1
|
Zhao Z, Cui H, Cui H. Decoding tissue complexity: multiscale mapping of chemistry-structure-function relationships through advanced visualization technologies. J Mater Chem B 2025. [PMID: 40476698 DOI: 10.1039/d5tb00744e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Comprehensively acquiring biological tissue information is pivotal for advancing our understanding of biological systems, elucidating disease mechanisms, and developing innovative clinical strategies. Biological tissues, as nature's archetypal biomaterials, exhibit multiscale structural and functional complexity that provides critical principles for synthetic biomaterials. Tissues/organs integrate molecular, biomechanical, and hierarchical architectural features across scales, offering a blueprint for engineering functional materials capable of mimicking or interfacing with living systems. Biological visualization technologies have emerged as indispensable tools for decoding tissue complexity, leveraging their unique technical advantages and multidimensional analytical capabilities to bridge the gap between macroscopic observations and molecular insights. The integration of cutting-edge technologies such as artificial intelligence (AI), augmented reality, and deep learning is revolutionizing the field and enabling real-time, high-resolution, and predictive analyses that transcend the limitations of traditional imaging modalities. This review systematically explores the principles, applications, and limitations of state-of-the-art biological visualization technologies, with a particular emphasis on the transformative advancements in AI-driven image analysis, multidimensional imaging and reconstruction, and multimodal data integration. By analyzing these technological trends, we envision a future where biological visualization evolves towards greater intelligence, multidimensionality, and multiscale precision, offering unprecedented theoretical and methodological support for deciphering tissue complexity and further advancing biomaterials development. These advancements promise to accelerate breakthroughs in precision medicine, tissue engineering, and therapeutic development, ultimately reshaping the landscape of biomedical research and clinical practice.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology (Chongqing), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology (Chongqing), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Bertacchi V, Corley M, Aronsen GP, Bribiescas RG. Impact of high temperatures on enzyme-linked immunoassay (ELISA) performance for leptin measurements in human milk stored under varied freeze/thaw conditions. PLoS One 2025; 20:e0320366. [PMID: 40106448 PMCID: PMC11957766 DOI: 10.1371/journal.pone.0320366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Ambient temperature conditions are a common concern during laboratory analysis. Due to unexpected shipping conditions, leptin ELISA kits (Leptin Ultrasensitive, ALPCO USA; Catalog #22-LEPHUU-E01) arrived from the manufacturer at our laboratory at a temperature (76.3°F/24.6°C) well above the 2-8°C conditions recommended by the manufacturer. Since no data are available on the effects of high ambient temperature exposure on the performance of this commercial assay, we opportunistically assessed assay performance using human milk samples. Leptin measurement of recently collected and frozen human milk samples was compared between the warm temperature exposed assay kits and Normal kits that arrived and were stored at recommended temperatures (2-8 °C). We found that assay kit exposure to warm temperature during shipping resulted in sample results that were significantly different from Normal kits despite similar standard curve performance. Measurement variability from human milk samples increased with warmed kits in association with greater freeze/thaw times. This suggests that even under high temperature transportation conditions, this leptin assay performance is robust with kit reagents but compromised with human milk samples. We conclude that kits exposed to high temperature during shipment and/or storage should not be used to run human milk samples and that our concerns may extend to other biological media (i.e., serum, urine, or saliva). This study fills a critical gap in the literature on assay performance validation under non-ideal conditions, such as high temperatures. As global temperatures continue to rise, this question will become more pertinent to research integrity if left unaddressed. In light of our findings, we propose that industry standards for ELISA kit shipping and handling should be evaluated to ensure that all kits are being received in an optimal condition.
