1
|
Kim J, Wang H, Ercan S. Cohesin organizes 3D DNA contacts surrounding active enhancers in C. elegans. Genome Res 2025; 35:1108-1123. [PMID: 40210441 PMCID: PMC12047539 DOI: 10.1101/gr.279365.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 02/15/2025] [Indexed: 04/12/2025]
Abstract
In mammals, cohesin and CTCF organize the 3D genome into topologically associating domains (TADs) to regulate communication between cis-regulatory elements. Many organisms, including S. cerevisiae, C. elegans, and A. thaliana contain cohesin but lack CTCF. Here, we used C. elegans to investigate the function of cohesin in 3D genome organization in the absence of CTCF. Using Hi-C data, we observe cohesin-dependent features called "fountains," which have also been reported in zebrafish and mice. These are population average reflections of DNA loops originating from distinct genomic regions and are ∼20-40 kb in C. elegans Hi-C analysis upon cohesin and WAPL-1 depletion supports the idea that cohesin is preferentially loaded at sites bound by the C. elegans ortholog of NIPBL and loop extrudes in an effectively two-sided manner. ChIP-seq analyses show that cohesin translocation along the fountain trajectory depends on a fully intact complex and is extended upon WAPL-1 depletion. Hi-C contact patterns at individual fountains suggest that cohesin processivity is unequal on each side, possibly owing to collision with cohesin loaded from surrounding sites. The putative cohesin loading sites are closest to active enhancers, and fountain strength is associated with transcription. Compared with mammals, the average processivity of C. elegans cohesin is about 10-fold shorter, and the binding of NIPBL ortholog does not depend on cohesin. We propose that preferential loading and loop extrusion by cohesin is an evolutionarily conserved mechanism that regulates the 3D interactions of enhancers in animal genomes.
Collapse
Affiliation(s)
- Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Haoyu Wang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
2
|
Mazzuoli MV, van Raaphorst R, Martin L, Bock F, Thierry A, Marbouty M, Waclawiková B, Stinenbosch J, Koszul R, Veening JW. HU promotes higher order chromosome organization and influences DNA replication rates in Streptococcus pneumoniae. Nucleic Acids Res 2025; 53:gkaf312. [PMID: 40263708 PMCID: PMC12014288 DOI: 10.1093/nar/gkaf312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Nucleoid-associated proteins (NAPs) are crucial for maintaining chromosomal compaction and architecture, and are actively involved in DNA replication, recombination, repair, and gene regulation. In Streptococcus pneumoniae, the role of the highly conserved NAP HU in chromosome conformation has not yet been investigated. Here, we use a multi-scale approach to explore HU's role in chromosome conformation and segregation dynamics. By combining superresolution microscopy and whole-genome-binding analysis, we describe the nucleoid as a dynamic structure where HU binds transiently across the entire nucleoid, with a preference for the origin of replication over the terminus. Reducing cellular HU levels impacts nucleoid maintenance and disrupts nucleoid scaling with cell size, similar to the distortion caused by fluoroquinolones, supporting its requirement for maintaining DNA supercoiling. Furthermore, in cells lacking HU, the replication machinery is misplaced, preventing cells from initiating and proceeding with ongoing replication. Chromosome conformation capture coupled to deep sequencing (Hi-C) revealed that HU is required to maintain cohesion between the two chromosomal arms, similar to the structural maintenance of chromosome complex. Together, we show that by promoting long-range chromosome interactions and supporting the architecture of the domain encompassing the origin, HU is essential for chromosome integrity and the intimately related processes of replication and segregation.
Collapse
Affiliation(s)
- Maria-Vittoria Mazzuoli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Renske van Raaphorst
- Department of Molecular Microbiology, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, 9747, The Netherlands
| | - Louise S Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Florian P Bock
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, 75015, France
| | - Martial Marbouty
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, 75015, France
| | - Barbora Waclawiková
- Department of Molecular Microbiology, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, 9747, The Netherlands
| | - Jasper Stinenbosch
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, 75015, France
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| |
Collapse
|
3
|
Samejima K, Gibcus JH, Abraham S, Cisneros-Soberanis F, Samejima I, Beckett AJ, Pučeková N, Abad MA, Spanos C, Medina-Pritchard B, Paulson JR, Xie L, Jeyaprakash AA, Prior IA, Mirny LA, Dekker J, Goloborodko A, Earnshaw WC. Rules of engagement for condensins and cohesins guide mitotic chromosome formation. Science 2025; 388:eadq1709. [PMID: 40208986 DOI: 10.1126/science.adq1709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/25/2024] [Indexed: 04/12/2025]
Abstract
We used Hi-C, imaging, proteomics, and polymer modeling to define rules of engagement for SMC (structural maintenance of chromosomes) complexes as cells refold interphase chromatin into rod-shaped mitotic chromosomes. First, condensin disassembles interphase chromatin loop organization by evicting or displacing extrusive cohesin. Second, condensin bypasses cohesive cohesins, thereby maintaining sister chromatid cohesion as sisters separate. Studies of mitotic chromosomes formed by cohesin, condensin II, and condensin I alone or in combination lead to refined models of mitotic chromosome conformation. In these models, loops are consecutive and not overlapping, implying that condensins stall upon encountering each other. The dynamics of Hi-C interactions and chromosome morphology reveal that during prophase, loops are extruded in vivo at ∼1 to 3 kilobases per second by condensins as they form a disordered discontinuous helical scaffold within individual chromatids.
Collapse
Affiliation(s)
- Kumiko Samejima
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Johan H Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sameer Abraham
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Itaru Samejima
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Alison J Beckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Nina Pučeková
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Maria Alba Abad
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Christos Spanos
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - James R Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, WI, USA
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, WI, USA
| | - A Arockia Jeyaprakash
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ian A Prior
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | |
Collapse
|
4
|
Zhao H, Shu L, Qin S, Lyu F, Liu F, Lin E, Xia S, Wang B, Wang M, Shan F, Lin Y, Zhang L, Gu Y, Blobel GA, Huang K, Zhang H. Extensive mutual influences of SMC complexes shape 3D genome folding. Nature 2025; 640:543-553. [PMID: 40011778 DOI: 10.1038/s41586-025-08638-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/13/2025] [Indexed: 02/28/2025]
Abstract
Mammalian genomes are folded through the distinct actions of structural maintenance of chromosome (SMC) complexes, which include the chromatin loop-extruding cohesin (extrusive cohesin), the sister chromatid cohesive cohesin and the mitotic chromosome-associated condensins1-3. Although these complexes function at different stages of the cell cycle, they exist together on chromatin during the G2-to-M phase transition, when the genome structure undergoes substantial reorganization1,2. Yet, how the different SMC complexes affect each other and how their interactions orchestrate the dynamic folding of the three-dimensional genome remain unclear. Here we engineered all possible cohesin and condensin configurations on mitotic chromosomes to delineate the concerted, mutually influential action of SMC complexes. We show that condensin disrupts the binding of extrusive cohesin at CCCTC-binding factor (CTCF) sites, thereby promoting the disassembly of interphase topologically associating domains (TADs) and loops during mitotic progression. Conversely, extrusive cohesin impedes condensin-mediated mitotic chromosome spiralization. Condensin reduces peaks of cohesive cohesin, whereas cohesive cohesin antagonizes condensin-mediated longitudinal shortening of mitotic chromosomes. The presence of both extrusive and cohesive cohesin synergizes these effects and inhibits mitotic chromosome condensation. Extrusive cohesin positions cohesive cohesin at CTCF-binding sites. However, cohesive cohesin by itself cannot be arrested by CTCF molecules and is insufficient to establish TADs or loops. Moreover, it lacks loop-extrusion capacity, which indicates that cohesive cohesin has nonoverlapping functions with extrusive cohesin. Finally, cohesive cohesin restricts chromatin loop expansion mediated by extrusive cohesin. Collectively, our data describe a three-way interaction among major SMC complexes that dynamically modulates chromatin architecture during cell cycle progression.
