1
|
Jiang Y, Zhao C, Zhang C, Li W, Liu D, Zhao B. Single-molecule techniques in studying the molecular mechanisms of DNA synapsis in non-homologous end-joining repair. BIOPHYSICS REPORTS 2025; 11:46-55. [PMID: 40070660 PMCID: PMC11891076 DOI: 10.52601/bpr.2024.240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/13/2024] [Indexed: 03/14/2025] Open
Abstract
DNA double-strand breaks (DSBs) are the most severe form of DNA damage, primarily repaired by the non-homologous end joining (NHEJ) pathway. A critical step in this process is DNA synapsis, where the two broken ends are brought together to facilitate timely repair. Deficiencies in NHEJ synapsis can lead to improper DNA end configurations, potentially resulting in chromosomal translocations. NHEJ synapsis is a highly dynamic, multi-protein mediated assembly process. Recent advances in single-molecule techniques have led to significant progress in understanding the molecular mechanisms driving NHEJ synapsis. In this review, we summarize single-molecule methods developed for studying NHEJ synapsis, with a particular focus on the single-molecule fluorescence resonance energy transfer (smFRET) technique. We discuss the various molecular mechanisms of NHEJ synapsis uncovered through these studies and explore the coupling between synapsis and other steps in NHEJ. Additionally, we highlight the strategies, limitations, and future directions for single-molecule studies of NHEJ synapsis.
Collapse
Affiliation(s)
- Yuhao Jiang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Chao Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Chenyang Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Weilin Li
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Di Liu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Bailin Zhao
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| |
Collapse
|
2
|
Khoshnood Z. A review on toxic effects of pesticides in Zebrafish, Danio rerio and common carp, Cyprinus carpio, emphasising Atrazine herbicide. Toxicol Rep 2024; 13:101694. [PMID: 39131695 PMCID: PMC11314875 DOI: 10.1016/j.toxrep.2024.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
The widespread use of pesticides has emerged as a pressing environmental concern nowadays. These chemical compounds pose a significant threat to aquatic organisms due to their toxic effects. Zebrafish and common carp are two common species used in pesticide toxicity studies. Atrazine, a widely used herbicide, is one of the most prevalent globally, detectable in nearly all surface waters. This article examines existing literature to provide a comprehensive review of the toxic effects of Atrazine on Zebrafish and common carp. The findings reveal that exposure to atrazine triggers a range of biochemical, physiological, behavioral, and genetic alterations in these fish species, even at concentrations deemed environmentally relevant. These changes could have severe consequences, including increased mortality rates, reproductive failures, and potentially leading to fish populations decline. It is, therefore, imperative to prioritize stringent regulatory measures to curb the usage of this herbicide and safeguard fish species as unintended victims of aquatic ecosystems.
Collapse
Affiliation(s)
- Zahra Khoshnood
- Department of Biology, Dezful Branch, Islamic Azad University, Dezful, Iran
| |
Collapse
|
3
|
Vu DD, Bonucci A, Brenière M, Cisneros-Aguirre M, Pelupessy P, Wang Z, Carlier L, Bouvignies G, Cortes P, Aggarwal AK, Blackledge M, Gueroui Z, Belle V, Stark JM, Modesti M, Ferrage F. Multivalent interactions of the disordered regions of XLF and XRCC4 foster robust cellular NHEJ and drive the formation of ligation-boosting condensates in vitro. Nat Struct Mol Biol 2024; 31:1732-1744. [PMID: 38898102 DOI: 10.1038/s41594-024-01339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70-Ku80 heterodimer (Ku), X-ray repair cross complementing 4 (XRCC4) in complex with DNA ligase 4 (X4L4) and XRCC4-like factor (XLF) form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were recently obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at residue resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs lead to the formation of XLF and X4L4 condensates in vitro, which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome-editing strategies.
Collapse
Affiliation(s)
- Duc-Duy Vu
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Alessio Bonucci
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Manon Brenière
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Philippe Pelupessy
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ziqing Wang
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ludovic Carlier
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Guillaume Bouvignies
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, New York, NY, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), Grenoble Alpes University, CNRS, CEA, Grenoble, France
| | - Zoher Gueroui
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Valérie Belle
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France.
| | - Fabien Ferrage
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France.
| |
Collapse
|
4
|
Goff NJ, Mikhova M, Schmidt JC, Meek K. DNA-PK: A synopsis beyond synapsis. DNA Repair (Amst) 2024; 141:103716. [PMID: 38996771 PMCID: PMC11369974 DOI: 10.1016/j.dnarep.2024.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Given its central role in life, DNA is remarkably easy to damage. Double strand breaks (DSBs) are the most toxic form of DNA damage, and DSBs pose the greatest danger to genomic integrity. In higher vertebrates, the non-homologous end joining pathway (NHEJ) is the predominate pathway that repairs DSBs. NHEJ has three steps: 1) DNA end recognition by the DNA dependent protein kinase [DNA-PK], 2) DNA end-processing by numerous NHEJ accessory factors, and 3) DNA end ligation by the DNA ligase IV complex (LX4). Although this would appear to be a relatively simple mechanism, it has become increasingly apparent that it is not. Recently, much insight has been derived regarding the mechanism of non-homologous end joining through a proliferation of cryo-EM studies, structure-function mutational experiments informed by these new structural data, and novel single-molecule imaging approaches. An emerging consensus in the field is that NHEJ progresses from initial DSB end recognition by DNA-PK to synapsis of the two DNA ends in a long-range synaptic complex where ends are held too far apart (115 Å) for ligation, and then progress to a short-range synaptic complex where ends are positioned close enough for ligation. What was surprising from these structural studies was the observation of two distinct types of DNA-PK dimers that represent NHEJ long-range complexes. In this review, we summarize current knowledge about the function of the distinct NHEJ synaptic complexes and align this new information with emerging cellular single-molecule microscopy studies as well as with previous studies of DNA-PK's function in repair.
Collapse
Affiliation(s)
- Noah J Goff
- College of Veterinary Medicine, Department of Microbiology Genetics & Immunology, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Mariia Mikhova
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA; Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology Genetics & Immunology, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Lokanathan Balaji S, De Bragança S, Balaguer-Pérez F, Northall S, Wilkinson OJ, Aicart-Ramos C, Seetaloo N, Sobott F, Moreno-Herrero F, Dillingham MS. DNA binding and bridging by human CtIP in the healthy and diseased states. Nucleic Acids Res 2024; 52:8303-8319. [PMID: 38922686 DOI: 10.1093/nar/gkae538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The human DNA repair factor CtIP helps to initiate the resection of double-stranded DNA breaks for repair by homologous recombination, in part through its ability to bind and bridge DNA molecules. However, CtIP is a natively disordered protein that bears no apparent similarity to other DNA-binding proteins and so the structural basis for these activities remains unclear. In this work, we have used bulk DNA binding, single molecule tracking, and DNA bridging assays to study wild-type and variant CtIP proteins to better define the DNA binding domains and the effects of mutations associated with inherited human disease. Our work identifies a monomeric DNA-binding domain in the C-terminal region of CtIP. CtIP binds non-specifically to DNA and can diffuse over thousands of nucleotides. CtIP-mediated bridging of distant DNA segments is observed in single-molecule magnetic tweezers experiments. However, we show that binding alone is insufficient for DNA bridging, which also requires tetramerization via the N-terminal domain. Variant CtIP proteins associated with Seckel and Jawad syndromes display impaired DNA binding and bridging activities. The significance of these findings in the context of facilitating DNA break repair is discussed.
Collapse
Affiliation(s)
- Shreya Lokanathan Balaji
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Francisco Balaguer-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Sarah Northall
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Oliver John Wilkinson
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Neeleema Seetaloo
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Mark Simon Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
6
|
Zhang C, Liu J, Wu J, Ranjan K, Cui X, Wang X, Zhang D, Zhu S. Key molecular DNA damage responses of human cells to radiation. Front Cell Dev Biol 2024; 12:1422520. [PMID: 39050891 PMCID: PMC11266142 DOI: 10.3389/fcell.2024.1422520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Our understanding of the DNA damage responses of human cells to radiation has increased remarkably over the recent years although some notable signaling events remain to be discovered. Here we provide a brief account of the key molecular events of the responses to reflect the current understanding of the key underlying mechanisms involved.
Collapse
Affiliation(s)
- Chencheng Zhang
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
| | - Jibin Liu
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
| | - Jun Wu
- Nantong Tumor Hospital, Nantong, China
| | - Kamakshi Ranjan
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Xiaopeng Cui
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xingdan Wang
- Department of Radiotherapy, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Shudong Zhu
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
- Argus Pharmaceuticals, Changsha, China
| |
Collapse
|
7
|
Wang J, Sadeghi CA, Frock RL. DNA-PKcs suppresses illegitimate chromosome rearrangements. Nucleic Acids Res 2024; 52:5048-5066. [PMID: 38412274 PMCID: PMC11109964 DOI: 10.1093/nar/gkae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
Two DNA repair pathways, non-homologous end joining (NHEJ) and alternative end joining (A-EJ), are involved in V(D)J recombination and chromosome translocation. Previous studies reported distinct repair mechanisms for chromosome translocation, with NHEJ involved in humans and A-EJ in mice predominantly. NHEJ depends on DNA-PKcs, a critical partner in synapsis formation and downstream component activation. While DNA-PKcs inhibition promotes chromosome translocations harboring microhomologies in mice, its synonymous effect in humans is not known. We find partial DNA-PKcs inhibition in human cells leads to increased translocations and the continued involvement of a dampened NHEJ. In contrast, complete DNA-PKcs inhibition substantially increased microhomology-mediated end joining (MMEJ), thus bridging the two different translocation mechanisms between human and mice. Similar to a previous study on Ku70 deletion, DNA-PKcs deletion in G1/G0-phase mouse progenitor B cell lines, significantly impairs V(D)J recombination and generated higher rates of translocations as a consequence of dysregulated coding and signal end joining. Genetic DNA-PKcs inhibition suppresses NHEJ entirely, with repair phenotypically resembling Ku70-deficient A-EJ. In contrast, we find DNA-PKcs necessary in generating the near-exclusive MMEJ associated with Lig4 deficiency. Our study underscores DNA-PKcs in suppressing illegitimate chromosome rearrangement while also contributing to MMEJ in both species.