Collapse
Affiliation(s)
- Victoria Bertacchi
- Reproductive Ecology Laboratory, Department of Anthropology, Yale University, New Haven, Connecticut, United States of America
| | - Margaret Corley
- Reproductive Ecology Laboratory, Department of Anthropology, Yale University, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Gary P. Aronsen
- Reproductive Ecology Laboratory, Department of Anthropology, Yale University, New Haven, Connecticut, United States of America
| | - Richard G. Bribiescas
- Reproductive Ecology Laboratory, Department of Anthropology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
3
|
Aboharb F, Davoudian PA, Shao LX, Liao C, Rzepka GN, Wojtasiewicz C, Indajang J, Dibbs M, Rondeau J, Sherwood AM, Kaye AP, Kwan AC. Classification of psychedelics and psychoactive drugs based on brain-wide imaging of cellular c-Fos expression. Nat Commun 2025; 16:1590. [PMID: 39939591 PMCID: PMC11822132 DOI: 10.1038/s41467-025-56850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
Psilocybin, ketamine, and MDMA are psychoactive compounds that exert behavioral effects with distinguishable but also overlapping features. The growing interest in using these compounds as therapeutics necessitates preclinical assays that can accurately screen psychedelics and related analogs. We posit that a promising approach may be to measure drug action on markers of neural plasticity in native brain tissues. We therefore developed a pipeline for drug classification using light sheet fluorescence microscopy of immediate early gene expression at cellular resolution followed by machine learning. We tested male and female mice with a panel of drugs, including psilocybin, ketamine, 5-MeO-DMT, 6-fluoro-DET, MDMA, acute fluoxetine, chronic fluoxetine, and vehicle. In one-versus-rest classification, the exact drug was identified with 67% accuracy, significantly above the chance level of 12.5%. In one-versus-one classifications, psilocybin was discriminated from 5-MeO-DMT, ketamine, MDMA, or acute fluoxetine with >95% accuracy. We used Shapley additive explanation to pinpoint the brain regions driving the machine learning predictions. Our results suggest a unique approach for characterizing and validating psychoactive drugs with psychedelic properties.
Collapse
Affiliation(s)
- Farid Aboharb
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Weill Cornell Medicine/Rockefeller/Sloan-Kettering Tri-Institutional MD/PhD Program, New York, NY, USA
| | - Pasha A Davoudian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Ling-Xiao Shao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Clara Liao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Gillian N Rzepka
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Mark Dibbs
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jocelyne Rondeau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - Alfred P Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Yun DH, Park YG, Cho JH, Kamentsky L, Evans NB, DiNapoli N, Xie K, Choi SW, Albanese A, Tian Y, Sohn CH, Zhang Q, Kim ME, Swaney J, Guan W, Park J, Drummond G, Choi H, Ruelas L, Feng G, Chung K. Uniform volumetric single-cell processing for organ-scale molecular phenotyping. Nat Biotechnol 2025:10.1038/s41587-024-02533-4. [PMID: 39856430 DOI: 10.1038/s41587-024-02533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Extending single-cell analysis to intact tissues while maintaining organ-scale spatial information poses a major challenge due to unequal chemical processing of densely packed cells. Here we introduce Continuous Redispersion of Volumetric Equilibrium (CuRVE) in nanoporous matrices, a framework to address this challenge. CuRVE ensures uniform processing of all cells in organ-scale tissues by perpetually maintaining dynamic equilibrium of the tissue's gradually shifting chemical environment. The tissue chemical reaction environment changes at a continuous, slow rate, allowing redispersion of unevenly distributed chemicals and preserving chemical equilibrium tissue wide at any given moment. We implemented CuRVE to immunologically label whole mouse and rat brains and marmoset and human tissue blocks within 1 day. We discovered highly variable regionalized reduction of parvalbumin immunoreactive cells in wild-type adult mice, a phenotype missed by the commonly used genetic labeling. We envision that our platform will advance volumetric single-cell processing and analysis, facilitating comprehensive single-cell level investigations within their spatial context in organ-scale tissues.
