabling de novo methylome assembly.
Collapse
Affiliation(s)
- Haotian Teng
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Marcus Stoiber
- Oxford Nanopore Technologies, Alameda, California 94501-1170, USA
| | - Ziv Bar-Joseph
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Carl Kingsford
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA;
| |
Collapse
|
19
|
Xu H, Kong L, Cheng J, Al Moussawi K, Chen X, Iqbal A, Wing PAC, Harris JM, Tsukuda S, Embarc-Buh A, Wei G, Castello A, Kriaucionis S, McKeating JA, Lu X, Song CX. Absolute quantitative and base-resolution sequencing reveals comprehensive landscape of pseudouridine across the human transcriptome. Nat Methods 2024; 21:2024-2033. [PMID: 39349603 PMCID: PMC11541003 DOI: 10.1038/s41592-024-02439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/04/2024] [Indexed: 11/08/2024]
Abstract
Pseudouridine (Ψ) is one of the most abundant modifications in cellular RNA. However, its function remains elusive, mainly due to the lack of highly sensitive and accurate detection methods. Here, we introduced 2-bromoacrylamide-assisted cyclization sequencing (BACS), which enables Ψ-to-C transitions, for quantitative profiling of Ψ at single-base resolution. BACS allowed the precise identification of Ψ positions, especially in densely modified Ψ regions and consecutive uridine sequences. BACS detected all known Ψ sites in human rRNA and spliceosomal small nuclear RNAs and generated the quantitative Ψ map of human small nucleolar RNA and tRNA. Furthermore, BACS simultaneously detected adenosine-to-inosine editing sites and N1-methyladenosine. Depletion of pseudouridine synthases TRUB1, PUS7 and PUS1 elucidated their targets and sequence motifs. We further identified a highly abundant Ψ114 site in Epstein-Barr virus-encoded small RNA EBER2. Surprisingly, applying BACS to a panel of RNA viruses demonstrated the absence of Ψ in their viral transcripts or genomes, shedding light on differences in pseudouridylation across virus families.
Collapse
MESH Headings
- Humans
- Pseudouridine/metabolism
- Pseudouridine/genetics
- Transcriptome
- RNA, Transfer/genetics
- RNA, Transfer/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Ribosomal/genetics
- Sequence Analysis, RNA/methods
- RNA, Viral/genetics
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Adenosine/analogs & derivatives
- Adenosine/genetics
- Adenosine/metabolism
- Adenosine/chemistry
- Herpesvirus 4, Human/genetics
- Intramolecular Transferases
Collapse
Affiliation(s)
- Haiqi Xu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Linzhen Kong
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jingfei Cheng
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Khatoun Al Moussawi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xiufei Chen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aleema Iqbal
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A C Wing
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Azman Embarc-Buh
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Guifeng Wei
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alfredo Castello
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Xu Z, Zheng X, Fan J, Jiao Y, Huang S, Xie Y, Xu S, Lu Y, Liu A, Liu R, Yang Y, Luo GZ, Pan T, Wang X. Microbiome-induced reprogramming in post-transcriptional landscape using nanopore direct RNA sequencing. Cell Rep 2024; 43:114798. [PMID: 39365698 DOI: 10.1016/j.celrep.2024.114798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/10/2024] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
It has been widely recognized that the microbiota has the capacity to shape host gene expression and physiological functions. However, there remains a paucity of comprehensive study revealing the host transcriptional landscape regulated by the microbiota. Here, we comprehensively examined mRNA landscapes in mouse tissues (brain and cecum) from specific-pathogen-free and germ-free mice using nanopore direct RNA sequencing. Our results show that the microbiome has global influence on a host's RNA modifications (m6A, m5C, Ψ), isoform generation, poly(A) tail length, and transcript abundance in both brain and cecum tissues. Moreover, the microbiome exerts tissue-specific effects on various post-transcriptional regulatory processes. In addition, the microbiome impacts the coordination of multiple RNA modifications in host brain and cecum tissues. In conclusion, we establish the relationship between microbial regulation and gene expression. Our results help the understanding of the mechanisms by which the microbiome reprograms host gene expression.
Collapse
Affiliation(s)
- Zihe Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoqi Zheng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiajun Fan
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yuting Jiao
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sihao Huang
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Yingyuan Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shunlan Xu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yi Lu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Anrui Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Runzhou Liu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ying Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyun Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, South China Normal University, Guangzhou 510631, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Dai Q, Ye C, Irkliyenko I, Wang Y, Sun HL, Gao Y, Liu Y, Beadell A, Perea J, Goel A, He C. Ultrafast bisulfite sequencing detection of 5-methylcytosine in DNA and RNA. Nat Biotechnol 2024; 42:1559-1570. [PMID: 38168991 PMCID: PMC11217147 DOI: 10.1038/s41587-023-02034-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024]
Abstract
Bisulfite sequencing (BS-seq) to detect 5-methylcytosine (5mC) is limited by lengthy reaction times, severe DNA damage, overestimation of 5mC level and incomplete C-to-U conversion of certain DNA sequences. We present ultrafast BS-seq (UBS-seq), which uses highly concentrated bisulfite reagents and high reaction temperatures to accelerate the bisulfite reaction by ~13-fold, resulting in reduced DNA damage and lower background noise. UBS-seq allows library construction from small amounts of purified genomic DNA, such as from cell-free DNA or directly from 1 to 100 mouse embryonic stem cells, with less overestimation of 5mC level and higher genome coverage than conventional BS-seq. Additionally, UBS-seq quantitatively maps RNA 5-methylcytosine (m5C) from low inputs of mRNA and allows the detection of m5C stoichiometry in highly structured RNA sequences. Our UBS-seq results identify NSUN2 as the major 'writer' protein responsible for the deposition of ~90% of m5C sites in HeLa mRNA and reveal enriched m5C sites in 5'-regions of mammalian mRNA, which may have functional roles in mRNA translation regulation.
