1
|
Ni Y, Li J, Tang Z, Zhang Y, Feng Y. Psychological, social factors, and smoking behavior mediated the effects of cannabis use on personality disorders: A Mendelian randomization study. Front Psychiatry 2025; 16:1411587. [PMID: 40443747 PMCID: PMC12119549 DOI: 10.3389/fpsyt.2025.1411587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/25/2025] [Indexed: 06/02/2025] Open
Abstract
Background Rapid changes in attitudes, legality, and patterns of cannabis use (CU) underscore the importance of understanding its impact on mental health. Although links between CU and personality disorders (PDs) are documented, their causality remains uncertain. Methods Employing Genome-Wide Association Studies (GWAS) data, this study investigated the causal relationship between cannabis use disorder (CUD) and lifetime cannabis use (LCU) with 9 types of PD risk through Mendelian randomization (MR) analysis. The primary method was the inverse variance weighted (IVW) method, supplemented by multivariable MR to assess direct effects independent of mental, social, and substance use factors, and mediation MR to explore mediating factors. Results Corrections for the false discovery rate revealed significant causal associations between CUD and an increased risk of emotionally unstable PD (EUPD; ORIVW = 1.228, 95% CI 1.069-1.411), overall PD (ORIVW = 1.186, 95% CI 1.065-1.321), and schizoid PD (SPD; ORIVW = 1.644, 95% CI 1.131-2.390). Mediation analysis identified schizophrenia (SCZ), major depressive disorder (MDD), neuroticism, and smoking initiation (SmkInit) as shared mediating factors between CUD and both EUPD and overall PD, with an additional mediating factor, household income (HI), specific to the CUD-to-overall PD pathway. In contrast, no mediating factors were found between CUD and SPD. Notably, a bidirectional causal relationship was observed between overall PD and CUD (ORIVW = 1.399, 95% CI 1.033-1.895). Suggestive evidence indicated a causal link between lifetime cannabis use (LCU) and overall PD risk (ORIVW = 1.074, 95% CI 1.008-1.146). Conclusion This study offers new insights into the potential impact of CU on the development and progression of various PDs, laying the groundwork for targeted interventions to mitigate its effects on mental health.
Collapse
Affiliation(s)
- Yao Ni
- Department of Dermatovenereology, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Juanmei Li
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zitian Tang
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Youqian Zhang
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanyan Feng
- Department of Dermatovenereology, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Nielsen TT, Bali P, Grove J, Mohr-Jensen C, Werge T, Dalsgaard S, Børglum AD, Sonuga-Barke E, Minnis H, Demontis D, and the Autism Spectrum Working Group of the Psychiatric Genomics Consortium. Genetic Architecture and Risk of Childhood Maltreatment Across 5 Psychiatric Diagnoses. JAMA Psychiatry 2025:2833167. [PMID: 40341348 PMCID: PMC12065082 DOI: 10.1001/jamapsychiatry.2025.0828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/12/2025] [Indexed: 05/10/2025]
Abstract
Importance Childhood maltreatment (CM) is associated with psychiatric disorders. The underlying mechanisms are complex and involve genetics. Objective To investigate the polygenic architecture of CM-exposed individuals across psychiatric conditions and if genetics modulates absolute CM risk in the presence of high-impact risk factors such as parental psychiatric diagnoses. Design, Setting, and Participants The population-based case-cohort iPSYCH was used to analyze 13 polygenic scores (PGS) in CM-exposed individuals across 5 psychiatric International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) diagnoses benchmarked against controls. Individuals were stratified into PGS quantiles, and absolute CM risk was calculated using Cox regression. Sex-specific analyses were also performed. Data were analyzed from June 2022 to December 2024. Exposures PGS of phenotypes of psychiatric disorders, CM, educational attainment, and substance use. Main Outcomes and Measures PGSs were generated using summary statistics from genome-wide association studies of phenotypes representing psychiatric disorders, CM, educational attainment, and substance use and tested for their association with CM across psychiatric disorders. Results This study included 102 856 individuals (mean [SD] age, 22.6 [7.1] years; 54 918 male [53.4%]) 8 to 35 years old. A total of 2179 CM-exposed individuals were analyzed across individuals with attention-deficit/hyperactivity disorder (ADHD; n = 22 674), autism (n = 18 941), schizophrenia (n = 6103), bipolar disorder (n = 3061), depression (n = 28 896), and controls (n = 34 689). PGSs for ADHD and educational attainment were associated with CM across all psychiatric diagnoses. The absolute CM risk was increased in the highest PGS groups, eg, for ADHD, the absolute CM risk was 5.6% in the highest ADHD-PGS quartile whereas it was only 3.3% in the lowest ADHD-PGS quartile (hazard rate ratio quantile 4 vs quantile 1 = 1.81; 95% CI, 1.47-2.22). CM risk was more than twice as high for children with parents with a psychiatric diagnosis (5.7%) than for children with parents without a psychiatric diagnosis (2.5%), but even in the presence of this risk factor, individuals could still be stratified into risk groups based on their genetics. No genetic differences between CM-exposed males and females were observed, but there were striking sex differences in absolute CM risk, which reached 5.6% for females in the highest ADHD-PGS quartile and 2.0% for males. Conclusions and Relevance Results of this case-control study suggest that individuals with high ADHD-PRS and/or low educational attainment-PRS had an associated elevated risk of CM. Extra attention should be given to individuals at high risk for CM across all 5 psychiatric diagnoses, ie, females with a high ADHD-PGS and/or a parent diagnosed with a psychiatric disorder.
Collapse
Affiliation(s)
- Trine Tollerup Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine,, Aarhus, Denmark
| | - Paraskevi Bali
- School of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine,, Aarhus, Denmark
- Bioinformatics Research Centre, BiRC, Aarhus University, Aarhus, Denmark
| | | | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Mental Health Centre Sct Hans, Capital Region of Denmark, Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
| | - Søren Dalsgaard
- Child and Adolescent Mental Health Center, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anders D. Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine,, Aarhus, Denmark
| | - Edmund Sonuga-Barke
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Center for Child and Adolescent Psychiatry, Aarhus University Hospital, Aarhus, Denmark
- Department of Psychology, Hong Kong University, Hong Kong
| | - Helen Minnis
- School of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Ditte Demontis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine,, Aarhus, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | |
Collapse
|
3
|
SooHoo JF, Davis CN, Han A, Jinwala Z, Gelernter J, Feinn R, Kranzler HR. Associations of childhood adversity and substance use disorder polygenic scores with disorder severity and diagnostic criteria. Psychol Med 2025; 55:e132. [PMID: 40314172 DOI: 10.1017/s0033291725001163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
BACKGROUND Genetic and environmental factors, including adverse childhood experiences (ACEs), contribute to substance use disorders (SUDs). However, the interactions between these factors are poorly understood. METHODS We examined associations between SUD polygenic scores (PGSs), ACEs, and the initiation of use and severity of alcohol (AUD), opioid use disorder (OUD), and cannabis use disorder (CanUD) in 10,275 individuals (43.5% female, 47.2% African-like ancestry [AFR], and 52.8% European-like ancestry [EUR]). ACEs and SUD severity were modeled as latent factors. We conducted logistic and linear regressions within ancestry groups to examine the associations of ACEs, PGS, and their interaction with substance use initiation and SUD severity. RESULTS All three SUD PGS were associated with ACEs in EUR individuals, indicating a gene-environment correlation. Among EUR individuals, only the CanUD PGS was associated with initiating use, whereas ACEs were associated with initiating use of all three substances in both ancestry groups. Additionally, a negative gene-by-environment interaction was identified for opioid initiation in EUR individuals. ACEs were associated with all three SUD severity latent factors in EUR individuals and with AUD and CanUD severity in AFR individuals. PGS were associated with AUD severity in both ancestry groups and with CanUD severity in AFR individuals. Gene-by-environment interactions were identified for AUD and CanUD severity among EUR individuals. CONCLUSIONS Findings highlight the roles of ACEs and polygenic risk in substance use initiation and SUD severity. Gene-by-environment interactions implicate ACEs as moderators of genetic susceptibility, reinforcing the importance of considering both genetic and environmental influences on SUD risk.
Collapse
Affiliation(s)
- Jackson F SooHoo
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Christal N Davis
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education, and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Angela Han
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Zeal Jinwala
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education, and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Richard Feinn
- Department of Medical Sciences, Frank H. Netter School of Medicine, Quinnipiac University, North Haven, CT, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education, and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| |
Collapse
|
4
|
Rami FZ, Seo H, Kang C, Park S, Li L, Le TH, Kim SW, Won SH, Chung W, Chung YC. Associations of polygenic risk score, environmental factors, and their interactions with the risk of schizophrenia spectrum disorders. Psychol Med 2025; 55:e111. [PMID: 40211091 DOI: 10.1017/s0033291725000753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
BACKGROUND Emerging evidence indicates that gene-environment interactions (GEIs) are important underlying mechanisms for the development of schizophrenia (SZ). We investigated the associations of polygenic risk score for SZ (PRS-SZ), environmental measures, and their interactions with case-control status and clinical phenotypes among patients with schizophrenia spectrum disorders (SSDs). METHODS The PRS-SZ for 717 SSD patients and 356 healthy controls (HCs) were calculated using the LDpred model. The Korea-Polyenvironmental Risk Score-I (K-PERS-I) and Early Trauma Inventory-Self Report (ETI-SR) were utilized as environmental measures. Logistic and linear regression analyses were performed to identify the associations of PRS-SZ and two environmental measures with case-control status and clinical phenotypes. RESULTS The PRS-SZ explained 8.7% of SZ risk. We found greater associations of PRS-SZ and total scores of the K-PERS-I with case-control status compared to the ETI-SR total score. A significant additive interaction was found between PRS-SZ and K-PERS-I. With the subdomains of the K-PERS-I and ETI-SR, we identified significant multiplicative or additive interactions of PRS-SZ and parental socioeconomic status (pSES), childhood adversity, and recent life events in association with case-control status. For clinical phenotypes, significant interactions were observed between PRS-SZ and the ETI-SR total score for negative-self and between PRS-SZ and obstetric complications within the K-PERS-I for negative-others. CONCLUSIONS Our findings suggest that the use of aggregate scores for genetic and environmental measures, PRS-SZ and K-PERS-I, can more accurately predict case-control status, and specific environmental measures may be more suitable for the exploration of GEIs.
Collapse
Affiliation(s)
- Fatima Zahra Rami
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Hyungwoo Seo
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Chaeyeong Kang
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Seunghwan Park
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Ling Li
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Thi-Hung Le
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Seung-Hee Won
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Wonil Chung
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Young-Chul Chung
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, South Korea
| |
Collapse
|
5
|
Zuo Y, Formoli N, Libster A, Sun D, Turner A, Iemolo A, Telese F. Single-Nucleus Transcriptomics Identifies Neuroblast Migration Programs Sensitive to Reelin and Cannabis in the Adolescent Nucleus Accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.646846. [PMID: 40236084 PMCID: PMC11996521 DOI: 10.1101/2025.04.03.646846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The interplay between cannabis exposure during adolescence and genetic predisposition has been linked to increased vulnerability to psychiatric disorders. To investigate the molecular underpinnings of this interaction, we performed single-nucleus RNA sequencing of the nucleus accumbens (NAc) in a mouse model of Reln haploinsufficiency, a genetic risk factor for psychiatric disorders, following adolescent exposure to tetrahydrocannabinol (THC), the primary psychoactive component of cannabis. We identified a gene co-expression network influenced by both Reln genotype and THC, enriched in genes associated with human psychiatric disorders and predominantly expressed in a GABAergic neuroblast subpopulation. We showed that neuroblasts actively migrated in the adolescent NAc, but declined with age. Cell-to-cell communication analysis further revealed that these neuroblasts receive migratory cues from cholecystokinin interneurons, which express high levels of cannabinoid receptors. Together, these findings provide mechanistic insights into how adolescent THC exposure and genetic risk factors may impair GABAergic circuit maturation.
Collapse
|
6
|
Al-Soufi L, Hindley G, Rødevand L, Shadrin AA, Jaholkowski P, Fominykh V, Icick R, Tesfaye M, Costas J, Andreassen OA. Polygenic overlap of substance use behaviors and disorders with externalizing and internalizing problems independent of genetic correlations. Psychol Med 2025; 55:e100. [PMID: 40162501 DOI: 10.1017/s0033291725000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
BACKGROUND Externalizing and internalizing pathways may lead to the development of substance use behaviors (SUBs) and substance use disorders (SUDs), which are all heritable phenotypes. Genetic correlation studies have indicated differences in the genetic susceptibility between SUBs and SUDs. We investigated whether these substance use phenotypes are differently related to externalizing and internalizing problems at a genetic level. METHODS We analyzed data from genome-wide association studies (GWAS) of four SUBs and SUDs, five externalizing traits, and five internalizing traits using the bivariate causal mixture model (MiXeR) to estimate genetic overlap beyond genetic correlation. RESULTS Two distinct patterns were found. SUBs demonstrated high genetic overlap but low genetic correlation of shared variants with internalizing traits, suggesting a pattern of mixed effect directions of shared genetic variants. Conversely, SUDs and externalizing traits exhibited considerable genetic overlap with moderate to high positive genetic correlation of shared variants, suggesting concordant effect direction of shared risk variants. CONCLUSIONS These results highlight the importance of the externalizing pathway in SUDs as well as the limited role of the internalizing pathway in SUBs. As MiXeR is not intended for the identification of specific genes, further studies are needed to reveal the underlying shared mechanisms of these traits.
Collapse
Affiliation(s)
- Laila Al-Soufi
- Psychiatric Genetics group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain. Red de Investigación en Atención Primaria de Adicciones (RIAPAd)
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Galicia, Spain
| | - Guy Hindley
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A Shadrin
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Piotr Jaholkowski
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vera Fominykh
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Romain Icick
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Université Paris-Cité, INSERM, Optimisation thérapeutique en neuropsychopharmacologie OPTEN U1144, 75006, Paris, France
| | - Markos Tesfaye
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Javier Costas
- Psychiatric Genetics group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain. Red de Investigación en Atención Primaria de Adicciones (RIAPAd)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Pujol Gualdo N, Džigurski J, Rukins V, Pajuste FD, Wolford BN, Võsa M, Golob M, Haug L, Alver M, Läll K, Peters M, Brumpton BM, Palta P, Mägi R, Laisk T. Atlas of genetic and phenotypic associations across 42 female reproductive health diagnoses. Nat Med 2025:10.1038/s41591-025-03543-8. [PMID: 40069456 DOI: 10.1038/s41591-025-03543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/28/2025] [Indexed: 04/02/2025]
Abstract
The genetic background of many female reproductive health diagnoses remains uncharacterized, compromising our understanding of the underlying biology. Here, we map the genetic architecture across 42 female-specific health conditions using data from up to 293,618 women from two large population-based cohorts, the Estonian Biobank and the FinnGen study. Our study illustrates the utility of genetic analyses in understanding women's health better. As specific examples, we describe genetic risk factors for ovarian cysts that elucidate the genetic determinants of folliculogenesis and, by leveraging population-specific variants, uncover new candidate genes for uterine fibroids. We find that most female reproductive health diagnoses have a heritable component, with varying degrees of polygenicity and discoverability. Finally, we identify pleiotropic loci and genes that function in genital tract development (WNT4, PAX8, WT1, SALL1), hormonal regulation (FSHB, GREB1, BMPR1B, SYNE1/ESR1) and folliculogenesis (CHEK2), underlining their integral roles in female reproductive health.
