1
|
Avimova K, Sandakov D. The influence of urinary chemosignals on mice behavior in the tube test. Physiol Behav 2025; 295:114903. [PMID: 40180169 DOI: 10.1016/j.physbeh.2025.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Many animal species form dominance hierarchies, and one of the ways of maintaining them is individual recognition. Mice recognize each other and individual social status via olfactory urinary signaling. We tested if familiarity with urine scent alters mice behavior when competing in the Tube test. Subordinate mice, who were familiar with the scent of a dominant individual applied on their opponents, lose more than subordinates not familiar with the scent of the same dominant applied on their opponents. Moreover, these familiar with dominant's odor mice withdrew more often than the unfamiliar with dominant's odor mice. The results obtained show that 1) mice use individual recognition during the competition in the Tube test, 2) like in other species, social hierarchy in mice can be maintained with the withdrawal of subordinates.
Collapse
Affiliation(s)
- Kseniya Avimova
- Department of Human and Animal Physiology, Belarusian State University, Minsk, Belarus.
| | - Dmitry Sandakov
- Department of Human and Animal Physiology, Belarusian State University, Minsk, Belarus
| |
Collapse
|
2
|
Jing PB, Zhou YW, Zhang FM, Ge JY, Wu JN, Xu JH, Cao XH, Chang N, Zhou X, Luo L, Liu XJ. Autistic-like behaviors and impaired chronic inflammatory pain in primary nociceptive neuron-specific deletion of Mecp2 or Fmr1 knockout male mice. Behav Brain Res 2025; 486:115570. [PMID: 40174753 DOI: 10.1016/j.bbr.2025.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/07/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
AIMS Recent studies have identified the roles of autism risk genes in primary sensory neurons and their connection to autism spectrum disorder (ASD) etiology. However, further research is needed to determine the specific impact of different sensory neuron populations. The aim of this study was to investigate the actions of Mecp2 or Fmr1 expression in primary nociceptive neurons on ASD and pain perception. METHODS Conditional knockout mice lacking Mecp2 or Fmr1, both known to be associated with ASD, were generated specifically in nociceptive neurons of dorsal root ganglion (DRG) and trigeminal ganglion. A series of behavioral tests were used to assess ASD-relevant and pain-related behaviors in normal and inflammatory pain states. Formalin and complete Freund's adjuvant (CFA) injection were used to evoke acute and chronic inflammatory pain. Immunofluorescent approach was employed to study neuroinflammation and calcitonin gene-related peptide (CGRP) expression. RESULTS Both lines exhibited autistic-like behaviors, with reduced social interactions in SNScre/Mecp2f/y mice and increased repetitive behaviors in SNScre/Fmr1f/y mice. Although SNScre/Mecp2f/y and SNScre/Fmr1f/y mice displayed normal baseline pain, formalin-evoked acute and subacute pain sensation, CFA-evoked persistent inflammatory pain was impaired, especially less thermal hyperalgesia. Consistently, neuroinflammation and neural CGRP expression in SNScre/Mecp2f/y and SNScre/Fmr1f/y mice was reduced in response to CFA-injection. CONCLUSIONS Absent Mecp2 or Fmr1 in primary nociceptive neurons plays role in the pathogenesis of ASD and that their expression in primary nociceptors is crucial for the maintenance of chronic inflammatory pain by reducing neuroinflammation and CGRP expression in the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Peng-Bo Jing
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Yin-Wei Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Feng-Ming Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Jia-Yi Ge
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Jia-Ni Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Jia-Huan Xu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Hua Cao
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Na Chang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiang Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Lin Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China.
| | - Xing-Jun Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
3
|
Srinivasan DJ, Kapgal V, Morris RGM, Chattarji S. Social dominance in rats is a determinant of susceptibility to stress. Proc Natl Acad Sci U S A 2025; 122:e2412314122. [PMID: 40344000 DOI: 10.1073/pnas.2412314122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/15/2025] [Indexed: 05/11/2025] Open
Abstract
Establishing a dominance hierarchy in social organisms is important for access to resources. Stress has been proposed as a major factor influencing an animal's likely position in a social hierarchy. Although individual differences in vulnerability to stress are increasingly recognized, how social hierarchy affects vulnerability remains relatively understudied. Here, we examined how the social dominance status of adult male Sprague-Dawley rats influences their response to stress in interactions with a familiar animal living in the same cage, and separately when confronting an unfamiliar rat of uncertain dominance status from another cage, using the tube test. Having determined the relatively stable within-cage social dominance status of animals, half were subjected to a single episode of 2-h immobilization stress. Cagemates, both control and stressed rats, again faced one another 1 d and 10 d after stress. First, the predetermined hierarchical rank among familiar cagemates was relatively unaffected by stress. However, second, the same stress had a differential impact in competitions between unfamiliar rats. Socially dominant control rats continued to win competitions but subordinate control rats, that had previously lost, sometimes started to win against previously dominant rats that had been stressed. Strikingly, subordinate stressed rats displayed consistent submissive-like behavior and they alone showed differential effects on dendritic spine density in the amygdala. Thus, an individual's social rank can influence its response to stress, an effect that is detectable in interactions with unfamiliar animals. These findings provide an additional dimension to animal models of stress used for exploring facets of social anxiety and withdrawal in stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Durga J Srinivasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology, Bangalore 560064, India
- Centre for High Impact Neuroscience and Translational Applications, The Chatterjee Group Centres for Research and Education in Science and Technology, Kolkata 700091, West Bengal, India
| | - Vijayakumar Kapgal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology, Bangalore 560064, India
- Deanery of Biomedical Science, Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Richard G M Morris
- Deanery of Biomedical Science, Laboratory for Cognitive Neuroscience, Edinburgh Neuroscience, The University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
- Deanery of Biomedical Science, Simons Initiative for the Developing Brain and Patrick Wild Centre, The University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- Centre for High Impact Neuroscience and Translational Applications, The Chatterjee Group Centres for Research and Education in Science and Technology, Kolkata 700091, West Bengal, India