Collapse
Affiliation(s)
- Jinglong Wang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheyenne A Sadeghi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Richard L Frock
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Stransky F, Kostrz D, Follenfant M, Pomplun S, Meyners C, Strick T, Hausch F, Gosse C. Use of DNA forceps to measure receptor-ligand dissociation equilibrium constants in a single-molecule competition assay. Methods Enzymol 2024; 694:51-82. [PMID: 38492958 DOI: 10.1016/bs.mie.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The ability of biophysicists to decipher the behavior of individual biomolecules has steadily improved over the past thirty years. However, it still remains unclear how an ensemble of data acquired at the single-molecule level compares with the data acquired on an ensemble of the same molecules. We here propose an assay to tackle this question in the context of dissociation equilibrium constant measurements. A sensor is built by engrafting a receptor and a ligand onto a flexible dsDNA scaffold and mounting this assembly on magnetic tweezers. This way, looking at the position of the magnetic bead enables one to determine in real-time if the two molecular partners are associated or not. Next, to quantify the affinity of the scrutinized single-receptor for a given competitor, various amounts of the latter molecule are introduced in solution and the equilibrium response of the sensor is monitored throughout the titration protocol. Proofs of concept are established for the binding of three rapamycin analogs to the FKBP12 cis-trans prolyl isomerase. For each of these drugs the mean affinity constant obtained on a ten of individual receptors agrees with the one previously determined in a bulk assay. Furthermore, experimental contingencies are sufficient to explain the dispersion observed over the single-molecule values.
Collapse
Affiliation(s)
- François Stransky
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Dorota Kostrz
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Maryne Follenfant
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Sebastian Pomplun
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Christian Meyners
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Terence Strick
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Felix Hausch
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
9
|
Amin H, Zahid S, Hall C, Chaplin AK. Cold snapshots of DNA repair: Cryo-EM structures of DNA-PKcs and NHEJ machinery. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:1-13. [PMID: 38036101 DOI: 10.1016/j.pbiomolbio.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
The proteins and protein assemblies involved in DNA repair have been the focus of a multitude of structural studies for the past few decades. Historically, the structures of these protein complexes have been resolved by X-ray crystallography. However, more recently with the advancements in cryo-electron microscopy (cryo-EM) ranging from optimising the methodology for sample preparation to the development of improved electron detectors, the focus has shifted from X-ray crystallography to cryo-EM. This methodological transition has allowed for the structural determination of larger, more complex protein assemblies involved in DNA repair pathways and has subsequently led to a deeper understanding of the mechanisms utilised by these fascinating molecular machines. Here, we review some of the key structural advancements that have been gained in the study of non-homologous end joining (NHEJ) by the use of cryo-EM, with a focus on assemblies composed of DNA-PKcs and Ku70/80 (Ku) and the various methodologies utilised to obtain these structures.
Collapse
Affiliation(s)
- Himani Amin
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Sayma Zahid
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Chloe Hall
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Amanda K Chaplin
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
10
|
De Bragança S, Dillingham MS, Moreno-Herrero F. Recent insights into eukaryotic double-strand DNA break repair unveiled by single-molecule methods. Trends Genet 2023; 39:924-940. [PMID: 37806853 DOI: 10.1016/j.tig.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Genome integrity and maintenance are essential for the viability of all organisms. A wide variety of DNA damage types have been described, but double-strand breaks (DSBs) stand out as one of the most toxic DNA lesions. Two major pathways account for the repair of DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). Both pathways involve complex DNA transactions catalyzed by proteins that sequentially or cooperatively work to repair the damage. Single-molecule methods allow visualization of these complex transactions and characterization of the protein:DNA intermediates of DNA repair, ultimately allowing a comprehensive breakdown of the mechanisms underlying each pathway. We review current understanding of the HR and NHEJ responses to DSBs in eukaryotic cells, with a particular emphasis on recent advances through the use of single-molecule techniques.
Collapse
Affiliation(s)
- Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain.
| |
Collapse
|
11
|
Vogt A, He Y, Lees-Miller SP. How to fix DNA breaks: new insights into the mechanism of non-homologous end joining. Biochem Soc Trans 2023; 51:1789-1800. [PMID: 37787023 PMCID: PMC10657183 DOI: 10.1042/bst20220741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 08/26/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
Non-homologous end joining (NHEJ) is the major pathway for the repair of ionizing radiation-induced DNA double-strand breaks (DSBs) in human cells and is essential for the generation of mature T and B cells in the adaptive immune system via the process of V(D)J recombination. Here, we review how recently determined structures shed light on how NHEJ complexes function at DNA DSBs, emphasizing how multiple structures containing the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) may function in NHEJ. Together, these studies provide an explanation for how NHEJ proteins assemble to detect and protect DSB ends, then proceed, through DNA-PKcs-dependent autophosphorylation, to a ligation-competent complex.
Collapse
Affiliation(s)
- Alex Vogt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, U.S.A
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, U.S.A
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, U.S.A
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, U.S.A
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, U.S.A
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, U.S.A
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre and Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
12
|
Vogt A, He Y. Structure and mechanism in non-homologous end joining. DNA Repair (Amst) 2023; 130:103547. [PMID: 37556875 PMCID: PMC10528545 DOI: 10.1016/j.dnarep.2023.103547] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
DNA double-stranded breaks (DSBs) are a particularly challenging form of DNA damage to repair because the damaged DNA must not only undergo the chemical reactions responsible for returning it to its original state, but, additionally, the two free ends can become physically separated in the nucleus and must be bridged prior to repair. In nonhomologous end joining (NHEJ), one of the major pathways of DSB repair, repair is carried out by a number of repair factors capable of binding to and directly joining DNA ends. It has been unclear how these processes are carried out at a molecular level, owing in part to the lack of structural evidence describing the coordination of the NHEJ factors with each other and a DNA substrate. Advances in cryo-Electron Microscopy (cryo-EM), allowing for the structural characterization of large protein complexes that would be intractable using other techniques, have led to the visualization several key steps of the NHEJ process, which support a model of sequential assembly of repair factors at the DSB, followed by end-bridging mediated by protein-protein complexes and transition to full synapsis. Here we examine the structural evidence for these models, devoting particular attention to recent work identifying a new NHEJ intermediate state and incorporating new NHEJ factors into the general mechanism. We also discuss the evolving understanding of end-bridging mechanisms in NHEJ and DNA-PKcs's role in mediating DSB repair.
Collapse
Affiliation(s)
- Alex Vogt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, USA.
| |
Collapse
|
13
|
Khan H, Ochi T. Plant PAXX has an XLF-like function and stimulates DNA end joining by the Ku-DNA ligase IV/XRCC4 complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:58-68. [PMID: 37340932 DOI: 10.1111/tpj.16359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
Non-homologous end joining (NHEJ) plays a major role in repairing DNA double-strand breaks and is key to genome stability and editing. The minimal core NHEJ proteins, namely Ku70, Ku80, DNA ligase IV and XRCC4, are conserved, but other factors vary in different eukaryote groups. In plants, the only known NHEJ proteins are the core factors, while the molecular mechanism of plant NHEJ remains unclear. Here, we report a previously unidentified plant ortholog of PAXX, the crystal structure of which showed a similar fold to human 'PAXX'. However, plant PAXX has similar molecular functions to human XLF, by directly interacting with Ku70/80 and XRCC4. This suggests that plant PAXX combines the roles of mammalian PAXX and XLF and that these functions merged into a single protein during evolution. This is consistent with a redundant function of PAXX and XLF in mammals.
Collapse
Affiliation(s)
- Hira Khan
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Takashi Ochi
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
14
|
Loparo JJ. Holding it together: DNA end synapsis during non-homologous end joining. DNA Repair (Amst) 2023; 130:103553. [PMID: 37572577 PMCID: PMC10530278 DOI: 10.1016/j.dnarep.2023.103553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
DNA double strand breaks (DSBs) are common lesions whose misrepair are drivers of oncogenic transformations. The non-homologous end joining (NHEJ) pathway repairs the majority of these breaks in vertebrates by directly ligating DNA ends back together. Upon formation of a DSB, a multiprotein complex is assembled on DNA ends which tethers them together within a synaptic complex. Synapsis is a critical step of the NHEJ pathway as loss of synapsis can result in mispairing of DNA ends and chromosome translocations. As DNA ends are commonly incompatible for ligation, the NHEJ machinery must also process ends to enable rejoining. This review describes how recent progress in single-molecule approaches and cryo-EM have advanced our molecular understanding of DNA end synapsis during NHEJ and how synapsis is coordinated with end processing to determine the fidelity of repair.
Collapse
Affiliation(s)
- Joseph J Loparo
- Dept. of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Vu DD, Bonucci A, Brenière M, Cisneros-Aguirre M, Pelupessy P, Wang Z, Carlier L, Bouvignies G, Cortes P, Aggarwal AK, Blackledge M, Gueroui Z, Belle V, Stark JM, Modesti M, Ferrage F. Multivalent interactions of the disordered regions of XLF and XRCC4 foster robust cellular NHEJ and drive the formation of ligation-boosting condensates in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548668. [PMID: 37503201 PMCID: PMC10369993 DOI: 10.1101/2023.07.12.548668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70/80 heterodimer (Ku), XRCC4 in complex with DNA Ligase 4 (X4L4), and XLF form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) have recently been obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here, we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at atomic resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs led to the formation of XLF and X4L4 condensates in vitro which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome editing strategies.