Collapse
Affiliation(s)
- Natàlia Pujol Gualdo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jelisaveta Džigurski
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Valentina Rukins
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fanny-Dhelia Pajuste
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Brooke N Wolford
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mariann Võsa
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mia Golob
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lisette Haug
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Maris Alver
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kristi Läll
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Maire Peters
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Celvia CC AS, Tartu, Estonia
| | - Ben M Brumpton
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Priit Palta
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
8
|
Charris R, Ahern J, Apollonio DE, Jent V, Jacobs LM, Jung S, Schmidt LA, Gruenewald P, Matthay EC. Examining the Interactive Associations of Cannabis and Alcohol Outlets With Self-harm Injuries in California: A Spatiotemporal Analysis. Epidemiology 2025; 36:196-206. [PMID: 39679582 PMCID: PMC11774197 DOI: 10.1097/ede.0000000000001822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Cannabis use and alcohol use are associated with self-harm injuries, but little research has assessed links between recreational cannabis outlet openings on rates of self-harm within communities or the interactions of cannabis outlets with the density of alcohol outlets. We estimated the associations of recreational cannabis outlets, alcohol outlets, and their interaction on rates of fatal and nonfatal self-harm injuries in California, 2017-2019. METHODS Using California statewide data on recreational cannabis outlets, alcohol outlets, and hospital discharges and deaths due to self-harm injuries, we conducted Bayesian spatiotemporal analyses of quarterly ZIP code-level data over 3 years, accounting for confounders and spatial autocorrelation. Using the model posteriors, we estimated parameters corresponding to hypothetical shifts in outlet densities. RESULTS If recreational cannabis outlets had never opened, we estimated that nonfatal self-harm injuries would have been -0.35 per 100,000 lower (95% credible interval [CI]: -1.25, 0.51), while fatal self-harm injuries would have been -0.004 per 100,000 lower (95% CI: -0.26, 0.25). These associations did not depend on alcohol outlet density, but a hypothetical 20% reduction in alcohol outlet densities was associated with fewer self-harm injuries (risk difference per 100,000, nonfatal: -1.59; 95% CI: -2.60, -0.59; fatal: -0.10; 95% CI: -0.37, 0.16). Associations for nonfatal incidents were strongest for people aged 15-34 years, and White and Hispanic people. CONCLUSION We did not find evidence that the introduction of recreational cannabis outlets was associated with self-harm injuries or that cannabis and alcohol outlet densities interact, but alcohol outlet density had a strong association with nonfatal self-harm injuries.
Collapse
Affiliation(s)
- Rafael Charris
- From the Center for Opioid Epidemiology and Policy, Division of Epidemiology, Department of Population Health, New York University Grossman School of Medicine, New York, NY
| | - Jennifer Ahern
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA
| | - Dorie E. Apollonio
- School of Pharmacy, University of California, San Francisco, San Francisco, CA
| | - Victoria Jent
- From the Center for Opioid Epidemiology and Policy, Division of Epidemiology, Department of Population Health, New York University Grossman School of Medicine, New York, NY
| | - Laurie M. Jacobs
- Philip R. Lee Institute for Health Policy Studies, School of Medicine, University of California, San Francisco, San Francisco, CA
| | - Shelley Jung
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA
| | - Laura A. Schmidt
- Philip R. Lee Institute for Health Policy Studies, School of Medicine, University of California, San Francisco, San Francisco, CA
- Department of Humanities and Social Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA
| | - Paul Gruenewald
- Prevention Research Center, Pacific Institute for Research and Evaluation, Berkeley, CA
| | - Ellicott C. Matthay
- From the Center for Opioid Epidemiology and Policy, Division of Epidemiology, Department of Population Health, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
9
|
Vilar-Ribó L, Hatoum AS, Grotzinger AD, Mallard TT, 23andMe Research Team, Elson S, Fontanillas P, Palmer AA, Gustavson DE, Sanchez-Roige S. Impulsivity facets and substance use involvement: insights from genomic structural equation modeling. Psychol Med 2025; 55:e51. [PMID: 39957498 PMCID: PMC12039315 DOI: 10.1017/s0033291725000145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Impulsivity is a multidimensional trait associated with substance use disorders (SUDs), but the relationship between distinct impulsivity facets and stages of substance use involvement remains unclear. METHODS We used genomic structural equation modeling and genome-wide association studies (N = 79,729-903,147) to examine the latent genetic architecture of nine impulsivity traits and seven substance use (SU) and SUD traits. RESULTS We found that the SU and SUD factors were strongly genetically inter-correlated (rG=0.77) but their associations with impulsivity facets differed. Lack of premeditation, negative and positive urgency were equally positively genetically correlated with both the SU (rG=.0.30-0.50) and SUD (rG=0.38-0.46) factors; sensation seeking was more strongly genetically correlated with the SU factor (rG=0.27 versus rG=0.10); delay discounting was more strongly genetically correlated with the SUD factor (rG=0.31 versus rG=0.21); and lack of perseverance was only weakly genetically correlated with the SU factor (rG=0.10). After controlling for the genetic correlation between SU/SUD, we found that lack of premeditation was independently genetically associated with both the SU (β=0.42) and SUD factors (β=0.21); sensation seeking and positive urgency were independently genetically associated with the SU factor (β=0.48, β=0.33, respectively); and negative urgency and delay discounting were independently genetically associated with the SUD factor (β=0.33, β=0.36, respectively). CONCLUSIONS Our findings show that specific impulsivity facets confer risk for distinct stages of substance use involvement, with potential implications for SUDs prevention and treatment.
Collapse
Affiliation(s)
- Laura Vilar-Ribó
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Alexander S. Hatoum
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew D. Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Travis T. Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniel E. Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
10
|
Gilman JM. Association of Cannabis Legalization With Prevalence of Schizophrenia-Challenges of Attributing Biological Causality to Policy Change. JAMA Netw Open 2025; 8:e2457876. [PMID: 39903468 DOI: 10.1001/jamanetworkopen.2024.57876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Affiliation(s)
- Jodi M Gilman
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
11
|
Johnson EC, Lai D, Miller AP, Hatoum AS, Deak JD, Balbona JV, Baranger DA, Galimberti M, Sanichwankul K, Thorgeirsson T, Colbert SM, Sanchez-Roige S, Adhikari K, Docherty A, Degenhardt L, Edwards T, Fox L, Giannelis A, Jeffries P, Korhonen T, Morrison C, Nunez YZ, Palviainen T, Su MH, Villela PNR, Wetherill L, Willoughby EA, Zellers S, Bierut L, Buchwald J, Copeland W, Corley R, Friedman NP, Foroud TM, Gillespie NA, Gizer IR, Heath AC, Hickie IB, Kaprio JA, Keller MC, Lee JL, Lind PA, Madden PA, Maes HH, Martin NG, McGue M, Medland SE, Nelson EC, Pearson JV, Porjesz B, Stallings M, Vrieze S, Wilhelmsen KC, Walters RK, Polimanti R, Malison RT, Zhou H, Stefansson K, Potenza MN, Mutirangura A, Shotelersuk V, Kalayasiri R, Edenberg HJ, Gelernter J, Agrawal A. Multi-ancestral genome-wide association study of clinically defined nicotine dependence reveals strong genetic correlations with other substance use disorders and health-related traits. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.29.25320962. [PMID: 39974067 PMCID: PMC11838619 DOI: 10.1101/2025.01.29.25320962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Genetic research on nicotine dependence has utilized multiple assessments that are in weak agreement. We conducted a genome-wide association study of nicotine dependence defined using the Diagnostic and Statistical Manual of Mental Disorders (DSM-NicDep) in 61,861 individuals (47,884 of European ancestry, 10,231 of African ancestry, 3,746 of East Asian ancestry) and compared the results to other nicotine-related phenotypes. We replicated the well-known association at the CHRNA5 locus (lead SNP: rs147144681, p =1.27E-11 in European ancestry; lead SNP = rs2036527, p = 6.49e-13 in cross-ancestry analysis). DSM-NicDep showed strong positive genetic correlations with cannabis use disorder, opioid use disorder, problematic alcohol use, lung cancer, material deprivation, and several psychiatric disorders, and negative correlations with respiratory function and educational attainment. A polygenic score of DSM-NicDep predicted DSM-5 tobacco use disorder and 6 of 11 individual diagnostic criteria, but none of the Fagerström Test for Nicotine Dependence (FTND) items, in the independent NESARC-III sample. In genomic structural equation models, DSM-NicDep loaded more strongly on a previously identified factor of general addiction liability than did a "problematic tobacco use" factor (a combination of cigarettes per day and nicotine dependence defined by the FTND). Finally, DSM-NicDep was strongly genetically correlated with a GWAS of tobacco use disorder as defined in electronic health records, suggesting that combining the wide availability of diagnostic EHR data with nuanced criterion-level analyses of DSM tobacco use disorder may produce new insights into the genetics of this disorder.
Collapse
Affiliation(s)
- Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alex P Miller
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander S Hatoum
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - Joseph D Deak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Jared V Balbona
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - David Aa Baranger
- Department of Psychological and Brain Sciences, Washington University in St Louis, Saint Louis, MO, USA
| | - Marco Galimberti
- Department of Human Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | | | | | - Sarah Mc Colbert
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keyrun Adhikari
- Department of Human Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Anna Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Tobias Edwards
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Louis Fox
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - Alexandros Giannelis
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Paul Jeffries
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - Tellervo Korhonen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Claire Morrison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Yaira Z Nunez
- Department of Human Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mei-Hsin Su
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Pamela N Romero Villela
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily A Willoughby
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Stephanie Zellers
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - Jadwiga Buchwald
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - William Copeland
- Department of Psychiatry, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Robin Corley
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Naomi P Friedman
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ian R Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - Ian B Hickie
- Brain and Mind Institute, University of Sydney, New South Wales, Sydney, Australia
| | - Jaakko A Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Matthew C Keller
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - James L Lee
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Pamela A Madden
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - Hermine Hm Maes
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matt McGue
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
- School of Psychology, University of Queensland, Brisbane, Australia
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - John V Pearson
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Health Science University, Brooklyn, NY, USA
| | - Michael Stallings
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Scott Vrieze
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kirk C Wilhelmsen
- Department of Neurology and Genetics and the Bowles Center of Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Renaissance Computing Institute, Chapel Hill, NC, USA
| | - Raymond K Walters
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Robert T Malison
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen, Sturlugata 8, IS-101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, IS-101, Reykjavik, Iceland
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Rasmon Kalayasiri
- Department of Psychiatry, Epidemiology of Psychiatric Disorders and Mental Health Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Human Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| |
Collapse
|
12
|
Wu JL, Luo JY, Deng XY, Jiang ZB. Association between cannabis use and risk of gynecomastia: commentary on "Gynecomastia in adolescent males: current understanding of its etiology, pathophysiology, diagnosis, and treatment". Ann Pediatr Endocrinol Metab 2025; 30:52-53. [PMID: 39810512 PMCID: PMC11917384 DOI: 10.6065/apem.2448152.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/09/2024] [Indexed: 01/16/2025] Open
Affiliation(s)
- Jia-Lin Wu
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun-Yang Luo
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin-Yi Deng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zai-Bo Jiang
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Aliev F, De Sa Nogueira D, Aston-Jones G, Dick DM. Genetic associations between orexin genes and phenotypes related to behavioral regulation in humans, including substance use. Mol Psychiatry 2025:10.1038/s41380-025-02895-4. [PMID: 39880903 DOI: 10.1038/s41380-025-02895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/23/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
The hypothalamic neuropeptide system of orexin (hypocretin) neurons provides projections throughout the neuraxis and has been linked to sleep regulation, feeding and motivation for salient rewards including drugs of abuse. However, relatively little has been done to examine genes associated with orexin signaling and specific behavioral phenotypes in humans. Here, we tested for association of twenty-seven genes involved in orexin signaling with behavioral phenotypes in humans. We tested the full gene set, functional subsets, and individual genes involved in orexin signaling. Our primary phenotype of interest was Externalizing, a composite factor comprised of behaviors and disorders associated with reward-seeking, motivation, and behavioral regulation. We also tested for association with additional phenotypes that have been related to orexin regulation in model organism studies, including alcohol consumption, problematic alcohol use, daytime sleepiness, insomnia, cigarettes per day, smoking initiation, and body mass index. The composite set of 27 genes corresponding to orexin function was highly associated with Externalizing, as well as with alcohol consumption, insomnia, cigarettes per day, smoking initiation and BMI. In addition, all gene subsets (except the OXR2/HCRTR2 subset) were associated with Externalizing. BMI was significantly associated with all gene subsets. The "validated factors for PPOX/HCRT" and "PPOX/HCRT upregulation" gene subsets also were associated with alcohol consumption. Individually, 8 genes showed a strong association with Externalizing, 12 with BMI, 7 with smoking initiation, 3 with alcohol consumption, and 2 with problematic alcohol use, after correction for multiple testing. This study indicates that orexin genes are associated with multiple behaviors and disorders related to self-regulation in humans. This is consistent with prior work in animals that implicated orexin signaling in motivational activation induced by salient stimuli, and supports the hypothesis that orexin signaling is an important potential therapeutic target for numerous behavioral disorders.
Collapse
Affiliation(s)
- Fazil Aliev
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA
| | - David De Sa Nogueira
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA
| | - Gary Aston-Jones
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA
| | - Danielle M Dick
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA.
| |
Collapse
|
14
|
Huang W, Zhang L, Ma Y, Yu S, Lyu Y, Tong S, Wang J, Jiang R, Meng M, Wu Y, Luo R, Qiu X, Sha W, Chen H. Unraveling the genetic susceptibility of irritable bowel syndrome: integrative genome-wide analyses in 845 492 individuals: a diagnostic study. Int J Surg 2025; 111:210-220. [PMID: 39166955 PMCID: PMC11745715 DOI: 10.1097/js9.0000000000002039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) significantly impacts individuals due to its prevalence and negative effect on quality of life. Current genome-wide association studies (GWAS) have only identified a small number of crucial single nucleotide polymorphisms (SNPs), not fully elucidating IBS's pathogenesis. OBJECTIVE To identify genomic loci at which common genetic variation influences IBS susceptibility. METHODS Combining independent cohorts that in total comprise 65 840 cases of IBS and 788 652 controls, the authors performed a meta-analysis of genome-wide association studies (GWAS) of IBS. The authors also carried out gene mapping and pathway enrichment to gain insights into the underlying genes and pathways through which the associated loci contribute to disease susceptibility. Furthermore, the authors performed transcriptome analysis to deepen their understanding. IBS risk models were developed by combining clinical/lifestyle risk factors with polygenic risk scores (PRS) derived from the GWAS meta-analysis. The authors detect the phenotype association for IBS utilizing PRS-based phenome-wide association (PheWAS) analyses, linkage disequilibrium score regression, and Mendelian randomization. RESULTS The GWAS meta-analysis identified 10 IBS risk loci, seven of which were novel (rs12755507, rs34209273, rs34365748, rs67427799, rs2587363, rs13321176, rs1546559). Multiple methods identified nine promising IBS candidate gene ( PRRC2A, COP1, CADM2, LRP1B, SUGT1, MED12L, P2RY14, PHF2, SHISA6 ) at 10 GWAS loci. Transcriptome validation also revealed differential expression of these genes. Phenome-wide associations between PRS-IBS and nine traits (neuroticism, diaphragmatic hernia, asthma, diverticulosis, cholelithiasis, depression, insomnia, COPD, and BMI) were identified. The six diseases (asthma, diaphragmatic hernia, diverticulosis, insomnia major depressive disorder and neuroticism) were found to show genetic association with IBS and only major depressive disorder and neuroticism were found to show causality with IBS. CONCLUSION The authors identified seven novel risk loci for IBS and highlighted the substantial influence on genetic risk harbored. The authors' findings offer novel insights into etiology and phenotypic association of IBS and lay the foundation for therapeutic targets and interventional strategies.
Collapse
Affiliation(s)
- Wentao Huang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lijun Zhang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- School of Medicine, South China University of Technology
| | - Yuying Ma
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shiyi Yu
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanlin Lyu
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences
| | - Shuangshuang Tong
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences
| | - Jiaxuan Wang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- School of Medicine, South China University of Technology
| | - Meijun Meng
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| | - Yanjun Wu
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ruibang Luo
- Shantou University Medical College, Shantou, China
| | - Xinqi Qiu
- Department of Computer Science, The University of Hong Kong, Hong Kong
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| |
Collapse
|
15
|
Luo M, Trindade Pons V, Thomas NS, Drake J, Su MH, Vladimirov V, van Loo HM, Gillespie NA. The Mechanisms Underlying the Intergenerational Transmission of Substance Use and Misuse: An Integrated Research Approach. Twin Res Hum Genet 2024:1-12. [PMID: 39710930 DOI: 10.1017/thg.2024.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Substance use and substance use disorders run in families. While it has long been recognized that the etiology of substance use behaviors and disorders involves a combination of genetic and environmental factors, two key questions remain largely unanswered: (1) the intergenerational transmission through which these genetic predispositions are passed from parents to children, and (2) the molecular mechanisms linking genetic variants to substance use behaviors and disorders. This article aims to provide a comprehensive conceptual framework and methodological approach for investigating the intergenerational transmission of substance use behaviors and disorders, by integrating genetic nurture analysis, gene expression imputation, and weighted gene co-expression network analysis. We also additionally describe two longitudinal cohorts - the Brisbane Longitudinal Twin Study in Australia and the Lifelines Cohort Study in the Netherlands. By applying the methodological framework to these two unique datasets, our future research will explore the complex interplay between genetic factors, gene expression, and environmental influences on substance use behaviors and disorders across different life stages and populations.