- Deanery of Biomedical Science, Simons Initiative for the Developing Brain and Patrick Wild Centre, The University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
4
|
Nasanbuyan N, Yoshida M, Inutsuka A, Takayanagi Y, Kato S, Hidema S, Nishimori K, Kobayashi K, Onaka T. Differential Functions of Oxytocin Receptor-Expressing Neurons in the Ventromedial Hypothalamus in Social Stress Responses: Induction of Adaptive and Maladaptive Coping Behaviors. Biol Psychiatry 2025; 97:874-886. [PMID: 39343339 DOI: 10.1016/j.biopsych.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The flexibility to adjust actions and attitudes in response to varying social situations is a fundamental aspect of adaptive social behavior. Adaptive social behaviors influence an individual's vulnerability to social stress. While it has been proposed that oxytocin is a facilitator of active coping behaviors during social stress, the exact mechanisms remain unknown. METHODS Using a social defeat stress paradigm in male mice, we identified the distribution of oxytocin receptor (OXTR)-expressing neurons in the ventrolateral part of the ventromedial hypothalamus (vlVMH) that are activated during stress by detection of c-Fos protein expression. We then investigated the role of vlVMH OXTR-expressing neurons in social defeat stress responses by chemogenetic methods or deletion of local OXTRs. The social defeat posture was measured for quantification of adaptive social behavior during repeated social stress. RESULTS Social defeat stress activated OXTR-expressing neurons rather than estrogen receptor 1-expressing neurons in the rostral vlVMH. OXTR-expressing neurons in the vlVMH were glutamatergic. Chemogenetic activation of vlVMH OXTR-expressing neurons facilitated exhibition of the social defeat posture during exposure to social stress, while local OXTR deletion suppressed it. In contrast, overactivation of vlVMH-OXTR neurons induced generalized social avoidance after exposure to chronic social defeat stress. Neural circuits for the social defeat posture centered on OXTR-expressing neurons were identified by viral tracers and c-Fos mapping. CONCLUSIONS vlVMH OXTR-expressing neurons are a functionally unique population of neurons that promote active coping behavior during social stress, but their excessive and repetitive activation under chronic social stress impairs subsequent social behavior.
Collapse
Affiliation(s)
- Naranbat Nasanbuyan
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Masahide Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan.
| | - Ayumu Inutsuka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shizu Hidema
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuhiko Nishimori
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
5
|
Schipper L, van Heijningen S, Karapetsas G, Olivier JDA, van Dijk G. Social housing conditions, hierarchical status and testing order affect behavioral test outcomes of male C57BL6/J mice. Physiol Behav 2025; 293:114859. [PMID: 39999904 DOI: 10.1016/j.physbeh.2025.114859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
Male mice are frequently used for behavioral neuroscience research, but outcomes of behavioral tests are often variable across studies, contributing to poor reproducibility. Social housing conditions, social hierarchical status and within-cage order of testing are factors that likely influence behavioral outcomes, but it is unknown to what extent and if these factors interact. For this purpose, behavior of socially and individually housed male C57BL6/J mice was studied upon subjection to the open field test, the elevated plus-maze test and the three-chamber social test. In socially housed animals, effects of social hierarchical status and within-cage testing order were evaluated. We show that the differences in behavior outcomes between individually and socially housed mice depend on the social hierarchical status and the test order of the socially housed mice. Careful consideration of these factors in the design, analysis and interpretation of behavioral experiments with socially housed mice can lead to more precise results and more reliable research outcomes.
Collapse
Affiliation(s)
- Lidewij Schipper
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands; Danone Research and Innovation, Utrecht, The Netherlands.
| | - Steffen van Heijningen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Giorgio Karapetsas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jocelien D A Olivier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Gertjan van Dijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Mañas-Ojeda A, Hidalgo-Cortés J, García-Mompó C, Zahran MA, Gil-Miravet I, Olucha-Bordonau FE, Guirado R, Castillo-Gómez E. Activation of somatostatin neurons in the medial amygdala reverses long-term aggression and social deficits associated to early-life stress in male mice. Mol Psychiatry 2025; 30:2168-2182. [PMID: 39580603 PMCID: PMC12014500 DOI: 10.1038/s41380-024-02829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024]
Abstract
Early postnatal development is a critical period for the configuration of neural networks that support social and affective-like behaviors. In this sense, children raised in stressful environments are at high risk to develop maladaptive behaviors immediately or later in life, including anti-social and aggressive behaviors. However, the neurobiological bases of such phenomena remain poorly understood. Here we showed that, at long-term, maternal separation with early weaning (MSEW) decreased the density of somatostatin-expressing (SST+) neurons in the basolateral amygdala (BLA) of females and males, while their activity was only reduced in the medial amygdala (MeA) of males. Interestingly, only MSEW males exhibited long-term behavioral effects, including reduced sociability and social novelty preference in the 3-chamber test (3CH), decreased social interest in the resident-intruder test (RI), and increased aggressivity in both the RI and the tube dominance test (TT). To test whether the manipulation of MeASST+ neurons was sufficient to reverse these negative behavioral outcomes, we expressed the chemogenetic excitatory receptor hM3Dq in MSEW adult males. We found that the activation of MeASST+ neurons ameliorated social interest in the RI test and reduced aggression traits in the TT and RI assays. Altogether, our results highlight a role for MeASST+ neurons in the regulation of aggressivity and social interest and point to the loss of activity of these neurons as a plausible etiological mechanism linking early life stress to these maladaptive behaviors in later life.
Collapse
Affiliation(s)
- Aroa Mañas-Ojeda
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - José Hidalgo-Cortés
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Clara García-Mompó
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
- Department of Psicobiology, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Mohamed Aly Zahran
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Isis Gil-Miravet
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Francisco E Olucha-Bordonau
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Guirado
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain.
| | - Esther Castillo-Gómez
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain.