Collapse
Affiliation(s)
- Dae Hee Yun
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Young-Gyun Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jae Hun Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Lee Kamentsky
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas B Evans
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas DiNapoli
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Katherine Xie
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Seo Woo Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Alexandre Albanese
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Yuxuan Tian
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Chang Ho Sohn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Qiangge Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minyoung E Kim
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Justin Swaney
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Webster Guan
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Juhyuk Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Gabi Drummond
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Heejin Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luzdary Ruelas
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kwanghun Chung
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Matsumoto K, Harada SY, Yoshida SY, Narumi R, Mitani TT, Yada S, Sato A, Morii E, Shimizu Y, Ueda HR. DECODE enables high-throughput mapping of antibody epitopes at single amino acid resolution. PLoS Biol 2025; 23:e3002707. [PMID: 39847587 PMCID: PMC11756784 DOI: 10.1371/journal.pbio.3002707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/06/2024] [Indexed: 01/25/2025] Open
Abstract
Antibodies are extensively used in biomedical research, clinical fields, and disease treatment. However, to enhance the reproducibility and reliability of antibody-based experiments, it is crucial to have a detailed understanding of the antibody's target specificity and epitope. In this study, we developed a high-throughput and precise epitope analysis method, DECODE (Decoding Epitope Composition by Optimized-mRNA-display, Data analysis, and Expression sequencing). This method allowed identifying patterns of epitopes recognized by monoclonal or polyclonal antibodies at single amino acid resolution and predicted cross-reactivity against the entire protein database. By applying the obtained epitope information, it has become possible to develop a new 3D immunostaining method that increases the penetration of antibodies deep into tissues. Furthermore, to demonstrate the applicability of DECODE to more complex blood antibodies, we performed epitope analysis using serum antibodies from mice with experimental autoimmune encephalomyelitis (EAE). As a result, we were able to successfully identify an epitope that matched the sequence of the peptide inducing the disease model without relying on existing antigen information. These results demonstrate that DECODE can provide high-quality epitope information, improve the reproducibility of antibody-dependent experiments, diagnostics and therapeutics, and contribute to discover pathogenic epitopes from antibodies in the blood.
Collapse
Affiliation(s)
- Katsuhiko Matsumoto
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoko Y. Harada
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Shota Y. Yoshida
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryohei Narumi
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Tomoki T. Mitani
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Systems Biology, Graduate school of Medicine, Osaka University, Osaka, Japan
- Department of Neurology, Graduate school of Medicine, Osaka University, Osaka, Japan
| | - Saori Yada
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Sato
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Institute of Life Science, Kurume University, Kurume, Japan
| |
Collapse
|
6
|
Yau CN, Hung JTS, Campbell RAA, Wong TCY, Huang B, Wong BTY, Chow NKN, Zhang L, Tsoi EPL, Tan Y, Li JJX, Wing YK, Lai HM. INSIHGT: an accessible multi-scale, multi-modal 3D spatial biology platform. Nat Commun 2024; 15:10888. [PMID: 39738072 PMCID: PMC11685604 DOI: 10.1038/s41467-024-55248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume. Diverse antigens, mRNAs, neurotransmitters, and post-translational modifications are well-preserved and simultaneously visualized. INSIHGT also allows multi-round, highly multiplexed 3D molecular probing and is compatible with downstream traditional histology and nucleic acid sequencing. With INSIHGT, we map undescribed podocyte-to-parietal epithelial cell microfilaments in mouse glomeruli and neurofilament-intensive inclusion bodies in the human cerebellum, and identify NPY-proximal cell types defined by spatial morpho-proteomics in mouse hypothalamus. We anticipate that INSIHGT can form the foundations for 3D spatial multi-omics technology development and holistic systems biology studies.
Collapse
Affiliation(s)
- Chun Ngo Yau
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacky Tin Shing Hung
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Robert A A Campbell
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Thomas Chun Yip Wong
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bei Huang
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ben Tin Yan Wong
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nick King Ngai Chow
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lichun Zhang
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eldric Pui Lam Tsoi
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuqi Tan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Joshua Jing Xi Li
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Yun Kwok Wing
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hei Ming Lai