Collapse
Affiliation(s)
- Mannan Luo
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Victória Trindade Pons
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nathaniel S Thomas
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John Drake
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, Arizona, USA
| | - Mei-Hsin Su
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Vladimir Vladimirov
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, Arizona, USA
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hanna M van Loo
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
16
|
Kouakou MR, Cabrera-Mendoza B, Pathak GA, Cannon TD, Polimanti R. Genetically Informed Study Highlights Income-Independent Effect of Schizophrenia Liability on Mental and Physical Health. Schizophr Bull 2024; 51:85-94. [PMID: 38848523 PMCID: PMC11661948 DOI: 10.1093/schbul/sbae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND HYPOTHESIS Individuals with schizophrenia (SCZ) suffer from comorbidities that substantially reduce their life expectancy. Socioeconomic inequalities could contribute to many of the negative health outcomes associated with SCZ. STUDY DESIGN We investigated genome-wide datasets related to SCZ (52 017 cases and 75 889 controls) from the Psychiatric Genomics Consortium, household income (HI; N = 361 687) from UK Biobank, and 2202 medical endpoints assessed in up to 342 499 FinnGen participants. A phenome-wide genetic correlation analysis of SCZ and HI was performed, also assessing whether SCZ genetic correlations were influenced by the HI effect on SCZ. Additionally, SCZ and HI direct effects on medical endpoints were estimated using multivariable Mendelian randomization (MR). STUDY RESULTS SCZ and HI showed overlapping genetic correlations with 70 traits (P < 2.89 × 10-5), including mental health, substance use, gastrointestinal illnesses, reproductive outcomes, liver diseases, respiratory problems, and musculoskeletal phenotypes. SCZ genetic correlations with these traits were not affected by the HI effect on SCZ. Considering Bonferroni multiple testing correction (P < 7.14 × 10-4), MR analysis indicated that SCZ and HI may affect medical abortion (SCZ OR = 1.07; HI OR = 0.78), panic disorder (SCZ OR = 1.20; HI OR = 0.60), personality disorders (SCZ OR = 1.31; HI OR = 0.67), substance use (SCZ OR = 1.2; HI OR = 0.68), and adjustment disorders (SCZ OR = 1.18; HI OR = 0.78). Multivariable MR analysis confirmed that SCZ effects on these outcomes were independent of HI. CONCLUSIONS The effect of SCZ genetic liability on mental and physical health may not be strongly affected by socioeconomic differences. This suggests that SCZ-specific strategies are needed to reduce negative health outcomes affecting patients and high-risk individuals.
Collapse
Affiliation(s)
- Manuela R Kouakou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
17
|
Austin-Zimmerman I, Spinazzola E, Quattrone D, Wu-Choi B, Trotta G, Li Z, Johnson E, Richards AL, Freeman TP, Tripoli G, Gayer-Anderson C, Rodriguez V, Jongsma HE, Ferraro L, La Cascia C, Tosato S, Tarricone I, Berardi D, Bonora E, Seri M, D'Andrea G, Szöke A, Arango C, Bobes J, Sanjuán J, Santos JL, Arrojo M, Velthorst E, Bernardo M, Del-Ben CM, Rossi Menezes P, Selten JP, Jones PB, Kirkbride JB, Rutten BPF, Tortelli A, Llorca PM, de Haan L, Stilo S, La Barbera D, Lasalvia A, Schurnhoff F, Pignon B, van Os J, Lynskey M, Morgan C, O' Donovan M, Lewis CM, Sham PC, Murray RM, Vassos E, Di Forti M. The impact of schizophrenia genetic load and heavy cannabis use on the risk of psychotic disorder in the EU-GEI case-control and UK Biobank studies. Psychol Med 2024:1-13. [PMID: 39637925 DOI: 10.1017/s0033291724002058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND The association between cannabis and psychosis is established, but the role of underlying genetics is unclear. We used data from the EU-GEI case-control study and UK Biobank to examine the independent and combined effect of heavy cannabis use and schizophrenia polygenic risk score (PRS) on risk for psychosis. METHODS Genome-wide association study summary statistics from the Psychiatric Genomics Consortium and the Genomic Psychiatry Cohort were used to calculate schizophrenia and cannabis use disorder (CUD) PRS for 1098 participants from the EU-GEI study and 143600 from the UK Biobank. Both datasets had information on cannabis use. RESULTS In both samples, schizophrenia PRS and cannabis use independently increased risk of psychosis. Schizophrenia PRS was not associated with patterns of cannabis use in the EU-GEI cases or controls or UK Biobank cases. It was associated with lifetime and daily cannabis use among UK Biobank participants without psychosis, but the effect was substantially reduced when CUD PRS was included in the model. In the EU-GEI sample, regular users of high-potency cannabis had the highest odds of being a case independently of schizophrenia PRS (OR daily use high-potency cannabis adjusted for PRS = 5.09, 95% CI 3.08-8.43, p = 3.21 × 10-10). We found no evidence of interaction between schizophrenia PRS and patterns of cannabis use. CONCLUSIONS Regular use of high-potency cannabis remains a strong predictor of psychotic disorder independently of schizophrenia PRS, which does not seem to be associated with heavy cannabis use. These are important findings at a time of increasing use and potency of cannabis worldwide.
Collapse
Affiliation(s)
- Isabelle Austin-Zimmerman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Edoardo Spinazzola
- South London and Maudsley NHS Mental Health Foundation Trust, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Diego Quattrone
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- South London and Maudsley NHS Mental Health Foundation Trust, London, UK
| | - Beatrice Wu-Choi
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai NYC, New York, NY, USA
| | - Giulia Trotta
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- South London and Maudsley NHS Mental Health Foundation Trust, London, UK
| | - Zhikun Li
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Emma Johnson
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Alexander L Richards
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Tom P Freeman
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Giada Tripoli
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Via G. La Loggia 1, 90129 Palermo, Italy
| | - Charlotte Gayer-Anderson
- ESRC Centre for Society and Mental Health and Health Service and Population Research Department, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Victoria Rodriguez
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Hannah E Jongsma
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
- Rivierduinen Institute for Mental Health Care, Sandifortdreef 19, 2333 ZZ Leiden, The Netherlands
| | - Laura Ferraro
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Via G. La Loggia 1, 90129 Palermo, Italy
| | - Caterina La Cascia
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Via G. La Loggia 1, 90129 Palermo, Italy
| | - Sarah Tosato
- Section of Psychiatry, Azienda Ospedaliera Universitaria Integrata di Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Ilaria Tarricone
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Viale Pepoli 5, 40126 Bologna, Italy
| | - Domenico Berardi
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Viale Pepoli 5, 40126 Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Viale Pepoli 5, 40126 Bologna, Italy
| | - Marco Seri
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Viale Pepoli 5, 40126 Bologna, Italy
| | - Giuseppe D'Andrea
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Viale Pepoli 5, 40126 Bologna, Italy
| | - Andrei Szöke
- INSERM, U955, Equipe 15, 51 Avenue de Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Julio Bobes
- Department of Medicine, Psychiatry Area, School of Medicine, Universidad de Oviedo, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/Julián Clavería s/n, 33006 Oviedo, Spain
| | - Julio Sanjuán
- Department of Psychiatry, School of Medicine, Universidad de Valencia, CIBERSAM, Valencia, Spain
| | - Jose Luis Santos
- Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Arrojo
- Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Velthorst
- Department of Psychiatry, Mount Sinai School of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Miguel Bernardo
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic, Department of Medicine, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Cristina Marta Del-Ben
- Division of Psychiatry, Department of Neuroscience and Behaviour, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brasil
| | - Paulo Rossi Menezes
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Arnaldo 455, CEP 01246-903 São Paulo, Brasil
- Núcleo de Pesquina em Saúde Mental Populacional, Universidade de São Paulo, Avenida Doutor Arnaldo 455, CEP 01246-903 São Paulo, Brasil
| | - Jean-Paul Selten
- Rivierduinen Institute for Mental Health Care, Sandifortdreef 19, 2333 ZZ Leiden, The Netherlands
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
- CAMEO Early Intervention Service, Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| | - James B Kirkbride
- PsyLife Group, Division of Psychiatry, University College London, London, UK
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | - Pierre-Michel Llorca
- INSERM, U955, Equipe 15, 51 Avenue de Maréchal de Lattre de Tassigny, 94010 Créteil, France
- CMP B CHU, BP 69, 63003 Clermont Ferrand, Cedex 1, France
| | - Lieuwe de Haan
- Department of Psychiatry, Early Psychosis Section, Academic Medical Centre, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| | - Simona Stilo
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Department of Mental Health and Addiction Services, ASP Crotone, Crotone, Italy
| | - Daniele La Barbera
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Via G. La Loggia 1, 90129 Palermo, Italy
| | - Antonio Lasalvia
- Section of Psychiatry, Azienda Ospedaliera Universitaria Integrata di Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Franck Schurnhoff
- Univ Paris Est Creteil (UPEC), AP-HP, Hopitaux Universitaires 'H. Mondor', DMU IMPACT, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, F-94010 Créteil, France
| | - Baptiste Pignon
- Univ Paris Est Creteil (UPEC), AP-HP, Hopitaux Universitaires 'H. Mondor', DMU IMPACT, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, F-94010 Créteil, France
| | - Jim van Os
- Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, The Netherlands
| | - Michael Lynskey
- Department of Addiction, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Craig Morgan
- ESRC Centre for Society and Mental Health and Health Service and Population Research Department, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Michael O' Donovan
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- National Institute for Health Research (NIHR), Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Pak C Sham
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
- Centre for Genomic Sciences, Li KaShing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Robin M Murray
- South London and Maudsley NHS Mental Health Foundation Trust, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Marta Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- South London and Maudsley NHS Mental Health Foundation Trust, London, UK
- National Institute for Health Research (NIHR), Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
18
|
Miranda A, Holloway BM, Perry W, Minassian A, McCarthy M. Co-morbid cannabis use disorder and chronotype are associated with mood symptom onset in people with bipolar disorder. J Psychiatr Res 2024; 180:327-332. [PMID: 39515185 PMCID: PMC11646053 DOI: 10.1016/j.jpsychires.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Comorbid cannabis use disorder (CUD) is disproportionately high in people with bipolar disorder (BD) and has been associated with worsening of BD symptoms. However, many people with BD report regularly using cannabis to ameliorate symptoms, including sleep disturbances. Sleep and circadian rhythm disturbances are hallmark features of BD that often precede the onset of mood symptoms. Genetic studies indicate that circadian disruption may predispose individuals towards both problematic cannabis use and BD, rather than cannabis use directly impacting BD symptoms. To further disentangle these hypotheses, we aimed to investigate the relationship between chronotype, cannabis use disorder (CUD) and BD mood symptoms. Data from 212 participants with BD I from the Pharmacogenomics of Bipolar Disorder study dataset were analyzed for this study. Participants were stratified by those diagnosed with co-morbid CUD and BD symptom variables, including the mean number of mood episodes per year and age of mood symptom onset for both depression and mania symptoms. The Basic Language Morningness scale (BALM) was used to assess chronotype. There was no interaction between morningness levels and CUD on BD symptoms, however both lower morningness and CUD were independently associated with earlier age of mood symptom onset. However, patients who reported initiating cannabis use post mood symptom onset had an earlier mood symptom age of onset compared to those who reported initiating cannabis use prior to mood symptom onset. These findings could provide further evidence that circadian rhythm disruption could be an underlying factor that predisposes individuals toward both CUD and BD.
Collapse
Affiliation(s)
- Alannah Miranda
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.
| | - Breanna M Holloway
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - William Perry
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Michael McCarthy
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|
19
|
Poore HE, Chatzinakos C, Mallard TT, Sanchez-Roige S, Aliev F, Hatoum A, COGA Collaborators, Waldman ID, Palme AA, Harden KP, Barr PB, Dick DM. Advancing Gene Discovery for Substance Use Disorders Using Additional Traits Related to Behavioral Disinhibition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.26.24318011. [PMID: 39649581 PMCID: PMC11623735 DOI: 10.1101/2024.11.26.24318011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Importance Substance use disorders (SUDs) frequently co-occur with each other and with other traits related to behavioral disinhibition, a spectrum of outcomes referred to as externalizing. Nevertheless, genome-wide association studies (GWAS) typically study individual SUDs separately. This single-disorder approach ignores genetic covariance between SUDs and other traits and may contribute to the relatively limited genetic discoveries to date. Objective To identify the most effective model for capturing genetic relationships between SUDs and externalizing phenotypes, optimizing the detection of genetic influences on SUDs while maintaining specificity. Design We used Genomic SEM to estimate SNP effects on a broad factor representing liability to externalizing and SUDs, on factors representing liability to behavioral disinhibition and SUDs separately, and on residualized SUDs. Subsequent gene-based, tissue expression, and polygenic score (PGS) analyses were used to compare the ability of these alternative approaches to identify genetic influences on SUDs. Setting This study was carried out from May 2023 - September 2024. Participants We used GWAS summary statistics based on samples of European ancestry from previous studies of externalizing and SUD phenotypes in the main multivariate GWAS (N > 2.2 million). We used two independent samples to estimate polygenic associations, a family-based sample enriched for substance use problems (COGA; N = 7,530) and a population-based sample representative of the United States, (All of Us; N = 77,442). Exposures N/A. Main Outcomes and Measures Across the three factors (Externalizing; SUDs; Behavioral Disinhibition) and four residualized SUDs (alcohol, tobacco, opioid, and cannabis), we compared the number, putative function, previous associations of significant genomic risk loci and genes, and variance explained by polygenic scores in substance use outcomes. Results We identified genomic risk loci and genes uniquely associated with Externalizing that are relevant to the neurobiology of substance use. Genes identified for residual SUDs were involved in substance-specific processes (e.g., metabolism). The Externalizing PGS accounted for the most variance in substance outcomes relative to the PGS for the other factors and residual PGS appeared to capture substance specific signals. Conclusions and Relevance Our findings suggest that modeling both a broad genetic liability to externalizing behaviors and substance-specific liabilities enhances the detection of genetic effects related to SUDs and explains more variance in substance use outcomes.
Collapse
Affiliation(s)
- Holly E. Poore
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University
| | - Chris Chatzinakos
- Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University
| | - Travis T. Mallard
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital
- Department of Psychiatry, Harvard Medical School
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego
- Department of Medicine, Vanderbilt University Medical Center
- Institute for Genomic Medicine, University of California San Diego
| | - Fazil Aliev
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University
| | - Alexander Hatoum
- Department of Psychiatry, Washington University School of Medicine
| | | | | | - Abraham A. Palme
- Department of Psychiatry, University of California San Diego
- Institute for Genomic Medicine, University of California San Diego
| | - K. Paige Harden
- Department of Psychology, University of Texas at Austin
- Population Research Center, University of Texas at Austin
| | - Peter B. Barr
- Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University
| | - Danielle M. Dick
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University
| |
Collapse
|
20
|
Gerring ZF, Thorp JG, Treur JL, Verweij KJH, Derks EM. The genetic landscape of substance use disorders. Mol Psychiatry 2024; 29:3694-3705. [PMID: 38811691 PMCID: PMC11541208 DOI: 10.1038/s41380-024-02547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/31/2024]
Abstract
Substance use disorders represent a significant public health concern with considerable socioeconomic implications worldwide. Twin and family-based studies have long established a heritable component underlying these disorders. In recent years, genome-wide association studies of large, broadly phenotyped samples have identified regions of the genome that harbour genetic risk variants associated with substance use disorders. These regions have enabled the discovery of putative causal genes and improved our understanding of genetic relationships among substance use disorders and other traits. Furthermore, the integration of these data with clinical information has yielded promising insights into how individuals respond to medications, allowing for the development of personalized treatment approaches based on an individual's genetic profile. This review article provides an overview of recent advances in the genetics of substance use disorders and demonstrates how genetic data may be used to reduce the burden of disease and improve public health outcomes.