- Spanish National Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Zuo X, Sun M, Bai H, Zhang S, Luan J, Yu Q, Fu Z, Zhao Q, Sun M, Zhao X, Feng X. The effects of 17β-trenbolone and bisphenol A on sexual behavior and social dominance via the hypothalamic-pituitary-gonadal axis in male mice. J Environ Sci (China) 2025; 151:54-67. [PMID: 39481959 DOI: 10.1016/j.jes.2024.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 11/03/2024]
Abstract
17β-Trenbolone (17-TB) is well documented as an environmental endocrine disruptor in aquatic biological studies, but its effects on mammals remain poorly understood. Furthermore, 17-TB acts as a hormone with properties similar to testosterone, and the consequences of juvenile exposure on adult social behavior remain uncertain. Bisphenol A (BPA) acts as an estrogen-like hormone, compared to 17-TB. Three-week-old male Balb/c mice were exposed orally to 17-TB (100 µg/(kg·day)) and BPA (4 mg/(kg·day)) for 28 days. Assessments of social interactions and a three-chamber test showed that 17-TB increased virility in male mice, intensified both male and female sexual behavior, and attracted and accepted female mice. It also increased social dominance through tube tests in male mice and markedly activated the c-Fos+ immune response in the medial prefrontal cortex (mPFC) and basal amygdala (BLA). ELISA data showed that 17-TB and BPA exposure significantly affected serum gonadotropin-releasing hormone (GnRH), growth hormone (GH), estradiol (E2), and luteinizing hormone (LH) levels, as well as testicular lesions and androgen receptor (ARβ) and estrogen receptor (ERα) synthesis. Testicular transcriptomic analysis further confirmed that could disrupt steroid synthesis and linoleic acid-related biometabolic processes. These findings suggest the influence of 17-TB and BPA exposure on sexual behavior and fertility in male mice, possibly through modulation of the hypothalamic-pituitary-gonadal axis. This study provides insights relevant to human reproductive health and neuro-social behavioral research, and the potential risk of environmental disturbances should not be overlooked.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Minghe Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Qian Yu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhenhua Fu
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Mingzhu Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Xu L, Zhou R, Zhong J, Huang Y, Zhu Y, Xu W. Social hierarchy modulates drug reinforcement and protein phosphorylation in the nucleus accumbens. Front Pharmacol 2025; 16:1537131. [PMID: 40290427 PMCID: PMC12022441 DOI: 10.3389/fphar.2025.1537131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/05/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Drug reinforcement, a form of behavioral plasticity in which behavioral changes happen in response to a reinforcing drug, would finally lead to drug addiction after chronical drug exposure. Drug reinforcement is affected by genetic and environmental factors. Social hierarchy has been reported to regulate drug reinforcement and drug-seeking behaviors, but the underlying molecular mechanism is almost unknown. Methods We take advantage of the tube test to assess the social hierarchy between two co-housed rats. And then, we investigated the drug reinforcement between dominant and subordinate rats via conditioned place preference (CPP). Then we adopted 4-D label-free mass spectrometry to explore the complex phosphoproteome in the nucleus accumbens (NAc) between dominant and subordinate rats. Functional enrichment, protein-protein, motif analysis and kinase prediction interaction analysis were used to investigate the mechanism between substance use disorder and social hierarchy. Specifically, we identified histone deacetylase 4 (HDAC4) which has been previously shown to play critical roles in drug addiction as a key node protein by phosbind-SDS. Finally, we forcibly altered the social hierarchy of rats through behavioral training, follow by which we accessed the HDAC4 phosphorylation levels and drug reinforcement. Results In this study, we found that methamphetamine exhibited stronger reinforcement in the subordinate rats. We identified 660 sites differing between dominant and subordinate rats via 4-D label-free mass spectrometry. Functional enrichment and protein-protein interaction analysis revealed that synaptic remodeling related pathways and substance use disorder related pathway are significantly characterized by social hierarchy. Motif analysis and kinase prediction showed that CaMKIIδ and its downstream proteins maybe the central hub. Phosbind-SDS revealed that higher HDAC4 phosphorylation levels in dominants. After the social hierarchy of rats were forcibly altered by behavioral training, the differences in HDAC4 phosphorylation levels induced by social hierarchy were eliminated, correspondingly the drug reinforcement is also reversed between the two group rats. Discussion In conclusion, our research proves that protein phosphorylation in the NAc may be a vital link between social hierarchy and drug reinforcement.
Collapse
Affiliation(s)
- Liang Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ruiyi Zhou
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiafeng Zhong
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yina Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yingjie Zhu
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Xu
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Zhu F, Liu Y, Sun Z, Ni J, Jiang Y. Aptamer-Based Galvanic Potentiometric Sensor for Real-Time Monitoring of Serotonin Signaling Under Psychosocial Stress. Angew Chem Int Ed Engl 2025:e202501701. [PMID: 40181707 DOI: 10.1002/anie.202501701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/05/2025]
Abstract
Psychosocial stress, a pervasive factor in mental health disorders, is tightly linked to serotonin (5-HT) dysregulation. Real-time electrochemical monitoring of 5-HT in vivo is challenged by interference from vitamin C (Vc) and biofouling, requiring invasive pretreatments. We present a self-powered aptamer-engineered galvanic sensor (aptGRP5-HT) that integrates phosphorothioate aptamers with a redox potentiometric mechanism, achieving 21.5-fold higher selectivity and 98.3-fold enhanced sensitivity against Vc over conventional sensors while resisting electrochemical biofouling. The aptGRP5-HT operates in complex biological environments without pretreatment, enabling direct monitoring in a rodent psychosocial stress model. Using this tool, we uncover a neurochemical signature of social hierarchy: high-ranking mice exhibit elevated 5-HT release in the medial prefrontal cortex (mPFC) and dorsal raphe nucleus (DRN), with region-specific correlations to neuronal activity-reduced spontaneous firing in the mPFC and increased activity in the DRN. This work resolves long-standing challenges in neurochemical sensing and establishes aptGRP5-HT as a transformative platform for probing brain function and stress-related disorders.