Collapse
Affiliation(s)
- Duc-Duy Vu
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Alessio Bonucci
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Manon Brenière
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, Marseille, France
| | - Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| | - Philippe Pelupessy
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ziqing Wang
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ludovic Carlier
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Guillaume Bouvignies
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, 160 Convent Avenue, New York, NY 10029, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Martin Blackledge
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Zoher Gueroui
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Valérie Belle
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, Marseille, France
| | - Fabien Ferrage
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| |
Collapse
|
16
|
Watanabe G, Lieber MR. The flexible and iterative steps within the NHEJ pathway. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:105-119. [PMID: 37150451 PMCID: PMC10205690 DOI: 10.1016/j.pbiomolbio.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Cellular and biochemical studies of nonhomologous DNA end joining (NHEJ) have long established that nuclease and polymerase action are necessary for the repair of a very large fraction of naturally-arising double-strand breaks (DSBs). This conclusion is derived from NHEJ studies ranging from yeast to humans and all genetically-tractable model organisms. Biochemical models derived from recent real-time and structural studies have yet to incorporate physical space or timing for DNA end processing. In real-time single molecule FRET (smFRET) studies, we analyzed NHEJ synapsis of DNA ends in a defined biochemical system. We described a Flexible Synapsis (FS) state in which the DNA ends were in proximity via only Ku and XRCC4:DNA ligase 4 (X4L4), and in an orientation that would not yet permit ligation until base pairing between one or more nucleotides of microhomology (MH) occurred, thereby allowing an in-line Close Synapsis (CS) state. If no MH was achievable, then XLF was critical for ligation. Neither FS or CS required DNA-PKcs, unless Artemis activation was necessary to permit local resection and subsequent base pairing between the two DNA ends being joined. Here we conjecture on possible 3D configurations for this FS state, which would spatially accommodate the nuclease and polymerase processing steps in an iterative manner. The FS model permits repeated attempts at ligation of at least one strand at the DSB after each round of nuclease or polymerase action. In addition to activation of Artemis, other possible roles for DNA-PKcs are discussed.
Collapse
Affiliation(s)
- Go Watanabe
- Departments of Pathology, Biochemistry, Molecular Microbiology & Immunology, and Section of Molecular & Computational Biology (Department of Biological Sciences), University of Southern California, Los Angeles, CA, 90089-9176, USA
| | - Michael R Lieber
- Departments of Pathology, Biochemistry, Molecular Microbiology & Immunology, and Section of Molecular & Computational Biology (Department of Biological Sciences), University of Southern California, Los Angeles, CA, 90089-9176, USA.
| |
Collapse
|
17
|
Wang YJ, Valotteau C, Aimard A, Villanueva L, Kostrz D, Follenfant M, Strick T, Chames P, Rico F, Gosse C, Limozin L. Combining DNA scaffolds and acoustic force spectroscopy to characterize individual protein bonds. Biophys J 2023; 122:2518-2530. [PMID: 37290437 PMCID: PMC10323022 DOI: 10.1016/j.bpj.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Single-molecule data are of great significance in biology, chemistry, and medicine. However, new experimental tools to characterize, in a multiplexed manner, protein bond rupture under force are still needed. Acoustic force spectroscopy is an emerging manipulation technique which generates acoustic waves to apply force in parallel on multiple microbeads tethered to a surface. We here exploit this configuration in combination with the recently developed modular junctured-DNA scaffold that has been designed to study protein-protein interactions at the single-molecule level. By applying repetitive constant force steps on the FKBP12-rapamycin-FRB complex, we measure its unbinding kinetics under force at the single-bond level. Special efforts are made in analyzing the data to identify potential pitfalls. We propose a calibration method allowing in situ force determination during the course of the unbinding measurement. We compare our results with well-established techniques, such as magnetic tweezers, to ensure their accuracy. We also apply our strategy to study the force-dependent rupture of a single-domain antibody with its antigen. Overall, we get a good agreement with the published parameters that have been obtained at zero force and population level. Thus, our technique offers single-molecule precision for multiplexed measurements of interactions of biotechnological and medical interest.
Collapse
Affiliation(s)
- Yong Jian Wang
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France.
| | - Claire Valotteau
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Adrien Aimard
- Aix-Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancerologie de Marseille, Marseille, France
| | - Lorenzo Villanueva
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Dorota Kostrz
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Maryne Follenfant
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Terence Strick
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Patrick Chames
- Aix-Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancerologie de Marseille, Marseille, France
| | - Felix Rico
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France.
| | - Laurent Limozin
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France.
| |
Collapse
|
18
|
Chen S, Vogt A, Lee L, Naila T, McKeown R, Tomkinson AE, Lees-Miller SP, He Y. Cryo-EM visualization of DNA-PKcs structural intermediates in NHEJ. SCIENCE ADVANCES 2023; 9:eadg2838. [PMID: 37256947 PMCID: PMC10413680 DOI: 10.1126/sciadv.adg2838] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
DNA double-strand breaks (DSBs), one of the most cytotoxic forms of DNA damage, can be repaired by the tightly regulated nonhomologous end joining (NHEJ) machinery (Stinson and Loparo and Zhao et al.). Core NHEJ factors form an initial long-range (LR) synaptic complex that transitions into a DNA-PKcs (DNA-dependent protein kinase, catalytic subunit)-free, short-range state to align the DSB ends (Chen et al.). Using single-particle cryo-electron microscopy, we have visualized three additional key NHEJ complexes representing different transition states, with DNA-PKcs adopting distinct dimeric conformations within each of them. Upon DNA-PKcs autophosphorylation, the LR complex undergoes a substantial conformational change, with both Ku and DNA-PKcs rotating outward to promote DNA break exposure and DNA-PKcs dissociation. We also captured a dimeric state of catalytically inactive DNA-PKcs, which resembles structures of other PIKK (Phosphatidylinositol 3-kinase-related kinase) family kinases, revealing a model of the full regulatory cycle of DNA-PKcs during NHEJ.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University. Evanston, IL, USA
| | - Alex Vogt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University. Evanston, IL, USA
| | - Linda Lee
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre and Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Tasmin Naila
- Department of Internal Medicine and Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University. Evanston, IL, USA
| | - Alan E Tomkinson
- Department of Internal Medicine and Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre and Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University. Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, IL, USA
| |
Collapse
|
19
|
Seif-El-Dahan M, Kefala-Stavridi A, Frit P, Hardwick SW, Chirgadze DY, Maia De Oliviera T, Britton S, Barboule N, Bossaert M, Pandurangan AP, Meek K, Blundell TL, Ropars V, Calsou P, Charbonnier JB, Chaplin AK. PAXX binding to the NHEJ machinery explains functional redundancy with XLF. SCIENCE ADVANCES 2023; 9:eadg2834. [PMID: 37256950 PMCID: PMC10413649 DOI: 10.1126/sciadv.adg2834] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 06/02/2023]
Abstract
Nonhomologous end joining is a critical mechanism that repairs DNA double-strand breaks in human cells. In this work, we address the structural and functional role of the accessory protein PAXX [paralog of x-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor (XLF)] in this mechanism. Here, we report high-resolution cryo-electron microscopy (cryo-EM) and x-ray crystallography structures of the PAXX C-terminal Ku-binding motif bound to Ku70/80 and cryo-EM structures of PAXX bound to two alternate DNA-dependent protein kinase (DNA-PK) end-bridging dimers, mediated by either Ku80 or XLF. We identify residues critical for the Ku70/PAXX interaction in vitro and in cells. We demonstrate that PAXX and XLF can bind simultaneously to the Ku heterodimer and act as structural bridges in alternate forms of DNA-PK dimers. Last, we show that engagement of both proteins provides a complementary advantage for DNA end synapsis and end joining in cells.
Collapse
Affiliation(s)
- Murielle Seif-El-Dahan
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Antonia Kefala-Stavridi
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Philippe Frit
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Steven W. Hardwick
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dima Y. Chirgadze
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nadia Barboule
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Madeleine Bossaert
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arun Prasad Pandurangan
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Amanda K. Chaplin
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
20
|
Buehl CJ, Goff NJ, Hardwick SW, Gellert M, Blundell TL, Yang W, Chaplin AK, Meek K. Two distinct long-range synaptic complexes promote different aspects of end processing prior to repair of DNA breaks by non-homologous end joining. Mol Cell 2023; 83:698-714.e4. [PMID: 36724784 PMCID: PMC9992237 DOI: 10.1016/j.molcel.2023.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/29/2022] [Accepted: 01/06/2023] [Indexed: 02/03/2023]
Abstract
Non-homologous end joining is the major double-strand break repair (DSBR) pathway in mammals. DNA-PK is the hub and organizer of multiple steps in non-homologous end joining (NHEJ). Recent high-resolution structures show how two distinct NHEJ complexes "synapse" two DNA ends. One complex includes a DNA-PK dimer mediated by XLF, whereas a distinct DNA-PK dimer forms via a domain-swap mechanism where the C terminus of Ku80 from one DNA-PK protomer interacts with another DNA-PK protomer in trans. Remarkably, the distance between the two synapsed DNA ends in both dimers is the same (∼115 Å), which matches the distance observed in the initial description of an NHEJ long-range synaptic complex. Here, a mutational strategy is used to demonstrate distinct cellular function(s) of the two dimers: one promoting fill-in end processing, while the other promotes DNA end resection. Thus, the specific DNA-PK dimer formed (which may be impacted by DNA end structure) dictates the mechanism by which ends will be made ligatable.