Collapse
Affiliation(s)
- Han Zhao
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Lirong Shu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, China
| | - Shiyi Qin
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Fangxuan Lyu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Fuhai Liu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - En Lin
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Sijian Xia
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- Capital Medical University, Beijing, China
| | - Baiyue Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Manzhu Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- Capital Medical University, Beijing, China
| | - Fengnian Shan
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- South China University of Technology, Guangzhou, China
| | - Yinzhi Lin
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, China
| | - Lin Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Biological Science, Hong Kong University, Hong Kong, China
| | - Yufei Gu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
5
|
Joesaar A, Holub M, Lutze L, Emanuele M, Kerssemakers J, Pabst M, Dekker C. A microfluidic platform for extraction and analysis of bacterial genomic DNA. LAB ON A CHIP 2025; 25:1767-1775. [PMID: 40026014 PMCID: PMC11873781 DOI: 10.1039/d4lc00839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Bacterial cells organize their genomes into a compact hierarchical structure called the nucleoid. Studying the nucleoid in cells faces challenges because of the cellular complexity while in vitro assays have difficulty in handling the fragile megabase-scale DNA biopolymers that make up bacterial genomes. Here, we introduce a method that overcomes these limitations as we develop and use a microfluidic device for the sequential extraction, purification, and analysis of bacterial nucleoids in individual microchambers. Our approach avoids any transfer or pipetting of the fragile megabase-size genomes and thereby prevents their fragmentation. We show how the microfluidic system can be used to extract and analyze single chromosomes from B. subtilis cells. Upon on-chip lysis, the bacterial genome expands in size and DNA-binding proteins are flushed away. Subsequently, exogeneous proteins can be added to the trapped DNA via diffusion. We envision that integrated microfluidic platforms will become an essential tool for the bottom-up assembly of complex biomolecular systems such as artificial chromosomes.
Collapse
Affiliation(s)
- Alex Joesaar
- Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Martin Holub
- Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Leander Lutze
- Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Marco Emanuele
- Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Jacob Kerssemakers
- Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Martin Pabst
- Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Cees Dekker
- Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
6
|
Liao Q, Brandão HB, Ren Z, Wang X. Replisomes restrict SMC-mediated DNA-loop extrusion in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639750. [PMID: 40027636 PMCID: PMC11870623 DOI: 10.1101/2025.02.23.639750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Structural maintenance of chromosomes (SMC) complexes organize genomes by extruding DNA loops, while replisomes duplicate entire chromosomes. These essential molecular machines must collide frequently in every cell cycle, yet how such collisions are resolved in vivo remains poorly understood. Taking advantage of the ability to load SMC complexes at defined sites in the Bacillus subtilis genome, we engineered head-on and head-to-tail collisions between SMC complexes and the replisome. Replisome progression was monitored by marker frequency analysis, and SMC translocation was monitored by time-resolved ChIP-seq and Hi-C. We found that SMC complexes do not impede replisome progression. By contrast, replisomes restrict SMC translocation regardless of collision orientations. Combining experimental data with simulations, we determined that SMC complexes are blocked by the replisome and then released from the chromosome. Occasionally, SMC complexes can bypass the replisome and continue translocating. Our findings establish that the replisome is a barrier to SMC-mediated DNA-loop extrusion in vivo , with implications for processes such as chromosome segregation, DNA repair, and gene regulation that require dynamic chromosome organization in all organisms.
Collapse
|
7
|
Tsukamoto S, Mofrad MRK. Bridging scales in chromatin organization: Computational models of loop formation and their implications for genome function. J Chem Phys 2025; 162:054122. [PMID: 39918128 DOI: 10.1063/5.0232328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 05/08/2025] Open
Abstract
Chromatin loop formation plays a crucial role in 3D genome interactions, with misfolding potentially leading to irregular gene expression and various diseases. While experimental tools such as Hi-C have advanced our understanding of genome interactions, the biophysical principles underlying chromatin loop formation remain elusive. This review examines computational approaches to chromatin folding, focusing on polymer models that elucidate chromatin loop mechanics. We discuss three key models: (1) the multi-loop-subcompartment model, which investigates the structural effects of loops on chromatin conformation; (2) the strings and binders switch model, capturing thermodynamic chromatin aggregation; and (3) the loop extrusion model, revealing the role of structural maintenance of chromosome complexes. In addition, we explore advanced models that address chromatin clustering heterogeneity in biological processes and disease progression. The review concludes with an outlook on open questions and current trends in chromatin loop formation and genome interactions, emphasizing the physical and computational challenges in the field.
Collapse
Affiliation(s)
- Shingo Tsukamoto
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall, Berkeley, California 94720-1762, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall, Berkeley, California 94720-1762, USA
- Molecular Biophysics and Integrative BioImaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Rutkauskas M, Kim E. In vitro dynamics of DNA loop extrusion by structural maintenance of chromosomes complexes. Curr Opin Genet Dev 2025; 90:102284. [PMID: 39591812 DOI: 10.1016/j.gde.2024.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Genomic DNA inside the cell's nucleus is highly organized and tightly controlled by the structural maintenance of chromosomes (SMC) protein complexes. These complexes fold genomes by creating and processively enlarging loops, a process called loop extrusion. After more than a decade of accumulating indirect evidence, recent in vitro single-molecule studies confirmed loop extrusion as an evolutionarily conserved function among eukaryotic and prokaryotic SMCs. These studies further provided important insights into mechanisms and regulations of these universal molecular machines, which will be discussed in this minireview.
Collapse
Affiliation(s)
- Marius Rutkauskas
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Eugene Kim
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Ren Z, Way LE, Wang X. SMC translocation is unaffected by an excess of nucleoid associated proteins in vivo. Sci Rep 2025; 15:2447. [PMID: 39828741 PMCID: PMC11743769 DOI: 10.1038/s41598-025-86946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
Genome organization is important for DNA replication, gene expression, and chromosome segregation. In bacteria, two large families of proteins, nucleoid-associated proteins (NAPs) and SMC complexes, play important roles in organizing the genome. NAPs are highly abundant DNA-binding proteins that can bend, wrap, bridge, and compact DNA, while SMC complexes load onto the chromosome, translocate on the DNA, and extrude DNA loops. Although SMC complexes are capable of traversing the entire chromosome bound by various NAPs in vivo, it is unclear whether SMC translocation is influenced by NAPs. In this study, using Bacillus subtilis as a model system, we expressed a collection of representative bacterial and archaeal DNA-binding proteins that introduce distinct DNA structures and potentially pose different challenges for SMC movement. By fluorescence microscopy and chromatin immunoprecipitation, we observed that these proteins bound to the genome in characteristic manners. Using genome-wide chromosome conformation capture (Hi-C) assays, we found that the SMC complex traversed these DNA-binding proteins without slowing down. Our findings revealed that the DNA-loop-extruding activity of the SMC complex is unaffected by exogenously expressed DNA-binding proteins, which highlights the robustness of SMC motors on the busy chromatin.
Collapse
Affiliation(s)
- Zhongqing Ren
- Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lindsey E Way
- Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA
| | - Xindan Wang
- Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA.
| |
Collapse
|
10
|
Zhegalova I, Ulianov S, Galitsyna A, Pletenev I, Tsoy O, Luzhin A, Vasiluev P, Bulavko E, Ivankov D, Gavrilov A, Khrameeva E, Gelfand M, Razin S. Convergent pairs of highly transcribed genes restrict chromatin looping in Dictyostelium discoideum. Nucleic Acids Res 2025; 53:gkaf006. [PMID: 39844457 PMCID: PMC11754127 DOI: 10.1093/nar/gkaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Dictyostelium discoideum is a unicellular slime mold, developing into a multicellular fruiting body upon starvation. Development is accompanied by large-scale shifts in gene expression program, but underlying features of chromatin spatial organization remain unknown. Here, we report that the Dictyostelium 3D genome is organized into positionally conserved, largely consecutive, non-hierarchical and weakly insulated loops at the onset of multicellular development. The transcription level within the loop interior tends to be higher than in adjacent regions. Loop interiors frequently contain functionally linked genes and genes which coherently change expression level during development. Loop anchors are predominantly positioned by the genes in convergent orientation. Results of polymer simulations and Hi-C-based observations suggest that the loop profile may arise from the interplay between transcription and extrusion-driven chromatin folding. In this scenario, a convergent gene pair serves as a bidirectional extrusion barrier or a 'diode' that controls passage of the cohesin extruder by relative transcription level of paired genes.
Collapse
Affiliation(s)
- Irina V Zhegalova
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Sergey V Ulianov
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, 119991 Moscow, Russia
| | - Aleksandra A Galitsyna
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Ilya A Pletenev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Olga V Tsoy
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Artem V Luzhin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Petr A Vasiluev
- Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia
| | - Egor S Bulavko
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Dmitry N Ivankov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Alexey A Gavrilov
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Ekaterina E Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Mikhail S Gelfand
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Sergey V Razin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, 119991 Moscow, Russia
| |
Collapse
|
11
|
Harju J, Messelink JJB, Broedersz CP. Multicontact statistics distinguish models of chromosome organization. Phys Rev E 2025; 111:014403. [PMID: 39972883 DOI: 10.1103/physreve.111.014403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/28/2024] [Indexed: 02/21/2025]
Abstract
Chromosome organization can be modeled using various approaches, ranging from mechanistic bottom-up models to models inferred directly from experimental data. Many such models can recapitulate experimental Hi-C data for pairwise contact probabilities, meaning that these data cannot always be used to distinguish different models. Here, we consider two illustrative example models for bacterial chromosome organization: one a bottom-up model for loop extrusion, the other a data-driven maximum entropy model inferred from Hi-C data. We find that despite predicting similar pairwise contact frequencies, the models predict qualitatively different features on three-point contact maps. We explain these differences by constructing analytical approximations for three-point contact probabilities in each model. Finally, we apply our analytical approximations to previously published experimental multicontact data from human chromosomes, and find that these data are well described by the loop extruder approximation. Our work illustrates how multicontact statistics can be used to compare and test models for chromosome organization.