Collapse
Affiliation(s)
- Fenghui Zhu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yinghuan Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhining Sun
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jiping Ni
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Bergamasco MI, Ozturk E, Casillas-Espinosa PM, Garnham AL, Abeysekera W, Wimmer VC, Rajasekhar P, Vanyai HK, Whitehead L, Blewitt ME, Rogers K, Vogel AP, Hannan AJ, Smyth GK, Jones NC, Thomas T, Voss AK. KAT6B overexpression in mice causes aggression, anxiety, and epilepsy. iScience 2025; 28:111953. [PMID: 40083716 PMCID: PMC11904597 DOI: 10.1016/j.isci.2025.111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/20/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
Loss of the gene encoding the histone acetyltransferase KAT6B (MYST4/MORF/QKF) causes developmental brain abnormalities as well as behavioral and cognitive defects in mice. In humans, heterozygous variants in the KAT6B gene cause two cognitive disorders, Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS; OMIM:603736) and genitopatellar syndrome (GTPTS; OMIM:606170). Although the effects of KAT6B homozygous and heterozygous mutations have been documented in humans and mice, KAT6B gain-of-function effects have not been reported. Here, we show that overexpression of the Kat6b gene in mice caused aggression, anxiety, and spontaneous epilepsy. Kat6b overexpression led to an increase in histone H3 lysine 9 acetylation and upregulation of genes driving nervous system development and neuronal differentiation. Kat6b overexpression additionally promoted neural stem cell proliferation and favored neuronal over astrocyte differentiation in vivo and in vitro. Our results suggest that, in addition to loss-of-function alleles, gain-of-function KAT6B alleles may be detrimental for brain development.
Collapse
Affiliation(s)
- Maria I. Bergamasco
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ezgi Ozturk
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville VIC 3052, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Melbourne, VIC 3004, Australia
| | - Pablo M. Casillas-Espinosa
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville VIC 3052, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Melbourne, VIC 3004, Australia
| | - Alexandra L. Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Waruni Abeysekera
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Verena C. Wimmer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Pradeep Rajasekhar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Hannah K. Vanyai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Marnie E. Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kelly Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Adam P. Vogel
- Centre for Neurosciences of Speech, The University of Melbourne, Melbourne, VIC 3052, Australia
- Redenlab Inc, Melbourne, VIC 3000, Australia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nigel C. Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville VIC 3052, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Melbourne, VIC 3004, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne K. Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
11
|
Khotskin NV, Komleva PD, Arefieva AB, Moskaliuk VS, Khotskina A, Alhalabi G, Izyurov AE, Sinyakova NA, Sherbakov D, Kulikova EA, Bazovkina DV, Kulikov AV. The C1473G Mutation in the Mouse Tph2 Gene: From Molecular Mechanism to Biological Consequences. Biomolecules 2025; 15:461. [PMID: 40305154 PMCID: PMC12024906 DOI: 10.3390/biom15040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 05/02/2025] Open
Abstract
Tryptophan hydroxylase 2 (TPH2) hydroxylates L-tryptophan to L-5-hydroxy tryptophan-the key step of 5-HT synthesis in the mammalian brain. Some mutations in the human hTPH2 gene are associated with psychopathologies and resistance to antidepressant therapy. The C1473G polymorphism in the mouse Tph2 gene decreases the TPH2 activity in the mouse brain. In the present paper, B6-1473C and B6-1473G congenic mice that were different only in the C > G substitution were used. The molecular mechanism of decrease in the mutant enzyme activity and some physiological and behavioral traits affected by this mutation were revealed for the first time. Analysis of thermal denaturation curves in vitro revealed that the C > G substitution reduces the free energy of denaturation, stability and lifetime of mutant TPH2. Later, we evaluated the effect of the 1473G allele on the hierarchical state, competition for a sexual partner in adult mice, mouse embryos, hind legs dystonia and the response to LPS treatment in young mice. No effect of this mutation on the hierarchical state and competition for a female was observed in adult males. The C > G substitution does not affect survival, body mass or the TPH activity in the brain of 19-day-old mouse embryos. At the same time, we found that the 1473G allele causes hind legs dystonia in juvenile (3 weeks old) mice, which can affect their escape capability in threatening situations. Moreover, a significant increase in the vulnerability to LPS in juvenile B6-1473G males was shown: a single ip LPS administration killed about 40% of young mutant mice, but not wild-type ones. The body mass of mutant males was lower compared to wild-type ones, which also can indirectly decrease their concurrent and reproductive success.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alexander V. Kulikov
- The Federal Research Center Institute Cytology and Genetics, Russian Academy of Sciences, Avenue Lavrentyev, 10, Novosibirsk 630090, Russia; (N.V.K.); (P.D.K.); (A.B.A.); (V.S.M.); (A.K.); (G.A.); (A.E.I.); (N.A.S.); (D.S.); (E.A.K.); (D.V.B.)
| |
Collapse
|
12
|
Yang R, Wang X, Yang J, Zhou X, Wu Y, Li Y, Huang Y, Zhang J, Liu P, Yuan M, Tan X, Zheng P, Wu J. Perturbations in the microbiota-gut-brain axis shaped by social status loss. Commun Biol 2025; 8:401. [PMID: 40057654 PMCID: PMC11890786 DOI: 10.1038/s42003-025-07850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
Social status is closely linked to physiological and psychological states. Loss of social dominance can lead to brain disorders such as depression, but the underlying mechanisms remain unclear. The gut microbiota can sense stress and contribute to brain disorders via the microbiota-gut-brain axis (MGBA). Here, using a forced loss paradigm to demote dominant mice to subordinate ranks, we find that stress alters the composition and function of the gut microbiota, increasing Muribaculaceae abundance and enhancing butanoate metabolism, and gut microbial depletion resists forced loss-induced hierarchical demotion and behavioral alteration. Single-nucleus transcriptomic analysis of the prefrontal cortex (PFC) indicates that social status loss primarily affected interneurons, altering GABAergic synaptic transmission. Weighted gene co-expression network analysis (WGCNA) reveals modules linked to forced loss in the gut microbiota, colon, PFC, and PFC interneurons, suggesting changes in the PI3K-Akt signaling pathway and the glutamatergic synapse. Our findings provide evidence for MGBA perturbations induced by social status loss, offering potential intervention targets for related brain disorders.