Collapse
Affiliation(s)
- Christopher J Buehl
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Noah J Goff
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Steven W Hardwick
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Martin Gellert
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK; Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
21
|
Rinaldi C, Pizzul P, Casari E, Mangiagalli M, Tisi R, Longhese MP. The Ku complex promotes DNA end-bridging and this function is antagonized by Tel1/ATM kinase. Nucleic Acids Res 2023; 51:1783-1802. [PMID: 36762474 PMCID: PMC9976877 DOI: 10.1093/nar/gkad062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by either homologous recombination (HR) or non-homologous end-joining (NHEJ). NHEJ is induced by the binding to DSBs of the Ku70-Ku80 heterodimer, which acts as a hub for the recruitment of downstream NHEJ components. An important issue in DSB repair is the maintenance of the DSB ends in close proximity, a function that in yeast involves the MRX complex and Sae2. Here, we provide evidence that Ku contributes to keep the DNA ends tethered to each other. The ku70-C85Y mutation, which increases Ku affinity for DNA and its persistence very close to the DSB ends, enhances DSB end-tethering and suppresses the end-tethering defect of sae2Δ cells. Impairing histone removal around DSBs either by eliminating Tel1 kinase activity or nucleosome remodelers enhances Ku persistence at DSBs and DSB bridging, suggesting that Tel1 antagonizes the Ku function in supporting end-tethering by promoting nucleosome removal and possibly Ku sliding inwards. As Ku provides a block to DSB resection, this Tel1 function can be important to regulate the mode by which DSBs are repaired.
Collapse
Affiliation(s)
- Carlo Rinaldi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Paolo Pizzul
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Marco Mangiagalli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Renata Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| |
Collapse
|
22
|
Human DNA-dependent protein kinase activation mechanism. Nat Struct Mol Biol 2023; 30:140-147. [PMID: 36604499 PMCID: PMC9935390 DOI: 10.1038/s41594-022-00881-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/26/2022] [Indexed: 01/07/2023]
Abstract
DNA-dependent protein kinase (DNA-PK), a multicomponent complex including the DNA-PK catalytic subunit and Ku70/80 heterodimer together with DNA, is central to human DNA damage response and repair. Using a DNA-PK-selective inhibitor (M3814), we identified from one dataset two cryo-EM structures of the human DNA-PK complex in different states, the intermediate state and the active state. Here we show that activation of the kinase is regulated through conformational changes caused by the binding ligand and the string region (residues 802-846) of the DNA-PK catalytic subunit, particularly the helix-hairpin-helix motif (residues 816-836) that interacts with DNA. These observations demonstrate the regulatory role of the ligand and explain why DNA-PK is DNA dependent. Cooperation and coordination among binding partners, disordered flexible regions and mechanically flexible HEAT repeats modulate the activation of the kinase. Together with previous findings, these results provide a better molecular understanding of DNA-PK catalysis.
Collapse
|
23
|
De Bragança S, Aicart-Ramos C, Arribas-Bosacoma R, Rivera-Calzada A, Unfried JP, Prats-Mari L, Marin-Baquero M, Fortes P, Llorca O, Moreno-Herrero F. APLF and long non-coding RNA NIHCOLE promote stable DNA synapsis in non-homologous end joining. Cell Rep 2023; 42:111917. [PMID: 36640344 DOI: 10.1016/j.celrep.2022.111917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023] Open
Abstract
The synapsis of DNA ends is a critical step for the repair of double-strand breaks by non-homologous end joining (NHEJ). This is performed by a multicomponent protein complex assembled around Ku70-Ku80 heterodimers and regulated by accessory factors, including long non-coding RNAs, through poorly understood mechanisms. Here, we use magnetic tweezers to investigate the contributions of core NHEJ proteins and APLF and lncRNA NIHCOLE to DNA synapsis. APLF stabilizes DNA end bridging and, together with Ku70-Ku80, establishes a minimal complex that supports DNA synapsis for several minutes under piconewton forces. We find the C-terminal acidic region of APLF to be critical for bridging. NIHCOLE increases the dwell time of the synapses by Ku70-Ku80 and APLF. This effect is further enhanced by a small and structured RNA domain within NIHCOLE. We propose a model where Ku70-Ku80 can simultaneously bind DNA, APLF, and structured RNAs to promote the stable joining of DNA ends.
Collapse
Affiliation(s)
- Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Raquel Arribas-Bosacoma
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Angel Rivera-Calzada
- Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Juan Pablo Unfried
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel; Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Laura Prats-Mari
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Mikel Marin-Baquero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Puri Fortes
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Spanish Network for Advanced Therapies (TERAV ISCIII), Madrid, Spain
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain.
| |
Collapse
|
24
|
Hu C, Bugbee T, Palinski R, Akinyemi IA, McIntosh MT, MacCarthy T, Bhaduri-McIntosh S, Wallace N. Beta human papillomavirus 8E6 promotes alternative end joining. eLife 2023; 12:e81923. [PMID: 36692284 PMCID: PMC9897725 DOI: 10.7554/elife.81923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
Double strand breaks (DSBs) are one of the most lethal DNA lesions in cells. The E6 protein of beta-human papillomavirus (HPV8 E6) impairs two critical DSB repair pathways: homologous recombination (HR) and non-homologous end joining (NHEJ). However, HPV8 E6 only delays DSB repair. How DSBs are repaired in cells with HPV8 E6 remains to be studied. We hypothesize that HPV8 E6 promotes a less commonly used DSB repair pathway, alternative end joining (Alt-EJ). Using CAS9-based Alt-EJ reporters, we show that HPV8 E6 promotes Alt-EJ. Further, using small molecule inhibitors, CRISPR/CAS9 gene knockout, and HPV8 E6 mutant, we find that HPV8 E6 promotes Alt-EJ by binding p300, an acetyltransferase that facilitates DSB repair by HR and NHEJ. At least some of this repair occurs through a subset of Alt-EJ known as polymerase theta dependent end joining. Finally, whole genome sequencing analysis showed HPV8 E6 caused an increased frequency of deletions bearing the microhomology signatures of Alt-EJ. This study fills the knowledge gap of how DSB is repaired in cells with HPV8 E6 and the mutagenic consequences of HPV8 E6 mediated p300 destabilization. Broadly, this study supports the hypothesis that beta-HPV promotes cancer formation by increasing genomic instability.
Collapse
Affiliation(s)
- Changkun Hu
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Division of Biology, Kansas State UniversityManhattanUnited States
| | - Taylor Bugbee
- Division of Biology, Kansas State UniversityManhattanUnited States
| | - Rachel Palinski
- Veterinary Diagnostic Laboratory, Kansas State UniversityManhattanUnited States
| | - Ibukun A Akinyemi
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
- Department of Molecular Genetics and Microbiology, University of FloridaGainesvilleUnited States
| | - Michael T McIntosh
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
| | - Thomas MacCarthy
- Laufer Center for Physical and Quantitative Biology, Stony Brook UniversityStony BrookUnited States
| | - Sumita Bhaduri-McIntosh
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
- Department of Molecular Genetics and Microbiology, University of FloridaGainesvilleUnited States
| | - Nicholas Wallace
- Division of Biology, Kansas State UniversityManhattanUnited States
| |
Collapse
|
25
|
Goff NJ, Brenière M, Buehl CJ, de Melo AJ, Huskova H, Ochi T, Blundell TL, Mao W, Yu K, Modesti M, Meek K. Catalytically inactive DNA ligase IV promotes DNA repair in living cells. Nucleic Acids Res 2022; 50:11058-11071. [PMID: 36263813 PMCID: PMC9638927 DOI: 10.1093/nar/gkac913] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
DNA double strand breaks (DSBs) are induced by external genotoxic agents (ionizing radiation or genotoxins) or by internal processes (recombination intermediates in lymphocytes or by replication errors). The DNA ends induced by these genotoxic processes are often not ligatable, requiring potentially mutagenic end-processing to render ends compatible for ligation by non-homologous end-joining (NHEJ). Using single molecule approaches, Loparo et al. propose that NHEJ fidelity can be maintained by restricting end-processing to a ligation competent short-range NHEJ complex that 'maximizes the fidelity of DNA repair'. These in vitro studies show that although this short-range NHEJ complex requires DNA ligase IV (Lig4), its catalytic activity is dispensable. Here using cellular models, we show that inactive Lig4 robustly promotes DNA repair in living cells. Compared to repair products from wild-type cells, those isolated from cells with inactive Lig4 show a somewhat increased fraction that utilize micro-homology (MH) at the joining site consistent with alternative end-joining (a-EJ). But unlike a-EJ in the absence of NHEJ, a large percentage of joints isolated from cells with inactive Lig4 occur with no MH - thus, clearly distinct from a-EJ. Finally, biochemical assays demonstrate that the inactive Lig4 complex promotes the activity of DNA ligase III (Lig3).