Collapse
Affiliation(s)
- Janni Harju
- Vrije Universiteit Amsterdam, Department of Physics and Astronomy, 1081 HV Amsterdam, The Netherlands
| | - Joris J B Messelink
- Ludwig-Maximilian-University Munich, Theresienstr., Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, 37, D-80333 Munich, Germany
| | - Chase P Broedersz
- Vrije Universiteit Amsterdam, Department of Physics and Astronomy, 1081 HV Amsterdam, The Netherlands
- Ludwig-Maximilian-University Munich, Theresienstr., Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, 37, D-80333 Munich, Germany
| |
Collapse
|
12
|
Dekker J, Mirny LA. The chromosome folding problem and how cells solve it. Cell 2024; 187:6424-6450. [PMID: 39547207 PMCID: PMC11569382 DOI: 10.1016/j.cell.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Every cell must solve the problem of how to fold its genome. We describe how the folded state of chromosomes is the result of the combined activity of multiple conserved mechanisms. Homotypic affinity-driven interactions lead to spatial partitioning of active and inactive loci. Molecular motors fold chromosomes through loop extrusion. Topological features such as supercoiling and entanglements contribute to chromosome folding and its dynamics, and tethering loci to sub-nuclear structures adds additional constraints. Dramatically diverse chromosome conformations observed throughout the cell cycle and across the tree of life can be explained through differential regulation and implementation of these basic mechanisms. We propose that the first functions of chromosome folding are to mediate genome replication, compaction, and segregation and that mechanisms of folding have subsequently been co-opted for other roles, including long-range gene regulation, in different conditions, cell types, and species.
Collapse
Affiliation(s)
- Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
13
|
Prevo B, Earnshaw WC. DNA packaging by molecular motors: from bacteriophage to human chromosomes. Nat Rev Genet 2024; 25:785-802. [PMID: 38886215 DOI: 10.1038/s41576-024-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Dense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells. Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes.
Collapse
Affiliation(s)
- Bram Prevo
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
14
|
Kim J, Wang H, Ercan S. Cohesin organizes 3D DNA contacts surrounding active enhancers in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558239. [PMID: 37786717 PMCID: PMC10541618 DOI: 10.1101/2023.09.18.558239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
In mammals, cohesin and CTCF organize the 3D genome into topologically associated domains (TADs) to regulate communication between cis-regulatory elements. Many organisms, including S. cerevisiae, C. elegans, and A. thaliana contain cohesin but lack CTCF. Here, we used C. elegans to investigate the function of cohesin in 3D genome organization in the absence of CTCF. Using Hi-C data, we observe cohesin-dependent features called "fountains", which are also reported in zebrafish and mice. These are population average reflections of DNA loops originating from distinct genomic regions and are ~20-40 kb in C. elegans. Hi-C analysis upon cohesin and WAPL depletion support the idea that cohesin is preferentially loaded at NIPBL occupied sites and loop extrudes in an effectively two-sided manner. ChIP-seq analyses show that cohesin translocation along the fountain trajectory depends on a fully intact complex and is extended upon WAPL-1 depletion. Hi-C contact patterns at individual fountains suggest that cohesin processivity is unequal on each side, possibly due to collision with cohesin loaded from surrounding sites. The putative cohesin loading sites are closest to active enhancers and fountain strength is associated with transcription. Compared to mammals, average processivity of C. elegans cohesin is ~10-fold shorter and NIPBL binding does not depend on cohesin. We propose that preferential loading and loop extrusion by cohesin is an evolutionarily conserved mechanism that regulates the 3D interactions of enhancers in animal genomes.
Collapse
Affiliation(s)
- Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Haoyu Wang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
15
|
Bułacz H, Hołówka J, Wójcik W, Zakrzewska-Czerwińska J. MksB is a novel mycobacterial condensin that orchestrates spatiotemporal positioning of replication machinery. Sci Rep 2024; 14:19026. [PMID: 39152186 PMCID: PMC11329512 DOI: 10.1038/s41598-024-70054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Condensins play important roles in maintaining bacterial chromatin integrity. In mycobacteria, three types of condensins have been characterized: a homolog of SMC and two MksB-like proteins, the recently identified MksB and EptC. Previous studies suggest that EptC contributes to defending against foreign DNA, while SMC and MksB may play roles in chromosome organization. Here, we report for the first time that the condensins, SMC and MksB, are involved in various DNA transactions during the cell cycle of Mycobacterium smegmatis (currently named Mycolicibacterium smegmatis). SMC appears to be required during the last steps of the cell cycle, where it contributes to sister chromosome separation. Intriguingly, in contrast to other bacteria, mycobacterial MksB follows replication forks during chromosome replication and hence may be involved in organizing newly replicated DNA.
Collapse
Affiliation(s)
- Hanna Bułacz
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Joanna Hołówka
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland.
| | - Wiktoria Wójcik
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
16
|
Battaglia C, Michieletto D. Loops are geometric catalysts for DNA integration. Nucleic Acids Res 2024; 52:8184-8192. [PMID: 38864388 DOI: 10.1093/nar/gkae484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
The insertion of DNA elements within genomes underpins both genetic diversity and disease when unregulated. Most of DNA insertions are not random and the physical mechanisms underlying the integration site selection are poorly understood. Here, we perform Molecular Dynamics simulations to study the insertion of DNA elements, such as viral DNA or transposons, into naked DNA or chromatin substrates. More specifically, we explore the role of loops within the polymeric substrate and discover that they act as 'geometric catalysts' for DNA integration by reducing the energy barrier for substrate deformation. Additionally, we discover that the 1D pattern and 3D conformation of loops have a marked effect on the distribution of integration sites. Finally, we show that loops may compete with nucleosomes to attract DNA integrations. These results may be tested in vitro and they may help to understand patterns of DNA insertions with implications in genome evolution and engineering.
Collapse
Affiliation(s)
- Cleis Battaglia
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
17
|
Harju J, van Teeseling MCF, Broedersz CP. Loop-extruders alter bacterial chromosome topology to direct entropic forces for segregation. Nat Commun 2024; 15:4618. [PMID: 38816445 PMCID: PMC11139863 DOI: 10.1038/s41467-024-49039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Entropic forces have been argued to drive bacterial chromosome segregation during replication. In many bacterial species, however, specifically evolved mechanisms, such as loop-extruding SMC complexes and the ParABS origin segregation system, contribute to or are even required for chromosome segregation, suggesting that entropic forces alone may be insufficient. The interplay between and the relative contributions of these segregation mechanisms remain unclear. Here, we develop a biophysical model showing that purely entropic forces actually inhibit bacterial chromosome segregation until late replication stages. By contrast, our model reveals that loop-extruders loaded at the origins of replication, as observed in many bacterial species, alter the effective topology of the chromosome, thereby redirecting and enhancing entropic forces to enable accurate chromosome segregation during replication. We confirm our model predictions with polymer simulations: purely entropic forces do not allow for concurrent replication and segregation, whereas entropic forces steered by specifically loaded loop-extruders lead to robust, global chromosome segregation during replication. Finally, we show how loop-extruders can complement locally acting origin separation mechanisms, such as the ParABS system. Together, our results illustrate how changes in the geometry and topology of the polymer, induced by DNA-replication and loop-extrusion, impact the organization and segregation of bacterial chromosomes.