Collapse
Grants
- 2024MD754023 China Postdoctoral Science Foundation
- 82201688 National Natural Science Foundation of China (National Science Foundation of China)
- 82171523 National Natural Science Foundation of China (National Science Foundation of China)
- 82471545 National Natural Science Foundation of China (National Science Foundation of China)
- The National Natural Science Foundation Project of China (82401784, 32400850, 82401523),the National Key R&D Program of China (STI2030-Major Projects 2021ZD0202400, STI2030-Major Projects 2021ZD0200600), National Reserve Talent Project in the Health and Wellness Sector of Chongqing (HBRC202410, HBRC202417), the Program for Youth Innovation in Future Medicine of Chongqing Medical University, Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K202400404), the Key Project of the Natural Science Foundation of Chongqing (Chongqing Science and Technology Development Foundation) under Grant No. 2024NSCQ-KJFZZDX0005, the New Chongqing Youth Innovation Talent Project (Life and Health) under Grant No. 2024NSCQ-qncxX0029, Joint Project of Chongqing Health Commission and Science and Technology Bureau (2024QNXM046).
Collapse
Affiliation(s)
- Ruijing Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Jie Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Xingyu Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Yiyuan Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Yifan Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Yu Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Jianping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Ping Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Minghao Yuan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Xunmin Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China.
| | - Jing Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Zheng H, Chen D, Zhong Z, Li Z, Yuan M, Zhang Z, Zhou X, Zhu G, Sun H, Sun L. Behavioral tests for the assessment of social hierarchy in mice. Front Behav Neurosci 2025; 19:1549666. [PMID: 40110389 PMCID: PMC11920152 DOI: 10.3389/fnbeh.2025.1549666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Social hierarchy refers to the set of social ranks in a group of animals where individuals can gain priority access to resources through repeated social interactions. Key mechanisms involved in this process include conflict, social negotiation, prior experience, and physical advantages. The establishment and maintenance of social hierarchies not only promote group stability and well-being but also shape individual social behaviors by fostering cooperation and reducing conflict. Existing research indicates that social hierarchy is closely associated with immune responses, neural regulation, metabolic processes, and endocrine functions. These physiological systems collectively modulate an individual's sensitivity to stress and influence adaptive responses, thereby playing a critical role in the development of psychiatric disorders such as depression and anxiety. This review summarizes the primary behavioral methods used to assess social dominance in mice, evaluates their applicability and limitations, and discusses potential improvements. Additionally, it explores the underlying neural mechanisms associated with these methods to deepen our understanding of their biological basis. By critically assessing existing methodologies and proposing refinements, this study aims to provide a systematic reference framework and methodological guidance for future research, facilitating a more comprehensive exploration of the neural mechanisms underlying social behavior. The role of sex differences in social hierarchy formation remains underexplored. Most studies focus predominantly on males, while the distinct social strategies and physiological mechanisms of females are currently overlooked. Future studies should place greater emphasis on evaluating social hierarchy in female mice to achieve a more comprehensive understanding of sex-specific social behaviors and their impact on group structure and individual health. Advances in automated tracking technologies may help address this gap by improving behavioral assessments in female mice. Future research may also benefit from integrating physiological data (e.g., hormone levels) to gain deeper insights into the relationships between social status, stress regulation, and mental health. Additionally, developments in artificial intelligence and deep learning could enhance individual recognition and behavioral analysis, potentially reducing reliance on chemical markers or implanted devices.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Dantong Chen
- Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Zilong Zhong
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Ziyi Li
- Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Meng Yuan
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Zhenkun Zhang
- Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xiaoping Zhou
- Network Information Center, Shandong Second Medical University, Weifang, China
| | - Guohui Zhu
- Depression Treatment Center, Weifang Mental Health Center, Weifang, China
| | - Hongwei Sun
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Lin Sun
- Department of Psychology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
14
|
Grieco F, Balla A, Larrieu T, Toni N. Natural variations of adolescent neurogenesis and anxiety predict the hierarchical status of adult inbred mice. EMBO Rep 2025; 26:1440-1456. [PMID: 39849205 PMCID: PMC11933688 DOI: 10.1038/s44319-025-00367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025] Open
Abstract
Hierarchy provides a survival advantage to social animals in challenging circumstances. In mice, social dominance is associated with trait anxiety which is regulated by adult hippocampal neurogenesis. Here, we test whether adolescent hippocampal neurogenesis may regulate social dominance behavior in adulthood. We observe that adolescent individuals with higher trait anxiety and lower levels of hippocampal neurogenesis prior to the formation of a new group become dominants, suggesting that baseline adolescent neurogenesis predicts hierarchical status. This phenotype persists beyond social hierarchy stabilization. Experimentally reducing neurogenesis prior to the stabilization of social hierarchy in group-housed adolescent males increases the probability of mice to become dominant and increases anxiety. Finally, when innate dominance is assessed in socially isolated and anxiety-matched animals, mice with impaired neurogenesis display a dominant status toward strangers. Together, these results indicate that adolescent neurogenesis predicts and regulates hierarchical and situational dominance behavior along with anxiety-related behavior. These results provide a framework to study the mechanisms underlying social hierarchy and the dysregulation of dominance behavior in psychiatric diseases related to anxiety.
Collapse
Affiliation(s)
- Fabio Grieco
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Atik Balla
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Thomas Larrieu
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland.
| | - Nicolas Toni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland.
| |
Collapse
|
15
|
Ai L, Han Y, Ge T, Sha S, Zhai XJ, Ji R, Zhou Y, Chen DD, Xie A, Zhang WX, Wu Z, Zhang MR, Yang JX, Hu AK, Cao JL, Song LZ, Zhang HX. Dorsal raphe GABA-ergic neurons regulate the susceptibility to social transfer of pain in mice. Acta Pharmacol Sin 2025:10.1038/s41401-025-01494-x. [PMID: 40011629 DOI: 10.1038/s41401-025-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025]
Abstract
Some individuals are more susceptible to developing or suffering from pain states than others. However, the brain mechanisms underlying the susceptibility to pain responses are unknown. In this study, we defined pain susceptibility by recapitulating inter-individual differences in pain responses in mice exposed to a paradigm of socially transferred allodynia (STA), and with a combination of chemogenetic, molecular, pharmacological and electrophysiological approaches, we identified GABA-ergic neurons in the dorsal raphe nucleus (DRN) as a cellular target for the development and maintenance of STA susceptibility. We showed that DRN GABA-ergic neurons were selectively activated in STA-susceptible mice when compared with the unsusceptible (resilient) or control mice. Chemogenetic activation of DRN GABA-ergic neurons promoted STA susceptibility; whereas inhibiting these neurons prevented the development of STA susceptibility and reversed established STA. In in vitro slice electrophysiological analysis, we demonstrated that melanocortin 4 receptor (MC4R) enriched in DRN GABA-ergic neurons was a molecular target for regulating pain susceptibility, possibly by affecting DRN GABA-ergic neuronal activity. These results establish the DRN GABA-ergic neurons as an essential target for controlling pain susceptibility, thus providing important information for developing conceptually innovative and more accurate analgesic strategies.