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Wang W, Ruan X, Liu G, Milkie DE, Li W, Betzig E, Upadhyayula S, Gao R. Nanoscale volumetric fluorescence imaging via photochemical sectioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605857. [PMID: 39149407 PMCID: PMC11326139 DOI: 10.1101/2024.08.01.605857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Optical nanoscopy of intact biological specimens has been transformed by recent advancements in hydrogel-based tissue clearing and expansion, enabling the imaging of cellular and subcellular structures with molecular contrast. However, existing high-resolution fluorescence microscopes have limited imaging depth, which prevents the study of whole-mount specimens without physical sectioning. To address this challenge, we developed "photochemical sectioning," a spatially precise, light-based sample sectioning process. By combining photochemical sectioning with volumetric lattice light-sheet imaging and petabyte-scale computation, we imaged and reconstructed axons and myelination sheaths across entire mouse olfactory bulbs at nanoscale resolution. An olfactory-bulb-wide analysis of myelinated and unmyelinated axons revealed distinctive patterns of axon degeneration and de-/dysmyelination in the neurodegenerative mouse, highlighting the potential for peta- to exabyte-scale super-resolution studies using this approach.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
| | - Xiongtao Ruan
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Gaoxiang Liu
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Daniel E. Milkie
- Howard Hughes Medical Institute, Janelia Research Campus; Ashburn, VA 20417, USA
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
| | - Eric Betzig
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Janelia Research Campus; Ashburn, VA 20417, USA
- Department of Physics, Howard Hughes Medical Institute, Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Srigokul Upadhyayula
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Ruixuan Gao
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
- Department of Biological Sciences, University of Illinois Chicago; Chicago, IL 60607, USA
| |
Collapse
|
8
|
Yin X, Ji X, Liu W, Li X, Wang M, Xin Q, Zhang J, Yan Z, Song A. Electrolyte-gated amorphous IGZO transistors with extended gates for prostate-specific antigen detection. LAB ON A CHIP 2024; 24:3284-3293. [PMID: 38847194 DOI: 10.1039/d4lc00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The prostate-specific antigen (PSA) test is considered an important way for preoperative diagnosis and accurate screening of prostate cancer. Current antigen detection methods, including radioimmunoassay, enzyme-linked immunosorbent assay and microfluidic electrochemical detection, feature expensive equipment, long testing time and poor stability. Here, we propose a portable biosensor composed of electrolyte-gated amorphous indium gallium zinc oxide (a-IGZO) transistors with an extended gate, which can achieve real-time, instant PSA detection at a low operating voltage (<2 V) owing to the liquid-free ionic conductive elastomer (ICE) serving as the gate dielectric. The electric double layer (EDL) capacitance in ICE enhances the accumulation of carriers in the IGZO channel, leading to strong gate modulation, which enables the IGZO transistor to have a small subthreshold swing (<0.5 V dec-1) and a high on-state current (∼4 × 10-4 A). The separate, biodegradable, and pluggable sensing pad, serving as an extended gate connected to the IGZO transistor, prevents contamination and depletion arising from direct contact with biomolecular buffers, enabling the IGZO transistor to maintain superior electronic performance for at least six months. The threshold voltage and channel current of the transistor exhibit excellent linear response to PSA molecule concentrations across five orders of magnitude ranging from 1 fg mL-1 to 10 pg mL-1, with a detection limit of 400 ag mL-1 and a detection time of ∼5.1 s. The fabricated biosensors offer a point-of-care system for antigen detection, attesting the feasibility of the electrolyte-gated transistors in clinical screening, healthcare diagnostics and biological management.
Collapse
Affiliation(s)
- Xuemei Yin
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Xingqi Ji
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Wenlong Liu
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Xiaoqian Li
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Mingyang Wang
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Qian Xin
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China
| | - Jiawei Zhang
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Zhuocheng Yan
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Aimin Song
- Institute of Nanoscience and Applications, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
9
|
Gao P, Rivera M, Lin X, Holmes TC, Zhao H, Xu X. Immunolabeling-compatible PEGASOS tissue clearing for high-resolution whole mouse brain imaging. Front Neural Circuits 2024; 18:1345692. [PMID: 38694272 PMCID: PMC11061518 DOI: 10.3389/fncir.2024.1345692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 05/04/2024] Open
Abstract
Novel brain clearing methods revolutionize imaging by increasing visualization throughout the brain at high resolution. However, combining the standard tool of immunostaining targets of interest with clearing methods has lagged behind. We integrate whole-mount immunostaining with PEGASOS tissue clearing, referred to as iPEGASOS (immunostaining-compatible PEGASOS), to address the challenge of signal quenching during clearing processes. iPEGASOS effectively enhances molecular-genetically targeted fluorescent signals that are otherwise compromised during conventional clearing procedures. Additionally, we demonstrate the utility of iPEGASOS for visualizing neurochemical markers or viral labels to augment visualization that transgenic mouse lines cannot provide. Our study encompasses three distinct applications, each showcasing the versatility and efficacy of this approach. We employ whole-mount immunostaining to enhance molecular signals in transgenic reporter mouse lines to visualize the whole-brain spatial distribution of specific cellular populations. We also significantly improve the visualization of neural circuit connections by enhancing signals from viral tracers injected into the brain. Last, we show immunostaining without genetic markers to selectively label beta-amyloid deposits in a mouse model of Alzheimer's disease, facilitating the comprehensive whole-brain study of pathological features.