Collapse
Affiliation(s)
- Janni Harju
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Muriel C F van Teeseling
- Junior research group Prokaryotic Cell Biology, Department for Microbial Interactions, Institute of Microbiology, Friedrich-Schiller-Universität, Jena, Germany
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Munich, Germany.
| |
Collapse
|
18
|
Tišma M, Bock FP, Kerssemakers J, Antar H, Japaridze A, Gruber S, Dekker C. Direct observation of a crescent-shape chromosome in expanded Bacillus subtilis cells. Nat Commun 2024; 15:2737. [PMID: 38548820 PMCID: PMC10979009 DOI: 10.1038/s41467-024-47094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume. We show that the chromosomes predominantly exhibit crescent shapes with a non-uniform DNA density that is increased near the origin of replication (oriC). Additionally, we localized ParB and BsSMC proteins - the key drivers of chromosomal organization - along the contour of the crescent chromosome, showing the highest density near oriC. Opening of the BsSMC ring complex disrupted the crescent chromosome shape and instead yielded a torus shape. These findings help to understand the threedimensional organization of the chromosome and the main protein complexes that underlie its structure.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Florian Patrick Bock
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jacob Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Hammam Antar
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.
| |
Collapse
|
19
|
Seba M, Boccard F, Duigou S. Activity of MukBEF for chromosome management in E. coli and its inhibition by MatP. eLife 2024; 12:RP91185. [PMID: 38315099 PMCID: PMC10945525 DOI: 10.7554/elife.91185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes share conserved structures and serve a common role in maintaining chromosome architecture. In the bacterium Escherichia coli, the SMC complex MukBEF is necessary for rapid growth and the accurate segregation and positioning of the chromosome, although the specific molecular mechanisms involved are still unknown. Here, we used a number of in vivo assays to reveal how MukBEF controls chromosome conformation and how the MatP/matS system prevents MukBEF activity. Our results indicate that the loading of MukBEF occurs preferentially on newly replicated DNA, at multiple loci on the chromosome where it can promote long-range contacts in cis even though MukBEF can promote long-range contacts in the absence of replication. Using Hi-C and ChIP-seq analyses in strains with rearranged chromosomes, the prevention of MukBEF activity increases with the number of matS sites and this effect likely results from the unloading of MukBEF by MatP. Altogether, our results reveal how MukBEF operates to control chromosome folding and segregation in E. coli.
Collapse
Affiliation(s)
- Mohammed Seba
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Frederic Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Stéphane Duigou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Liu T, Qiu QT, Hua KJ, Ma BG. Chromosome structure modeling tools and their evaluation in bacteria. Brief Bioinform 2024; 25:bbae044. [PMID: 38385874 PMCID: PMC10883143 DOI: 10.1093/bib/bbae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The three-dimensional (3D) structure of bacterial chromosomes is crucial for understanding chromosome function. With the growing availability of high-throughput chromosome conformation capture (3C/Hi-C) data, the 3D structure reconstruction algorithms have become powerful tools to study bacterial chromosome structure and function. It is highly desired to have a recommendation on the chromosome structure reconstruction tools to facilitate the prokaryotic 3D genomics. In this work, we review existing chromosome 3D structure reconstruction algorithms and classify them based on their underlying computational models into two categories: constraint-based modeling and thermodynamics-based modeling. We briefly compare these algorithms utilizing 3C/Hi-C datasets and fluorescence microscopy data obtained from Escherichia coli and Caulobacter crescentus, as well as simulated datasets. We discuss current challenges in the 3D reconstruction algorithms for bacterial chromosomes, primarily focusing on software usability. Finally, we briefly prospect future research directions for bacterial chromosome structure reconstruction algorithms.
Collapse
Affiliation(s)
- Tong Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin-Tian Qiu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang-Jian Hua
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin-Guang Ma
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Tišma M, Janissen R, Antar H, Martin-Gonzalez A, Barth R, Beekman T, van der Torre J, Michieletto D, Gruber S, Dekker C. Dynamic ParB-DNA interactions initiate and maintain a partition condensate for bacterial chromosome segregation. Nucleic Acids Res 2023; 51:11856-11875. [PMID: 37850647 PMCID: PMC10681803 DOI: 10.1093/nar/gkad868] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
In most bacteria, chromosome segregation is driven by the ParABS system where the CTPase protein ParB loads at the parS site to trigger the formation of a large partition complex. Here, we present in vitro studies of the partition complex for Bacillus subtilis ParB, using single-molecule fluorescence microscopy and AFM imaging to show that transient ParB-ParB bridges are essential for forming DNA condensates. Molecular Dynamics simulations confirm that condensation occurs abruptly at a critical concentration of ParB and show that multimerization is a prerequisite for forming the partition complex. Magnetic tweezer force spectroscopy on mutant ParB proteins demonstrates that CTP hydrolysis at the N-terminal domain is essential for DNA condensation. Finally, we show that transcribing RNA polymerases can steadily traverse the ParB-DNA partition complex. These findings uncover how ParB forms a stable yet dynamic partition complex for chromosome segregation that induces DNA condensation and segregation while enabling replication and transcription.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Hammam Antar
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alejandro Martin-Gonzalez
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Twan Beekman
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Stephan Gruber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
22
|
Yáñez-Cuna FO, Koszul R. Insights in bacterial genome folding. Curr Opin Struct Biol 2023; 82:102679. [PMID: 37604045 DOI: 10.1016/j.sbi.2023.102679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023]
Abstract
Chromosomes in all domains of life are well-defined structural entities with complex hierarchical organization. The regulation of this hierarchical organization and its functional interplay with gene expression or other chromosome metabolic processes such as repair, replication, or segregation is actively investigated in a variety of species, including prokaryotes. Bacterial chromosomes are typically gene-dense with few non-coding sequences and are organized into the nucleoid, a membrane-less compartment composed of DNA, RNA, and proteins (nucleoid-associated proteins or NAPs). The continuous improvement of imaging and genomic methods has put the organization of these Mb-long molecules at reach, allowing to disambiguate some of their highly dynamic properties and intertwined structural features. Here we review and discuss some of the recent advances in the field of bacterial chromosome organization.
Collapse
Affiliation(s)
- Fares Osam Yáñez-Cuna
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France.
| |
Collapse
|
23
|
Raffo A, Paulsen J. The shape of chromatin: insights from computational recognition of geometric patterns in Hi-C data. Brief Bioinform 2023; 24:bbad302. [PMID: 37646128 PMCID: PMC10516369 DOI: 10.1093/bib/bbad302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
The three-dimensional organization of chromatin plays a crucial role in gene regulation and cellular processes like deoxyribonucleic acid (DNA) transcription, replication and repair. Hi-C and related techniques provide detailed views of spatial proximities within the nucleus. However, data analysis is challenging partially due to a lack of well-defined, underpinning mathematical frameworks. Recently, recognizing and analyzing geometric patterns in Hi-C data has emerged as a powerful approach. This review provides a summary of algorithms for automatic recognition and analysis of geometric patterns in Hi-C data and their correspondence with chromatin structure. We classify existing algorithms on the basis of the data representation and pattern recognition paradigm they make use of. Finally, we outline some of the challenges ahead and promising future directions.
Collapse
Affiliation(s)
- Andrea Raffo
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Jonas Paulsen
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
24
|
Mirny LA. Chromosome and protein folding: In search for unified principles. Curr Opin Struct Biol 2023; 81:102610. [PMID: 37327690 DOI: 10.1016/j.sbi.2023.102610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 06/18/2023]
Abstract
Structural biology has traditionally focused on the structures of proteins, short nucleic acids, small molecules, and their complexes. However, it is now widely recognized that the 3D organization of chromosomes should also be included in this list, despite significant differences in scale and complexity of organization. Here we highlight some notable similarities between the folding processes that shape proteins and chromosomes. Both biomolecules are folded by two types of processes: the affinity-mediated interactions, and by active (ATP-dependent) processes. Both chromosome and proteins in vivo can have partially unstructured and non-equilibrium ensembles with yet to be understood functional roles. By analyzing these biological systems in parallel, we can uncover universal principles of biomolecular organization that transcend specific biopolymers.
Collapse
Affiliation(s)
- Leonid A Mirny
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Corsi F, Rusch E, Goloborodko A. Loop extrusion rules: the next generation. Curr Opin Genet Dev 2023; 81:102061. [PMID: 37354885 DOI: 10.1016/j.gde.2023.102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/26/2023]
Abstract
The interphase genome of vertebrates contains roughly 100 000 dynamic loops formed by cohesins. These loops are thought to play important roles in many functions, but their exact contribution in each case remains hotly disputed. The key challenge in studying these loops is the lack of a single experimental technique that could reliably and comprehensively visualize their locations and dynamics. Yet, we can infer them using theoretical models that integrate complementary experimental observations. Modeling proved instrumental in showing that cohesins form loops via extrusion. The loop extrusion model made numerous successful qualitative and quantitative predictions and inspired many experiments. However, it also demonstrated limited accuracy in predicting contact maps. Recent research suggests that the original model did not fully account for the intricate details of the mechanism of loop extrusion and its complex regulation. Here, we review the progress in visualizing extrusion and characterizing the cohesin cofactors. These discoveries can be summarized as 'rules' of cohesin movement along chromosomes and incorporated into the next generation of models. Such improved models will enable more accurate inferences of positions and dynamics of cohesin loops and generate better predictions for designing experiments.