Collapse
Affiliation(s)
- Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Iryna Irkliyenko
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Yiding Wang
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics & System Biology, The University of Chicago, Chicago, IL, USA
| | - Hui-Lung Sun
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yun Gao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yushuai Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Alana Beadell
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - José Perea
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
22
|
Luo Z, Yu L, Xu Z, Liu K, Gu L. Comprehensive Review and Assessment of Computational Methods for Prediction of N6-Methyladenosine Sites. BIOLOGY 2024; 13:777. [PMID: 39452086 PMCID: PMC11504118 DOI: 10.3390/biology13100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
N6-methyladenosine (m6A) plays a crucial regulatory role in the control of cellular functions and gene expression. Recent advances in sequencing techniques for transcriptome-wide m6A mapping have accelerated the accumulation of m6A site information at a single-nucleotide level, providing more high-confidence training data to develop computational approaches for m6A site prediction. However, it is still a major challenge to precisely predict m6A sites using in silico approaches. To advance the computational support for m6A site identification, here, we curated 13 up-to-date benchmark datasets from nine different species (i.e., H. sapiens, M. musculus, Rat, S. cerevisiae, Zebrafish, A. thaliana, Pig, Rhesus, and Chimpanzee). This will assist the research community in conducting an unbiased evaluation of alternative approaches and support future research on m6A modification. We revisited 52 computational approaches published since 2015 for m6A site identification, including 30 traditional machine learning-based, 14 deep learning-based, and 8 ensemble learning-based methods. We comprehensively reviewed these computational approaches in terms of their training datasets, calculated features, computational methodologies, performance evaluation strategy, and webserver/software usability. Using these benchmark datasets, we benchmarked nine predictors with available online websites or stand-alone software and assessed their prediction performance. We found that deep learning and traditional machine learning approaches generally outperformed scoring function-based approaches. In summary, the curated benchmark dataset repository and the systematic assessment in this study serve to inform the design and implementation of state-of-the-art computational approaches for m6A identification and facilitate more rigorous comparisons of new methods in the future.
Collapse
Affiliation(s)
- Zhengtao Luo
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China;
- Anhui Provincial Key Laboratory of Smart Agriculture Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
| | - Liyi Yu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
| | - Zhaochun Xu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| | - Kening Liu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
| | - Lichuan Gu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China;
- Anhui Provincial Key Laboratory of Smart Agriculture Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
23
|
Park D, Cenik C. Long-read RNA sequencing reveals allele-specific N 6-methyladenosine modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602538. [PMID: 39026828 PMCID: PMC11257478 DOI: 10.1101/2024.07.08.602538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Long-read sequencing technology enables highly accurate detection of allele-specific RNA expression, providing insights into the effects of genetic variation on splicing and RNA abundance. Furthermore, the ability to directly sequence RNA promises the detection of RNA modifications in tandem with ascertaining the allelic origin of each molecule. Here, we leverage these advantages to determine allele-biased patterns of N6-methyladenosine (m6A) modifications in native mRNA. We utilized human and mouse cells with known genetic variants to assign allelic origin of each mRNA molecule combined with a supervised machine learning model to detect read-level m6A modification ratios. Our analyses revealed the importance of sequences adjacent to the DRACH-motif in determining m6A deposition, in addition to allelic differences that directly alter the motif. Moreover, we discovered allele-specific m6A modification (ASM) events with no genetic variants in close proximity to the differentially modified nucleotide, demonstrating the unique advantage of using long reads and surpassing the capabilities of antibody-based short-read approaches. This technological advancement promises to advance our understanding of the role of genetics in determining mRNA modifications.
Collapse
Affiliation(s)
- Dayea Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
24
|
Jiang X, Zhan L, Tang X. RNA modifications in physiology and pathology: Progressing towards application in clinical settings. Cell Signal 2024; 121:111242. [PMID: 38851412 DOI: 10.1016/j.cellsig.2024.111242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The potential to modify individual nucleotides through chemical means in order to impact the electrostatic charge, hydrophobic properties, and base pairing of RNA molecules is harnessed in the medical application of stable synthetic RNAs like mRNA vaccines and synthetic small RNA molecules. These modifications are used to either increase or decrease the production of therapeutic proteins. Additionally, naturally occurring biochemical alterations of nucleotides play a role in regulating RNA metabolism and function, thereby modulating essential cellular processes. Research elucidating the mechanisms through which RNA modifications govern fundamental cellular functions in multicellular organisms has enhanced our comprehension of how irregular RNA modification profiles can lead to human diseases. Collectively, these fundamental scientific findings have unveiled the molecular and cellular functions of RNA modifications, offering new opportunities for therapeutic intervention and paving the way for a variety of innovative clinical strategies.
Collapse
Affiliation(s)
- Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
25
|
Tan L, Guo Z, Shao Y, Ye L, Wang M, Deng X, Chen S, Li R. Analysis of bacterial transcriptome and epitranscriptome using nanopore direct RNA sequencing. Nucleic Acids Res 2024; 52:8746-8762. [PMID: 39011882 PMCID: PMC11347139 DOI: 10.1093/nar/gkae601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Bacterial gene expression is a complex process involving extensive regulatory mechanisms. Along with growing interests in this field, Nanopore Direct RNA Sequencing (DRS) provides a promising platform for rapid and comprehensive characterization of bacterial RNA biology. However, the DRS of bacterial RNA is currently deficient in the yield of mRNA-mapping reads and has yet to be exploited for transcriptome-wide RNA modification mapping. Here, we showed that pre-processing of bacterial total RNA (size selection followed by ribosomal RNA depletion and polyadenylation) guaranteed high throughputs of sequencing data and considerably increased the amount of mRNA reads. This way, complex transcriptome architectures were reconstructed for Escherichia coli and Staphylococcus aureus and extended the boundaries of 225 known E. coli operons and 89 defined S. aureus operons. Utilizing unmodified in vitro-transcribed (IVT) RNA libraries as a negative control, several Nanopore-based computational tools globally detected putative modification sites in the E. coli and S. aureus transcriptomes. Combined with Next-Generation Sequencing-based N6-methyladenosine (m6A) detection methods, 75 high-confidence m6A candidates were identified in the E. coli protein-coding transcripts, while none were detected in S. aureus. Altogether, we demonstrated the potential of Nanopore DRS in systematic and convenient transcriptome and epitranscriptome analysis.
Collapse
Affiliation(s)
- Lu Tan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhihao Guo
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Yanwen Shao
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Miaomiao Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Xin Deng
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Runsheng Li
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Lu L, Zhang X, Zhou Y, Shi Z, Xie X, Zhang X, Gao L, Fu A, Liu C, He B, Xiong X, Yin Y, Wang Q, Yi C, Li X. Base-resolution m 5C profiling across the mammalian transcriptome by bisulfite-free enzyme-assisted chemical labeling approach. Mol Cell 2024; 84:2984-3000.e8. [PMID: 39002544 DOI: 10.1016/j.molcel.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
5-methylcytosine (m5C) is a prevalent RNA modification crucial for gene expression regulation. However, accurate and sensitive m5C sites identification remains challenging due to severe RNA degradation and reduced sequence complexity during bisulfite sequencing (BS-seq). Here, we report m5C-TAC-seq, a bisulfite-free approach combining TET-assisted m5C-to-f5C oxidation with selective chemical labeling, therefore enabling direct base-resolution m5C detection through pre-enrichment and C-to-T transitions at m5C sites. With m5C-TAC-seq, we comprehensively profiled the m5C methylomes in human and mouse cells, identifying a substantially larger number of confident m5C sites. Through perturbing potential m5C methyltransferases, we deciphered the responsible enzymes for most m5C sites, including the characterization of NSUN5's involvement in mRNA m5C deposition. Additionally, we characterized m5C dynamics during mESC differentiation. Notably, the mild reaction conditions and preservation of nucleotide composition in m5C-TAC-seq allow m5C detection in chromatin-associated RNAs. The accurate and robust m5C-TAC-seq will advance research into m5C methylation functional investigation.