Collapse
Affiliation(s)
- Zachary F Gerring
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jackson G Thorp
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Eske M Derks
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
21
|
Ishrat S, Levey DF, Gelernter J, Ebmeier K, Topiwala A. Association between cannabis use and brain structure and function: an observational and Mendelian randomisation study. BMJ MENTAL HEALTH 2024; 27:e301065. [PMID: 39477366 PMCID: PMC11529520 DOI: 10.1136/bmjment-2024-301065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/30/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Cannabis use during adolescence and young adulthood has been associated with brain harm, yet despite a rapid increase in cannabis use among older adults in the past decade, the impact on brain health in this population remains understudied. OBJECTIVE To explore observational and genetic associations between cannabis use and brain structure and function. METHODS We examined 3641 lifetime cannabis users (mean (SD) age 61.0 (7.1) years) and 12 255 controls (mean (SD) age 64.5 (7.5) years) from UK Biobank. Brain structure and functional connectivity were measured using multiple imaging-derived phenotypes. Associations with cannabis use were assessed using multiple linear regression controlling for potential confounds. Bidirectional two-sample Mendelian randomisation analyses were used to investigate potential causal relationships. FINDINGS Cannabis use was associated with multiple measures of brain structure and function. Participants with a history of cannabis use had poorer white matter integrity, as assessed by lower fractional anisotropy and higher mean diffusivity in the genu of the corpus callosum, as well as weaker resting-state functional connectivity in brain regions underlying the default mode and central executive networks. Mendelian randomisation analyses found no support for causal relationships underlying associations between cannabis use and brain structure or function. CONCLUSIONS Associations between lifetime cannabis use and brain structure and function in later life are probably not causal in nature and might represent residual confounding. CLINICAL IMPLICATIONS Cannabis use is associated with differences in brain structure and function. Further research is needed to understand the mechanisms underlying these associations, which do not appear to be causal.
Collapse
Affiliation(s)
- Saba Ishrat
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Klaus Ebmeier
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Anya Topiwala
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Woolway GE, Legge SE, Lynham AJ, Smart SE, Hubbard L, Daniel ER, Pardiñas AF, Escott-Price V, O'Donovan MC, Owen MJ, Jones IR, Walters JTR. Assessing the validity of a self-reported clinical diagnosis of schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:99. [PMID: 39477999 PMCID: PMC11526013 DOI: 10.1038/s41537-024-00526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024]
Abstract
The increasing availability of biobanks is changing the way individuals are identified for genomic research. This study assesses the validity of a self-reported clinical diagnosis of schizophrenia. The study included 1744 clinically-ascertained participants with schizophrenia or schizoaffective disorder depressed-type (SA-D) diagnosed by self-report and/or research interview and 1453 UK Biobank participants with self-reported and/or medical record diagnosis of schizophrenia or SA-D. Unaffected controls included a total of 501,837 participants. We assessed the positive predictive values (PPV) of self-reported clinical diagnoses against research interview and medical record diagnoses. Polygenic risk scores (PRS) and phenotypes relating to demographics, education and employment were compared across diagnostic groups. The variance explained (r2) in schizophrenia PRS for each diagnostic group was compared to samples in the Psychiatric Genomics Consortium (PGC). In the clinically-ascertained participants, the PPV of self-reported schizophrenia for a research diagnosis of schizophrenia was 0.70, which increased to 0.81 after expanding the research diagnosis to schizophrenia or SA-D. In UK Biobank, the PPV of self-reported schizophrenia for a medical record diagnosis was 0.74. Compared to participants who self-reported, participants with a clinically-ascertained research diagnosis were younger and more likely to have a high school qualification. Participants with a medical record diagnosis in UK Biobank were less likely to be employed or have a high school qualification than those who self-reported. Schizophrenia PRS did not differ between participants that had a diagnosis from self-report, research diagnosis or medical records. Polygenic liability r2, for all diagnosis definitions, fell within the distribution of PGC schizophrenia cohorts. Self-reported measures of schizophrenia are justified in genomic research to maximise sample size and reduce the burden of in-depth interviews on participants, although within sample validation of diagnoses is recommended.
Collapse
Affiliation(s)
- Grace E Woolway
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie E Legge
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| | - Amy J Lynham
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie E Smart
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Leon Hubbard
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Ellie R Daniel
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Valentina Escott-Price
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Ian R Jones
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
23
|
Kember RL, Davis CN, Feuer KL, Kranzler HR. Considerations for the application of polygenic scores to clinical care of individuals with substance use disorders. J Clin Invest 2024; 134:e172882. [PMID: 39403926 PMCID: PMC11473164 DOI: 10.1172/jci172882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Substance use disorders (SUDs) are highly prevalent and associated with excess morbidity, mortality, and economic costs. Thus, there is considerable interest in the early identification of individuals who may be more susceptible to developing SUDs and in improving personalized treatment decisions for those who have SUDs. SUDs are known to be influenced by both genetic and environmental factors. Polygenic scores (PGSs) provide a single measure of genetic liability that could be used as a biomarker in predicting disease development, progression, and treatment response. Although PGSs are rapidly being integrated into clinical practice, there is little information to guide clinicians in their responsible use and interpretation. In this Review, we discuss the potential benefits and pitfalls of the use of PGSs in the clinical care of SUDs, highlighting current research. We also provide suggestions for important considerations prior to implementing the clinical use of PGSs and recommend future directions for research.
Collapse
|
24
|
Le Foll B, Tang VM, Rueda S, Trick LV, Boileau I. Cannabis use disorder: from neurobiology to treatment. J Clin Invest 2024; 134:e172887. [PMID: 39403927 PMCID: PMC11473150 DOI: 10.1172/jci172887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Cannabis has been legalized for medical and recreational purposes in multiple countries. A large number of people are using cannabis and some will develop cannabis use disorder (CUD). There is a growing recognition that CUD requires specific interventions. This Review will cover this topic from a variety of perspectives, with a particular emphasis on neurobiological findings and innovative treatment approaches that are being pursued. We will first describe the epidemiology and burden of disease of CUD, including risk factors associated with CUD (both in terms of general risk and genetic risk variants). Neurobiological alterations identified in brain imaging studies will be presented. Several psychosocial interventions that are useful for the management of CUD, including motivational enhancement therapy, behavioral and cognitive therapy, and contingency management, will be covered. Although no pharmacological interventions are yet approved for CUD, we present the most promising pharmacological interventions being tested.
Collapse
Affiliation(s)
- Bernard Le Foll
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Victor M. Tang
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
| | - Sergio Rueda
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
| | - Leanne V. Trick
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Isabelle Boileau
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
- Brain Health Imaging Centre, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Zhang Y, Xu H, Tang Y, Li Y, Zheng F. The levels of amino acid metabolites in serum induce the pathogenesis of atopic dermatitis by mediating the inflammatory protein S100A12. Sci Rep 2024; 14:23435. [PMID: 39379513 PMCID: PMC11461510 DOI: 10.1038/s41598-024-74522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease affecting tens of millions of people globally. The causal relationship between metabolites and AD pathology has not yet been formally indicated, and the mediating mechanism by which metabolites affect AD has not yet been explored. This study aimed to determine the genetic relationship between metabolites and AD and to determine the pathways through which amino acid metabolites affect AD. Meta-analysis integrates the results of multiple GWAS analyses using METAL software. Using bidirectional two-sample Mendelian randomization (MR), we analyzed the causal relationships between metabolites and AD. The principal MR test of causal effects was conducted using inverse-variance weighted regression, and we used reverse MR analysis to exclude reverse causality. We also performed the MR-PRESSO test to detect and correct for possible pleiotropic effects, and used the Cochran Q test to assess heterogeneity. Two-step MR was utilized to analyze the mediating factors between amino acid metabolites and the onset of AD. The correlation between mediating factors (inflammatory protein S100A12) and immune cell infiltration was analyzed using the edgeR and GSVA software packages. Using single-cell sequencing data from skin tissues of patients with AD, we studied the regulatory role of the S100A12 gene in immune cells. Multiple drug databases and macromolecular docking were used to search for S100A12-targeting drugs. Bidirectional two-sample MR analyses indicated that twenty-two metabolites and one inflammatory protein (S100A12) were significantly associated with AD pathogenesis. S100A12 is a mediator of amino acid metabolites (N6-methyllysine; N2-acetyl,N6,N6-dimethyllysine and N6,N6-dimethyllysine) that are genetically associated with AD. S100A12 was positively correlated with the infiltration of multiple immune cell types in lesional AD skin. The amino acid metabolites N6-methyllysine; N2-acetyl,N6,N6-dimethyllysine and N6,N6-dimethyllysine influence AD pathogenesis by mediating S100A12 expression.
Collapse
Affiliation(s)
- Yaqi Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Heng Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Fengjie Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
26
|
Johnson EC, Austin-Zimmerman I, Thorpe HHA, Levey DF, Baranger DAA, Colbert SMC, Demontis D, Khokhar JY, Davis LK, Edenberg HJ, Di Forti M, Sanchez-Roige S, Gelernter J, Agrawal A. Cross-ancestry genetic investigation of schizophrenia, cannabis use disorder, and tobacco smoking. Neuropsychopharmacology 2024; 49:1655-1665. [PMID: 38906991 PMCID: PMC11399264 DOI: 10.1038/s41386-024-01886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/23/2024]
Abstract
Individuals with schizophrenia frequently experience co-occurring substance use, including tobacco smoking and heavy cannabis use, and substance use disorders. There is interest in understanding the extent to which these relationships are causal, and to what extent shared genetic factors play a role. We explored the relationships between schizophrenia (Scz; European ancestry N = 161,405; African ancestry N = 15,846), cannabis use disorder (CanUD; European ancestry N = 886,025; African ancestry N = 120,208), and ever-regular tobacco smoking (Smk; European ancestry N = 805,431; African ancestry N = 24,278) using the largest available genome-wide studies of these phenotypes in individuals of African and European ancestries. All three phenotypes were positively genetically correlated (rgs = 0.17-0.62). Genetic instrumental variable analyses suggested the presence of shared heritable factors, but evidence for bidirectional causal relationships was also found between all three phenotypes even after correcting for these shared genetic factors. We identified 327 pleiotropic loci with 439 lead SNPs in the European ancestry data, 150 of which were novel (i.e., not genome-wide significant in the original studies). Of these pleiotropic loci, 202 had lead variants which showed convergent effects (i.e., same direction of effect) on Scz, CanUD, and Smk. Genetic variants convergent across all three phenotypes showed strong genetic correlations with risk-taking, executive function, and several mental health conditions. Our results suggest that both shared genetic factors and causal mechanisms may play a role in the relationship between CanUD, Smk, and Scz, but longitudinal, prospective studies are needed to confirm a causal relationship.
Collapse
Affiliation(s)
- Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| | - Isabelle Austin-Zimmerman
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - David A A Baranger
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sarah M C Colbert
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marta Di Forti
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sandra Sanchez-Roige
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Gustavson DE, Morrison CL, Mallard TT, Jennings MV, Fontanillas P, Elson SL, Palmer AA, Friedman NP, Sanchez-Roige S. Executive Function and Impulsivity Predict Distinct Genetic Variance in Internalizing Problems, Externalizing Problems, Thought Disorders, and Compulsive Disorders: A Genomic Structural Equation Modeling Study. Clin Psychol Sci 2024; 12:865-881. [PMID: 39323941 PMCID: PMC11423426 DOI: 10.1177/21677026231207845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Individual differences in self-control predict many health and life outcomes. Building on twin literature, we used genomic structural equation modeling to test the hypothesis that genetic influences on executive function and impulsivity predict independent variance in mental health and other outcomes. The impulsivity factor (comprising urgency, lack of premeditation, and other facets) was only modestly genetically correlated with low executive function (rg =.13). Controlling for impulsivity, low executive function was genetically associated with increased internalizing (βg =.15), externalizing (βg =.13), thought disorders (βg =.38), compulsive disorders (βg =.22), and chronotype (βg =.11). Controlling for executive function, impulsivity was positively genetically associated with internalizing (βg =.36), externalizing (βg =.55), body mass index (βg =.26), and insomnia (βg =.35), and negatively genetically associated with compulsive disorders (βg = -.17). Executive function and impulsivity were both genetically correlated with general cognitive ability and educational attainment. This work suggests that executive function and impulsivity are genetically separable and show independent associations with mental health.
Collapse
Affiliation(s)
- Daniel E Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO
| | - Claire L Morrison
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla CA, USA
| | | | | | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Naomi P Friedman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Zellers S, van Dongen J, Maes HHM, Ollikainen M, Fang F, Vrieze S, Kaprio J, Boomsma DI. A Bivariate Twin Study of Lifetime cannabis Initiation and Lifetime Regular Tobacco Smoking Across Three Different Countries. Behav Genet 2024; 54:375-385. [PMID: 39078541 PMCID: PMC11371858 DOI: 10.1007/s10519-024-10190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Regular cigarette smoking and cannabis consumption are strongly positively related to each other, yet few studies explore their underlying variation and covariation. We evaluated the genetic and environmental decomposition of variance and covariance of these two traits in twin data from three countries with different social norms and legislation. Data from the Netherlands Twin Register, FinnTwin12/16, and the Minnesota Center for Twin Family Research (total N = 21,617) were analyzed in bivariate threshold models of lifetime regular smoking initiation (RSI) and lifetime cannabis initiation (CI). We ran unstratified models and models stratified by sex and country. Prevalence of RSI was lowest in the Netherlands and prevalence of CI was highest in Minnesota. In the unstratified model, genetic (A) and common environmental factors (C) contributed substantially to the liabilities of RSI (A = 0.47, C = 0.34) and CI (A = 0.28, C = 0.51). The two liabilities were significantly phenotypically (rP = 0.56), genetically (rA = 0.74), and environmentally correlated in the unstratified model (rC = 0.47and rE = 0.48, representing correlations between common and unique environmental factors). The magnitude of phenotypic correlation between liabilities varied by country but not sex (Minnesota rP ~ 0.70, Netherlands rP ~ 0.59, Finland rP ~ 0.45). Comparisons of decomposed correlations could not be reliably tested in the stratified models. The prevalence and association of RSI and CI vary by sex and country. These two behaviors are correlated because there is genetic and environmental overlap between their underlying latent liabilities. There is heterogeneity in the genetic architecture of these traits across country.
Collapse
Affiliation(s)
- Stephanie Zellers
- Institute for Molecular Medicine Finland, University of Helsinki, P.O. Box 20, Helsinki, 00014, Finland.