Collapse
Affiliation(s)
- Noah J Goff
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA,Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Manon Brenière
- Centre de Recherche en Cancérologie de Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Universiteé, Marseille, France
| | - Christopher J Buehl
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA,Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Abinadabe J de Melo
- Centre de Recherche en Cancérologie de Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Universiteé, Marseille, France
| | - Hana Huskova
- Centre de Recherche en Cancérologie de Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Universiteé, Marseille, France
| | - Takashi Ochi
- The Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9TJ, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Weifeng Mao
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Kefei Yu
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Mauro Modesti
- Correspondence may also be addressed to Mauro Modesti.
| | | |
Collapse
|
26
|
Cabello-Lobato MJ, Jenner M, Cisneros-Aguirre M, Brüninghoff K, Sandy Z, da Costa I, Jowitt T, Loch C, Jackson S, Wu Q, Mootz H, Stark J, Cliff M, Schmidt C. Microarray screening reveals two non-conventional SUMO-binding modules linked to DNA repair by non-homologous end-joining. Nucleic Acids Res 2022; 50:4732-4754. [PMID: 35420136 PMCID: PMC9071424 DOI: 10.1093/nar/gkac237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
SUMOylation is critical for numerous cellular signalling pathways, including the maintenance of genome integrity via the repair of DNA double-strand breaks (DSBs). If misrepaired, DSBs can lead to cancer, neurodegeneration, immunodeficiency and premature ageing. Using systematic human proteome microarray screening combined with widely applicable carbene footprinting, genetic code expansion and high-resolution structural profiling, we define two non-conventional and topology-selective SUMO2-binding regions on XRCC4, a DNA repair protein important for DSB repair by non-homologous end-joining (NHEJ). Mechanistically, the interaction of SUMO2 and XRCC4 is incompatible with XRCC4 binding to three other proteins important for NHEJ-mediated DSB repair. These findings are consistent with SUMO2 forming a redundant NHEJ layer with the potential to regulate different NHEJ complexes at distinct levels including, but not limited to, XRCC4 interactions with XLF, LIG4 and IFFO1. Regulation of NHEJ is not only relevant for carcinogenesis, but also for the design of precision anti-cancer medicines and the optimisation of CRISPR/Cas9-based gene editing. In addition to providing molecular insights into NHEJ, this work uncovers a conserved SUMO-binding module and provides a rich resource on direct SUMO binders exploitable towards uncovering SUMOylation pathways in a wide array of cellular processes.
Collapse
Affiliation(s)
- Maria Jose Cabello-Lobato
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Matthew Jenner
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Warwick Integrative Synthetic Biology (WISB) Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Kira Brüninghoff
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149 Muenster, Germany
| | - Zac Sandy
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Isabelle C da Costa
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Thomas A Jowitt
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | - Stephen P Jackson
- Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Qian Wu
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149 Muenster, Germany
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Matthew J Cliff
- Manchester Institute of Biotechnology (MIB) and School of Chemistry, University of Manchester, Manchester M1 7DN, UK
| | - Christine K Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
27
|
Chinnam NB, Syed A, Burnett KH, Hura GL, Tainer JA, Tsutakawa SE. Universally Accessible Structural Data on Macromolecular Conformation, Assembly, and Dynamics by Small Angle X-Ray Scattering for DNA Repair Insights. Methods Mol Biol 2022; 2444:43-68. [PMID: 35290631 PMCID: PMC9020468 DOI: 10.1007/978-1-0716-2063-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Structures provide a critical breakthrough step for biological analyses, and small angle X-ray scattering (SAXS) is a powerful structural technique to study dynamic DNA repair proteins. As toxic and mutagenic repair intermediates need to be prevented from inadvertently harming the cell, DNA repair proteins often chaperone these intermediates through dynamic conformations, coordinated assemblies, and allosteric regulation. By measuring structural conformations in solution for both proteins, DNA, RNA, and their complexes, SAXS provides insight into initial DNA damage recognition, mechanisms for validation of their substrate, and pathway regulation. Here, we describe exemplary SAXS analyses of a DNA damage response protein spanning from what can be derived directly from the data to obtaining super resolution through the use of SAXS selection of atomic models. We outline strategies and tactics for practical SAXS data collection and analysis. Making these structural experiments in reach of any basic and clinical researchers who have protein, SAXS data can readily be collected at government-funded synchrotrons, typically at no cost for academic researchers. In addition to discussing how SAXS complements and enhances cryo-electron microscopy, X-ray crystallography, NMR, and computational modeling, we furthermore discuss taking advantage of recent advances in protein structure prediction in combination with SAXS analysis.
Collapse
Affiliation(s)
- Naga Babu Chinnam
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kathryn H Burnett
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
28
|
Liu D, Lieber MR. The mechanisms of human lymphoid chromosomal translocations and their medical relevance. Crit Rev Biochem Mol Biol 2021; 57:227-243. [PMID: 34875186 DOI: 10.1080/10409238.2021.2004576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The most common human lymphoid chromosomal translocations involve concurrent failures of the recombination activating gene (RAG) complex and Activation-Induced Deaminase (AID). These are two enzymes that are normally expressed for purposes of the two site-specific DNA recombination processes: V(D)J recombination and class switch recombination (CSR). First, though it is rare, a low level of expression of AID can introduce long-lived T:G mismatch lesions at 20-600 bp fragile zones. Second, the V(D)J recombination process can occasionally fail to rejoin coding ends, and this failure may permit an opportunity for Artemis:DNA-dependent kinase catalytic subunit (DNA-PKcs) to convert the T:G mismatch sites at the fragile zones into double-strand breaks. The 20-600 bp fragile zones must be, at least transiently, in a single-stranded DNA (ssDNA) state for the first step to occur, because AID only acts on ssDNA. Here we discuss the key DNA sequence features that lead to AID action at a fragile zone, which are (a) the proximity and density of strings of cytosine nucleotides (C-strings) that cause a B/A-intermediate DNA conformation; (b) overlapping AID hotspots that contain a methyl CpG (WRCG), which AID converts to a long-lived T:G mismatch; and (c) transcription, which, though not essential, favors increased ssDNA in the fragile zone. We also summarize chromosomal features of the focal fragile zones in lymphoid malignancies and discuss the clinical relevance of understanding the translocation mechanisms. Many of the key principles covered here are also relevant to chromosomal translocations in non-lymphoid somatic cells as well.
Collapse
Affiliation(s)
- Di Liu
- Department of Pathology & Laboratory Medicine, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology and Immunology, and Section of Computational Biology in the Department of Biological Sciences, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael R Lieber
- Department of Pathology & Laboratory Medicine, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology and Immunology, and Section of Computational Biology in the Department of Biological Sciences, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Kong M, Greene EC. Mechanistic Insights From Single-Molecule Studies of Repair of Double Strand Breaks. Front Cell Dev Biol 2021; 9:745311. [PMID: 34869333 PMCID: PMC8636147 DOI: 10.3389/fcell.2021.745311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
DNA double strand breaks (DSBs) are among some of the most deleterious forms of DNA damage. Left unrepaired, they are detrimental to genome stability, leading to high risk of cancer. Two major mechanisms are responsible for the repair of DSBs, homologous recombination (HR) and nonhomologous end joining (NHEJ). The complex nature of both pathways, involving a myriad of protein factors functioning in a highly coordinated manner at distinct stages of repair, lend themselves to detailed mechanistic studies using the latest single-molecule techniques. In avoiding ensemble averaging effects inherent to traditional biochemical or genetic methods, single-molecule studies have painted an increasingly detailed picture for every step of the DSB repair processes.
Collapse
Affiliation(s)
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
30
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
31
|
Cabello-Lobato MJ, Schmidt CK, Cliff MJ. 1H, 13C, 15N backbone resonance assignment for the 1-164 construct of human XRCC4. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:389-395. [PMID: 34173222 PMCID: PMC8481219 DOI: 10.1007/s12104-021-10035-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
DNA double-strand breaks (DSBs) represent the most cytotoxic DNA lesions, as-if mis- or unrepaired-they can cause cell death or lead to genome instability, which in turn can cause cancer. DSBs are repaired by two major pathways termed homologous recombination and non-homologous end-joining (NHEJ). NHEJ is responsible for repairing the vast majority of DSBs arising in human cells. Defects in NHEJ factors are also associated with microcephaly, primordial dwarfism and immune deficiencies. One of the key proteins important for mediating NHEJ is XRCC4. XRCC4 is a dimer, with the dimer interface mediated by an extended coiled-coil. The N-terminal head domain forms a mixed alpha-beta globular structure. Numerous factors interact with the C-terminus of the coiled-coil domain, which is also associated with significant self-association between XRCC4 dimers. A range of construct lengths of human XRCC4 were expressed and purified, and the 1-164 variant had the best NMR properties, as judged by consistent linewidths, and chemical shift dispersion. In this work we report the 1H, 15 N and 13C backbone resonance assignments of human XRCC4 in the solution form of the 1-164 construct. Assignments were obtained by heteronuclear multidimensional NMR spectroscopy. In total, 156 of 161 assignable residues of XRCC4 were assigned to resonances in the TROSY spectrum, with an additional 11 resonances assigned to His-Tag residues. Prediction of solution secondary structure from a chemical shift analysis using the TALOS + webserver is in good agreement with the published X-ray crystal structures of this protein.
Collapse
Affiliation(s)
- Maria Jose Cabello-Lobato
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Christine K Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| | - Matthew J Cliff
- Manchester Institute of Biotechnology (MIB), University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
32
|
Chaplin AK, Hardwick SW, Stavridi AK, Buehl CJ, Goff NJ, Ropars V, Liang S, De Oliveira TM, Chirgadze DY, Meek K, Charbonnier JB, Blundell TL. Cryo-EM of NHEJ supercomplexes provides insights into DNA repair. Mol Cell 2021; 81:3400-3409.e3. [PMID: 34352203 PMCID: PMC9006396 DOI: 10.1016/j.molcel.2021.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 01/12/2023]
Abstract
Non-homologous end joining (NHEJ) is one of two critical mechanisms utilized in humans to repair DNA double-strand breaks (DSBs). Unrepaired or incorrect repair of DSBs can lead to apoptosis or cancer. NHEJ involves several proteins, including the Ku70/80 heterodimer, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), X-ray cross-complementing protein 4 (XRCC4), XRCC4-like factor (XLF), and ligase IV. These core proteins bind DSBs and ligate the damaged DNA ends. However, details of the structural assembly of these proteins remain unclear. Here, we present cryo-EM structures of NHEJ supercomplexes that are composed of these core proteins and DNA, revealing the detailed structural architecture of this assembly. We describe monomeric and dimeric forms of this supercomplex and also propose the existence of alternate dimeric forms of long-range synaptic complexes. Finally, we show that mutational disruption of several structural features within these NHEJ complexes negatively affects DNA repair.