Collapse
Affiliation(s)
- Liang Lu
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuenan Zhou
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zuokun Shi
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiwen Xie
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinyue Zhang
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liaoliao Gao
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Anbo Fu
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Bo He
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xushen Xiong
- The Second Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiaoyu Li
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
27
|
Yang Y, Lu Y, Wang Y, Wen X, Qi C, Piao W, Jin H. Current progress in strategies to profile transcriptomic m 6A modifications. Front Cell Dev Biol 2024; 12:1392159. [PMID: 39055651 PMCID: PMC11269109 DOI: 10.3389/fcell.2024.1392159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Various methods have been developed so far for detecting N 6-methyladenosine (m6A). The total m6A level or the m6A status at individual positions on mRNA can be detected and quantified through some sequencing-independent biochemical methods, such as LC/MS, SCARLET, SELECT, and m6A-ELISA. However, the m6A-detection techniques relying on high-throughput sequencing have more effectively advanced the understanding about biological significance of m6A-containing mRNA and m6A pathway at a transcriptomic level over the past decade. Various SGS-based (Second Generation Sequencing-based) methods with different detection principles have been widely employed for this purpose. These principles include m6A-enrichment using antibodies, discrimination of m6A from unmodified A-base by nucleases, a fusion protein strategy relying on RNA-editing enzymes, and marking m6A with chemical/biochemical reactions. Recently, TGS-based (Third Generation Sequencing-based) methods have brought a new trend by direct m6A-detection. This review first gives a brief introduction of current knowledge about m6A biogenesis and function, and then comprehensively describes m6A-profiling strategies including their principles, procedures, and features. This will guide users to pick appropriate methods according to research goals, give insights for developing novel techniques in varying areas, and continue to expand our boundary of knowledge on m6A.
Collapse
Affiliation(s)
- Yuening Yang
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanming Lu
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Wang
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xianghui Wen
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Changhai Qi
- Department of Pathology, Aerospace Center Hospital, Beijing, China
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, China
| | - Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, China
| |
Collapse
|
28
|
Ye X, Li Z, Ye S, Liang X, Bao C, He M, Wang H, Xia L, Cao X. Accurate identification of 8-oxoguanine in RNA with single-nucleotide resolution using ligase-dependent qPCR. Org Biomol Chem 2024; 22:5629-5635. [PMID: 38912549 DOI: 10.1039/d4ob00786g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
8-oxoguanine (o8G), a prevalent oxidative modification in RNA induced by reactive oxygen species (ROS), plays a pivotal role in regulating RNA functions. Accurate detection and quantification of o8G modifications is critical to understanding their biological significance and potential as disease biomarkers, but effective detection methods remain limited. Here, we have developed a highly specific T3 DNA ligase-dependent qPCR assay that exploits the enzyme's ability to discriminate o8G from guanine (G) with single-nucleotide resolution. This method can detect o8G in RNA at levels as low as 500 fM, with an up to 18-fold higher selectivity for discriminating o8G from G. By simulating oxidative stress conditions in SH-SY5Y and HS683 cell lines treated with rotenone, we successfully identified site-specific o8G modifications in key miRNAs associated with neuroprotective responses, including miR-124, let-7a and miR-29a. The developed assay holds significant promise for the practical identification of o8G, facilitating its potential for detailed studies of o8G dynamics in various biological contexts and diseases.
Collapse
Affiliation(s)
- Xidong Ye
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zengguang Li
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Shangde Ye
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xinqi Liang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Chenyu Bao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Mingyang He
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Hailan Wang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xin Cao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
29
|
McCormick CA, Akeson S, Tavakoli S, Bloch D, Klink IN, Jain M, Rouhanifard SH. Multicellular, IVT-derived, unmodified human transcriptome for nanopore-direct RNA analysis. GIGABYTE 2024; 2024:gigabyte129. [PMID: 38962390 PMCID: PMC11221353 DOI: 10.46471/gigabyte.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
Nanopore direct RNA sequencing (DRS) enables measurements of RNA modifications. Modification-free transcripts are a practical and targeted control for DRS, providing a baseline measurement for canonical nucleotides within a matched and biologically-derived sequence context. However, these controls can be challenging to generate and carry nanopore-specific nuances that can impact analyses. We produced DRS datasets using modification-free transcripts from in vitro transcription of cDNA from six immortalized human cell lines. We characterized variation across cell lines and demonstrated how these may be interpreted. These data will serve as a versatile control and resource to the community for RNA modification analyses of human transcripts.
Collapse
Affiliation(s)
| | - Stuart Akeson
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Sepideh Tavakoli
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Dylan Bloch
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Isabel N. Klink
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Miten Jain
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
| | - Sara H. Rouhanifard
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
30
|
Ni P, Xu J, Zhong Z, Luo F, Wang J. RNA m6A detection using raw current signals and basecalling errors from Nanopore direct RNA sequencing reads. Bioinformatics 2024; 40:btae375. [PMID: 38889266 PMCID: PMC11211211 DOI: 10.1093/bioinformatics/btae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/20/2024] Open
Abstract
MOTIVATION Nanopore direct RNA sequencing (DRS) enables the detection of RNA N6-methyladenosine (m6A) without extra laboratory techniques. A number of supervised or comparative approaches have been developed to identify m6A from Nanopore DRS reads. However, existing methods typically utilize either statistical features of the current signals or basecalling-error features, ignoring the richer information of the raw signals of DRS reads. RESULTS Here, we propose RedNano, a deep-learning method designed to detect m6A from Nanopore DRS reads by utilizing both raw signals and basecalling errors. RedNano processes the raw-signal feature and basecalling-error feature through residual networks. We validated the effectiveness of RedNano using synthesized, Arabidopsis, and human DRS data. The results demonstrate that RedNano surpasses existing methods by achieving higher area under the ROC curve (AUC) and area under the precision-recall curve (AUPRs) in all three datasets. Furthermore, RedNano performs better in cross-species validation, demonstrating its robustness. Additionally, when detecting m6A from an independent dataset of Populus trichocarpa, RedNano achieves the highest AUC and AUPR, which are 3.8%-9.9% and 5.5%-13.8% higher than other methods, respectively. AVAILABILITY AND IMPLEMENTATION The source code of RedNano is freely available at https://github.com/Derryxu/RedNano.