Collapse
Affiliation(s)
- Pan Gao
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Matthew Rivera
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Xiaoxiao Lin
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Todd C. Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
| | - Hu Zhao
- Chinese Institute for Brain Research, Beijing, China
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
10
|
Aggarwal A, Singh TK, Pham M, Godwin M, Chen R, McIntyre TM, Scalise A, Chung MK, Jennings C, Ali M, Park H, Englund K, Khorana AA, Svensson LG, Kapadia S, McCrae KR, Cameron SJ. Dysregulated platelet function in patients with postacute sequelae of COVID-19. Vasc Med 2024; 29:125-134. [PMID: 38334067 PMCID: PMC11164201 DOI: 10.1177/1358863x231224383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
BACKGROUND Postacute sequelae of COVID-19 (PASC), also referred to as "Long COVID", sometimes follows COVID-19, a disease caused by SARS-CoV-2. Although SARS-CoV-2 is well known to promote a prothrombotic state, less is known about the thrombosis risk in PASC. Our objective was to evaluate platelet function and thrombotic potential in patients following recovery from SARS-CoV-2, but with clear symptoms of patients with PASC. METHODS patients with PASC and matched healthy controls were enrolled in the study on average 15 months after documented SARS-CoV-2 infection. Platelet activation was evaluated by light transmission aggregometry (LTA) and flow cytometry in response to platelet surface receptor agonists. Thrombosis in platelet-deplete plasma was evaluated by Factor Xa activity. A microfluidics system assessed thrombosis in whole blood under shear stress conditions. RESULTS A mild increase in platelet aggregation in patients with PASC through the thromboxane receptor was observed, and platelet activation through the glycoprotein VI (GPVI) receptor was decreased in patients with PASC compared to age- and sex-matched healthy controls. Thrombosis under shear conditions as well as Factor Xa activity were reduced in patients with PASC. Plasma from patients with PASC was an extremely potent activator of washed, healthy platelets - a phenomenon not observed when stimulating healthy platelets after incubation with plasma from healthy individuals. CONCLUSIONS patients with PASC show dysregulated responses in platelets and coagulation in plasma, likely caused by a circulating molecule that promotes thrombosis. A hitherto undescribed protective response appears to exist in patients with PASC to counterbalance ongoing thrombosis that is common to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Anu Aggarwal
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Tamanna K Singh
- Section of Vascular Medicine, Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Michael Pham
- Section of Vascular Medicine, Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Matthew Godwin
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Rui Chen
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Thomas M McIntyre
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Alliefair Scalise
- Section of Vascular Medicine, Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mina K Chung
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Section of Vascular Medicine, Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Courtney Jennings
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Mariya Ali
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Hiijun Park
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Kristin Englund
- Department of Infectious Disease, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alok A Khorana
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Lars G Svensson
- Department of Cardiac Surgery, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Samir Kapadia
- Section of Vascular Medicine, Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Keith R McCrae
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Section of Vascular Medicine, Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Scott J Cameron
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Section of Vascular Medicine, Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
11
|
Tang Q, Yin D, Liu Y, Zhang J, Guan Y, Kong H, Wang Y, Zhang X, Li J, Wang L, Hu J, Cai X, Zhu Y. Clickable X-ray Nanoprobes for Nanoscopic Bioimaging of Cellular Structures. JACS AU 2024; 4:893-902. [PMID: 38559738 PMCID: PMC10976567 DOI: 10.1021/jacsau.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 04/04/2024]
Abstract
Synchrotron-based X-ray microscopy (XRM) has garnered widespread attention from researchers due to its high spatial resolution and excellent energy (element) resolution. Existing molecular probes suitable for XRM include immune probes and genetic labeling probes, enabling the precise imaging of various biological targets within cells. However, immune labeling techniques are prone to cross-interference between antigens and antibodies. Genetic labeling technologies have limited systems that allow express markers independently, and moreover, genetically encoded labels based on catalytic polymerization lack a fixed morphology. When applied to cell imaging, this can result in reduced localization accuracy due to the diffusion of labels within the cells. Therefore, both techniques face challenges in simultaneously labeling multiple biotargets within cells and achieving high-precision imaging. In this work, we applied the click reaction and developed a third category of imaging probes suitable for XRM, termed clickable X-ray nanoprobes (Click-XRN). Click-XRN consists of two components: an X-ray-sensitive multicolor imaging module and a particle-size-controllable morphology module. Efficient identification of intra- and extracellular biotargets is achieved through click reactions between the probe and biomolecules. Click-XRN possesses a controllable particle size, and its loading of various metal ions provides distinctive signals for imaging under XRM. Based on this, we optimized the imaging energy of Click-XRN with different particle sizes, enabling single-color and two-color imaging of the cell membrane, cell nucleus, and mitochondria with nanoscale spatial nanometers. Our work provides a potent molecular tool for investigating cellular activities through XRM.