Collapse
Affiliation(s)
- Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Steven W Hardwick
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Antonia Kefala Stavridi
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Christopher J Buehl
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Noah J Goff
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Shikang Liang
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | - Dimitri Y Chirgadze
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
33
|
Liang S, Chaplin AK, Stavridi AK, Appleby R, Hnizda A, Blundell TL. Stages, scaffolds and strings in the spatial organisation of non-homologous end joining: Insights from X-ray diffraction and Cryo-EM. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:60-73. [PMID: 33285184 PMCID: PMC8224183 DOI: 10.1016/j.pbiomolbio.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/26/2020] [Indexed: 01/10/2023]
Abstract
Non-homologous end joining (NHEJ) is the preferred pathway for the repair of DNA double-strand breaks in humans. Here we describe three structural aspects of the repair pathway: stages, scaffolds and strings. We discuss the orchestration of DNA repair to guarantee robust and efficient NHEJ. We focus on structural studies over the past two decades, not only using X-ray diffraction, but also increasingly exploiting cryo-EM to investigate the macromolecular assemblies.
Collapse
Affiliation(s)
- Shikang Liang
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Antonia Kefala Stavridi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Robert Appleby
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Ales Hnizda
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK.
| |
Collapse
|
34
|
Lees-Miller JP, Cobban A, Katsonis P, Bacolla A, Tsutakawa SE, Hammel M, Meek K, Anderson DW, Lichtarge O, Tainer JA, Lees-Miller SP. Uncovering DNA-PKcs ancient phylogeny, unique sequence motifs and insights for human disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:87-108. [PMID: 33035590 PMCID: PMC8021618 DOI: 10.1016/j.pbiomolbio.2020.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/12/2020] [Accepted: 09/29/2020] [Indexed: 01/26/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key member of the phosphatidylinositol-3 kinase-like (PIKK) family of protein kinases with critical roles in DNA-double strand break repair, transcription, metastasis, mitosis, RNA processing, and innate and adaptive immunity. The absence of DNA-PKcs from many model organisms has led to the assumption that DNA-PKcs is a vertebrate-specific PIKK. Here, we find that DNA-PKcs is widely distributed in invertebrates, fungi, plants, and protists, and that threonines 2609, 2638, and 2647 of the ABCDE cluster of phosphorylation sites are highly conserved amongst most Eukaryotes. Furthermore, we identify highly conserved amino acid sequence motifs and domains that are characteristic of DNA-PKcs relative to other PIKKs. These include residues in the Forehead domain and a novel motif we have termed YRPD, located in an α helix C-terminal to the ABCDE phosphorylation site loop. Combining sequence with biochemistry plus structural data on human DNA-PKcs unveils conserved sequence and conformational features with functional insights and implications. The defined generally progressive DNA-PKcs sequence diversification uncovers conserved functionality supported by Evolutionary Trace analysis, suggesting that for many organisms both functional sites and evolutionary pressures remain identical due to fundamental cell biology. The mining of cancer genomic data and germline mutations causing human inherited disease reveal that robust DNA-PKcs activity in tumors is detrimental to patient survival, whereas germline mutations compromising function are linked to severe immunodeficiency and neuronal degeneration. We anticipate that these collective results will enable ongoing DNA-PKcs functional analyses with biological and medical implications.
Collapse
Affiliation(s)
- James P Lees-Miller
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Alexander Cobban
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Panagiotis Katsonis
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, And Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA
| | - Dave W Anderson
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Olivier Lichtarge
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
35
|
Hammel M, Tainer JA. X-ray scattering reveals disordered linkers and dynamic interfaces in complexes and mechanisms for DNA double-strand break repair impacting cell and cancer biology. Protein Sci 2021; 30:1735-1756. [PMID: 34056803 PMCID: PMC8376411 DOI: 10.1002/pro.4133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
Evolutionary selection ensures specificity and efficiency in dynamic metastable macromolecular machines that repair DNA damage without releasing toxic and mutagenic intermediates. Here we examine non‐homologous end joining (NHEJ) as the primary conserved DNA double‐strand break (DSB) repair process in human cells. NHEJ has exemplary key roles in networks determining the development, outcome of cancer treatments by DSB‐inducing agents, generation of antibody and T‐cell receptor diversity, and innate immune response for RNA viruses. We determine mechanistic insights into NHEJ structural biochemistry focusing upon advanced small angle X‐ray scattering (SAXS) results combined with X‐ray crystallography (MX) and cryo‐electron microscopy (cryo‐EM). SAXS coupled to atomic structures enables integrated structural biology for objective quantitative assessment of conformational ensembles and assemblies in solution, intra‐molecular distances, structural similarity, functional disorder, conformational switching, and flexibility. Importantly, NHEJ complexes in solution undergo larger allosteric transitions than seen in their cryo‐EM or MX structures. In the long‐range synaptic complex, X‐ray repair cross‐complementing 4 (XRCC4) plus XRCC4‐like‐factor (XLF) form a flexible bridge and linchpin for DNA ends bound to KU heterodimer (Ku70/80) and DNA‐PKcs (DNA‐dependent protein kinase catalytic subunit). Upon binding two DNA ends, auto‐phosphorylation opens DNA‐PKcs dimer licensing NHEJ via concerted conformational transformations of XLF‐XRCC4, XLF–Ku80, and LigIVBRCT–Ku70 interfaces. Integrated structures reveal multifunctional roles for disordered linkers and modular dynamic interfaces promoting DSB end processing and alignment into the short‐range complex for ligation by LigIV. Integrated findings define dynamic assemblies fundamental to designing separation‐of‐function mutants and allosteric inhibitors targeting conformational transitions in multifunctional complexes.
Collapse
Affiliation(s)
- Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
36
|
Studying chromosome biology with single-molecule resolution in Xenopus laevis egg extracts. Essays Biochem 2021; 65:17-26. [PMID: 33438722 PMCID: PMC8056035 DOI: 10.1042/ebc20200026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 01/11/2023]
Abstract
Cell-free extracts from Xenopus laevis eggs are a model system for studying chromosome biology. Xenopus egg extracts can be synchronised in different cell cycle stages, making them useful for studying DNA replication, DNA repair and chromosome organisation. Combining single-molecule approaches with egg extracts is an exciting development being used to reveal molecular mechanisms that are difficult to study using conventional approaches. Fluorescence-based single-molecule imaging of surface-tethered DNAs has been used to visualise labelled protein movements on stretched DNA, the dynamics of DNA–protein complexes and extract-dependent structural rearrangement of stained DNA. Force-based single-molecule techniques are an alternative approach to measure mechanics of DNA and proteins. In this essay, the details of these single-molecule techniques, and the insights into chromosome biology they provide, will be discussed.
Collapse
|
37
|
Zahid S, Seif El Dahan M, Iehl F, Fernandez-Varela P, Le Du MH, Ropars V, Charbonnier JB. The Multifaceted Roles of Ku70/80. Int J Mol Sci 2021; 22:ijms22084134. [PMID: 33923616 PMCID: PMC8073936 DOI: 10.3390/ijms22084134] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
DNA double-strand breaks (DSBs) are accidental lesions generated by various endogenous or exogenous stresses. DSBs are also genetically programmed events during the V(D)J recombination process, meiosis, or other genome rearrangements, and they are intentionally generated to kill cancer during chemo- and radiotherapy. Most DSBs are processed in mammalian cells by the classical nonhomologous end-joining (c-NHEJ) pathway. Understanding the molecular basis of c-NHEJ has major outcomes in several fields, including radiobiology, cancer therapy, immune disease, and genome editing. The heterodimer Ku70/80 (Ku) is a central actor of the c-NHEJ as it rapidly recognizes broken DNA ends in the cell and protects them from nuclease activity. It subsequently recruits many c-NHEJ effectors, including nucleases, polymerases, and the DNA ligase 4 complex. Beyond its DNA repair function, Ku is also involved in several other DNA metabolism processes. Here, we review the structural and functional data on the DNA and RNA recognition properties of Ku implicated in DNA repair and in telomeres maintenance.
Collapse
|
38
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
39
|
Öz R, Wang JL, Guerois R, Goyal G, KK S, Ropars V, Sharma R, Koca F, Charbonnier JB, Modesti M, Strick TR, Westerlund F. Dynamics of Ku and bacterial non-homologous end-joining characterized using single DNA molecule analysis. Nucleic Acids Res 2021; 49:2629-2641. [PMID: 33590005 PMCID: PMC7969030 DOI: 10.1093/nar/gkab083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 01/29/2023] Open
Abstract
We use single-molecule techniques to characterize the dynamics of prokaryotic DNA repair by non-homologous end-joining (NHEJ), a system comprised only of the dimeric Ku and Ligase D (LigD). The Ku homodimer alone forms a ∼2 s synapsis between blunt DNA ends that is increased to ∼18 s upon addition of LigD, in a manner dependent on the C-terminal arms of Ku. The synapsis lifetime increases drastically for 4 nt complementary DNA overhangs, independently of the C-terminal arms of Ku. These observations are in contrast to human Ku, which is unable to bridge either of the two DNA substrates. We also demonstrate that bacterial Ku binds the DNA ends in a cooperative manner for synapsis initiation and remains stably bound at DNA junctions for several hours after ligation is completed, indicating that a system for removal of the proteins is active in vivo. Together these experiments shed light on the dynamics of bacterial NHEJ in DNA end recognition and processing. We speculate on the evolutionary similarities between bacterial and eukaryotic NHEJ and discuss how an increased understanding of bacterial NHEJ can open the door for future antibiotic therapies targeting this mechanism.