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Hermine H M Maes
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Human and Molecular Genetics, Psychiatry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, University of Helsinki, P.O. Box 20, Helsinki, 00014, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Fang Fang
- GenOmics and Translational Research Center, Research Triangle Institute International, Research Triangle Park, NC, USA
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, P.O. Box 20, Helsinki, 00014, Finland
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Johnson EC, Agrawal A. Cannabis and Psychosis: Weeding Out Fact from Fiction. MISSOURI MEDICINE 2024; 121:333-339. [PMID: 39421474 PMCID: PMC11482844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Affiliation(s)
- Emma C Johnson
- Assistant Professor, Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Arpana Agrawal
- Professor, Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
30
|
Galimberti M, Levey DF, Deak JD, Zhou H, Stein MB, Gelernter J. Genetic influences and causal pathways shared between cannabis use disorder and other substance use traits. Mol Psychiatry 2024; 29:2905-2910. [PMID: 38580809 PMCID: PMC11419938 DOI: 10.1038/s41380-024-02548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Cannabis use disorder (CanUD) has increased with the legalization of the use of cannabis. Around 20% of individuals using cannabis develop CanUD, and the number of users has grown with increasing ease of access. CanUD and other substance use disorders (SUDs) are associated phenotypically and genetically. We leveraged new CanUD genomics data to undertake genetically-informed analyses with unprecedented power, to investigate the genetic architecture and causal relationships between CanUD and lifetime cannabis use with risk for developing SUDs and substance use traits. Analyses included calculating local and global genetic correlations, genomic structural equation modeling (genomicSEM), and Mendelian Randomization (MR). Results from the genetic correlation and genomicSEM analyses demonstrated that CanUD and cannabis use differ in their relationships with SUDs and substance use traits. We found significant causal effects of CanUD influencing all the analyzed traits: opioid use disorder (OUD) (Inverse variant weighted, IVW β = 0.925 ± 0.082), problematic alcohol use (PAU) (IVW β = 0.443 ± 0.030), drinks per week (DPW) (IVW β = 0.182 ± 0.025), Fagerström Test for Nicotine Dependence (FTND) (IVW β = 0.183 ± 0.052), cigarettes per day (IVW β = 0.150 ± 0.045), current versus former smokers (IVW β = 0.178 ± 0.052), and smoking initiation (IVW β = 0.405 ± 0.042). We also found evidence of bidirectionality showing that OUD, PAU, smoking initiation, smoking cessation, and DPW all increase risk of developing CanUD. For cannabis use, bidirectional relationships were inferred with PAU, smoking initiation, and DPW; cannabis use was also associated with a higher risk of developing OUD (IVW β = 0.785 ± 0.266). GenomicSEM confirmed that CanUD and cannabis use load onto different genetic factors. We conclude that CanUD and cannabis use can increase the risk of developing other SUDs. This has substantial public health implications; the move towards legalization of cannabis use may be expected to increase other kinds of problematic substance use. These harmful outcomes are in addition to the medical harms associated directly with CanUD.
Collapse
Affiliation(s)
- Marco Galimberti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Joseph D Deak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Murray B Stein
- Department of Psychiatry and School of Public Health, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
31
|
Horwitz TB, Zorina-Lichtenwalter K, Gustavson DE, Grotzinger AD, Stallings MC. Partitioning the Genomic Components of Behavioral Disinhibition and Substance Use (Disorder) Using Genomic Structural Equation Modeling. Behav Genet 2024; 54:386-397. [PMID: 38981971 DOI: 10.1007/s10519-024-10188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/02/2024] [Indexed: 07/11/2024]
Abstract
Externalizing behaviors encompass manifestations of risk-taking, self-regulation, aggression, sensation-/reward-seeking, and impulsivity. Externalizing research often includes substance use (SUB), substance use disorder (SUD), and other (non-SUB/SUD) "behavioral disinhibition" (BD) traits. Genome-wide and twin research have pointed to overlapping genetic architecture within and across SUB, SUD, and BD. We created single-factor measurement models-each describing SUB, SUD, or BD traits-based on mutually exclusive sets of European ancestry genome-wide association study (GWAS) statistics exploring externalizing variables. We then assessed the partitioning of genetic covariance among the three facets using correlated factors models and Cholesky decomposition. Even when the residuals for indicators relating to the same substance were correlated across the SUB and SUD factors, the two factors yielded a large correlation (rg = 0.803). BD correlated strongly with the SUD (rg = 0.774) and SUB (rg = 0.778) factors. In our initial decompositions, 33% of total BD variance remained after partialing out SUD and SUB. The majority of covariance between BD and SUB and between BD and SUD was shared across all factors, and, within these models, only a small fraction of the total variation in BD operated via an independent pathway with SUD or SUB outside of the other factor. When only nicotine/tobacco, cannabis, and alcohol were included for the SUB/SUD factors, their correlation increased to rg = 0.861; in corresponding decompositions, BD-specific variance decreased to 27%. Further research can better elucidate the properties of BD-specific variation by exploring its genetic/molecular correlates.
Collapse
Affiliation(s)
- Tanya B Horwitz
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th St., Boulder, CO, 80303, USA.
| | | | - Daniel E Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th St., Boulder, CO, 80303, USA
| | - Andrew D Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th St., Boulder, CO, 80303, USA
- Psychology and Neuroscience, University of Colorado Boulder, Meunzinger D244, 345 UCB, Boulder, CO, 80309, USA
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th St., Boulder, CO, 80303, USA
- Psychology and Neuroscience, University of Colorado Boulder, Meunzinger D244, 345 UCB, Boulder, CO, 80309, USA
| |
Collapse
|
32
|
Bortolato M, Braccagni G, Pederson CA, Floris G, Fite PJ. "Weeding out" violence? Translational perspectives on the neuropsychobiological links between cannabis and aggression. AGGRESSION AND VIOLENT BEHAVIOR 2024; 78:101948. [PMID: 38828012 PMCID: PMC11141739 DOI: 10.1016/j.avb.2024.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Recent shifts in societal attitudes towards cannabis have led to a dramatic increase in consumption rates in many Western countries, particularly among young people. This trend has shed light on a significant link between cannabis use disorder (CUD) and pathological reactive aggression, a condition involving disproportionate aggressive and violent reactions to minor provocations. The discourse on the connection between cannabis use and aggression is frequently enmeshed in political and legal discussions, leading to a polarized understanding of the causative relationship between cannabis use and aggression. However, integrative analyses from both human and animal research indicate a complex, bidirectional interplay between cannabis misuse and pathological aggression. On the one hand, emerging research reveals a shared genetic and environmental predisposition for both cannabis use and aggression, suggesting a common underlying biological mechanism. On the other hand, there is evidence that cannabis consumption can lead to violent behaviors while also being used as a self-medication strategy to mitigate the negative emotions associated with pathological reactive aggression. This suggests that the coexistence of pathological aggression and CUD may result from overlapping vulnerabilities, potentially creating a self-perpetuating cycle where each condition exacerbates the other, escalating into externalizing and violent behaviors. This article aims to synthesize existing research on the intricate connections between these issues and propose a theoretical model to explain the neurobiological mechanisms underpinning this complex relationship.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA
| | - Giulia Braccagni
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Casey A. Pederson
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Paula J. Fite
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
33
|
Li J, Yin Z, Yu Z, Li J, Yang L. Association Between Cannabis Use and Brain Structures: A Mendelian Randomization Study. Cureus 2024; 16:e65922. [PMID: 39221390 PMCID: PMC11365007 DOI: 10.7759/cureus.65922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background Observational studies suggested that cannabis use was associated with alternation of brain structures; however, as subjected to confounding factors, they were difficult to make causal inferences and direction determinations. In this study, a two-sample Mendelian randomization (MR) analysis was employed to examine the potential causal association between cannabis use and brain structures. Methods The genome-wide association studies (GWAS) data for lifetime cannabis use (LCU), cannabis use disorder (CUD), and brain cortical and subcortical structures were utilized in this study. Cortical structures were divided into 34 distinct gyral-defined regions with surface area (SA) and thickness (TH) measured. Subcortical structures encompassed volumes from seven specified regions. The primary estimator used in our analysis was inverse-variance weighted (IVW), complemented by MR-Egger and weighted median methods to enhance the robustness of the results. The Cochran's Q test, funnel plots, and MR-Egger intercept tests were used to detect heterogeneity and pleiotropy. Results No causal relationship was detected between LCU and global cortical SA or TH. However, at the regional cortex level, LCU was associated with decreased TH in the fusiform (β = -0.0168 mm, SE = 0.00581, P = 0.0039) and lateral occipital (β = -0.0141 mm, SE = 0.00531, P = 0.0079) regions, while increasing TH in the postcentral region (β = 0.0093 mm, SE = 0.00445, P = 0.0374). At the subcortical level, LCU was found to increase the brainstem volume (β = 0.224 mm3, SE = 0.09, P = 0.0128). CUD did not show any causal association with brain structure at either cortical or subcortical levels. Nonetheless, after applying multiple comparison corrections, the P values for the MR analysis of causal relationships between cannabis use and these brain structures did not meet the significance threshold. Conclusion The evidence for cannabis use causally influencing brain structures is insufficient.
Collapse
Affiliation(s)
- Juan Li
- Department of Anesthesiology, The Sixth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, CHN
| | - Zhao Yin
- Department of Cardiology, People's Liberation Army (PLA) Strategic Support Force Characteristic Medical Center, Beijing, CHN
| | - Zeming Yu
- Department of Anesthesiology, The Sixth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, CHN
| | - Jiannan Li
- Department of Anesthesiology, The Sixth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, CHN
| | - Lu Yang
- Department of Anesthesiology, The Sixth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, CHN
| |
Collapse
|
34
|
Cha J, Lee E, van Dijk M, Kim B, Kim G, Murphy E, Talati A, Joo Y, Weissman M. Polygenic scores for psychiatric traits mediate the impact of multigenerational history for depression on offspring psychopathology. RESEARCH SQUARE 2024:rs.3.rs-4264742. [PMID: 39070622 PMCID: PMC11275997 DOI: 10.21203/rs.3.rs-4264742/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A family history of depression is a well-documented risk factor for offspring psychopathology. However, the genetic mechanisms underlying the intergenerational transmission of depression remain unclear. We used genetic, family history, and diagnostic data from 11,875 9-10 year-old children from the Adolescent Brain Cognitive Development study. We estimated and investigated the children's polygenic scores (PGSs) for 30 distinct traits and their association with a family history of depression (including grandparents and parents) and the children's overall psychopathology through logistic regression analyses. We assessed the role of polygenic risk for psychiatric disorders in mediating the transmission of depression from one generation to the next. Among 11,875 multi-ancestry children, 8,111 participants had matching phenotypic and genotypic data (3,832 female [47.2%]; mean (SD) age, 9.5 (0.5) years), including 6,151 [71.4%] of European ancestry). Greater PGSs for depression (estimate = 0.129, 95% CI = 0.070-0.187) and bipolar disorder (estimate = 0.109, 95% CI = 0.051-0.168) were significantly associated with higher family history of depression (Bonferroni-corrected P < .05). Depression PGS was the only PGS that significantly associated with both family risk and offspring's psychopathology, and robustly mediated the impact of family history of depression on several youth psychopathologies including anxiety disorders, suicidal ideation, and any psychiatric disorder (proportions mediated 1.39%-5.87% of the total effect on psychopathology; FDR-corrected P < .05). These findings suggest that increased polygenic risk for depression partially mediates the associations between family risk for depression and offspring psychopathology, showing a genetic basis for intergenerational transmission of depression. Future approaches that combine assessments of family risk with polygenic profiles may offer a more accurate method for identifying children at elevated risk.
Collapse
Affiliation(s)
| | | | | | - Bogyeom Kim
- Department of Psychology, Seoul National University
| | | | | | | | | | - Myrna Weissman
- Columbia University Vagelos College of Physicians and Surgeons
| |
Collapse
|
35
|
Bai Z, Hao J, Chen M, Yao K, Zheng L, Liu L, Hu J, Guo K, Lv Y, Li F. Integrating plasma proteomics with genome-wide association data to identify novel drug targets for inflammatory bowel disease. Sci Rep 2024; 14:16251. [PMID: 39009667 PMCID: PMC11250821 DOI: 10.1038/s41598-024-66780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease that includes Crohn's disease (CD) and ulcerative colitis (UC). Although genome-wide association studies (GWASs) have identified many relevant genetic risk loci, the impact of these loci on protein abundance and their potential utility as clinical therapeutic targets remain uncertain. Therefore, this study aimed to investigate the pathogenesis of IBD and identify effective therapeutic targets through a comprehensive and integrated analysis. We systematically integrated GWAS data related to IBD, UC and CD (N = 25,305) by the study of de Lange KM with the human blood proteome (N = 7213) by the Atherosclerosis Risk in Communities (ARIC) study. Proteome-wide association study (PWAS), mendelian randomisation (MR) and Bayesian colocalisation analysis were used to identify proteins contributing to the risk of IBD. Integrative analysis revealed that genetic variations in IBD, UC and CD affected the abundance of five (ERAP2, RIPK2, TALDO1, CADM2 and RHOC), three (VSIR, HGFAC and CADM2) and two (MST1 and FLRT3) cis-regulated plasma proteins, respectively (P < 0.05). Among the proteins identified via Bayesian colocalisation analysis, CADM2 was found to be an important common protein between IBD and UC. A drug and five druggable target genes were identified from DGIdb after Bayesian colocalisation analysis. Our study's findings from genetic and proteomic approaches have identified compelling proteins that may serve as important leads for future functional studies and potential drug targets for IBD (UC and CD).
Collapse
Affiliation(s)
- Zhongyuan Bai
- First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Jiawei Hao
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Miaoran Chen
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Kaixin Yao
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Leilei Zheng
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Liu Liu
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Jingxi Hu
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Kaiqing Guo
- Hepatobiliary Pancreatogastric Surgery, Shanxi Province Cancer Hospital, Taiyuan, China.
- Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China.
- Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Yongqiang Lv
- Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China.
- Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
- Department of Scientific Research, Shanxi Province Cancer Hospital, Taiyuan, China.
| | - Feng Li
- Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China.
- Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
- Central Laboratory, Shanxi Province Cancer Hospital, Taiyuan, China.
| |
Collapse
|
36
|
Koller D, Friligkou E, Stiltner B, Pathak GA, Løkhammer S, Levey DF, Zhou H, Hatoum AS, Deak JD, Kember RL, Treur JL, Kranzler HR, Johnson EC, Stein MB, Gelernter J, Polimanti R. Pleiotropy and genetically inferred causality linking multisite chronic pain to substance use disorders. Mol Psychiatry 2024; 29:2021-2030. [PMID: 38355787 PMCID: PMC11324857 DOI: 10.1038/s41380-024-02446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Individuals suffering from chronic pain develop substance use disorders (SUDs) more often than others. Understanding the shared genetic influences underlying the comorbidity between chronic pain and SUDs will lead to a greater understanding of their biology. Genome-wide association statistics were obtained from the UK Biobank for multisite chronic pain (MCP, Neffective = 387,649) and from the Million Veteran Program and the Psychiatric Genomics Consortium meta-analyses for alcohol use disorder (AUD, Neffective = 296,974), cannabis use disorder (CanUD, Neffective = 161,053), opioid use disorder (OUD, Neffective = 57,120), and problematic tobacco use (PTU, Neffective = 270,120). SNP-based heritability was estimated for each of the traits and genetic correlation (rg) analyses were performed to assess MCP-SUD pleiotropy. Bidirectional Mendelian Randomization analyses evaluated possible causal relationships. Finally, to identify and characterize individual loci, we performed a genome-wide pleiotropy analysis and a brain-wide analysis using imaging phenotypes available from the UK Biobank. MCP was positively genetically correlated with AUD (rg = 0.26, p = 7.55 × 10-18), CanUD (rg = 0.37, p = 8.21 × 10-37), OUD (rg = 0.20, p = 1.50 × 10-3), and PTU (rg = 0.29, p = 8.53 × 10-12). Although the MR analyses supported bi-directional relationships, MCP had larger effects on AUD (pain-exposure: beta = 0.18, p = 8.21 × 10-4; pain-outcome: beta = 0.07, p = 0.018), CanUD (pain-exposure: beta = 0.58, p = 2.70 × 10-6; pain-outcome: beta = 0.05, p = 0.014) and PTU (pain-exposure: beta = 0.43, p = 4.16 × 10-8; pain-outcome: beta = 0.09, p = 3.05 × 10-6) than the reverse. The genome-wide analysis identified two SNPs pleiotropic between MCP and all SUD investigated: IHO1 rs7652746 (ppleiotropy = 2.69 × 10-8), and CADM2 rs1248857 (ppleiotropy = 1.98 × 10-5). In the brain-wide analysis, rs7652746 was associated with multiple cerebellum and amygdala imaging phenotypes. When analyzing MCP pleiotropy with each SUD separately, we found 25, 22, and 4 pleiotropic variants for AUD, CanUD, and OUD, respectively. To our knowledge, this is the first large-scale study to provide evidence of potential causal relationships and shared genetic mechanisms underlying MCP-SUD comorbidity.