Collapse
Affiliation(s)
- Peng Ni
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Xiangjiang Laboratory, Changsha 410205, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| | - Jinrui Xu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Xiangjiang Laboratory, Changsha 410205, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| | - Zeyu Zhong
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Xiangjiang Laboratory, Changsha 410205, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC 29634-0974, United States
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Xiangjiang Laboratory, Changsha 410205, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| |
Collapse
|
31
|
McCormick CA, Akeson S, Tavakoli S, Bloch D, Klink IN, Jain M, Rouhanifard SH. Multicellular, IVT-derived, unmodified human transcriptome for nanopore-direct RNA analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.06.535889. [PMID: 37066160 PMCID: PMC10104151 DOI: 10.1101/2023.04.06.535889] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Nanopore direct RNA sequencing (DRS) enables measurements of RNA modifications. Modification-free transcripts are a practical and targeted control for DRS, providing a baseline measurement for canonical nucleotides within a matched and biologically derived sequence context. However, these controls can be challenging to generate and carry nanopore-specific nuances that can impact analysis. We produced DRS datasets using modification-free transcripts from in vitro transcription (IVT) of cDNA from six immortalized human cell lines. We characterized variation across cell lines and demonstrated how these may be interpreted. These data will serve as a versatile control and resource to the community for RNA modification analysis of human transcripts.
Collapse
Affiliation(s)
- Caroline A. McCormick
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Stuart Akeson
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Sepideh Tavakoli
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Dylan Bloch
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Isabel N. Klink
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Miten Jain
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
- Department of Physics, Northeastern University, Boston, MA, 02115, United States
| | - Sara H. Rouhanifard
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| |
Collapse
|
32
|
Ye H, Li T, Rigden DJ, Wei Z. m6ACali: machine learning-powered calibration for accurate m6A detection in MeRIP-Seq. Nucleic Acids Res 2024; 52:4830-4842. [PMID: 38634812 PMCID: PMC11109940 DOI: 10.1093/nar/gkae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
We present m6ACali, a novel machine-learning framework aimed at enhancing the accuracy of N6-methyladenosine (m6A) epitranscriptome profiling by reducing the impact of non-specific antibody enrichment in MeRIP-Seq. The calibration model serves as a genomic feature-based classifier that refines the identification of m6A sites, distinguishing those genuinely present from those that can be detected in in-vitro transcribed (IVT) control experiments. We find that m6ACali effectively identifies non-specific binding peaks reported by exomePeak2 and MACS2 in novel MeRIP-Seq datasets without the need for paired IVT controls. The model interpretation revealed that off-target antibody binding sites commonly occur at short exons and short mRNAs, originating from high read coverage regions that share the motif sequence with true m6A sites. We also reveal that the ML strategy can efficiently adjust differentially methylated peaks and other antibody-dependent, base-resolution m6A detection techniques. As a result, m6ACali offers a promising method for the universal enhancement of m6A profiles generated by MeRIP-Seq experiments, elevating the benchmark for omics-level m6A data integration.
Collapse
Affiliation(s)
- Haokai Ye
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Tenglong Li
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Zhen Wei
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Life Course and Medical Sciences, University of Liverpool, L7 8TX Liverpool, UK
| |
Collapse
|
33
|
Ge Y, Chen R, Ling T, Liu B, Huang J, Cheng Y, Lin Y, Chen H, Xie X, Xia G, Luo G, Yuan S, Xu A. Elevated WTAP promotes hyperinflammation by increasing m6A modification in inflammatory disease models. J Clin Invest 2024; 134:e177932. [PMID: 39007267 PMCID: PMC11245160 DOI: 10.1172/jci177932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Emerging evidence has linked the dysregulation of N6-methyladenosine (m6A) modification to inflammation and inflammatory diseases, but the underlying mechanism still needs investigation. Here, we found that high levels of m6A modification in a variety of hyperinflammatory states are p65-dependent because Wilms tumor 1-associated protein (WTAP), a key component of the "writer" complex, is transcriptionally regulated by p65, and its overexpression can lead to increased levels of m6A modification. Mechanistically, upregulated WTAP is more prone to phase separation to facilitate the aggregation of the writer complex to nuclear speckles and the deposition of m6A marks on transcriptionally active inflammatory transcripts, thereby accelerating the proinflammatory response. Further, a myeloid deficiency in WTAP attenuates the severity of LPS-induced sepsis and DSS-induced IBD. Thus, the proinflammatory effect of WTAP is a general risk-increasing mechanism, and interrupting the assembly of the m6A writer complex to reduce the global m6A levels by targeting the phase separation of WTAP may be a potential and promising therapeutic strategy for alleviating hyperinflammation.
Collapse
Affiliation(s)
- Yong Ge
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Rong Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Tao Ling
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Biaodi Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jingrong Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Youxiang Cheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yi Lin
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Hongxuan Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiongmei Xie
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guomeng Xia
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guanzheng Luo
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shaochun Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Anlong Xu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
34
|
Horner SM, Thompson MG. Challenges to mapping and defining m 6A function in viral RNA. RNA (NEW YORK, N.Y.) 2024; 30:482-490. [PMID: 38531643 PMCID: PMC11019751 DOI: 10.1261/rna.079959.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Viral RNA molecules contain multiple layers of regulatory information. This includes features beyond the primary sequence, such as RNA structures and RNA modifications, including N6-methyladenosine (m6A). Many recent studies have identified the presence and location of m6A in viral RNA and have found diverse regulatory roles for this modification during viral infection. However, to date, viral m6A mapping strategies have limitations that prevent a complete understanding of the function of m6A on individual viral RNA molecules. While m6A sites have been profiled on bulk RNA from many viruses, the resulting m6A maps of viral RNAs described to date present a composite picture of m6A across viral RNA molecules in the infected cell. Thus, for most viruses, it is unknown if unique viral m6A profiles exist throughout infection, nor if they regulate specific viral life cycle stages. Here, we describe several challenges to defining the function of m6A in viral RNA molecules and provide a framework for future studies to help in the understanding of how m6A regulates viral infection.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Matthew G Thompson
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
35
|
Shen W, Sun H, Liu C, Yi Y, Hou Y, Xiao Y, Hu Y, Lu B, Peng J, Wang J, Yi C. GLORI for absolute quantification of transcriptome-wide m 6A at single-base resolution. Nat Protoc 2024; 19:1252-1287. [PMID: 38253658 DOI: 10.1038/s41596-023-00937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/20/2023] [Indexed: 01/24/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant posttranscriptional chemical modification in mRNA, involved in regulating various physiological and pathological processes throughout mRNA metabolism. Recently, we developed GLORI, a sequencing method that enables the production of a globally absolute-quantitative m6A map at single-base resolution. Our technique utilizes the glyoxal- and nitrite-based chemical reaction, which selectively deaminates unmethylated adenosines while leaving m6A intact. The RNA library can then be prepared using a modified library construction protocol from enhanced UV crosslinking and immunoprecipitation (eCLIP) or commercial kits. Here we provide a detailed protocol for proper RNA sample handling and provide further guidelines for the use of a tailored bioinformatics pipeline (GLORI-tools) for subsequent data analysis. Compared with current methods, this new method is both exceptionally sensitive and robust, capable of identifying ~80,000 m6A sites with 50 Gb sequencing data in mammalian cells. It also provides a quantitative readout for m6A sites at single-base resolution. We hope the technique will provide a precise and unbiased tool for investigating m6A biology across various fields. Basic expertise in molecular biology and knowledge of bioinformatics are required for the protocol. The entire procedure can be completed within a week, with the library construction process taking ~4 d.