Collapse
Affiliation(s)
- Qiaowei Tang
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Xiangfu
Laboratory, Jiashan 314102, China
| | - Dapeng Yin
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Yubo Liu
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Jichao Zhang
- Shanghai
Synchrotron Radiation Facility (SSRF), Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yong Guan
- National
Synchrotron Radiation Laboratory, University
of Science and Technology of China, Hefei 230029, China
| | - Huating Kong
- Shanghai
Synchrotron Radiation Facility (SSRF), Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yiliu Wang
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiangzhi Zhang
- Shanghai
Synchrotron Radiation Facility (SSRF), Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jiang Li
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Jun Hu
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaoqing Cai
- Shanghai
Synchrotron Radiation Facility (SSRF), Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ying Zhu
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
12
|
Kruzich E, Phadke RA, Brack A, Stroumbakis D, Infante O, Cruz-Martín A. A pipeline for STED super-resolution imaging and Imaris analysis of nanoscale synapse organization in mouse cortical brain slices. STAR Protoc 2023; 4:102707. [PMID: 37948187 PMCID: PMC10658395 DOI: 10.1016/j.xpro.2023.102707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
Advances in super-resolution imaging enable us to delve into its intricate structural and functional complexities with unprecedented detail. Here, we present a pipeline to visualize and analyze the nanoscale organization of cortical layer 1 apical dendritic spines in the mouse prefrontal cortex. We describe steps for brain slice preparation, immunostaining, stimulated emission depletion super-resolution microscopy, and data analysis using the Imaris software package. This protocol allows the study of physiologically relevant brain circuits implicated in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ezra Kruzich
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA 02215, USA.
| | - Rhushikesh A Phadke
- Molecular Biology, Cell Biology, and Biochemistry Section in the Department of Biology, Boston University, Boston, MA 02215, USA
| | - Alison Brack
- Molecular Biology, Cell Biology, and Biochemistry Section in the Department of Biology, Boston University, Boston, MA 02215, USA
| | - Dimitri Stroumbakis
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA 02215, USA
| | - Oriannys Infante
- Montclair State University, Montclair, NJ 07043, USA; Summer Undergraduate Research Fellowship Program, Boston University, Boston, MA 02215, USA
| | - Alberto Cruz-Martín
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology, and Biochemistry Section in the Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Aggarwal A, Singh TK, Pham M, Godwin M, Chen R, McIntyre TM, Scalise A, Chung MK, Jennings C, Ali M, Park H, Englund K, Khorana AA, Svensson LG, Kapadia S, McCrae KR, Cameron SJ. Dysregulated Platelet Function in Patients with Post-Acute Sequelae of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.18.545507. [PMID: 38045316 PMCID: PMC10690211 DOI: 10.1101/2023.06.18.545507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Post-acute sequelae of COVID-19 (PASC), also referred as Long-COVID, sometimes follows COVID-19, a disease caused by SARS-CoV-2. While SARS-CoV-2 is well-known to promote a prothrombotic state, less is known about the thrombosis risk in PASC. Aim Our objective was to evaluate the platelet function and thrombotic potential in patients following recovery from SARS-CoV-2 with clear symptoms of PASC. Methods PASC patients and matched healthy controls were enrolled in the study on average 15 months after documented SARS-CoV-2 infection. Platelet activation was evaluated by Light Transmission Aggregometry (LTA) and flow cytometry in response to platelet surface receptor agonists. Thrombosis in platelet-deplete plasma was evaluated by Factor Xa activity. A microfluidics system assessed thrombosis in whole blood under shear stress conditions. Results A mild increase in platelet aggregation in PASC patients through the thromboxane receptor was observed and platelet activation through the glycoprotein VI (GPVI) receptor was decreased in PASC patients compared to age- and sex-matched healthy controls. Thrombosis under shear conditions as well as Factor Xa activity were reduced in PASC patients. Plasma from PASC patients was an extremely potent activator of washed, healthy platelets - a phenomenon not observed when stimulating healthy platelets after incubation with plasma from healthy individuals. Conclusions PASC patients show dysregulated responses in platelets and coagulation in plasma, likely caused by a circulating molecule that promotes thrombosis. A hitherto undescribed protective response appears to exists in PASC patients to counterbalance ongoing thrombosis that is common to SARS-CoV-2 infection.