Collapse
Affiliation(s)
- Flavia Corsi
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria. https://twitter.com/@flavia_corsi
| | - Emma Rusch
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria. https://twitter.com/@emma__rush
| | - Anton Goloborodko
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
26
|
Galitsyna A, Ulianov SV, Bykov NS, Veil M, Gao M, Perevoschikova K, Gelfand M, Razin SV, Mirny L, Onichtchouk D. Extrusion fountains are hallmarks of chromosome organization emerging upon zygotic genome activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.15.549120. [PMID: 37503128 PMCID: PMC10370019 DOI: 10.1101/2023.07.15.549120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The first activation of gene expression during development (zygotic genome activation, ZGA) is accompanied by massive changes in chromosome organization. The connection between these two processes remains unknown. Using Hi-C for zebrafish embryos, we found that chromosome folding starts by establishing "fountains", novel elements of chromosome organization, emerging selectively at enhancers upon ZGA. Using polymer simulations, we demonstrate that fountains can emerge as sites of targeted cohesin loading and require two-sided, yet desynchronized, loop extrusion. Specific loss of fountains upon loss of pioneer transcription factors that drive ZGA reveals a causal connection between enhancer activity and fountain formation. Finally, we show that fountains emerge in early Medaka and Xenopus embryos; moreover, we found cohesin-dependent fountain pattern on enhancers of mouse embryonic stem cells. Taken together, fountains are the first enhancer-specific elements of chromosome organization; they constitute starting points of chromosome folding during early development, likely serving as sites of targeted cohesin loading.
Collapse
Affiliation(s)
- Aleksandra Galitsyna
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergey V. Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai S. Bykov
- Institute for Information Transmission Problems (the Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
- Centro Nacional de Análisis Genómico (CNAG), Baldiri Reixac 4, Barcelona, 08028 Spain
| | - Marina Veil
- Department of Developmental Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Meijiang Gao
- Department of Developmental Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, Freiburg, 79104, Germany
| | - Kristina Perevoschikova
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Mikhail Gelfand
- Institute for Information Transmission Problems (the Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
| | - Sergey V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Leonid Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daria Onichtchouk
- Department of Developmental Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, Freiburg, 79104, Germany
- Koltzov Institute of Developmental Biology RAS, Moscow, 119991, Russia
| |
Collapse
|
27
|
Chan B, Rubinstein M. Theory of chromatin organization maintained by active loop extrusion. Proc Natl Acad Sci U S A 2023; 120:e2222078120. [PMID: 37253009 PMCID: PMC10266055 DOI: 10.1073/pnas.2222078120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/13/2023] [Indexed: 06/01/2023] Open
Abstract
The active loop extrusion hypothesis proposes that chromatin threads through the cohesin protein complex into progressively larger loops until reaching specific boundary elements. We build upon this hypothesis and develop an analytical theory for active loop extrusion which predicts that loop formation probability is a nonmonotonic function of loop length and describes chromatin contact probabilities. We validate our model with Monte Carlo and hybrid Molecular Dynamics-Monte Carlo simulations and demonstrate that our theory recapitulates experimental chromatin conformation capture data. Our results support active loop extrusion as a mechanism for chromatin organization and provide an analytical description of chromatin organization that may be used to specifically modify chromatin contact probabilities.
Collapse
Affiliation(s)
- Brian Chan
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - Michael Rubinstein
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27708
- Department of Chemistry, Duke University, Durham, NC27708
- Department of Physics, Duke University, Durham, NC27708
- Institute for Chemical Reaction Design and Discovery (World Premier International Research Center Initiative-ICReDD), Hokkaido University, Sapporo001-0021, Japan
| |
Collapse
|
28
|
Lamy-Besnier Q, Bignaud A, Garneau JR, Titecat M, Conti DE, Von Strempel A, Monot M, Stecher B, Koszul R, Debarbieux L, Marbouty M. Chromosome folding and prophage activation reveal specific genomic architecture for intestinal bacteria. MICROBIOME 2023; 11:111. [PMID: 37208714 PMCID: PMC10197239 DOI: 10.1186/s40168-023-01541-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/04/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Bacteria and their viruses, bacteriophages, are the most abundant entities of the gut microbiota, a complex community of microorganisms associated with human health and disease. In this ecosystem, the interactions between these two key components are still largely unknown. In particular, the impact of the gut environment on bacteria and their associated prophages is yet to be deciphered. RESULTS To gain insight into the activity of lysogenic bacteriophages within the context of their host genomes, we performed proximity ligation-based sequencing (Hi-C) in both in vitro and in vivo conditions on the 12 bacterial strains of the OMM12 synthetic bacterial community stably associated within mice gut (gnotobiotic mouse line OMM12). High-resolution contact maps of the chromosome 3D organization of the bacterial genomes revealed a wide diversity of architectures, differences between environments, and an overall stability over time in the gut of mice. The DNA contacts pointed at 3D signatures of prophages leading to 16 of them being predicted as functional. We also identified circularization signals and observed different 3D patterns between in vitro and in vivo conditions. Concurrent virome analysis showed that 11 of these prophages produced viral particles and that OMM12 mice do not carry other intestinal viruses. CONCLUSIONS The precise identification by Hi-C of functional and active prophages within bacterial communities will unlock the study of interactions between bacteriophages and bacteria across conditions (healthy vs disease). Video Abstract.
Collapse
Affiliation(s)
- Quentin Lamy-Besnier
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Amaury Bignaud
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Julian R Garneau
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France
| | - Marie Titecat
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, 59000, France
| | - Devon E Conti
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Alexandra Von Strempel
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France
| | - Bärbel Stecher
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site LMU Munich, Munich, Germany
| | - Romain Koszul
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France.
| | - Martial Marbouty
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
29
|
Yang JH, Brandão HB, Hansen AS. DNA double-strand break end synapsis by DNA loop extrusion. Nat Commun 2023; 14:1913. [PMID: 37024496 PMCID: PMC10079674 DOI: 10.1038/s41467-023-37583-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
DNA double-strand breaks (DSBs) occur every cell cycle and must be efficiently repaired. Non-homologous end joining (NHEJ) is the dominant pathway for DSB repair in G1-phase. The first step of NHEJ is to bring the two DSB ends back into proximity (synapsis). Although synapsis is generally assumed to occur through passive diffusion, we show that passive diffusion is unlikely to produce the synapsis speed observed in cells. Instead, we hypothesize that DNA loop extrusion facilitates synapsis. By combining experimentally constrained simulations and theory, we show that a simple loop extrusion model constrained by previous live-cell imaging data only modestly accelerates synapsis. Instead, an expanded loop extrusion model with targeted loading of loop extruding factors (LEFs), a small portion of long-lived LEFs, and LEF stabilization by boundary elements and DSB ends achieves fast synapsis with near 100% efficiency. We propose that loop extrusion contributes to DSB repair by mediating fast synapsis.
Collapse
Affiliation(s)
- Jin H Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA
| | - Hugo B Brandão
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.
- Illumina Inc., San Diego, CA, 92122, USA.
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.
| |
Collapse
|
30
|
Bremer E, Calteau A, Danchin A, Harwood C, Helmann JD, Médigue C, Palsson BO, Sekowska A, Vallenet D, Zuniga A, Zuniga C. A model industrial workhorse:
Bacillus subtilis
strain 168 and its genome after a quarter of a century. Microb Biotechnol 2023; 16:1203-1231. [PMID: 37002859 DOI: 10.1111/1751-7915.14257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The vast majority of genomic sequences are automatically annotated using various software programs. The accuracy of these annotations depends heavily on the very few manual annotation efforts that combine verified experimental data with genomic sequences from model organisms. Here, we summarize the updated functional annotation of Bacillus subtilis strain 168, a quarter century after its genome sequence was first made public. Since the last such effort 5 years ago, 1168 genetic functions have been updated, allowing the construction of a new metabolic model of this organism of environmental and industrial interest. The emphasis in this review is on new metabolic insights, the role of metals in metabolism and macromolecule biosynthesis, functions involved in biofilm formation, features controlling cell growth, and finally, protein agents that allow class discrimination, thus allowing maintenance management, and accuracy of all cell processes. New 'genomic objects' and an extensive updated literature review have been included for the sequence, now available at the International Nucleotide Sequence Database Collaboration (INSDC: AccNum AL009126.4).