Collapse
Affiliation(s)
- Weiguo Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yunpeng Yi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, China
| | - Yongkang Hou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ye Xiao
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yufei Hu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bo Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
36
|
Liu WW, Zheng SQ, Li T, Fei YF, Wang C, Zhang S, Wang F, Jiang GM, Wang H. RNA modifications in cellular metabolism: implications for metabolism-targeted therapy and immunotherapy. Signal Transduct Target Ther 2024; 9:70. [PMID: 38531882 DOI: 10.1038/s41392-024-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular metabolism is an intricate network satisfying bioenergetic and biosynthesis requirements of cells. Relevant studies have been constantly making inroads in our understanding of pathophysiology, and inspiring development of therapeutics. As a crucial component of epigenetics at post-transcription level, RNA modification significantly determines RNA fates, further affecting various biological processes and cellular phenotypes. To be noted, immunometabolism defines the metabolic alterations occur on immune cells in different stages and immunological contexts. In this review, we characterize the distribution features, modifying mechanisms and biological functions of 8 RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-methylguanosine (m7G), Pseudouridine (Ψ), adenosine-to-inosine (A-to-I) editing, which are relatively the most studied types. Then regulatory roles of these RNA modification on metabolism in diverse health and disease contexts are comprehensively described, categorized as glucose, lipid, amino acid, and mitochondrial metabolism. And we highlight the regulation of RNA modifications on immunometabolism, further influencing immune responses. Above all, we provide a thorough discussion about clinical implications of RNA modification in metabolism-targeted therapy and immunotherapy, progression of RNA modification-targeted agents, and its potential in RNA-targeted therapeutics. Eventually, we give legitimate perspectives for future researches in this field from methodological requirements, mechanistic insights, to therapeutic applications.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Clinical Medicine, Shandong University, Jinan, China
| | - Si-Qing Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Tian Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Yun-Fei Fei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Chen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Shuang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
37
|
Tang Y, Wu Y, Wang S, Lu X, Gu X, Li Y, Yang F, Xu R, Wang T, Jiao Z, Wu Y, Liu L, Chen JQ, Wang Q, Chen Q. An integrative platform for detection of RNA 2'-O-methylation reveals its broad distribution on mRNA. CELL REPORTS METHODS 2024; 4:100721. [PMID: 38452769 PMCID: PMC10985248 DOI: 10.1016/j.crmeth.2024.100721] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/29/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Ribose 2'-O-methylation is involved in critical biological processes, but its biological functions and significance in mRNAs remain underexplored. We have developed NJU-seq, a sensitive method for unbiased 2'-O-methylation (Nm) profiling, and Nm-VAQ, a site-specific quantification tool. Using these tools in tandem, we identified thousands of Nm sites on mRNAs of human and mouse cell lines, of which 68 of 84 selected sites were further validated to be more than 1% 2'-O-methylated. Unlike rRNA, most mRNA Nm sites were from 1% to 30% methylated. In addition, mRNA Nm was dynamic, changing according to the circumstance. Furthermore, we show that fibrillarin is involved as a methyltransferase. By mimicking the detected Nm sites and the context sequence, the RNA fragments could be 2'-O-methylated and demonstrated higher stability but lower translation efficiency. Last, profiling of Nm sites in lung surgery samples revealed common signatures of lung cancer pathogenesis, providing potential new diagnostic markers.
Collapse
Affiliation(s)
- Yao Tang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yifan Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sainan Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaolan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiangwen Gu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yong Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fan Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ruilin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zichen Jiao
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Liwei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jian-Qun Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Qiang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Qihan Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
38
|
Baquero-Pérez B, Yonchev ID, Delgado-Tejedor A, Medina R, Puig-Torrents M, Sudbery I, Begik O, Wilson SA, Novoa EM, Díez J. N 6-methyladenosine modification is not a general trait of viral RNA genomes. Nat Commun 2024; 15:1964. [PMID: 38467633 PMCID: PMC10928186 DOI: 10.1038/s41467-024-46278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Despite the nuclear localization of the m6A machinery, the genomes of multiple exclusively-cytoplasmic RNA viruses, such as chikungunya (CHIKV) and dengue (DENV), are reported to be extensively m6A-modified. However, these findings are mostly based on m6A-Seq, an antibody-dependent technique with a high rate of false positives. Here, we address the presence of m6A in CHIKV and DENV RNAs. For this, we combine m6A-Seq and the antibody-independent SELECT and nanopore direct RNA sequencing techniques with functional, molecular, and mutagenesis studies. Following this comprehensive analysis, we find no evidence of m6A modification in CHIKV or DENV transcripts. Furthermore, depletion of key components of the host m6A machinery does not affect CHIKV or DENV infection. Moreover, CHIKV or DENV infection has no effect on the m6A machinery's localization. Our results challenge the prevailing notion that m6A modification is a general feature of cytoplasmic RNA viruses and underscore the importance of validating RNA modifications with orthogonal approaches.