Collapse
Affiliation(s)
- Dora Koller
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain.
| | - Eleni Friligkou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Brendan Stiltner
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Solveig Løkhammer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Alexander S Hatoum
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Joseph D Deak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Rachel L Kember
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Veterans Integrated Service Network 4, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Veterans Integrated Service Network 4, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
37
|
Çukurova M, Sancak B, Özdemir A. Investigation of Siblings of Patients Diagnosed with Substance-Induced Psychotic Disorder in terms of Cognitive Functions and Clinical High-Risk State for Psychosis. Psychopathology 2024; 57:412-422. [PMID: 38885619 DOI: 10.1159/000538478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/18/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE This study aimed to investigate the influence of familial predisposition on substance-induced psychosis among healthy siblings of patients diagnosed with substance-induced psychotic disorder, who themselves lack any family history of psychotic disorders. Additionally, the study aimed to explore clinical high-risk states for psychosis, schizotypal features, and neurocognitive functions in comparison to a healthy control group. METHOD The study compared healthy siblings of 41 patients diagnosed with substance-induced psychotic disorder with 41 healthy volunteers without a family history of psychotic disorders, matching age, gender, and education. Sociodemographic and clinical characteristics of participants were obtained using data collection forms. The Comprehensive Assessment of At-Risk Mental States (CAARMS) and the Structured Interview for Schizotypy-Revised Form (SIS-R) scales were utilized to assess clinical high risk for psychosis. Neurocognitive functions were evaluated with digit span test (DST), trail making test part A-B (TMT), verbal fluency test (VFT), and Stroop test (ST). RESULTS Analysis using the CAARMS scale revealed that 39% of siblings and 7.3% of the control group were at clinically high risk for psychosis, indicating a significant difference in rates of psychotic vulnerability. Comparison between siblings and the control group showed significant differences in mean SIS-R subscale scores, including social behavior, hypersensitivity, referential thinking, suspiciousness, illusions, and overall oddness, as well as in mean neurocognitive function scores, including errors in TMT-A, TMT-B, and VFT out-of-category errors, with siblings exhibiting poorer performance. CONCLUSION Our study suggests that healthy siblings of patients with substance-induced psychosis exhibit more schizotypal features and have a higher risk of developing psychosis compared to healthy controls. Additionally, siblings demonstrate greater impairment in attention, response inhibition, and executive functions compared to healthy controls, indicating the potential role of genetic predisposition in the development of substance-induced psychotic disorder.
Collapse
Affiliation(s)
- Merve Çukurova
- Department of Psychiatry, Bakırköy Prof. Dr. Mazhar Osman Psychiatry, Neurology and Neurosurgery Training and Research Hospital, Istanbul, Turkey
| | - Barış Sancak
- Department of Psychiatry, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Armağan Özdemir
- Department of Psychiatry, Bakırköy Prof. Dr. Mazhar Osman Psychiatry, Neurology and Neurosurgery Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
38
|
Thorpe HHA, Fontanillas P, Meredith JJ, Jennings MV, Cupertino RB, Pakala S, 23andMe Research Team, Elson SL, Khokhar JY, Davis LK, Johnson EC, Palmer AA, Sanchez-Roige S. Genome-wide association studies of lifetime and frequency cannabis use in 131,895 individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308946. [PMID: 38947071 PMCID: PMC11213095 DOI: 10.1101/2024.06.14.24308946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cannabis is one of the most widely used drugs globally. Decriminalization of cannabis is further increasing cannabis consumption. We performed genome-wide association studies (GWASs) of lifetime (N=131,895) and frequency (N=73,374) of cannabis use. Lifetime cannabis use GWAS identified two loci, one near CADM2 (rs11922956, p=2.40E-11) and another near GRM3 (rs12673181, p=6.90E-09). Frequency of use GWAS identified one locus near CADM2 (rs4856591, p=8.10E-09; r2 =0.76 with rs11922956). Both traits were heritable and genetically correlated with previous GWASs of lifetime use and cannabis use disorder (CUD), as well as other substance use and cognitive traits. Polygenic scores (PGSs) for lifetime and frequency of cannabis use associated cannabis use phenotypes in AllofUs participants. Phenome-wide association study of lifetime cannabis use PGS in a hospital cohort replicated associations with substance use and mood disorders, and uncovered associations with celiac and infectious diseases. This work demonstrates the value of GWASs of CUD transition risk factors.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Renata B Cupertino
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Shreya Pakala
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | | | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lea K Davis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
39
|
Wang J, Gu R, Kong X, Luan S, Luo YLL. Genome-wide association studies (GWAS) and post-GWAS analyses of impulsivity: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110986. [PMID: 38430953 DOI: 10.1016/j.pnpbp.2024.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Impulsivity is related to a host of mental and behavioral problems. It is a complex construct with many different manifestations, most of which are heritable. The genetic compositions of these impulsivity manifestations, however, remain unclear. A number of genome-wide association studies (GWAS) and post-GWAS analyses have tried to address this issue. We conducted a systematic review of all GWAS and post-GWAS analyses of impulsivity published up to December 2023. Available data suggest that single nucleotide polymorphisms (SNPs) in more than a dozen of genes (e.g., CADM2, CTNNA2, GPM6B) are associated with different measures of impulsivity at genome-wide significant levels. Post-GWAS analyses further show that different measures of impulsivity are subject to different degrees of genetic influence, share few genetic variants, and have divergent genetic overlap with basic personality traits such as extroversion and neuroticism, cognitive ability, psychiatric disorders, substance use, and obesity. These findings shed light on controversies in the conceptualization and measurement of impulsivity, while providing new insights on the underlying mechanisms that yoke impulsivity to psychopathology.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Ruolei Gu
- Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchundong Road, Hangzhou 310016, China
| | - Shenghua Luan
- Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Yu L L Luo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China.
| |
Collapse
|
40
|
Miller AP, Bogdan R, Agrawal A, Hatoum AS. Generalized genetic liability to substance use disorders. J Clin Invest 2024; 134:e172881. [PMID: 38828723 PMCID: PMC11142744 DOI: 10.1172/jci172881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Lifetime and temporal co-occurrence of substance use disorders (SUDs) is common and compared with individual SUDs is characterized by greater severity, additional psychiatric comorbidities, and worse outcomes. Here, we review evidence for the role of generalized genetic liability to various SUDs. Coaggregation of SUDs has familial contributions, with twin studies suggesting a strong contribution of additive genetic influences undergirding use disorders for a variety of substances (including alcohol, nicotine, cannabis, and others). GWAS have documented similarly large genetic correlations between alcohol, cannabis, and opioid use disorders. Extending these findings, recent studies have identified multiple genomic loci that contribute to common risk for these SUDs and problematic tobacco use, implicating dopaminergic regulatory and neuronal development mechanisms in the pathophysiology of generalized SUD genetic liability, with certain signals demonstrating cross-species and translational validity. Overlap with genetic signals for other externalizing behaviors, while substantial, does not explain the entirety of the generalized genetic signal for SUD. Polygenic scores (PGS) derived from the generalized genetic liability to SUDs outperform PGS for individual SUDs in prediction of serious mental health and medical comorbidities. Going forward, it will be important to further elucidate the etiology of generalized SUD genetic liability by incorporating additional SUDs, evaluating clinical presentation across the lifespan, and increasing the granularity of investigation (e.g., specific transdiagnostic criteria) to ultimately improve the nosology, prevention, and treatment of SUDs.
Collapse
Affiliation(s)
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Alexander S. Hatoum
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
41
|
Abstract
Mendelian randomization (MR) leverages genetic information to examine the causal relationship between phenotypes allowing for the presence of unmeasured confounders. MR has been widely applied to unresolved questions in epidemiology, making use of summary statistics from genome-wide association studies on an increasing number of human traits. However, an understanding of essential concepts is necessary for the appropriate application and interpretation of MR. This review aims to provide a non-technical overview of MR and demonstrate its relevance to psychiatric research. We begin with the origins of MR and the reasons for its recent expansion, followed by an overview of its statistical methodology. We then describe the limitations of MR, and how these are being addressed by recent methodological advances. We showcase the practical use of MR in psychiatry through three illustrative examples - the connection between cannabis use and psychosis, the link between intelligence and schizophrenia, and the search for modifiable risk factors for depression. The review concludes with a discussion of the prospects of MR, focusing on the integration of multi-omics data and its extension to delineating complex causal networks.
Collapse
Affiliation(s)
- Lane G Chen
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Justin D Tubbs
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zipeng Liu
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Thuan-Quoc Thach
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pak C Sham
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
42
|
Joo YY, Lee E, Kim BG, Kim G, Seo J, Cha J. Polygenic architecture of brain structure and function, behaviors, and psychopathologies in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595444. [PMID: 38826224 PMCID: PMC11142157 DOI: 10.1101/2024.05.22.595444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The human brain undergoes structural and functional changes during childhood, a critical period in cognitive and behavioral development. Understanding the genetic architecture of the brain development in children can offer valuable insights into the development of the brain, cognition, and behaviors. Here, we integrated brain imaging-genetic-phenotype data from over 8,600 preadolescent children of diverse ethnic backgrounds using multivariate statistical techniques. We found a low-to-moderate level of SNP-based heritability in most IDPs, which is lower compared to the adult brain. Using sparse generalized canonical correlation analysis (SGCCA), we identified several covariation patterns among genome-wide polygenic scores (GPSs) of 29 traits, 7 different modalities of brain imaging-derived phenotypes (IDPs), and 266 cognitive and psychological phenotype data. In structural MRI, significant positive associations were observed between total grey matter volume, left ventral diencephalon volume, surface area of right accumbens and the GPSs of cognition-related traits. Conversely, negative associations were found with the GPSs of ADHD, depression and neuroticism. Additionally, we identified a significant positive association between educational attainment GPS and regional brain activation during the N-back task. The BMI GPS showed a positive association with fractional anisotropy (FA) of connectivity between the cerebellum cortex and amygdala in diffusion MRI, while the GPSs for educational attainment and cannabis use were negatively associated with the same IDPs. Our GPS-based prediction models revealed substantial genetic contributions to cognitive variability, while the genetic basis for many mental and behavioral phenotypes remained elusive. This study delivers a comprehensive map of the relationships between genetic profiles, neuroanatomical diversity, and the spectrum of cognitive and behavioral traits in preadolescence.
Collapse
Affiliation(s)
- Yoonjung Yoonie Joo
- Department of Psychology, Seoul National University
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Eunji Lee
- Department of Psychology, Seoul National University
| | - Bo-Gyeom Kim
- Department of Psychology, Seoul National University
| | - Gakyung Kim
- Department of Brain and Cognitive Sciences, Seoul National University
| | - Jungwoo Seo
- Department of Brain and Cognitive Sciences, Seoul National University
| | - Jiook Cha
- Department of Psychology, Seoul National University
- Department of Brain and Cognitive Sciences, Seoul National University
- Institute of Psychological Science, Seoul National University, Seoul, South Korea
- Graduate School of Artificial Intelligence, Seoul National University, Seoul, South Korea
| |
Collapse
|
43
|
Nievergelt CM, Maihofer AX, Atkinson EG, Chen CY, Choi KW, Coleman JRI, Daskalakis NP, Duncan LE, Polimanti R, Aaronson C, Amstadter AB, Andersen SB, Andreassen OA, Arbisi PA, Ashley-Koch AE, Austin SB, Avdibegoviç E, Babić D, Bacanu SA, Baker DG, Batzler A, Beckham JC, Belangero S, Benjet C, Bergner C, Bierer LM, Biernacka JM, Bierut LJ, Bisson JI, Boks MP, Bolger EA, Brandolino A, Breen G, Bressan RA, Bryant RA, Bustamante AC, Bybjerg-Grauholm J, Bækvad-Hansen M, Børglum AD, Børte S, Cahn L, Calabrese JR, Caldas-de-Almeida JM, Chatzinakos C, Cheema S, Clouston SAP, Colodro-Conde L, Coombes BJ, Cruz-Fuentes CS, Dale AM, Dalvie S, Davis LK, Deckert J, Delahanty DL, Dennis MF, Desarnaud F, DiPietro CP, Disner SG, Docherty AR, Domschke K, Dyb G, Kulenović AD, Edenberg HJ, Evans A, Fabbri C, Fani N, Farrer LA, Feder A, Feeny NC, Flory JD, Forbes D, Franz CE, Galea S, Garrett ME, Gelaye B, Gelernter J, Geuze E, Gillespie CF, Goleva SB, Gordon SD, Goçi A, Grasser LR, Guindalini C, Haas M, Hagenaars S, Hauser MA, Heath AC, Hemmings SMJ, Hesselbrock V, Hickie IB, Hogan K, Hougaard DM, Huang H, Huckins LM, Hveem K, Jakovljević M, Javanbakht A, Jenkins GD, Johnson J, Jones I, et alNievergelt CM, Maihofer AX, Atkinson EG, Chen CY, Choi KW, Coleman JRI, Daskalakis NP, Duncan LE, Polimanti R, Aaronson C, Amstadter AB, Andersen SB, Andreassen OA, Arbisi PA, Ashley-Koch AE, Austin SB, Avdibegoviç E, Babić D, Bacanu SA, Baker DG, Batzler A, Beckham JC, Belangero S, Benjet C, Bergner C, Bierer LM, Biernacka JM, Bierut LJ, Bisson JI, Boks MP, Bolger EA, Brandolino A, Breen G, Bressan RA, Bryant RA, Bustamante AC, Bybjerg-Grauholm J, Bækvad-Hansen M, Børglum AD, Børte S, Cahn L, Calabrese JR, Caldas-de-Almeida JM, Chatzinakos C, Cheema S, Clouston SAP, Colodro-Conde L, Coombes BJ, Cruz-Fuentes CS, Dale AM, Dalvie S, Davis LK, Deckert J, Delahanty DL, Dennis MF, Desarnaud F, DiPietro CP, Disner SG, Docherty AR, Domschke K, Dyb G, Kulenović AD, Edenberg HJ, Evans A, Fabbri C, Fani N, Farrer LA, Feder A, Feeny NC, Flory JD, Forbes D, Franz CE, Galea S, Garrett ME, Gelaye B, Gelernter J, Geuze E, Gillespie CF, Goleva SB, Gordon SD, Goçi A, Grasser LR, Guindalini C, Haas M, Hagenaars S, Hauser MA, Heath AC, Hemmings SMJ, Hesselbrock V, Hickie IB, Hogan K, Hougaard DM, Huang H, Huckins LM, Hveem K, Jakovljević M, Javanbakht A, Jenkins GD, Johnson J, Jones I, Jovanovic T, Karstoft KI, Kaufman ML, Kennedy JL, Kessler RC, Khan A, Kimbrel NA, King AP, Koen N, Kotov R, Kranzler HR, Krebs K, Kremen WS, Kuan PF, Lawford BR, Lebois LAM, Lehto K, Levey DF, Lewis C, Liberzon I, Linnstaedt SD, Logue MW, Lori A, Lu Y, Luft BJ, Lupton MK, Luykx JJ, Makotkine I, Maples-Keller JL, Marchese S, Marmar C, Martin NG, Martínez-Levy GA, McAloney K, McFarlane A, McLaughlin KA, McLean SA, Medland SE, Mehta D, Meyers J, Michopoulos V, Mikita EA, Milani L, Milberg W, Miller MW, Morey RA, Morris CP, Mors O, Mortensen PB, Mufford MS, Nelson EC, Nordentoft M, Norman SB, Nugent NR, O'Donnell M, Orcutt HK, Pan PM, Panizzon MS, Pathak GA, Peters ES, Peterson AL, Peverill M, Pietrzak RH, Polusny MA, Porjesz B, Powers A, Qin XJ, Ratanatharathorn A, Risbrough VB, Roberts AL, Rothbaum AO, Rothbaum BO, Roy-Byrne P, Ruggiero KJ, Rung A, Runz H, Rutten BPF, de Viteri SS, Salum GA, Sampson L, Sanchez SE, Santoro M, Seah C, Seedat S, Seng JS, Shabalin A, Sheerin CM, Silove D, Smith AK, Smoller JW, Sponheim SR, Stein DJ, Stensland S, Stevens JS, Sumner JA, Teicher MH, Thompson WK, Tiwari AK, Trapido E, Uddin M, Ursano RJ, Valdimarsdóttir U, Van Hooff M, Vermetten E, Vinkers CH, Voisey J, Wang Y, Wang Z, Waszczuk M, Weber H, Wendt FR, Werge T, Williams MA, Williamson DE, Winsvold BS, Winternitz S, Wolf C, Wolf EJ, Xia Y, Xiong Y, Yehuda R, Young KA, Young RM, Zai CC, Zai GC, Zervas M, Zhao H, Zoellner LA, Zwart JA, deRoon-Cassini T, van Rooij SJH, van den Heuvel LL, Stein MB, Ressler KJ, Koenen KC. Genome-wide association analyses identify 95 risk loci and provide insights into the neurobiology of post-traumatic stress disorder. Nat Genet 2024; 56:792-808. [PMID: 38637617 PMCID: PMC11396662 DOI: 10.1038/s41588-024-01707-9] [Show More Authors] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
Post-traumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 new). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (for example, GRIA1, GRM8 and CACNA1E), developmental, axon guidance and transcription factors (for example, FOXP2, EFNA5 and DCC), synaptic structure and function genes (for example, PCLO, NCAM1 and PDE4B) and endocrine or immune regulators (for example, ESR1, TRAF3 and TANK). Additional top genes influence stress, immune, fear and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.