Collapse
Affiliation(s)
- Lin Ai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ting Ge
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Sha Sha
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiao-Jing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dan-Dan Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - An Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wen-Xin Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhou Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Mo-Ruo Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - An-Kang Hu
- Laboratory Animal Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Ling-Zhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Hong-Xing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
16
|
Leuner LR, Hurley LM. What matters to a mouse? Effects of internal and external context on male vocal response to female squeaks. PLoS One 2025; 20:e0312789. [PMID: 39970156 PMCID: PMC11838898 DOI: 10.1371/journal.pone.0312789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/11/2025] [Indexed: 02/21/2025] Open
Abstract
House mice adjust their signaling behavior depending on the social context of an interaction, but which aspects of context elicit the strongest responses from these individuals is often difficult to determine. To explore how internal and external contextual factors influence how house mice produce and respond to social signals, we assessed how dominant and subordinate male mice differed in their ultrasonic vocalization (USV) production in response to playback of broadband vocalizations (BBVs, or squeaks) when given limited access to a stimulus female. We used a repeated measures design in which each male was exposed to two types of trials with different odor conditions: either just female odors (Fem condition) or female odors in addition to the odors of potential competitors, other males (Fem+Male condition). The presence of odors from other males in this assay served as a proxy for an "audience" as the male interacted with the stimulus female. These conditions were replicated for two distinct cohorts of individuals: males exposed to the odor of familiar competitors in the Fem+Male condition (Familiar odor cohort), and males exposed to the odor of unfamiliar competitors in the Fem+Male condition (Unfamiliar odor cohort). By assessing dominance status of the focal individual and familiarity of the "audience", we are able to explore how these factors may affect one another as males respond to BBVs. Dominants and subordinates did not differ in their baseline vocal production (vocalizations produced prior to squeak playback) or response to squeaks. However, all groups, regardless of dominance status or odor condition, reduced their vocal production in response to BBV playback. The presence of unfamiliar male odor prompted mice to decrease their baseline level of calling and decrease the complexity of their vocal repertoire compared to trials that only included female odor, and this effect also did not differ across dominance status. Importantly, the presence of male odor did not affect vocal behavior when the male odor was familiar to the focal individual. These findings suggest that mice alter their vocal behavior during courtship interactions in response to cues that indicate the presence of potential competitors, and this response is modulated by the familiarity of these competitor cues.
Collapse
Affiliation(s)
- Lauren R. Leuner
- Department of Biology, Hurley Laboratory, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| | - Laura M. Hurley
- Department of Biology, Hurley Laboratory, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
17
|
Xin Q, Zheng D, Zhou T, Xu J, Ni Z, Hu H. Deconstructing the neural circuit underlying social hierarchy in mice. Neuron 2025; 113:444-459.e7. [PMID: 39662472 DOI: 10.1016/j.neuron.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Social competition determines hierarchical social status, which profoundly influences animals' behavior and health. The dorsomedial prefrontal cortex (dmPFC) plays a fundamental role in regulating social competitions, but it was unclear how the dmPFC orchestrates win- and lose-related behaviors through its downstream neural circuits. Here, through whole-brain c-Fos mapping, fiber photometry, and optogenetics- or chemogenetics-based manipulations, we identified anatomically segregated win- and lose-related neural pathways downstream of the dmPFC in mice. Specifically, layer 5 neurons projecting to the dorsal raphe nucleus (DRN) and periaqueductal gray (PAG) promote social competition, whereas layer 2/3 neurons projecting to the anterior basolateral amygdala (aBLA) suppress competition. These two neuronal populations show opposite changes in activity during effortful pushes in competition. In vivo and in vitro electrophysiology recordings revealed inhibition from the lose-related pathway to the win-related pathway. Such antagonistic interplay may represent a central principle in how the mPFC orchestrates complex behaviors through top-down control.
Collapse
Affiliation(s)
- Qiuhong Xin
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Diyang Zheng
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Tingting Zhou
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiayi Xu
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zheyi Ni
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hailan Hu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China.
| |
Collapse
|
18
|
Uehara JM, Gomez Acosta M, Bello EP, Belforte JE. Early postnatal NMDA receptor ablation in cortical interneurons impairs affective state discrimination and social functioning. Neuropsychopharmacology 2025:10.1038/s41386-025-02051-0. [PMID: 39833563 DOI: 10.1038/s41386-025-02051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Emotion recognition is fundamental for effective social interactions among conspecifics. Impairments in affective state processing underlie several neuropsychiatric disorders, including schizophrenia, although the neurobiological substrate of these deficits remains unknown. We investigated the impact of early NMDA receptor hypofunction on socio-affective behaviors. Male mice lacking NMDA receptors in GABAergic interneurons of cerebral and hippocampal cortices from an early postnatal age (interNMDAr-KO mutants) were evaluated in affective state discrimination, social preference and social novelty preference, hierarchy and dominance, aggression and territoriality, and long-term social interaction. We show that interNMDAr-KO mice failed to discriminate conspecifics based on their affective states, unlike control littermates, while exhibiting an intact preference for social stimuli over inanimate objects. This discrimination deficit was observed regardless of whether affective valences were manipulated positively or negatively, via a palatable reward or social defeat, respectively. Additionally, interNMDAr-KO mice failed to establish a normal social hierarchy, consistently assuming subordinate roles against control littermates, and presented an abnormal response to conspecifics in the resident-intruder test. Finally, mice lacking NMDA receptors in GABAergic interneurons exhibited social withdrawal following exposure to unfamiliar conspecifics in a custom setting designed to monitor social behavior over extended time periods. This deficit was reversed by subchronic clozapine treatment. Our study thoroughly assessed the impact of a pathophysiological manipulation relevant to schizophrenia on social behavior in mice. Overall, this study provides evidence demonstrating that altered NMDAr-dependent development of cortical and hippocampal interneurons impairs affective state discrimination and leads to deficits in social functioning and long-term sociality.