Collapse
Affiliation(s)
- Belinda Baquero-Pérez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ivaylo D Yonchev
- Sheffield Institute for Nucleic Acids (SInFoNiA) and School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anna Delgado-Tejedor
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Rebeca Medina
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Mireia Puig-Torrents
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ian Sudbery
- Sheffield Institute for Nucleic Acids (SInFoNiA) and School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Oguzhan Begik
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Stuart A Wilson
- Sheffield Institute for Nucleic Acids (SInFoNiA) and School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| | - Eva Maria Novoa
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
| | - Juana Díez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
39
|
Teng H, Stoiber M, Bar-Joseph Z, Kingsford C. Detecting m6A RNA modification from nanopore sequencing using a semi-supervised learning framework. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.06.574484. [PMID: 38260359 PMCID: PMC10802372 DOI: 10.1101/2024.01.06.574484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Direct nanopore-based RNA sequencing can be used to detect post-transcriptional base modifications, such as m6A methylation, based on the electric current signals produced by the distinct chemical structures of modified bases. A key challenge is the scarcity of adequate training data with known methylation modifications. We present Xron, a hybrid encoder-decoder framework that delivers a direct methylation-distinguishing basecaller by training on synthetic RNA data and immunoprecipitation-based experimental data in two steps. First, we generate data with more diverse modification combinations through in silico cross-linking. Second, we use this dataset to train an end-to-end neural network basecaller followed by fine-tuning on immunoprecipitation-based experimental data with label-smoothing. The trained neural network basecaller outperforms existing methylation detection methods on both read-level and site-level prediction scores. Xron is a standalone, end-to-end m6A-distinguishing basecaller capable of detecting methylated bases directly from raw sequencing signals, enabling de novo methylome assembly.
Collapse
Affiliation(s)
- Haotian Teng
- Computational Biology Department, Carnegie Mellon Univeristy, Pittsburgh PA 15213, USA
| | | | - Ziv Bar-Joseph
- Computational Biology Department, Carnegie Mellon Univeristy, Pittsburgh PA 15213, USA
| | - Carl Kingsford
- Computational Biology Department, Carnegie Mellon Univeristy, Pittsburgh PA 15213, USA
| |
Collapse
|
40
|
Hu J, Zhang YT, Han Y, Ma F, Li CZ, Cui L, Zhang CY. Methylation-Powered Assembly of a Single Quantum Dot-Based FRET Nanosensor for Antibody-Free and Enzyme-Free Monitoring of Locus-Specific N6-Methyladenosine in Clinical Tissues. Anal Chem 2023; 95:17945-17953. [PMID: 38000786 DOI: 10.1021/acs.analchem.3c04571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
N6-Methyladenosine (m6A) is the most pervasive and evolutionarily conserved epitranscriptomic modification in long noncoding RNA (lncRNA), and its dysregulation may induce aberrant transcription and translation programs. Herein, we demonstrate the methylation-powered assembly of a single quantum dot (QD)-based fluorescence resonance energy transfer (FRET) nanosensor for antibody- and enzyme-free monitoring of locus-specific m6A in clinical tissues. The m6A-sensitive DNAzyme VMC10 is employed to identify a specific m6A site in lncRNA, and it catalyzes the hydrolytic cleavage of unmethylated lncRNA. The cleaved lncRNA fails to trigger the subsequent catalytic hairpin assembly (CHA) reaction due to the energy barrier. In contrast, when m6A-lncRNA is present, the methyl group in m6A protects lncRNA from VMC10-mediated cleavage. With the aid of an assistant probe, the retained intact m6A-lncRNA is released from the VMC10/lncRNA complex and subsequently triggers the CHA reaction, generating abundant AF647/biotin dual-labeled duplexes. The assembly of AF647/biotin dual-labeled duplexes onto 605QD results in efficient FRET between 605QD and AF647. The FRET signal can be simply quantified by single-molecule detection. Notably, this assay can be implemented in an antibody-free and enzyme-free manner. This nanosensor can sensitively quantify target m6A with a detection limit of 0.47 fM, and it can discriminate as low as a 0.001% m6A level from excess coexisting counterparts. Importantly, this nanosensor can monitor the cellular m6A level with single-cell sensitivity and profile target m6A expression in breast cancer and healthy para-cancerous tissues, providing a powerful tool for studying the physiological and pathological functions of m6A.
Collapse
Affiliation(s)
- Jinping Hu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ya-Ting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chen-Zhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
41
|
Tan MH. Identification of Bona Fide RNA Editing Sites: History, Challenges, and Opportunities. Acc Chem Res 2023; 56:3033-3044. [PMID: 37827987 DOI: 10.1021/acs.accounts.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by the adenosine deaminase acting on the RNA (ADAR) family of enzymes of which there are three members (ADAR1, ADAR2, and ADAR3), is a major gene regulatory mechanism that diversifies the transcriptome. It is widespread in many metazoans, including humans. As inosine is interpreted by cellular machineries mainly as guanosine, A-to-I editing effectively gives A-to-G nucleotide changes. Depending on its location, an editing event can generate new protein isoforms or influence other RNA processing pathways. Researchers have found that ADAR-mediated editing performs diverse functions. For example, it enables living organisms such as cephalopods to adapt rapidly to fluctuating environmental conditions such as water temperature. In development, the loss of ADAR1 is embryonically lethal partly because endogenous double-stranded RNAs (dsRNAs) are no longer marked by inosines, which signal "self", and thus cause the melanoma differentiation-associated protein 5 (MDA5) sensor to trigger a deleterious interferon response. Hence, ADAR1 plays a key role in preventing aberrant activation of the innate immune system. Furthermore, ADAR enzymes have been implicated in myriad human diseases. Intriguingly, some cancer cells are known to exploit ADAR1 activity to dodge immune responses. However, the exact identities of immunogenic RNAs in different biological contexts have remained elusive. Consequently, there is tremendous interest in identifying inosine-containing RNAs in the cell.The identification of A-to-I RNA editing sites is dependent on the sequencing of nucleic acids. Technological and algorithmic advancements over the past decades have revolutionized the way editing events are detected. At the beginning, the discovery of editing sites relies on Sanger sequencing, a first-generation technology. Both RNA, which is reverse transcribed into complementary DNA (cDNA), and genomic DNA (gDNA) from the same source are analyzed. After sequence alignment, one would require an adenosine to be present in the genome but a guanosine to be detected in the RNA sample for a position to be declared as an editing site. However, an issue with Sanger sequencing is its low throughput. Subsequently, Illumina sequencing, a second-generation technology, was invented. By permitting the simultaneous interrogation of millions of molecules, it enables many editing sites to be identified rapidly. However, a key challenge is that the Illumina platform produces short sequencing reads that can be difficult to map accurately. To tackle the challenge, we and others developed computational workflows with a series of filters to discard sites that are likely to be false positives. When Illumina sequencing data sets are properly analyzed, A-to-G variants should emerge as the most dominant mismatch type. Moreover, the quantitative nature of the data allows us to build a comprehensive atlas of editing-level measurements across different biological contexts, providing deep insights into the spatiotemporal dynamics of RNA editing. However, difficulties remain in identifying true A-to-I editing sites in short protein-coding exons or in organisms and diseases where DNA mutations and genomic polymorphisms are prevalent and mostly unknown. Nanopore sequencing, a third-generation technology, promises to address the difficulties, as it allows native RNAs to be sequenced without conversion to cDNA, preserving base modifications that can be directly detected through machine learning. We recently demonstrated that nanopore sequencing could be used to identify A-to-I editing sites in native RNA directly. Although further work is needed to enhance the detection accuracy in single molecules from fewer cells, the nanopore technology holds the potential to revolutionize epitranscriptomic studies.