Collapse
Affiliation(s)
- Robin Öz
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 41296, Sweden
| | - Jing L Wang
- Institut Jacques Monod, Université de Paris, CNRS, UMR7592, Paris, France
- Ecole Normale Supérieure, IBENS, CNRS, INSERM, PSL Research University, Paris 75005 France
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Gaurav Goyal
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 41296, Sweden
| | - Sriram KK
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 41296, Sweden
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Rajhans Sharma
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 41296, Sweden
| | - Firat Koca
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 41296, Sweden
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille 13009, France
- Equipe Labélisée, Ligue Nationale Contre le Cancer, Paris 75013, France
| | - Terence R Strick
- Institut Jacques Monod, Université de Paris, CNRS, UMR7592, Paris, France
- Ecole Normale Supérieure, IBENS, CNRS, INSERM, PSL Research University, Paris 75005 France
- Equipe Labélisée, Ligue Nationale Contre le Cancer, Paris 75013, France
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 41296, Sweden
| |
Collapse
|
40
|
Stinson BM, Loparo JJ. Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway. Annu Rev Biochem 2021; 90:137-164. [PMID: 33556282 DOI: 10.1146/annurev-biochem-080320-110356] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks pose a serious threat to genome stability. In vertebrates, these breaks are predominantly repaired by nonhomologous end joining (NHEJ), which pairs DNA ends in a multiprotein synaptic complex to promote their direct ligation. NHEJ is a highly versatile pathway that uses an array of processing enzymes to modify damaged DNA ends and enable their ligation. The mechanisms of end synapsis and end processing have important implications for genome stability. Rapid and stable synapsis is necessary to limit chromosome translocations that result from the mispairing of DNA ends. Furthermore, end processing must be tightly regulated to minimize mutations at the break site. Here, we review our current mechanistic understanding of vertebrate NHEJ, with a particular focus on end synapsis and processing.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|
41
|
Hnízda A, Tesina P, Nguyen TB, Kukačka Z, Kater L, Chaplin AK, Beckmann R, Ascher DB, Novák P, Blundell TL. SAP domain forms a flexible part of DNA aperture in Ku70/80. FEBS J 2021; 288:4382-4393. [PMID: 33511782 PMCID: PMC8653891 DOI: 10.1111/febs.15732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022]
Abstract
Nonhomologous end joining (NHEJ) is a DNA repair mechanism that religates double-strand DNA breaks to maintain genomic integrity during the entire cell cycle. The Ku70/80 complex recognizes DNA breaks and serves as an essential hub for recruitment of NHEJ components. Here, we describe intramolecular interactions of the Ku70 C-terminal domain, known as the SAP domain. Using single-particle cryo-electron microscopy, mass spectrometric analysis of intermolecular cross-linking and molecular modelling simulations, we captured variable positions of the SAP domain depending on DNA binding. The first position was localized at the DNA aperture in the Ku70/80 apo form but was not observed in the DNA-bound state. The second position, which was observed in both apo and DNA-bound states, was found below the DNA aperture, close to the helical arm of Ku70. The localization of the SAP domain in the DNA aperture suggests a function as a flexible entry gate for broken DNA. DATABASES: EM maps have been deposited in EMDB (EMD-11933). Coordinates have been deposited in Protein Data Bank (PDB 7AXZ). Other data are available from corresponding authors upon a request.
Collapse
Affiliation(s)
- Aleš Hnízda
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Petr Tesina
- Gene Center and Department of Biochemistry, University of Munich, Germany
| | - Thanh-Binh Nguyen
- Computational and Systems Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Zdeněk Kukačka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lukas Kater
- Gene Center and Department of Biochemistry, University of Munich, Germany
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich, Germany
| | - David B Ascher
- Department of Biochemistry, University of Cambridge, Cambridge, UK.,Computational and Systems Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
| | - Petr Novák
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
Hepburn M, Saltzberg DJ, Lee L, Fang S, Atkinson C, Strynadka NCJ, Sali A, Lees-Miller SP, Schriemer DC. The active DNA-PK holoenzyme occupies a tensed state in a staggered synaptic complex. Structure 2021; 29:467-478.e6. [PMID: 33412091 DOI: 10.1016/j.str.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Accepted: 12/09/2020] [Indexed: 01/06/2023]
Abstract
In the non-homologous end-joining (NHEJ) of a DNA double-strand break, DNA ends are bound and protected by DNA-PK, which synapses across the break to tether the broken ends and initiate repair. There is little clarity surrounding the nature of the synaptic complex and the mechanism governing the transition to repair. We report an integrative structure of the synaptic complex at a precision of 13.5 Å, revealing a symmetric head-to-head arrangement with a large offset in the DNA ends and an extensive end-protection mechanism involving a previously uncharacterized plug domain. Hydrogen/deuterium exchange mass spectrometry identifies an allosteric pathway connecting DNA end-binding with the kinase domain that places DNA-PK under tension in the kinase-active state. We present a model for the transition from end-protection to repair, where the synaptic complex supports hierarchical processing of the ends and scaffold assembly, requiring displacement of the catalytic subunit and tension release through kinase activity.
Collapse
Affiliation(s)
- Morgan Hepburn
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Daniel J Saltzberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, CA 94158, USA
| | - Linda Lee
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Shujuan Fang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Claire Atkinson
- Department of Biochemistry and Molecular Biology and High-Resolution Macromolecular Electron Microscopy Facility, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and High-Resolution Macromolecular Electron Microscopy Facility, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, CA 94158, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; Department of Chemistry, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
43
|
Structural insights into the role of DNA-PK as a master regulator in NHEJ. GENOME INSTABILITY & DISEASE 2021; 2:195-210. [PMID: 34723130 PMCID: PMC8549938 DOI: 10.1007/s42764-021-00047-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
DNA-dependent protein kinase catalytic subunit DNA-PKcs/PRKDC is the largest serine/threonine protein kinase of the phosphatidyl inositol 3-kinase-like protein kinase (PIKK) family and is the most highly expressed PIKK in human cells. With its DNA-binding partner Ku70/80, DNA-PKcs is required for regulated and efficient repair of ionizing radiation-induced DNA double-strand breaks via the non-homologous end joining (NHEJ) pathway. Loss of DNA-PKcs or other NHEJ factors leads to radiation sensitivity and unrepaired DNA double-strand breaks (DSBs), as well as defects in V(D)J recombination and immune defects. In this review, we highlight the contributions of the late Dr. Carl W. Anderson to the discovery and early characterization of DNA-PK. We furthermore build upon his foundational work to provide recent insights into the structure of NHEJ synaptic complexes, an evolutionarily conserved and functionally important YRPD motif, and the role of DNA-PKcs and its phosphorylation in NHEJ. The combined results identify DNA-PKcs as a master regulator that is activated by its detection of two double-strand DNA ends for a cascade of phosphorylation events that provide specificity and efficiency in assembling the synaptic complex for NHEJ.
Collapse
|
44
|
Chen X, Xu X, Chen Y, Cheung JC, Wang H, Jiang J, de Val N, Fox T, Gellert M, Yang W. Structure of an activated DNA-PK and its implications for NHEJ. Mol Cell 2020; 81:801-810.e3. [PMID: 33385326 DOI: 10.1016/j.molcel.2020.12.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
DNA-dependent protein kinase (DNA-PK), like all phosphatidylinositol 3-kinase-related kinases (PIKKs), is composed of conserved FAT and kinase domains (FATKINs) along with solenoid structures made of HEAT repeats. These kinases are activated in response to cellular stress signals, but the mechanisms governing activation and regulation remain unresolved. For DNA-PK, all existing structures represent inactive states with resolution limited to 4.3 Å at best. Here, we report the cryoelectron microscopy (cryo-EM) structures of DNA-PKcs (DNA-PK catalytic subunit) bound to a DNA end or complexed with Ku70/80 and DNA in both inactive and activated forms at resolutions of 3.7 Å overall and 3.2 Å for FATKINs. These structures reveal the sequential transition of DNA-PK from inactive to activated forms. Most notably, activation of the kinase involves previously unknown stretching and twisting within individual solenoid segments and loosens DNA-end binding. This unprecedented structural plasticity of helical repeats may be a general regulatory mechanism of HEAT-repeat proteins.