Collapse
|
14
|
Yau CN, Lai HM, Lee K, Kwok AJ, Huang J, Ko H. Principles of deep immunohistochemistry for 3D histology. CELL REPORTS METHODS 2023; 3:100458. [PMID: 37323568 PMCID: PMC10261851 DOI: 10.1016/j.crmeth.2023.100458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Deep immunohistochemistry (IHC) is a nascent field in three-dimensional (3D) histology that seeks to achieve thorough, homogeneous, and specific staining of intact tissues for visualization of microscopic architectures and molecular compositions at large spatial scales. Despite the tremendous potential of deep IHC in revealing molecule-structure-function relationships in biology and establishing diagnostic and prognostic features for pathological samples in clinical practice, the complexities and variations in methodologies may hinder its use by interested users. We provide a unified framework of deep immunostaining techniques by discussing the theoretical considerations of the physicochemical processes involved, summarizing the principles applied in contemporary methods, advocating a standardized benchmarking scheme, and highlighting unaddressed issues and future directions. By providing the essential information to guide investigators in customizing immunolabeling pipelines, we also seek to facilitate the adoption of deep IHC for researchers to address a wide range of research questions.
Collapse
Affiliation(s)
- Chun Ngo Yau
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hei Ming Lai
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Krit Lee
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Andrew J. Kwok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Junzhe Huang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ho Ko
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
15
|
Kiemen AL, Braxton AM, Grahn MP, Han KS, Babu JM, Reichel R, Jiang AC, Kim B, Hsu J, Amoa F, Reddy S, Hong SM, Cornish TC, Thompson ED, Huang P, Wood LD, Hruban RH, Wirtz D, Wu PH. CODA: quantitative 3D reconstruction of large tissues at cellular resolution. Nat Methods 2022; 19:1490-1499. [PMID: 36280719 PMCID: PMC10500590 DOI: 10.1038/s41592-022-01650-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022]
Abstract
A central challenge in biology is obtaining high-content, high-resolution information while analyzing tissue samples at volumes relevant to disease progression. We address this here with CODA, a method to reconstruct exceptionally large (up to multicentimeter cubed) tissues at subcellular resolution using serially sectioned hematoxylin and eosin-stained tissue sections. Here we demonstrate CODA's ability to reconstruct three-dimensional (3D) distinct microanatomical structures in pancreas, skin, lung and liver tissues. CODA allows creation of readily quantifiable tissue volumes amenable to biological research. As a testbed, we assess the microanatomy of the human pancreas during tumorigenesis within the branching pancreatic ductal system, labeling ten distinct structures to examine heterogeneity and structural transformation during neoplastic progression. We show that pancreatic precancerous lesions develop into distinct 3D morphological phenotypes and that pancreatic cancer tends to spread far from the bulk tumor along collagen fibers that are highly aligned to the 3D curves of ductal, lobular, vascular and neural structures. Thus, CODA establishes a means to transform broadly the structural study of human diseases through exploration of exhaustively labeled 3D microarchitecture.
Collapse
Affiliation(s)
- Ashley L Kiemen
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alicia M Braxton
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mia P Grahn
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Kyu Sang Han
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Jaanvi Mahesh Babu
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Reichel
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ann C Jiang
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Bridgette Kim
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Jocelyn Hsu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Falone Amoa
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sashank Reddy
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Toby C Cornish
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Elizabeth D Thompson
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peng Huang
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA.
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|