Collapse
Affiliation(s)
- Meng How Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- HP-NTU Digital Manufacturing Corporate Laboratory, Nanyang Technological University, Singapore 637460, Singapore
| |
Collapse
|
42
|
Zhang M, Jiang Z, Ma Y, Liu W, Zhuang Y, Lu B, Li K, Peng J, Yi C. Quantitative profiling of pseudouridylation landscape in the human transcriptome. Nat Chem Biol 2023; 19:1185-1195. [PMID: 36997645 DOI: 10.1038/s41589-023-01304-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/02/2023] [Indexed: 04/07/2023]
Abstract
Pseudouridine (Ψ) is an abundant post-transcriptional RNA modification in ncRNA and mRNA. However, stoichiometric measurement of individual Ψ sites in human transcriptome remains unaddressed. Here we develop 'PRAISE', via selective chemical labeling of Ψ by bisulfite to induce nucleotide deletion signature during reverse transcription, to realize quantitative assessment of the Ψ landscape in the human transcriptome. Unlike traditional bisulfite treatment, our approach is based on quaternary base mapping and revealed an ~10% median modification level for 2,209 confident Ψ sites in HEK293T cells. By perturbing pseudouridine synthases, we obtained differential mRNA targets of PUS1, PUS7, TRUB1 and DKC1, with TRUB1 targets showing the highest modification stoichiometry. In addition, we quantified known and new Ψ sites in mitochondrial mRNA catalyzed by PUS1. Collectively, we provide a sensitive and convenient method to measure transcriptome-wide Ψ; we envision this quantitative approach would facilitate emerging efforts to elucidate the function and mechanism of mRNA pseudouridylation.
Collapse
Affiliation(s)
- Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Zhe Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yichen Ma
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wenqing Liu
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Bo Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Kai Li
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
43
|
Chen L, Zhen H, Chen Z, Huang M, Mak DW, Jin W, Zou Y, Chen M, Zheng M, Xie Q, Zhou Z, Jin G. Deciphering m6A dynamics at a single-base level during planarian anterior-posterior axis specification. Comput Struct Biotechnol J 2023; 21:4567-4579. [PMID: 37790241 PMCID: PMC10542940 DOI: 10.1016/j.csbj.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The establishment of the anterior-posterior (A-P) axis is a crucial step during tissue repair and regeneration. Despite the association reported recently of N6-methyladenosine (m6A) with regeneration, the mechanism underlying the regulation of m6A in A-P axis specification during regeneration remains unknown. Herein, we deciphered the m6A landscape at a single-base resolution at multiple time points during A-P axis regeneration and constructed the de novo transcriptome assembly of the Dugesia japonica planarian. RESULTS Immunofluorescence staining and comparative analysis revealed that m6A is widespread across the planarian and dynamically regulated during regeneration along the A-P axis, exhibiting a strong spatiotemporal feature. The resulting datasets of m6A-modified genes identified 80 anterior-specific genes and 13 posterior-specific genes, respectively. In addition, we showed that YTHDC1 serves as the primary m6A reader to be involved in the m6A-mediated specification of A-P axis during regeneration in Dugesia japonica planarian. CONCLUSIONS Our study provides an RNA epigenetic explanation for the specification of the A-P axis during tissue regeneration in planarian.
Collapse
Affiliation(s)
- Liqian Chen
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hui Zhen
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zixin Chen
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Mujie Huang
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Daniel W. Mak
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yuxiu Zou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Mingjie Chen
- Shanghai NewCore Biotechnology Co., Ltd., Room 309, Building C, No.154, Lane 953, Jianchuan Road, Minhang District, Shanghai, China
| | - Mingyue Zheng
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qingqiang Xie
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Guoxiang Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
44
|
Xiao YL, Liu S, Ge R, Wu Y, He C, Chen M, Tang W. Transcriptome-wide profiling and quantification of N 6-methyladenosine by enzyme-assisted adenosine deamination. Nat Biotechnol 2023; 41:993-1003. [PMID: 36593412 PMCID: PMC10625715 DOI: 10.1038/s41587-022-01587-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/24/2022] [Indexed: 01/03/2023]
Abstract
N6-methyladenosine (m6A), the most abundant internal messenger RNA modification in higher eukaryotes, serves myriad roles in regulating cellular processes. Functional dissection of m6A is, however, hampered in part by the lack of high-resolution and quantitative detection methods. Here we present evolved TadA-assisted N6-methyladenosine sequencing (eTAM-seq), an enzyme-assisted sequencing technology that detects and quantifies m6A by global adenosine deamination. With eTAM-seq, we analyze the transcriptome-wide distribution of m6A in HeLa and mouse embryonic stem cells. The enzymatic deamination route employed by eTAM-seq preserves RNA integrity, facilitating m6A detection from limited input samples. In addition to transcriptome-wide m6A profiling, we demonstrate site-specific, deep-sequencing-free m6A quantification with as few as ten cells, an input demand orders of magnitude lower than existing quantitative profiling methods. We envision that eTAM-seq will enable researchers to not only survey the m6A landscape at unprecedented resolution, but also detect m6A at user-specified loci with a simple workflow.
Collapse
Affiliation(s)
- Yu-Lan Xiao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Ruiqi Ge
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Yuan Wu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
| | - Mengjie Chen
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA.
| | - Weixin Tang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
45
|
Kong Y, Mead EA, Fang G. Navigating the pitfalls of mapping DNA and RNA modifications. Nat Rev Genet 2023; 24:363-381. [PMID: 36653550 PMCID: PMC10722219 DOI: 10.1038/s41576-022-00559-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 01/19/2023]
Abstract
Chemical modifications to nucleic acids occur across the kingdoms of life and carry important regulatory information. Reliable high-resolution mapping of these modifications is the foundation of functional and mechanistic studies, and recent methodological advances based on next-generation sequencing and long-read sequencing platforms are critical to achieving this aim. However, mapping technologies may have limitations that sometimes lead to inconsistent results. Some of these limitations are technical in nature and specific to certain types of technology. Here, however, we focus on common (yet not always widely recognized) pitfalls that are shared among frequently used mapping technologies and discuss strategies to help technology developers and users mitigate their effects. Although the emphasis is primarily on DNA modifications, RNA modifications are also discussed.