Collapse
Affiliation(s)
- Xuemin Chen
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiang Xu
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun Chen
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joyce C Cheung
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaibin Wang
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalia de Val
- Cancer Research Technology Program Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Tara Fox
- Cancer Research Technology Program Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Martin Gellert
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Brahme A. A DNA Repair-Based Model of Cell Survival with Important Clinical Consequences. Radiat Res 2020; 194:202-235. [PMID: 32942300 DOI: 10.1667/rade-20-00052.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/11/2020] [Indexed: 11/03/2022]
Abstract
This work provides a description of a new interaction, cross-section-based model for radiation-induced cellular inactivation, sublethal damage, DNA repair and cell survival, with the ability to more accurately elucidate different radiation-response phenomena. The principal goal of this work is to describe the damage-induction cross sections, as well as repair and survival, as Poisson processes with two main types of damage: mild damage that can be rapidly handled by the most basic repair processes; and more complex damage requiring longer repair times and the high-fidelity homologous recombination (HR) repair process to ensure accuracy and safety in the survival. This work is unique in its use of Poisson statistics to quantify the main repairable cell compartments that are exposed to simple and more complex sublethal hits, the cross section of which determines what is homologically and non-homologically repairable. The new method is applied to central radiation damage and survival data, such as in vitro cellular repair and survival with key DNA repair genes knocked out, low-dose hypersensitivity (LDHS), change in survival over the cell cycle, and variation with linear energy transfer (LET) for densely ionizing ions, all results supporting our basic assumptions. Among the results, it was shown that less than 1% of the simple DSBs are lethal at approximately 2 Gy and below for sparsely ionizing radiations, but their δ-electron track ends of between 1.5 and 0.5 keV can deliver 0.5 MGy to a few hundred nm3 volumes, mainly due to multiple scatter detours and multiple secondary electrons. They can cause dual double-strand breaks (DSBs) on the periphery of nucleosomes that are the most common multiply damaged sites, with an average of 1-2 δ-electron track ends per cell nucleus at 2 Gy. LDHS is most likely due to the normal lack of fast, efficient repair of sublethal damage below approximately 0.5 Gy, and requires largely intact key DNA repair genes to achieve significant repair recovery at higher doses. The new repair model describes this phenomenon quite accurately. Cells with key non-homologous end joining (NHEJ) genes knocked-out, lose LDHS but provoke HR repair, and cells with HR genes knocked out may lose some LDHS, but provoke NHEJ repair. The DNA duplication during the S phase results in a direct doubling as well of the total and sublethal hit cross sections. For the lowest LET carbon ions, NHEJ is reduced to where it is almost eliminated at maximum relative biological effectiveness (RBE), while HR is induced more than by X rays, due to complex damage and misrepair of DSBs produced by numerous δ electrons. The use of a lower LET such as electrons or photons during the final week of radiation treatment may potentially maximize complication-free cure. Optimally-designed weekly fractionation schedules are proposed to maximize the DNA repair potential in normal tissues. Additionally, the optimal therapeutic ion species, LET, apoptosis and permanent growth arrest/senescence window is identified with helium, lithium and boron ions and LETs at approximately 15-55 eV/nm, to maximize these quantities in the tumor and minimize them in the normal tissues, resulting in a very high probability of complication-free cure.
Collapse
Affiliation(s)
- Anders Brahme
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Carney SM, Moreno AT, Piatt SC, Cisneros-Aguirre M, Lopezcolorado FW, Stark JM, Loparo JJ. XLF acts as a flexible connector during non-homologous end joining. eLife 2020; 9:e61920. [PMID: 33289484 PMCID: PMC7744095 DOI: 10.7554/elife.61920] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023] Open
Abstract
Non-homologous end joining (NHEJ) is the predominant pathway that repairs DNA double-strand breaks in vertebrates. During NHEJ DNA ends are held together by a multi-protein synaptic complex until they are ligated. Here, we use Xenopus laevis egg extract to investigate the role of the intrinsically disordered C-terminal tail of the XRCC4-like factor (XLF), a critical factor in end synapsis. We demonstrate that the XLF tail along with the Ku-binding motif (KBM) at the extreme C-terminus are required for end joining. Although the underlying sequence of the tail can be varied, a minimal tail length is required for NHEJ. Single-molecule FRET experiments that observe end synapsis in real-time show that this defect is due to a failure to closely align DNA ends. Our data supports a model in which a single C-terminal tail tethers XLF to Ku, while allowing XLF to form interactions with XRCC4 that enable synaptic complex formation.
Collapse
Affiliation(s)
- Sean M Carney
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Andrew T Moreno
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Sadie C Piatt
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Harvard Graduate Program in Biophysics, Harvard Medical SchoolBostonUnited States
| | - Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of HopeDuarteUnited States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of HopeDuarteUnited States
| | | | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of HopeDuarteUnited States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of HopeDuarteUnited States
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
47
|
Thapar R, Wang JL, Hammel M, Ye R, Liang K, Sun C, Hnizda A, Liang S, Maw SS, Lee L, Villarreal H, Forrester I, Fang S, Tsai MS, Blundell TL, Davis AJ, Lin C, Lees-Miller SP, Strick TR, Tainer J. Mechanism of efficient double-strand break repair by a long non-coding RNA. Nucleic Acids Res 2020; 48:10953-10972. [PMID: 33045735 PMCID: PMC7641761 DOI: 10.1093/nar/gkaa784] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Mechanistic studies in DNA repair have focused on roles of multi-protein DNA complexes, so how long non-coding RNAs (lncRNAs) regulate DNA repair is less well understood. Yet, lncRNA LINP1 is over-expressed in multiple cancers and confers resistance to ionizing radiation and chemotherapeutic drugs. Here, we unveil structural and mechanistic insights into LINP1's ability to facilitate non-homologous end joining (NHEJ). We characterized LINP1 structure and flexibility and analyzed interactions with the NHEJ factor Ku70/Ku80 (Ku) and Ku complexes that direct NHEJ. LINP1 self-assembles into phase-separated condensates via RNA-RNA interactions that reorganize to form filamentous Ku-containing aggregates. Structured motifs in LINP1 bind Ku, promoting Ku multimerization and stabilization of the initial synaptic event for NHEJ. Significantly, LINP1 acts as an effective proxy for PAXX. Collective results reveal how lncRNA effectively replaces a DNA repair protein for efficient NHEJ with implications for development of resistance to cancer therapy.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing L Wang
- Ecole Normale Supérieure, IBENS, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Ruiqiong Ye
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Alberta, T2N 4N1, Canada
| | - Ke Liang
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Chengcao Sun
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ales Hnizda
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Shikang Liang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Su S Maw
- Biological Systems and Bioengineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Linda Lee
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Alberta, T2N 4N1, Canada
| | | | - Isaac Forrester
- CryoEM Core at Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shujuan Fang
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Alberta, T2N 4N1, Canada
| | - Miaw-Sheue Tsai
- Biological Systems and Bioengineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Anthony J Davis
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Alberta, T2N 4N1, Canada
| | - Terence R Strick
- Ecole Normale Supérieure, IBENS, CNRS, INSERM, PSL Research University, Paris 75005, France
- Programme “Equipe Labellisée’’, Ligue Nationale Contre le Cancer, Paris 75005, France
| | - John A Tainer
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
48
|
Gaullier G, Roberts G, Muthurajan UM, Bowerman S, Rudolph J, Mahadevan J, Jha A, Rae PS, Luger K. Bridging of nucleosome-proximal DNA double-strand breaks by PARP2 enhances its interaction with HPF1. PLoS One 2020; 15:e0240932. [PMID: 33141820 PMCID: PMC7608914 DOI: 10.1371/journal.pone.0240932] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Poly(ADP-ribose) Polymerase 2 (PARP2) is one of three DNA-dependent PARPs involved in the detection of DNA damage. Upon binding to DNA double-strand breaks, PARP2 uses nicotinamide adenine dinucleotide to synthesize poly(ADP-ribose) (PAR) onto itself and other proteins, including histones. PAR chains in turn promote the DNA damage response by recruiting downstream repair factors. These early steps of DNA damage signaling are relevant for understanding how genome integrity is maintained and how their failure leads to genome instability or cancer. There is no structural information on DNA double-strand break detection in the context of chromatin. Here we present a cryo-EM structure of two nucleosomes bridged by human PARP2 and confirm that PARP2 bridges DNA ends in the context of nucleosomes bearing short linker DNA. We demonstrate that the conformation of PARP2 bound to damaged chromatin provides a binding platform for the regulatory protein Histone PARylation Factor 1 (HPF1), and that the resulting HPF1•PARP2•nucleosome complex is enzymatically active. Our results contribute to a structural view of the early steps of the DNA damage response in chromatin.
Collapse
Affiliation(s)
- Guillaume Gaullier
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Genevieve Roberts
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Uma M. Muthurajan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Samuel Bowerman
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Jyothi Mahadevan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Asmita Jha
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Purushka S. Rae
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
49
|
The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21:765-781. [PMID: 33077885 DOI: 10.1038/s41580-020-00297-8] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps.
Collapse
|
50
|
Britton S, Chanut P, Delteil C, Barboule N, Frit P, Calsou P. ATM antagonizes NHEJ proteins assembly and DNA-ends synapsis at single-ended DNA double strand breaks. Nucleic Acids Res 2020; 48:9710-9723. [PMID: 32890395 PMCID: PMC7515714 DOI: 10.1093/nar/gkaa723] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Two DNA repair pathways operate at DNA double strand breaks (DSBs): non-homologous end-joining (NHEJ), that requires two adjacent DNA ends for ligation, and homologous recombination (HR), that resects one DNA strand for invasion of a homologous duplex. Faithful repair of replicative single-ended DSBs (seDSBs) is mediated by HR, due to the lack of a second DNA end for end-joining. ATM stimulates resection at such breaks through multiple mechanisms including CtIP phosphorylation, which also promotes removal of the DNA-ends sensor and NHEJ protein Ku. Here, using a new method for imaging the recruitment of the Ku partner DNA-PKcs at DSBs, we uncover an unanticipated role of ATM in removing DNA-PKcs from seDSBs in human cells. Phosphorylation of DNA-PKcs on the ABCDE cluster is necessary not only for DNA-PKcs clearance but also for the subsequent MRE11/CtIP-dependent release of Ku from these breaks. We propose that at seDSBs, ATM activity is necessary for the release of both Ku and DNA-PKcs components of the NHEJ apparatus, and thereby prevents subsequent aberrant interactions between seDSBs accompanied by DNA-PKcs autophosphorylation and detrimental commitment to Lig4-dependent end-joining.
Collapse
Affiliation(s)
- Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Pauline Chanut
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Christine Delteil
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Nadia Barboule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Philippe Frit
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| |
Collapse
|