Collapse
Affiliation(s)
- Juan M Uehara
- Grupo de Neurociencia de Sistemas, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay), UBA-CONICET, Buenos Aires, Argentina
| | - Martina Gomez Acosta
- Grupo de Neurociencia de Sistemas, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay), UBA-CONICET, Buenos Aires, Argentina
| | - Estefanía P Bello
- Grupo de Neurociencia de Sistemas, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay), UBA-CONICET, Buenos Aires, Argentina.
| | - Juan E Belforte
- Grupo de Neurociencia de Sistemas, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay), UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Miyata T, Nojima E, Minai Y. Effects of Excessive Sucrose Intake on Aggressive Behavior and Peripheral Stress-Related Hormone and Catecholamines in BALB/c Mice during Adolescent Development. J Nutr Sci Vitaminol (Tokyo) 2025; 71:16-24. [PMID: 40024745 DOI: 10.3177/jnsv.71.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
As binge eating and unbalanced diets increase the prevalence of obesity and metabolic disorders, it has been noted that the increase in psychiatric disorders is also a consequence of diet. The present study examined aggressive behavior and peripheral stress-related hormone and catecholamine levels in BALB/c mice fed a high-sucrose diet during adolescent development. BALB/c mice are rarely used in research assessing the effect of diet, but were used for ethnic and personal differences and as a new experimental model. BALB/c mice were fed a diet in which all carbohydrate components were replaced with sucrose for 4 wk and were subjected to the resident-intruder and social dominance tube test. Plasma insulin, corticosterone, and catecholamine levels were also compared to mice fed a control diet. The high-sucrose diet did not alter body weight, glucose tolerance, and plasma insulin levels in BALB/c mice, indicating that the diet was resilient to obesity. Mice fed a high-sucrose diet exhibited increased aggressive behaviors in the resident-intruder test and had a significantly higher win rate in the tube test. Increases in adrenal weight and plasma corticosterone as well as noradrenaline and adrenaline levels were exhibited in mice fed a high-sucrose diet. In particular, this is the first evidence of increased social dominance and hyperplasia of the adrenal glands by a sucrose diet. Sucrose diet intake increased aggression in mice and caused elevated peripheral hormones involving the HPA axis and the sympathetic nervous system, indicating that this may be a central nervous system-mediated effect of excess sucrose.
Collapse
Affiliation(s)
- Tohru Miyata
- Department of Agri-Production Sciences, College of Agriculture, Tamagawa University
- Biosystems & Biofunctions Research Center, Tamagawa University Research Institute
| | - Eichi Nojima
- Department of Bioresource Sciences, College of Agriculture, Tamagawa University
| | - Yuji Minai
- Department of Agri-Production Sciences, College of Agriculture, Tamagawa University
- Biosystems & Biofunctions Research Center, Tamagawa University Research Institute
| |
Collapse
|
20
|
Maltese F, Pacinelli G, Monai A, Bernardi F, Capaz AM, Niello M, Walle R, de Leon N, Managò F, Leroy F, Papaleo F. Self-experience of a negative event alters responses to others in similar states through prefrontal cortex CRF mechanisms. Nat Neurosci 2025; 28:122-136. [PMID: 39627538 DOI: 10.1038/s41593-024-01816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/02/2024] [Indexed: 12/14/2024]
Abstract
Our own experience of emotional events influences how we approach and react to others' emotions. Here we observe that mice exhibit divergent interindividual responses to others in stress (that is, preference or avoidance) only if they have previously experienced the same aversive event. These responses are estrus dependent in females and dominance dependent in males. Notably, silencing the expression of the corticotropin-releasing factor (CRF) within the medial prefrontal cortex (mPFC) attenuates the impact of stress self-experience on the reaction to others' stress. In vivo microendoscopic calcium imaging revealed that mPFC CRF neurons are activated more toward others' stress only following the same negative self-experience. Optogenetic manipulations confirmed that higher activation of mPFC CRF neurons is responsible for the switch from preference to avoidance of others in stress, but only following stress self-experience. These results provide a neurobiological substrate underlying how an individual's emotional experience influences their approach toward others in a negative emotional state.
Collapse
Affiliation(s)
- Federica Maltese
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Anna Monai
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Fabrizio Bernardi
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Ana Marta Capaz
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Marco Niello
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Roman Walle
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Noelia de Leon
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientıficas, Universidad Miguel Hernandez de Elche, San Juan de Alicante, Alicante, Spain
| | - Francesca Managò
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Felix Leroy
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientıficas, Universidad Miguel Hernandez de Elche, San Juan de Alicante, Alicante, Spain
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
21
|
Lai CH, Park G, Xu P, Sun X, Ge Q, Jin Z, Betts S, Liu X, Liu Q, Simha R, Zeng C, Lu H, Du J. Decoding the hidden variabilities in mPFC descending pathways across emotional states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596238. [PMID: 38853906 PMCID: PMC11160632 DOI: 10.1101/2024.05.28.596238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Effective emotional regulation, crucial for adaptive behavior, is mediated by the medial prefrontal cortex (mPFC) via connections to the basolateral amygdala (BLA) and nucleus accumbens (NAc), traditionally considered functionally similar in modulating reward and aversion responses. However, how the mPFC balances these descending pathways to control behavioral outcomes remains unclear. We found that while overall firing patterns appeared consistent across emotional states, deeper analysis revealed distinct variabilities. Specifically, mPFC→BLA neurons, especially "center-ON" neurons, exhibited heightened activity during anxiety-related behaviors, highlighting their role in anxiety encoding. Conversely, mPFC→NAc neurons were more active during exploratory behaviors, implicating them in processing positive emotional states. Notably, mPFC→NAc neurons showed significant pattern decorrelation during social interactions, suggesting a pivotal role in encoding social preference. Additionally, chronic emotional states affected these pathways differently: positive states enhanced mPFC→NAc activity, while negative states boosted mPFC→BLA activity. These findings challenge the assumed functional similarity and highlight distinct contributions to emotional regulation, suggesting new avenues for therapeutic interventions.