Collapse
Affiliation(s)
- Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA.
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA.
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chia-Yen Chen
- Biogen Inc.,Translational Sciences, Cambridge, MA, USA
| | - Karmel W Choi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan R I Coleman
- King's College London, National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Nikolaos P Daskalakis
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, USA
| | - Laramie E Duncan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Renato Polimanti
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Cindy Aaronson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ananda B Amstadter
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Soren B Andersen
- The Danish Veteran Centre, Research and Knowledge Centre, Ringsted, Denmark
| | - Ole A Andreassen
- Oslo University Hospital, Division of Mental Health and Addiction, Oslo, Norway
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Paul A Arbisi
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | | | - S Bryn Austin
- Boston Children's Hospital, Division of Adolescent and Young Adult Medicine, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Esmina Avdibegoviç
- Department of Psychiatry, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Dragan Babić
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
| | - Anthony Batzler
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jean C Beckham
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Sintia Belangero
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Psychiatry, Universidade Federal de São Paulo, Laboratory of Integrative Neuroscience, São Paulo, Brazil
| | - Corina Benjet
- Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Center for Global Mental Health, Mexico City, Mexico
| | - Carisa Bergner
- Medical College of Wisconsin, Comprehensive Injury Center, Milwaukee, WI, USA
| | - Linda M Bierer
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Jonathan I Bisson
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elizabeth A Bolger
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Amber Brandolino
- Department of Surgery, Division of Trauma & Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gerome Breen
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- King's College London, NIHR Maudsley BRC, London, UK
| | - Rodrigo Affonseca Bressan
- Department of Psychiatry, Universidade Federal de São Paulo, Laboratory of Integrative Neuroscience, São Paulo, Brazil
- Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richard A Bryant
- University of New South Wales, School of Psychology, Sydney, New South Wales, Australia
| | - Angela C Bustamante
- Department of Internal Medicine, University of Michigan Medical School, Division of Pulmonary and Critical Care Medicine, Ann Arbor, MI, USA
| | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Sigrid Børte
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
| | - Leah Cahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Joseph R Calabrese
- Case Western Reserve University, School of Medicine, Cleveland, OH, USA
- Department of Psychiatry, University Hospitals, Cleveland, OH, USA
| | | | - Chris Chatzinakos
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Division of Depression and Anxiety Disorders, Belmont, MA, USA
| | - Sheraz Cheema
- University of Toronto, CanPath National Coordinating Center, Toronto, Ontario, Canada
| | - Sean A P Clouston
- Stony Brook University, Family, Population, and Preventive Medicine, Stony Brook, NY, USA
- Stony Brook University, Public Health, Stony Brook, NY, USA
| | - Lucía Colodro-Conde
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Carlos S Cruz-Fuentes
- Department of Genetics, Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Anders M Dale
- Department of Radiology, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Shareefa Dalvie
- Department of Pathology, University of Cape Town, Division of Human Genetics, Cape Town, South Africa
| | - Lea K Davis
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Jürgen Deckert
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | | | - Michelle F Dennis
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Frank Desarnaud
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Christopher P DiPietro
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- McLean Hospital, Division of Depression and Anxiety Disorders, Belmont, MA, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Research Service Line, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Anna R Docherty
- Huntsman Mental Health Institute, Salt Lake City, UT, USA
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Katharina Domschke
- University of Freiburg, Faculty of Medicine, Centre for Basics in Neuromodulation, Freiburg, Denmark
- Department of Psychiatry and Psychotherapy, University of Freiburg, Faculty of Medicine, Freiburg, Denmark
| | - Grete Dyb
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
- Norwegian Centre for Violence and Traumatic Stress Studies, Oslo, Norway
| | - Alma Džubur Kulenović
- Department of Psychiatry, University Clinical Center of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Howard J Edenberg
- Indiana University School of Medicine, Biochemistry and Molecular Biology, Indianapolis, IN, USA
- Indiana University School of Medicine, Medical and Molecular Genetics, Indianapolis, IN, USA
| | - Alexandra Evans
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Chiara Fabbri
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Adriana Feder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Norah C Feeny
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Janine D Flory
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - David Forbes
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sandro Galea
- Boston University School of Public Health, Boston, MA, USA
| | - Melanie E Garrett
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Gelernter
- VA Connecticut Healthcare Center, Psychiatry Service, West Haven, CT, USA
- Department of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, The Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Charles F Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Slavina B Goleva
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN, USA
- National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Aferdita Goçi
- Department of Psychiatry, University Clinical Centre of Kosovo, Prishtina, Kosovo
| | - Lana Ruvolo Grasser
- Wayne State University School of Medicine, Psychiatry and Behavioral Neurosciencess, Detroit, MI, USA
| | - Camila Guindalini
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
| | - Magali Haas
- Cohen Veterans Bioscience, New York City, NY, USA
| | - Saskia Hagenaars
- King's College London, National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Michael A Hauser
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Andrew C Heath
- Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- SAMRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Victor Hesselbrock
- University of Connecticut School of Medicine, Psychiatry, Farmington, CT, USA
| | - Ian B Hickie
- University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Kelleigh Hogan
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - David Michael Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Hailiang Huang
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Laura M Huckins
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kristian Hveem
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
| | - Miro Jakovljević
- Department of Psychiatry, University Hospital Center of Zagreb, Zagreb, Croatia
| | - Arash Javanbakht
- Wayne State University School of Medicine, Psychiatry and Behavioral Neurosciencess, Detroit, MI, USA
| | - Gregory D Jenkins
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jessica Johnson
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ian Jones
- Cardiff University, National Centre for Mental Health, Cardiff University Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Karen-Inge Karstoft
- The Danish Veteran Centre, Research and Knowledge Centre, Ringsted, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - James L Kennedy
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Alaptagin Khan
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Nathan A Kimbrel
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
- Durham VA Health Care System, Mental Health Service Line, Durham, NC, USA
| | - Anthony P King
- The Ohio State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, USA
| | - Nastassja Koen
- University of Cape Town, Department of Psychiatry & Neuroscience Institute, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kristi Krebs
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Bruce R Lawford
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, USA
| | - Kelli Lehto
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | - Daniel F Levey
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Catrin Lewis
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Sciences, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sarah D Linnstaedt
- Department of Anesthesiology, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Mark W Logue
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, USA
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin J Luft
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Michelle K Lupton
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Jurjen J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Iouri Makotkine
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - Shelby Marchese
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Marmar
- New York University, Grossman School of Medicine, New York City, NY, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Genetics, Brisbane, Queensland, Australia
| | - Gabriela A Martínez-Levy
- Department of Genetics, Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Kerrie McAloney
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Alexander McFarlane
- University of Adelaide, Discipline of Psychiatry, Adelaide, South Australia, Australia
| | | | - Samuel A McLean
- Department of Anesthesiology, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
- Department of Emergency Medicine, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Divya Mehta
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, Queensland, Australia
| | - Jacquelyn Meyers
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Elizabeth A Mikita
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Lili Milani
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | | | - Mark W Miller
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, USA
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Rajendra A Morey
- Duke University School of Medicine, Duke Brain Imaging and Analysis Center, Durham, NC, USA
| | - Charles Phillip Morris
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University Hospital-Psychiatry, Psychosis Research Unit, Aarhus, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Aarhus University, Centre for Integrated Register-Based Research, Aarhus, Denmark
- Aarhus University, National Centre for Register-Based Research, Aarhus, Denmark
| | - Mary S Mufford
- Department of Pathology, University of Cape Town, Division of Human Genetics, Cape Town, South Africa
| | - Elliot C Nelson
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- University of Copenhagen, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Sonya B Norman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- National Center for Post Traumatic Stress Disorder, Executive Division, White River Junction, VT, USA
| | - Nicole R Nugent
- Department of Emergency Medicine, Alpert Brown Medical School, Providence, RI, USA
- Department of Pediatrics, Alpert Brown Medical School, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Brown Medical School, Providence, RI, USA
| | - Meaghan O'Donnell
- Department of Psychiatry, University of Melbourne, Phoenix Australia, Melbourne, Victoria, Australia
| | - Holly K Orcutt
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Pedro M Pan
- Universidade Federal de São Paulo, Psychiatry, São Paulo, Brazil
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Gita A Pathak
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Edward S Peters
- University of Nebraska Medical Center, College of Public Health, Omaha, NE, USA
| | - Alan L Peterson
- South Texas Veterans Health Care System, Research and Development Service, San Antonio, TX, USA
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, West Haven, CT, USA
| | - Melissa A Polusny
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Care Delivery and Outcomes Research (CCDOR), Minneapolis, MN, USA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Xue-Jun Qin
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Columbia University Mailmain School of Public Health, New York City, NY, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Andrea L Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alex O Rothbaum
- Department of Psychological Sciences, Emory University, Atlanta, GA, USA
- Department of Research and Outcomes, Skyland Trail, Atlanta, GA, USA
| | - Barbara O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Peter Roy-Byrne
- Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Kenneth J Ruggiero
- Department of Nursing, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Ariane Rung
- Department of Epidemiology, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, LA, USA
| | - Heiko Runz
- Biogen Inc., Research & Development, Cambridge, MA, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | | | - Giovanni Abrahão Salum
- Child Mind Institute, New York City, NY, USA
- Instituto Nacional de Psiquiatria de Desenvolvimento, São Paulo, Brazil
| | - Laura Sampson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Sixto E Sanchez
- Department of Medicine, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Marcos Santoro
- Universidade Federal de São Paulo, Departamento de Bioquímica-Disciplina de Biologia Molecular, São Paulo, Brazil
| | - Carina Seah
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Stellenbosch University, SAMRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Julia S Seng
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Women's and Gender Studies, University of Michigan, Ann Arbor, MI, USA
- University of Michigan, Institute for Research on Women and Gender, Ann Arbor, MI, USA
- University of Michigan, School of Nursing, Ann Arbor, MI, USA
| | - Andrey Shabalin
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Christina M Sheerin
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Derrick Silove
- Department of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Gynecology and Obstetrics, Department of Psychiatry and Behavioral Sciences, Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dan J Stein
- University of Cape Town, Department of Psychiatry & Neuroscience Institute, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Synne Stensland
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
- Norwegian Centre for Violence and Traumatic Stress Studies, Oslo, Norway
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Martin H Teicher
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Developmental Biopsychiatry Research Program, Belmont, MA, USA
| | - Wesley K Thompson
- Mental Health Centre Sct. Hans, Institute of Biological Psychiatry, Roskilde, Denmark
- University of California San Diego, Herbert Wertheim School of Public Health and Human Longevity Science, La Jolla, CA, USA
| | - Arun K Tiwari
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Edward Trapido
- Department of Epidemiology, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, LA, USA
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, USA
| | - Robert J Ursano
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA
| | - Unnur Valdimarsdóttir
- Karolinska Institutet, Unit of Integrative Epidemiology, Institute of Environmental Medicine, Stockholm, Sweden
- University of Iceland, Faculty of Medicine, Center of Public Health Sciences, School of Health Sciences, Reykjavik, Iceland
| | - Miranda Van Hooff
- University of Adelaide, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Eric Vermetten
- ARQ Nationaal Psychotrauma Centrum, Psychotrauma Research Expert Group, Diemen, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, New York University School of Medicine, New York City, NY, USA
| | - Christiaan H Vinkers
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joanne Voisey
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, Queensland, Australia
| | - Yunpeng Wang
- Department of Psychology, University of Oslo, Lifespan Changes in Brain and Cognition (LCBC), Oslo, Norway
| | - Zhewu Wang
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Mental Health, Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - Monika Waszczuk
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Heike Weber
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | - Frank R Wendt
- Department of Anthropology, University of Toronto, Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Copenhagen University Hospital, Institute of Biological Psychiatry, Mental Health Services, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- University of Copenhagen, The Globe Institute, Lundbeck Foundation Center for Geogenetics, Copenhagen, Denmark
| | - Michelle A Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Douglas E Williamson
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
| | - Bendik S Winsvold
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Sherry Winternitz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Christiane Wolf
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yan Xia
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Ying Xiong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Mental Health, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Keith A Young
- Central Texas Veterans Health Care System, Research Service, Temple, TX, USA
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Ross McD Young
- Queensland University of Technology, School of Clinical Sciences, Kelvin Grove, Queensland, Australia
- University of the Sunshine Coast, The Chancellory, Sippy Downs, Queensland, Australia
| | - Clement C Zai
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Gwyneth C Zai
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, General Adult Psychiatry and Health Systems Division, Toronto, Ontario, Canada
| | - Mark Zervas
- Cohen Veterans Bioscience, New York City, NY, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Lori A Zoellner
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - John-Anker Zwart
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
| | - Terri deRoon-Cassini
- Department of Surgery, Division of Trauma & Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- SAMRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
- University of California San Diego, School of Public Health, La Jolla, CA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| |
Collapse
|
44
|
Fekih-Romdhane F, Alhuwailah A, Shuwiekh HAM, Stambouli M, Hakiri A, Cheour M, Loch AA, Hallit S. Development and initial validation of the cannabis-related psychosis risk literacy scale (CPRL): a multinational psychometric study. BMC Psychiatry 2024; 24:298. [PMID: 38641784 PMCID: PMC11027227 DOI: 10.1186/s12888-024-05727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/27/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Public education efforts to address and reduce potential harms from cannabis use in Arab countries are either slow or inexistent, and do not follow the steadily increasing trends of cannabis use in Arab youth. Several decades of research on substance use, it can be suggested that being aware of, and knowing about, psychosis risk related to cannabis can at least limit the consumption of the substance. Motivated by a lack of measures specifically designed to measure literacy about cannabis-related psychosis risk in younger populations, and based on an extensive literature review, we aimed to create and validate a new self-report scale to assess the construct, the Cannabis-related Psychosis Risk Literacy Scale (CPRL), in the Arabic language. METHOD A cross-sectional study was carried-out during the period from September 2022 to June 2023, enrolling 1855 university students (mean age of 23.26 ± 4.96, 75.6% females) from three Arab countries (Egypt, Kuwait and Tunisia). RESULTS Starting from an initial pool of 20 items, both Exploratory Factor Analysis and Confirmatory Factor Analysis suggested that the remaining 8 items loaded into a single factor. The scale demonstrated good internal consistency, with both McDonald omega and Cronbach's alpha values exceeding 0.7 (omega = 0.85 / alpha = 0.85). The CPRL showed measurement invariance across gender and country at the configural, metric, and scalar levels. Concurrent validity of the CPRL was established by correlations with less favourable attitudes towards cannabis (r = -.14; p <.001). In addition, higher literacy levels were found in students who never used cannabis compared to lifetime users (4.18 ± 1.55 vs. 3.44 ± 1.20, t(1853) = 8.152, p <.001). CONCLUSION The newly developed CPRL scale offers a valid and reliable instrument for assessing and better understanding literacy about cannabis-related psychosis risk among Arabic-speaking young adults. We believe that this new scale is suitable as a screening tool of literacy, as an instrument for measuring the effect of public education interventions aimed at promoting cannabis-related psychosis risk literacy among young people, and as a research tool to facilitate future studies on the topic with a wider application.
Collapse
Affiliation(s)
- Feten Fekih-Romdhane
- Faculty of Medicine of Tunis, Tunis Al Manar University, Tunis, Tunisia.