Collapse
Affiliation(s)
- Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Alexandra Calteau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine Hong Kong University Pokfulam SAR Hong Kong China
| | - Colin Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute Newcastle University Baddiley Clark Building Newcastle upon Tyne UK
| | - John D. Helmann
- Department of Microbiology Cornell University Ithaca New York USA
| | - Claudine Médigue
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Bernhard O. Palsson
- Department of Bioengineering University of California San Diego La Jolla USA
| | | | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Abril Zuniga
- Department of Biology San Diego State University San Diego California USA
| | - Cristal Zuniga
- Bioinformatics and Medical Informatics Graduate Program San Diego State University San Diego California USA
| |
Collapse
|
31
|
Deng L, Zhao Z, Liu L, Zhong Z, Xie W, Zhou F, Xu W, Zhang Y, Deng Z, Sun Y. Dissection of 3D chromosome organization in Streptomyces coelicolor A3(2) leads to biosynthetic gene cluster overexpression. Proc Natl Acad Sci U S A 2023; 120:e2222045120. [PMID: 36877856 PMCID: PMC10242723 DOI: 10.1073/pnas.2222045120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
The soil-dwelling filamentous bacteria, Streptomyces, is widely known for its ability to produce numerous bioactive natural products. Despite many efforts toward their overproduction and reconstitution, our limited understanding of the relationship between the host's chromosome three dimension (3D) structure and the yield of the natural products escaped notice. Here, we report the 3D chromosome organization and its dynamics of the model strain, Streptomyces coelicolor, during the different growth phases. The chromosome undergoes a dramatic global structural change from primary to secondary metabolism, while some biosynthetic gene clusters (BGCs) form special local structures when highly expressed. Strikingly, transcription levels of endogenous genes are found to be highly correlated to the local chromosomal interaction frequency as defined by the value of the frequently interacting regions (FIREs). Following the criterion, an exogenous single reporter gene and even complex BGC can achieve a higher expression after being integrated into the chosen loci, which may represent a unique strategy to activate or enhance the production of natural products based on the local chromosomal 3D organization.
Collapse
Affiliation(s)
- Liang Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Zhihu Zhao
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing100071, China
| | - Lin Liu
- Epigenetic Division, Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan430075, China
| | - Zhiyu Zhong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Wenxinyu Xie
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Fan Zhou
- Epigenetic Division, Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan430075, China
| | - Wei Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Yubo Zhang
- Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| |
Collapse
|
32
|
Huang YF, Liu L, Wang F, Yuan XW, Chen HC, Liu ZF. High-Resolution 3D Genome Map of Brucella Chromosomes in Exponential and Stationary Phases. Microbiol Spectr 2023; 11:e0429022. [PMID: 36847551 PMCID: PMC10100373 DOI: 10.1128/spectrum.04290-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
The three-dimensional (3D) genome structure of an organism or cell is highly relevant to its biological activities, but the availability of 3D genome information for bacteria, especially intracellular pathogens, is still limited. Here, we used Hi-C (high-throughput chromosome conformation capture) technology to determine the 3D chromosome structures of exponential- and stationary-phase Brucella melitensis at a 1-kb resolution. We observed that the contact heat maps of the two B. melitensis chromosomes contain a prominent diagonal and a secondary diagonal. Then, 79 chromatin interaction domains (CIDs) were detected at an optical density at 600 nm (OD600) of 0.4 (exponential phase), with the longest CID being 106 kb and the shortest being 12 kb. Moreover, we obtained 49,363 significant cis-interaction loci and 59,953 significant trans-interaction loci. Meanwhile, 82 CIDs of B. melitensis at an OD600 of 1.5 (stationary phase) were detected, with the longest CID being 94 kb and the shortest being 16 kb. In addition, 25,965 significant cis-interaction loci and 35,938 significant trans-interaction loci were obtained in this phase. Furthermore, we found that as the B. melitensis cells grew from the logarithmic to the plateau phase, the frequency of short-range interactions increased, while that of long-range interactions decreased. Finally, combined analysis of 3D genome and whole-genome transcriptome (RNA-seq) data revealed that the strength of short-range interactions in Chr1 is specifically and strongly correlated with gene expression. Overall, our study provides a global view of the chromatin interactions in the B. melitensis chromosomes, which will serve as a resource for further study of the spatial regulation of gene expression in Brucella. IMPORTANCE The spatial structure of chromatin plays important roles in normal cell functions and in the regulation of gene expression. Three-dimensional genome sequencing has been performed in many mammals and plants, but the availability of such data for bacteria, especially intracellular pathogens, is still limited. Approximately 10% of sequenced bacterial genomes contain more than one replicon. However, how multiple replicons are organized within bacterial cells, how they interact, and whether these interactions help to maintain or segregate these multipartite genomes are unresolved issues. Brucella is a Gram-negative, facultative intracellular, and zoonotic bacterium. Except for Brucella suis biovar 3, Brucella species have two chromosomes. Here, we applied Hi-C technology to determine the 3D genome structures of exponential- and stationary-phase Brucella melitensis chromosomes at a 1-kb resolution. Combined analysis of the 3D genome and RNA-seq data indicated that the strength of short-range interactions in B. melitensis Chr1 is specifically and strongly correlated with gene expression. Our study provides a resource to achieve a deeper understanding of the spatial regulation of gene expression in Brucella.
Collapse
Affiliation(s)
- Yong-Fang Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, Hubei, China
| | - Fei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xin-Wei Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
33
|
Kenter AL, Priyadarshi S, Drake EB. Locus architecture and RAG scanning determine antibody diversity. Trends Immunol 2023; 44:119-128. [PMID: 36706738 PMCID: PMC10128066 DOI: 10.1016/j.it.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/27/2023]
Abstract
Diverse mammalian antibody repertoires are produced via distant genomic contacts involving immunoglobulin Igh variable (V), diversity (D), and joining (J) gene segments and result in V(D)J recombination. How such interactions determine V gene usage remains unclear. The recombination-activating gene (RAG) chromatin scanning model posits that RAG recombinase bound to the recombination center (RC) linearly tracks along chromatin by means of cohesin-mediated loop extrusion; a proposition supported by cohesin depletion studies. A mechanistic role for chromatin loop extrusion has also been implicated for Igh locus contraction. In this opinion, we provide perspective on how loop extrusion interfaces with the 3D conformation of the Igh locus and newly identified enhancers that regionally regulate VH gene usage during V(D)J recombination, shaping the preselected repertoire.
Collapse
Affiliation(s)
- Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344, USA.
| | - Saurabh Priyadarshi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344, USA
| | - Ellen B Drake
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344, USA
| |
Collapse
|
34
|
Holub M, Birnie A, Japaridze A, van der Torre J, Ridder MD, de Ram C, Pabst M, Dekker C. Extracting and characterizing protein-free megabase-pair DNA for in vitro experiments. CELL REPORTS METHODS 2022; 2:100366. [PMID: 36590691 PMCID: PMC9795359 DOI: 10.1016/j.crmeth.2022.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/29/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Chromosome structure and function is studied using various cell-based methods as well as with a range of in vitro single-molecule techniques on short DNA substrates. Here, we present a method to obtain megabase-pair-length deproteinated DNA for in vitro studies. We isolated chromosomes from bacterial cells and enzymatically digested the native proteins. Mass spectrometry indicated that 97%-100% of DNA-binding proteins are removed from the sample. Fluorescence microscopy analysis showed an increase in the radius of gyration of the DNA polymers, while the DNA length remained megabase-pair sized. In proof-of-concept experiments using these deproteinated long DNA molecules, we observed DNA compaction upon adding the DNA-binding protein Fis or PEG crowding agents and showed that it is possible to track the motion of a fluorescently labeled DNA locus. These results indicate the practical feasibility of a "genome-in-a-box" approach to study chromosome organization from the bottom up.
Collapse
Affiliation(s)
- Martin Holub
- Department of Bionanoscience & Kavli Institute for Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Anthony Birnie
- Department of Bionanoscience & Kavli Institute for Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Aleksandre Japaridze
- Department of Bionanoscience & Kavli Institute for Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Jaco van der Torre
- Department of Bionanoscience & Kavli Institute for Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Maxime den Ridder
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Carol de Ram
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Cees Dekker
- Department of Bionanoscience & Kavli Institute for Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
35
|
Di Stefano M, Cavalli G. Integrative studies of 3D genome organization and chromatin structure. Curr Opin Struct Biol 2022; 77:102493. [PMID: 36335845 DOI: 10.1016/j.sbi.2022.102493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The structural organization of the genome is emerging as a crucial regulator of the cell state, affecting gene transcription, DNA replication, and repair. Over the last twenty years, increasing evidence prompted the development of new experimental techniques to study genome structure. In parallel with the complexity of the novel techniques, computational approaches have become an essential tool in any structural genomics laboratory to analyze and model the data. For biologists to be able to apply the most appropriate modeling approach, it is fundamental to understand the conceptual bases of distinct methods and the insights they can provide. Here, we will discuss recent advances that were possible thanks to 3D genome modeling, discuss their limitations and highlight future perspectives.