Collapse
Affiliation(s)
- Yimeng Kong
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A Mead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
46
|
Abstract
Characterization of RNA modifications has identified their distribution features and molecular functions. Dynamic changes in RNA modification on various forms of RNA are essential for the development and function of the immune system. In this review, we discuss the value of innovative RNA modification profiling technologies to uncover the function of these diverse, dynamic RNA modifications in various immune cells within healthy and diseased contexts. Further, we explore our current understanding of the mechanisms whereby aberrant RNA modifications modulate the immune milieu of the tumor microenvironment and point out outstanding research questions.
Collapse
Affiliation(s)
- Dali Han
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Meng Michelle Xu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China;
| |
Collapse
|
47
|
Zhong ZD, Xie YY, Chen HX, Lan YL, Liu XH, Ji JY, Wu F, Jin L, Chen J, Mak DW, Zhang Z, Luo GZ. Systematic comparison of tools used for m 6A mapping from nanopore direct RNA sequencing. Nat Commun 2023; 14:1906. [PMID: 37019930 PMCID: PMC10076423 DOI: 10.1038/s41467-023-37596-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
N6-methyladenosine (m6A) has been increasingly recognized as a new and important regulator of gene expression. To date, transcriptome-wide m6A detection primarily relies on well-established methods using next-generation sequencing (NGS) platform. However, direct RNA sequencing (DRS) using the Oxford Nanopore Technologies (ONT) platform has recently emerged as a promising alternative method to study m6A. While multiple computational tools are being developed to facilitate the direct detection of nucleotide modifications, little is known about the capabilities and limitations of these tools. Here, we systematically compare ten tools used for mapping m6A from ONT DRS data. We find that most tools present a trade-off between precision and recall, and integrating results from multiple tools greatly improve performance. Using a negative control could improve precision by subtracting certain intrinsic bias. We also observed variation in detection capabilities and quantitative information among motifs, and identified sequencing depth and m6A stoichiometry as potential factors affecting performance. Our study provides insight into the computational tools currently used for mapping m6A based on ONT DRS data and highlights the potential for further improving these tools, which may serve as the basis for future research.
Collapse
Affiliation(s)
- Zhen-Dong Zhong
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Ying-Yuan Xie
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Hong-Xuan Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Ye-Lin Lan
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xue-Hong Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jing-Yun Ji
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Fu Wu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Lingmei Jin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Daniel W Mak
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhang Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
48
|
Cai X, Wang H, Han Y, Huang H, Qian P. The essential roles of small non-coding RNAs and RNA modifications in normal and malignant hematopoiesis. Front Mol Biosci 2023; 10:1176416. [PMID: 37065445 PMCID: PMC10102602 DOI: 10.3389/fmolb.2023.1176416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Hematopoietic stem cells (HSCs) developing from mesoderm during embryogenesis are important for the blood circulatory system and immune system. Many factors such as genetic factors, chemical exposure, physical radiation, and viral infection, can lead to the dysfunction of HSCs. Hematological malignancies (involving leukemia, lymphoma, and myeloma) were diagnosed in more than 1.3 million people globally in 2021, taking up 7% of total newly-diagnosed cancer patients. Although many treatments like chemotherapy, bone marrow transplantation, and stem cell transplantation have been applied in clinical therapeutics, the average 5-year survival rate for leukemia, lymphoma, and myeloma is about 65%, 72%, and 54% respectively. Small non-coding RNAs play key roles in a variety of biological processes, including cell division and proliferation, immunological response and cell death. With the development of technologies in high-throughput sequencing and bioinformatic analysis, there is emerging research about modifications on small non-coding RNAs, as well as their functions in hematopoiesis and related diseases. In this study, we summarize the updated information of small non-coding RNAs and RNA modifications in normal and malignant hematopoiesis, which sheds lights into the future application of HSCs into the treatment of blood diseases.
Collapse
Affiliation(s)
- Xinyi Cai
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Hui Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
- *Correspondence: Pengxu Qian,
| |
Collapse
|
49
|
Dynamics of RNA m 5C modification during brain development. Genomics 2023; 115:110604. [PMID: 36889368 DOI: 10.1016/j.ygeno.2023.110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Post-transcriptional RNA modifications have been recognized as key regulators of neuronal differentiation and synapse development in the mammalian brain. While distinct sets of 5-methylcytosine (m5C) modified mRNAs have been detected in neuronal cells and brain tissues, no study has been performed to characterize methylated mRNA profiles in the developing brain. Here, together with regular RNA-seq, we performed transcriptome-wide bisulfite sequencing to compare RNA cytosine methylation patterns in neural stem cells (NSCs), cortical neuronal cultures, and brain tissues at three postnatal stages. Among 501 m5C sites identified, approximately 6% are consistently methylated across all five conditions. Compared to m5C sites identified in NSCs, 96% of them were hypermethylated in neurons and enriched for genes involved in positive transcriptional regulation and axon extension. In addition, brains at the early postnatal stage demonstrated substantial changes in both RNA cytosine methylation and gene expression of RNA cytosine methylation readers, writers, and erasers. Furthermore, differentially methylated transcripts were significantly enriched for genes regulating synaptic plasticity. Altogether, this study provides a brain epitranscriptomic dataset as a new resource and lays the foundation for further investigations into the role of RNA cytosine methylation during brain development.
Collapse
|
50
|
Liu C, Sun H, Yi Y, Shen W, Li K, Xiao Y, Li F, Li Y, Hou Y, Lu B, Liu W, Meng H, Peng J, Yi C, Wang J. Absolute quantification of single-base m 6A methylation in the mammalian transcriptome using GLORI. Nat Biotechnol 2023; 41:355-366. [PMID: 36302990 DOI: 10.1038/s41587-022-01487-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/24/2022] [Indexed: 12/22/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in mammalian cells and the best-studied epitranscriptomic mark. Despite the development of various tools to map m6A, a transcriptome-wide method that enables absolute quantification of m6A at single-base resolution is lacking. Here we use glyoxal and nitrite-mediated deamination of unmethylated adenosines (GLORI) to develop an absolute m6A quantification method that is conceptually similar to bisulfite-sequencing-based quantification of DNA 5-methylcytosine. We apply GLORI to quantify the m6A methylomes of mouse and human cells and reveal clustered m6A modifications with differential distribution and stoichiometry. In addition, we characterize m6A dynamics under stress and examine the quantitative landscape of m6A modification in gene expression regulation. GLORI is an unbiased, convenient method for the absolute quantification of the m6A methylome.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yunpeng Yi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, China
| | - Weiguo Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Kai Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ye Xiao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuchen Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yongkang Hou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bo Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Wenqing Liu
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Haowei Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|