- The Tunisian Center of Early Intervention in Psychosis, Department of Psychiatry Ibn Omrane, Razi Hospital, Tunis, Tunisia.
| | | | | | - Manel Stambouli
- Faculty of Medicine of Tunis, Tunis Al Manar University, Tunis, Tunisia
| | - Abir Hakiri
- Faculty of Medicine of Tunis, Tunis Al Manar University, Tunis, Tunisia
| | - Majda Cheour
- Faculty of Medicine of Tunis, Tunis Al Manar University, Tunis, Tunisia
- The Tunisian Center of Early Intervention in Psychosis, Department of Psychiatry Ibn Omrane, Razi Hospital, Tunis, Tunisia
| | - Alexandre Andrade Loch
- Laboratorio de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, Sao Paulo, Brazil
| | - Souheil Hallit
- Psychology Department, College of Humanities, Effat University, 21478, Jeddah, Saudi Arabia.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
- School of Medicine and Medical Sciences, Souheil Hallit, Holy Spirit University of Kaslik, Jounieh, P.O. Box 446, Lebanon.
| |
Collapse
|
45
|
Ling S, Dai Y, Weng R, Li Y, Wu W, Zhou Z, Zhong Z, Zheng Y. Epidemiologic and genetic associations of female reproductive disorders with depression or dysthymia: a Mendelian randomization study. Sci Rep 2024; 14:5984. [PMID: 38472314 DOI: 10.1038/s41598-024-55993-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Observational studies have previously reported an association between depression and certain female reproductive disorders. However, the causal relationships between depression and different types of female reproductive disorders remain unclear in terms of direction and magnitude. We conducted a comprehensive investigation using a two-sample bi-directional Mendelian randomization analysis, incorporating publicly available GWAS summary statistics. Our aim was to establish a causal relationship between genetically predicted depression and the risk of various female reproductive pathological conditions, such as ovarian dysfunction, polycystic ovary syndrome(PCOS), ovarian cysts, abnormal uterine and vaginal bleeding(AUB), endometriosis, leiomyoma of the uterus, female infertility, spontaneous abortion, eclampsia, pregnancy hypertension, gestational diabetes, excessive vomiting in pregnancy, cervical cancer, and uterine/endometrial cancer. We analyzed a substantial sample size, ranging from 111,831 to 210,870 individuals, and employed robust statistical methods, including inverse variance weighted, MR-Egger, weighted median, and MR-PRESSO, to estimate causal effects. Sensitivity analyses, such as Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis, and funnel plots, were also conducted to ensure the validity of our results. Furthermore, risk factor analyses were performed to investigate potential mediators associated with these observed relationships. Our results demonstrated that genetic predisposition to depression or dysthymia was associated with an increased risk of developing PCOS (OR = 1.43, 95% CI 1.28-1.59; P = 6.66 × 10-11), ovarian cysts (OR = 1.36, 95% CI 1.20-1.55; P = 1.57 × 10-6), AUB (OR = 1.41, 95% CI 1.20-1.66; P = 3.01 × 10-5), and endometriosis (OR = 1.43, 95% CI 1.27-1.70; P = 2.21 × 10-7) after Bonferroni correction, but no evidence for reverse causality. Our study did not find any evidence supporting a causal or reverse causal relationship between depression/dysthymia and other types of female reproductive disorders. In summary, our study provides evidence for a causal relationship between genetically predicted depression and specific types of female reproductive disorders. Our findings emphasize the importance of depression management in the prevention and treatment of female reproductive disorders, notably including PCOS, ovarian cysts, AUB, and endometriosis.
Collapse
Affiliation(s)
- Shuyi Ling
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Yuqing Dai
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Ruoxin Weng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Yuan Li
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Wenbo Wu
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Ziqiong Zhou
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Zhisheng Zhong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China.
| | - Yuehui Zheng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
46
|
Koller D, Mitjans M, Kouakou M, Friligkou E, Cabrera-Mendoza B, Deak JD, Llonga N, Pathak GA, Stiltner B, Løkhammer S, Levey DF, Zhou H, Hatoum AS, Kember RL, Kranzler HR, Stein MB, Corominas R, Demontis D, Artigas MS, Ramos-Quiroga JA, Gelernter J, Ribasés M, Cormand B, Polimanti R. Genetic contribution to the comorbidity between attention-deficit/hyperactivity disorder and substance use disorders. Psychiatry Res 2024; 333:115758. [PMID: 38335780 PMCID: PMC11157987 DOI: 10.1016/j.psychres.2024.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
We characterized the genetic architecture of the attention-deficit hyperactivity disorder-substance use disorder (ADHD-SUD) relationship by investigating genetic correlation, causality, pleiotropy, and common polygenic risk. Summary statistics from genome-wide association studies (GWAS) were used to investigate ADHD (Neff = 51,568), cannabis use disorder (CanUD, Neff = 161,053), opioid use disorder (OUD, Neff = 57,120), problematic alcohol use (PAU, Neff = 502,272), and problematic tobacco use (PTU, Neff = 97,836). ADHD, CanUD, and OUD GWAS meta-analyses included cohorts with case definitions based on different diagnostic criteria. PAU GWAS combined information related to alcohol use disorder, alcohol dependence, and the items related to alcohol problematic consequences assessed by the alcohol use disorders identification test. PTU GWAS was generated a multi-trait analysis including information regarding Fagerström Test for Nicotine Dependence and cigarettes per day. Linkage disequilibrium score regression analyses indicated positive genetic correlation with CanUD, OUD, PAU, and PTU. Genomic structural equation modeling showed that these genetic correlations were related to two latent factors: one including ADHD, CanUD, and PTU and the other with OUD and PAU. The evidence of a causal effect of PAU and PTU on ADHD was stronger than the reverse in the two-sample Mendelian randomization analysis. Conversely, similar strength of evidence was found between ADHD and CanUD. CADM2 rs62250713 was a pleiotropic SNP between ADHD and all SUDs. We found seven, one, and twenty-eight pleiotropic variants between ADHD and CanUD, PAU, and PTU, respectively. Finally, OUD, CanUD, and PAU PRS were associated with increased odds of ADHD. Our findings demonstrated the contribution of multiple pleiotropic mechanisms to the comorbidity between ADHD and SUDs.
Collapse
Affiliation(s)
- Dora Koller
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain.
| | - Marina Mitjans
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Catalonia Spain; Sant Joan de Déu Research Institute (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Manuela Kouakou
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA
| | - Eleni Friligkou
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Joseph D Deak
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Natalia Llonga
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Brendan Stiltner
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Solveig Løkhammer
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Alexander S Hatoum
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Rachel L Kember
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Mental Illness Research, Education and Clinical Center, Veterans Integrated Service Network 4, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Mental Illness Research, Education and Clinical Center, Veterans Integrated Service Network 4, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Murray B Stein
- Department of Psychiatry, University of California, San Diego, La Jolla, USA; Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, USA; VA San Diego Healthcare System, San Diego, CA, La Jolla, USA
| | - Roser Corominas
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Catalonia Spain; Sant Joan de Déu Research Institute (IR-SJD), Esplugues de Llobregat, Catalonia, Spain; Biomedical Network Research Centre on Rare Disorders (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ditte Demontis
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - María Soler Artigas
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA; Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Marta Ribasés
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Bru Cormand
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Catalonia Spain; Sant Joan de Déu Research Institute (IR-SJD), Esplugues de Llobregat, Catalonia, Spain; Biomedical Network Research Centre on Rare Disorders (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
47
|
Horwitz TB, Zorina-Lichtenwalter K, Gustavson DE, Grotzinger AD, Stallings MC. Partitioning the Genomic Components of Behavioral Disinhibition and Substance Use (Disorder) Using Genomic Structural Equation Modeling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.20.24303036. [PMID: 38464249 PMCID: PMC10925358 DOI: 10.1101/2024.02.20.24303036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Externalizing behaviors encompass manifestations of risk-taking, self-regulation, aggression, sensation-/reward-seeking, and impulsivity. Externalizing research often includes substance use (SU), substance use disorder (SUD), and other (non-SU/SUD) "behavioral disinhibition" (BD) traits. Genome-wide and twin research have pointed to overlapping genetic architecture within and across SUB, SUD, and BD. We created single-factor measurement models-each describing SUB, SUD, or BD traits--based on mutually exclusive sets of European ancestry genome-wide association study (GWAS) statistics exploring externalizing variables. We then applied trivariate Cholesky decomposition to these factors in order to identify BD-specific genomic variation and assess the partitioning of BD's genetic covariance with each of the other facets. Even when the residuals for indicators relating to the same substance were correlated across the SUB and SUD factors, the two factors yielded a large zero-order correlation (rg=.803). BD correlated strongly with the SUD (rg=.774) and SUB factors (rg=.778). In our initial decompositions, 33% of total BD variance remained after removing variance associated with SUD and SUB. The majority of covariance between BD and SU and between BD and SUD was shared across all factors. When only nicotine/tobacco, cannabis, and alcohol were included for the SUB/SUD factors, their zero-order correlation increased to rg=.861; in corresponding decompositions, BD-specific variance decreased to 27%. In summary, BD, SU, and SUD were highly genetically correlated at the latent factor level, and a significant minority of genomic BD variation was not shared with SU and/or SUD. Further research can better elucidate the properties of BD-specific variation by exploring its genetic/molecular correlates.
Collapse
Affiliation(s)
- Tanya B. Horwitz
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, United States of America 80303
- Psychology and Neuroscience, University of Colorado Boulder, Meunzinger D244, 345 UCB, Boulder, CO, United States of America 80303
| | - Katerina Zorina-Lichtenwalter
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, United States of America 80303
| | - Daniel E. Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, United States of America 80303
| | - Andrew D. Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, United States of America 80303
- Psychology and Neuroscience, University of Colorado Boulder, Meunzinger D244, 345 UCB, Boulder, CO, United States of America 80303
| | - Michael C. Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, United States of America 80303
- Psychology and Neuroscience, University of Colorado Boulder, Meunzinger D244, 345 UCB, Boulder, CO, United States of America 80303
| |
Collapse
|
48
|
Conerney C, Steinmetz F, Wakefield J, Loveridge S. Cannabis and children: risk mitigation strategies for edibles. Front Psychiatry 2024; 15:1285784. [PMID: 38380122 PMCID: PMC10876888 DOI: 10.3389/fpsyt.2024.1285784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
In the era of (re)legalisation of medicinal and recreational cannabis, accidental and intentional exposure to edibles, cannabis-infused food products, has increased substantially. However, there is particular concern regarding younger age groups. Most concerning is the increase in hospitalisations. According to a study by Myran et al. (1), provinces in Canada, where the sale of edibles is permitted, saw an increase in paediatric poisonings due to unintentional consumption of edibles. Similar trends have been observed in "legalised states" in the US, such as Colorado (2). The impact of using cannabis at an early age, but particularly the impact of accidental exposure to high THC quantities, may have negative mental or physical health outcomes. Whilst regulatory restrictions vary significantly from one legalised region to another, it is difficult to identify a best practice. The aim of this study is to identify and discuss new and existing risk mitigation strategies to give guidance to policymakers. Furthermore, practical aspects, such as compliance (e.g. audits by authorities), are discussed. It is noted that edibles have been around much longer than recent political attempts to regulate them.
Collapse
Affiliation(s)
- Cathy Conerney
- Europe, Middle East & Africa (EMEA) Toxicology Team, Delphic HSE Solutions Ltd., Camberley, United Kingdom
| | - Fabian Steinmetz
- Technical Services, Delphic HSE (Europe) B.V., Schiphol, Netherlands
| | - James Wakefield
- Technical Services, Delphic HSE Solutions (Hong Kong) Ltd., Hong Kong, Hong Kong SAR, China
| | - Sam Loveridge
- Europe, Middle East & Africa (EMEA) Toxicology Team, Delphic HSE Solutions Ltd., Camberley, United Kingdom
| |
Collapse
|
49
|
Davis CN, Gizer IR, Agrawal A, Statham DJ, Heath AC, Martin NG, Slutske WS. Genetic and shared environmental factors explain the association between adolescent polysubstance use and high school noncompletion. PSYCHOLOGY OF ADDICTIVE BEHAVIORS 2024; 38:114-123. [PMID: 36913302 PMCID: PMC10497723 DOI: 10.1037/adb0000915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
OBJECTIVE Examine the nature of the relationship between adolescent polysubstance use and high school noncompletion. METHOD Among a sample of 9,579 adult Australian twins (58.63% female, Mage = 30.59), we examined the association between the number of substances used in adolescence and high school noncompletion within a discordant twin design and bivariate twin analysis. RESULTS In individual-level models controlling for parental education, conduct disorder symptoms, childhood major depression, sex, zygosity, and cohort, each additional substance used in adolescence was associated with a 30% increase in the odds of high school noncompletion (OR = 1.30 [1.18, 1.42]). Discordant twin models found that the potentially causal effect of adolescent use on high school noncompletion was nonsignificant (OR = 1.19 [0.96, 1.47]). Follow-up bivariate twin models suggested genetic (35.4%, 95% CI [24.5%, 48.7%]) and shared environmental influences (27.8%, 95% CI [12.7%, 35.1%]) each contributed to the covariation in adolescent polysubstance use and early school dropout. CONCLUSIONS The association between polysubstance use and early school dropout was largely accounted for by genetic and shared environmental factors, with nonsignificant evidence for a potentially causal association. Future research should examine whether underlying shared risk factors reflect a general propensity for addiction, a broader externalizing liability, or a combination of the two. More evidence using finer measurement of substance use is needed to rule out a causal association between adolescent polysubstance use and high school noncompletion. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Christal N. Davis
- University of Missouri, Department of Psychological Sciences, Columbia, MO, 65211, USA
| | - Ian R. Gizer
- University of Missouri, Department of Psychological Sciences, Columbia, MO, 65211, USA
| | - Arpana Agrawal
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, 63110, USA
| | | | - Andrew C. Heath
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, 63110, USA
| | - Nicholas G. Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Wendy S. Slutske
- University of Wisconsin School of Medicine and Public Health, Center for Tobacco Research and Intervention and Department of Family Medicine and Community Health, Madison, WI, 53711, USA
| |
Collapse
|
50
|
Johnson EC, Austin-Zimmerman I, Thorpe HH, Levey DF, Baranger DA, Colbert SM, Demontis D, Khokhar JY, Davis LK, Edenberg HJ, Forti MD, Sanchez-Roige S, Gelernter J, Agrawal A. Cross-ancestry genetic investigation of schizophrenia, cannabis use disorder, and tobacco smoking. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.24301430. [PMID: 38293235 PMCID: PMC10827265 DOI: 10.1101/2024.01.17.24301430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Individuals with schizophrenia frequently experience co-occurring substance use, including tobacco smoking and heavy cannabis use, and substance use disorders. There is interest in understanding the extent to which these relationships are causal, and to what extent shared genetic factors play a role. We explored the relationships between schizophrenia (Scz), cannabis use disorder (CanUD), and ever-regular tobacco smoking (Smk) using the largest available genome-wide studies of these phenotypes in individuals of African and European ancestries. All three phenotypes were positively genetically correlated (rgs = 0.17 - 0.62). Causal inference analyses suggested the presence of horizontal pleiotropy, but evidence for bidirectional causal relationships was also found between all three phenotypes even after correcting for horizontal pleiotropy. We identified 439 pleiotropic loci in the European ancestry data, 150 of which were novel (i.e., not genome-wide significant in the original studies). Of these pleiotropic loci, 202 had lead variants which showed convergent effects (i.e., same direction of effect) on Scz, CanUD, and Smk. Genetic variants convergent across all three phenotypes showed strong genetic correlations with risk-taking, executive function, and several mental health conditions. Our results suggest that both horizontal pleiotropy and causal mechanisms may play a role in the relationship between CanUD, Smk, and Scz, but longitudinal, prospective studies are needed to confirm a causal relationship.
Collapse
Affiliation(s)
- Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Isabelle Austin-Zimmerman
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hayley Ha Thorpe
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - David Aa Baranger
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO USA
| | - Sarah Mc Colbert
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marta Di Forti
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sandra Sanchez-Roige
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|