Collapse
Affiliation(s)
- Marco Di Stefano
- Institute of Human Genetics, CNRS and University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090, Montpellier, France. https://twitter.com/@MarcDiEsse
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090, Montpellier, France.
| |
Collapse
|
36
|
Rossini R, Kumar V, Mathelier A, Rognes T, Paulsen J. MoDLE: high-performance stochastic modeling of DNA loop extrusion interactions. Genome Biol 2022; 23:247. [PMID: 36451166 PMCID: PMC9710047 DOI: 10.1186/s13059-022-02815-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
DNA loop extrusion emerges as a key process establishing genome structure and function. We introduce MoDLE, a computational tool for fast, stochastic modeling of molecular contacts from DNA loop extrusion capable of simulating realistic contact patterns genome wide in a few minutes. MoDLE accurately simulates contact maps in concordance with existing molecular dynamics approaches and with Micro-C data and does so orders of magnitude faster than existing approaches. MoDLE runs efficiently on machines ranging from laptops to high performance computing clusters and opens up for exploratory and predictive modeling of 3D genome structure in a wide range of settings.
Collapse
Affiliation(s)
- Roberto Rossini
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Vipin Kumar
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318, Oslo, Norway
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318, Oslo, Norway
| | - Torbjørn Rognes
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0316, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
| | - Jonas Paulsen
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0316, Oslo, Norway.
| |
Collapse
|
37
|
Gitchev T, Zala G, Meister P, Jost D. 3DPolyS-LE: an accessible simulation framework to model the interplay between chromatin and loop extrusion. Bioinformatics 2022; 38:5454-5456. [PMID: 36355469 PMCID: PMC9750120 DOI: 10.1093/bioinformatics/btac705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
SUMMARY Recent studies suggest that the loop extrusion activity of Structural Maintenance of Chromosomes complexes is central to proper organization of genomes in vivo. Polymer physics-based modeling of chromosome structure has been instrumental to assess which structures such extrusion can create. Only few laboratories however have the technical and computational expertise to create in silico models combining dynamic features of chromatin and loop extruders. Here, we present 3DPolyS-LE, a self-contained, easy to use modeling and simulation framework allowing non-specialists to ask how specific properties of loop extruders and boundary elements impact on 3D chromosome structure. 3DPolyS-LE also provides algorithms to compare predictions with experimental Hi-C data. AVAILABILITY AND IMPLEMENTATION Software available at https://gitlab.com/togop/3DPolyS-LE; implemented in Python and Fortran 2003 and supported on any Unix-based operating system (Linux and Mac OS). SUPPLEMENTARY INFORMATION Supplementary information are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Gabriel Zala
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | | | - Daniel Jost
- To whom correspondence should be addressed. or
| |
Collapse
|
38
|
Kim J, Jimenez DS, Ragipani B, Zhang B, Street LA, Kramer M, Albritton SE, Winterkorn LH, Morao AK, Ercan S. Condensin DC loads and spreads from recruitment sites to create loop-anchored TADs in C. elegans. eLife 2022; 11:e68745. [PMID: 36331876 PMCID: PMC9635877 DOI: 10.7554/elife.68745] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Condensins are molecular motors that compact DNA via linear translocation. In Caenorhabditis elegans, the X-chromosome harbors a specialized condensin that participates in dosage compensation (DC). Condensin DC is recruited to and spreads from a small number of recruitment elements on the X-chromosome (rex) and is required for the formation of topologically associating domains (TADs). We take advantage of autosomes that are largely devoid of condensin DC and TADs to address how rex sites and condensin DC give rise to the formation of TADs. When an autosome and X-chromosome are physically fused, despite the spreading of condensin DC into the autosome, no TAD was created. Insertion of a strong rex on the X-chromosome results in the TAD boundary formation regardless of sequence orientation. When the same rex is inserted on an autosome, despite condensin DC recruitment, there was no spreading or features of a TAD. On the other hand, when a 'super rex' composed of six rex sites or three separate rex sites are inserted on an autosome, recruitment and spreading of condensin DC led to the formation of TADs. Therefore, recruitment to and spreading from rex sites are necessary and sufficient for recapitulating loop-anchored TADs observed on the X-chromosome. Together our data suggest a model in which rex sites are both loading sites and bidirectional barriers for condensin DC, a one-sided loop-extruder with movable inactive anchor.
Collapse
Affiliation(s)
- Jun Kim
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - David S Jimenez
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Bhavana Ragipani
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Bo Zhang
- UCSF HSWSan FranciscoUnited States
| | - Lena A Street
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Maxwell Kramer
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Sarah E Albritton
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Lara H Winterkorn
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Ana K Morao
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Sevinc Ercan
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
39
|
Bock FP, Liu HW, Anchimiuk A, Diebold-Durand ML, Gruber S. A joint-ParB interface promotes Smc DNA recruitment. Cell Rep 2022; 40:111273. [PMID: 36044845 PMCID: PMC9449133 DOI: 10.1016/j.celrep.2022.111273] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/21/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomes readily unlink and segregate to daughter cells during cell division, highlighting a remarkable ability of cells to organize long DNA molecules. SMC complexes promote DNA organization by loop extrusion. In most bacteria, chromosome folding initiates at dedicated start sites marked by the ParB/parS partition complexes. Whether SMC complexes recognize a specific DNA structure in the partition complex or a protein component is unclear. By replacing genes in Bacillus subtilis with orthologous sequences from Streptococcus pneumoniae, we show that the three subunits of the bacterial Smc complex together with the ParB protein form a functional module that can organize and segregate foreign chromosomes. Using chimeric proteins and chemical cross-linking, we find that ParB directly binds the Smc subunit. We map an interface to the Smc joint and the ParB CTP-binding domain. Structure prediction indicates how the ParB clamp presents DNA to the Smc complex, presumably to initiate DNA loop extrusion.
Collapse
Affiliation(s)
- Florian P Bock
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland
| | - Hon Wing Liu
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland
| | - Anna Anchimiuk
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland
| | - Marie-Laure Diebold-Durand
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
40
|
Mirny L, Dekker J. Mechanisms of Chromosome Folding and Nuclear Organization: Their Interplay and Open Questions. Cold Spring Harb Perspect Biol 2022; 14:a040147. [PMID: 34518339 PMCID: PMC9248823 DOI: 10.1101/cshperspect.a040147] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Microscopy and genomic approaches provide detailed descriptions of the three-dimensional folding of chromosomes and nuclear organization. The fundamental question is how activity of molecules at the nanometer scale can lead to complex and orchestrated spatial organization at the scale of chromosomes and the whole nucleus. At least three key mechanisms can bridge across scales: (1) tethering of specific loci to nuclear landmarks leads to massive reorganization of the nucleus; (2) spatial compartmentalization of chromatin, which is driven by molecular affinities, results in spatial isolation of active and inactive chromatin; and (3) loop extrusion activity of SMC (structural maintenance of chromosome) complexes can explain many features of interphase chromatin folding and underlies key phenomena during mitosis. Interestingly, many features of chromosome organization ultimately result from collective action and the interplay between these mechanisms, and are further modulated by transcription and topological constraints. Finally, we highlight some outstanding questions that are critical for our understanding of nuclear organization and function. We believe many of these questions can be answered in the coming years.
Collapse
Affiliation(s)
- Leonid Mirny
- Institute for Medical Engineering and Science, and Department of Physics, MIT, Cambridge, Massachusetts 02139, USA
| | - Job Dekker
- Howard Hughes Medical Institute, and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
41
|
Tišma M, Panoukidou M, Antar H, Soh YM, Barth R, Pradhan B, Barth A, van der Torre J, Michieletto D, Gruber S, Dekker C. ParB proteins can bypass DNA-bound roadblocks via dimer-dimer recruitment. SCIENCE ADVANCES 2022; 8:eabn3299. [PMID: 35767606 PMCID: PMC9242446 DOI: 10.1126/sciadv.abn3299] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The ParABS system is essential for prokaryotic chromosome segregation. After loading at parS on the genome, ParB (partition protein B) proteins rapidly redistribute to distances of ~15 kilobases from the loading site. It has remained puzzling how this large-distance spreading can occur along DNA loaded with hundreds of proteins. Using in vitro single-molecule fluorescence imaging, we show that ParB from Bacillus subtilis can load onto DNA distantly of parS, as loaded ParB molecules themselves are found to be able to recruit additional ParB proteins from bulk. Notably, this recruitment can occur in cis but also in trans, where, at low tensions within the DNA, newly recruited ParB can bypass roadblocks as it gets loaded to spatially proximal but genomically distant DNA regions. The data are supported by molecular dynamics simulations, which show that cooperative ParB-ParB recruitment can enhance spreading. ParS-independent recruitment explains how ParB can cover substantial genomic distance during chromosome segregation, which is vital for the bacterial cell cycle.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Maria Panoukidou
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Hammam Antar
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Young-Min Soh
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Biswajit Pradhan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
- Corresponding author.
| |
Collapse
|
42
|
Nomidis SK, Carlon E, Gruber S, Marko JF. DNA tension-modulated translocation and loop extrusion by SMC complexes revealed by molecular dynamics simulations. Nucleic Acids Res 2022; 50:4974-4987. [PMID: 35474142 PMCID: PMC9122525 DOI: 10.1093/nar/gkac268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced 'power stroke' to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site ('safety belt'), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function.
Collapse
Affiliation(s)
- Stefanos K Nomidis
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
- Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium
| | - Enrico Carlon
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Stephan Gruber
- Départment de Microbiologie Fondamentale, Université de Lausanne, 1015 Lausanne, Switzerland
| | - John F Marko
- Department of Physics and Astronomy, and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
43
|
Gabriele M, Brandão HB, Grosse-Holz S, Jha A, Dailey GM, Cattoglio C, Hsieh THS, Mirny L, Zechner C, Hansen AS. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 2022; 376:496-501. [PMID: 35420890 PMCID: PMC9069445 DOI: 10.1126/science.abn6583] [Citation(s) in RCA: 262] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal genomes are folded into loops and topologically associating domains (TADs) by CTCF and loop-extruding cohesins, but the live dynamics of loop formation and stability remain unknown. Here, we directly visualized chromatin looping at the Fbn2 TAD in mouse embryonic stem cells using super-resolution live-cell imaging and quantified looping dynamics by Bayesian inference. Unexpectedly, the Fbn2 loop was both rare and dynamic, with a looped fraction of approximately 3 to 6.5% and a median loop lifetime of approximately 10 to 30 minutes. Our results establish that the Fbn2 TAD is highly dynamic, and about 92% of the time, cohesin-extruded loops exist within the TAD without bridging both CTCF boundaries. This suggests that single CTCF boundaries, rather than the fully CTCF-CTCF looped state, may be the primary regulators of functional interactions.
Collapse
Affiliation(s)
- Michele Gabriele
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| | - Hugo B. Brandão
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| | - Simon Grosse-Holz
- Department of Physics, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Institut Curie; Paris 75005, France
| | - Asmita Jha
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| | - Gina M. Dailey
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Tsung-Han S. Hsieh
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Leonid Mirny
- Department of Physics, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Institut Curie; Paris 75005, France
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Christoph Zechner
- Max Planck Institute of Molecular Cell Biology & Genetics; Dresden, Germany
- Center for Systems Biology Dresden; Dresden, Germany
- Cluster of Excellence Physics of Life and Faculty of Computer Science, TU Dresden; Dresden, Germany
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| |
Collapse
|
44
|
A walk through the SMC cycle: From catching DNAs to shaping the genome. Mol Cell 2022; 82:1616-1630. [PMID: 35477004 DOI: 10.1016/j.molcel.2022.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
SMC protein complexes are molecular machines that provide structure to chromosomes. These complexes bridge DNA elements and by doing so build DNA loops in cis and hold together the sister chromatids in trans. We discuss how drastic conformational changes allow SMC complexes to build such intricate DNA structures. The tight regulation of these complexes controls fundamental chromosomal processes such as transcription, recombination, repair, and mitosis.
Collapse
|
45
|
Conformation and dynamic interactions of the multipartite genome in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 2022; 119:2115854119. [PMID: 35101983 PMCID: PMC8833148 DOI: 10.1073/pnas.2115854119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
How bacteria with multipartite genomes organize and segregate their DNA is poorly understood. Here, we investigate a prototypical multipartite genome in the plant pathogen Agrobacterium tumefaciens. We identify previously unappreciated interreplicon interactions: the four replicons cluster through interactions at their centromeres, and the two chromosomes, one circular and one linear, interact along their replication arms. Our data suggest that these interreplicon contacts play critical roles in the organization and maintenance of multipartite genomes. Bacterial species from diverse phyla contain multiple replicons, yet how these multipartite genomes are organized and segregated during the cell cycle remains poorly understood. Agrobacterium tumefaciens has a 2.8-Mb circular chromosome (Ch1), a 2.1-Mb linear chromosome (Ch2), and two large plasmids (pAt and pTi). We used this alpha proteobacterium as a model to investigate the global organization and temporal segregation of a multipartite genome. Using chromosome conformation capture assays, we demonstrate that both the circular and the linear chromosomes, but neither of the plasmids, have their left and right arms juxtaposed from their origins to their termini, generating interarm interactions that require the broadly conserved structural maintenance of chromosomes complex. Moreover, our study revealed two types of interreplicon interactions: “ori-ori clustering” in which the replication origins of all four replicons interact, and “Ch1-Ch2 alignment” in which the arms of Ch1 and Ch2 interact linearly along their lengths. We show that the centromeric proteins (ParB1 for Ch1 and RepBCh2 for Ch2) are required for both types of interreplicon contacts. Finally, using fluorescence microscopy, we validated the clustering of the origins and observed their frequent colocalization during segregation. Altogether, our findings provide a high-resolution view of the conformation of a multipartite genome. We hypothesize that intercentromeric contacts promote the organization and maintenance of diverse replicons.
Collapse
|
46
|
Bonato A, Michieletto D. Three-dimensional loop extrusion. Biophys J 2021; 120:5544-5552. [PMID: 34793758 PMCID: PMC8715238 DOI: 10.1016/j.bpj.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
Loop extrusion convincingly describes how certain structural maintenance of chromosome (SMC) proteins mediate the formation of large DNA loops. Yet most of the existing computational models cannot reconcile recent in vitro observations showing that condensins can traverse each other, bypass large roadblocks, and perform steps longer than their own size. To fill this gap, we propose a three-dimensional (3D) "trans-grabbing" model for loop extrusion, which not only reproduces the experimental features of loop extrusion by one SMC complex but also predicts the formation of so-called Z-loops via the interaction of two or more SMCs extruding along the same DNA substrate. By performing molecular dynamics simulations of this model, we discover that the experimentally observed asymmetry in the different types of Z-loops is a natural consequence of the DNA tethering in vitro. Intriguingly, our model predicts this bias to disappear in the absence of tethering and a third type of Z-loop, which has not yet been identified in experiments, to appear. Our model naturally explains roadblock bypassing and the appearance of steps larger than the SMC size as a consequence of non-contiguous DNA grabbing. Finally, this study is the first, to our knowledge, to address how Z-loops and bypassing might occur in a way that is broadly consistent with existing cis-only 1D loop extrusion models.
Collapse
Affiliation(s)
- Andrea Bonato
- University of Edinburgh, SUPA, School of Physics and Astronomy, Peter Guthrie Road, Edinburgh, UK
| | - Davide Michieletto
- University of Edinburgh, SUPA, School of Physics and Astronomy, Peter Guthrie Road, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
47
|
Anchimiuk A, Lioy VS, Bock FP, Minnen A, Boccard F, Gruber S. A low Smc flux avoids collisions and facilitates chromosome organization in Bacillus subtilis. eLife 2021; 10:65467. [PMID: 34346312 PMCID: PMC8357415 DOI: 10.7554/elife.65467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
SMC complexes are widely conserved ATP-powered DNA-loop-extrusion motors indispensable for organizing and faithfully segregating chromosomes. How SMC complexes translocate along DNA for loop extrusion and what happens when two complexes meet on the same DNA molecule is largely unknown. Revealing the origins and the consequences of SMC encounters is crucial for understanding the folding process not only of bacterial, but also of eukaryotic chromosomes. Here, we uncover several factors that influence bacterial chromosome organization by modulating the probability of such clashes. These factors include the number, the strength, and the distribution of Smc loading sites, the residency time on the chromosome, the translocation rate, and the cellular abundance of Smc complexes. By studying various mutants, we show that these parameters are fine-tuned to reduce the frequency of encounters between Smc complexes, presumably as a risk mitigation strategy. Mild perturbations hamper chromosome organization by causing Smc collisions, implying that the cellular capacity to resolve them is limited. Altogether, we identify mechanisms that help to avoid Smc collisions and their resolution by Smc traversal or other potentially risky molecular transactions.
Collapse
Affiliation(s)
- Anna Anchimiuk
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Florian Patrick Bock
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anita Minnen
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Frederic Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stephan Gruber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|