Collapse
|
22
|
Grammer J, Valles R, Bowles A, Zelikowsky M. SAUSI: an integrative assay for measuring social aversion and motivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594023. [PMID: 38798428 PMCID: PMC11118329 DOI: 10.1101/2024.05.13.594023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Social aversion is a key feature of numerous mental health disorders such as Social Anxiety and Autism Spectrum Disorders. Nevertheless, the biobehavioral mechanisms underlying social aversion remain poorly understood. Progress in understanding the etiology of social aversion has been hindered by the lack of comprehensive tools to assess social aversion in model systems. Here, we created a new behavioral task - Selective Access to Unrestricted Social Interaction (SAUSI), which integrates elements of social motivation, hesitancy, decision-making, and free interaction to enable the wholistic assessment of social aversion in mice. Using this novel assay, we found that social isolation-induced social aversion in mice is largely driven by increases in social fear and social motivation. Deep learning analyses revealed a unique behavioral footprint underlying the socially aversive state produced by isolation, demonstrating the compatibility of modern computational approaches with SAUSI. Social aversion was further assessed using traditional assays - including the 3-chamber sociability assay and the resident intruder assay - which were sufficient to reveal fragments of a social aversion phenotype, including changes to either social motivation or social interaction, but which failed to provide a wholistic assessment of social aversion. Critically, these assays were not sufficient to reveal key components of social aversion, including social freezing and social hesitancy behaviors. Lastly, we demonstrated that SAUSI is generalizable, as it can be used to assess social aversion induced by non-social stressors, such as foot shock. Our findings debut a novel task for the behavioral toolbox - one which overcomes limitations of previous assays, allowing for both social choice as well as free interaction, and offers a new approach for assessing social aversion in rodents.
Collapse
Affiliation(s)
- Jordan Grammer
- Department of Neurobiology, University of Utah, United States
| | - Rene Valles
- Department of Neurobiology, University of Utah, United States
| | - Alexis Bowles
- Department of Neurobiology, University of Utah, United States
| | | |
Collapse
|
23
|
Battivelli D, Fan Z, Hu H, Gross CT. How can ethology inform the neuroscience of fear, aggression and dominance? Nat Rev Neurosci 2024; 25:809-819. [PMID: 39402310 DOI: 10.1038/s41583-024-00858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 11/20/2024]
Abstract
The study of behaviour is dominated by two approaches. On the one hand, ethologists aim to understand how behaviour promotes adaptation to natural contexts. On the other, neuroscientists aim to understand the molecular, cellular, circuit and psychological origins of behaviour. These two complementary approaches must be combined to arrive at a full understanding of behaviour in its natural setting. However, methodological limitations have restricted most neuroscientific research to the study of how discrete sensory stimuli elicit simple behavioural responses under controlled laboratory conditions that are only distantly related to those encountered in real life. Fortunately, the recent advent of neural monitoring and manipulation tools adapted for use in freely behaving animals has enabled neuroscientists to incorporate naturalistic behaviours into their studies and to begin to consider ethological questions. Here, we examine the promises and pitfalls of this trend by describing how investigations of rodent fear, aggression and dominance behaviours are changing to take advantage of an ethological appreciation of behaviour. We lay out current impediments to this approach and propose a framework for the evolution of the field that will allow us to take maximal advantage of an ethological approach to neuroscience and to increase its relevance for understanding human behaviour.
Collapse
Affiliation(s)
- Dorian Battivelli
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Zhengxiao Fan
- School of Brain Science and Brain Medicine, New Cornerstone Science Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Hailan Hu
- School of Brain Science and Brain Medicine, New Cornerstone Science Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy.
| |
Collapse
|
24
|
Zhang Y, Chen H, Cao J, Gao L, Jing Y. Maternal separation alters peripheral immune responses associated with IFN-γ and OT in mice. Peptides 2024; 182:171318. [PMID: 39486747 DOI: 10.1016/j.peptides.2024.171318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The co-evolution of social behavior and the immune system plays a critical role in individuals' adaptation to their environment. However, also need for further research on the key molecules that co-regulate social behavior and immunity. This study focused on neonatal mice that were separated from their mothers for 4 hours per day between the 6th and 16th day after birth. The results showed that these mice had lower plasma levels of IFN-γ and oxytocin, but higher levels of plasma glucocorticoids (GC), then impacting their social abilities. Additionally, maternal separation led to decreased levels of BDNF, IGF2, and CREB mRNAs in the hippocampus, while levels in the prefrontal cortex (PFC) remained unaffected. Maternal separation also resulted in increased levels of oxytocin and CRH mRNA in the hypothalamus, as well as an increase in CD45+ lymphocyte subsets in the meninges and choroid plexus (CP), with CD8+ lymphocytes in meninges and CD4+ lymphocytes in CP showing an increase. In IFN-γ-/- mice, a decrease in social preference was observed alongside lower plasma oxytocin levels. Moreover, IFN-γ-/- mice exhibited reduced numbers of oxytocin neurons in the paraventricular nucleus of the paraventricular nucleus of hypothalamus (PVN), decreased BDNF levels in the PFC and hippocampus, and alterations in CD45+ lymphocytes in CP and meninges, with an increase in CD8+ lymphocytes in meninges and CD4+ lymphocytes in CP. These findings highlight the immunological impact of social stress on IFN-γ regulation, suggesting that the immunomodulatory molecule IFN-γ may influence social behavior by affecting synaptic efficiency in brain regions such as the hippocampus and PFC, which are linked to oxytocin in the PVN.
Collapse
Affiliation(s)
- Yishu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - HaiChao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - JiaXin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - LiPing Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - YuHong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, Lanzhou, Gansu, PR China.
| |
Collapse
|
25
|
Huang J, Yang W, Bao L, Yin B. Effects of Peripubertal Experiences on Competitive Behavior in Male Rats at Different Stages of Adulthood. Dev Psychobiol 2024; 66:e22544. [PMID: 39236223 DOI: 10.1002/dev.22544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Past studies in animal models have extensively investigated the impact of early life experiences on behavioral development, yet relatively few have specifically examined the implications of peripubertal experiences on the evolution of competitive behavior across distinct stages of adulthood. In the current research, we probed potential differences in competitive behavior during emerging adulthood (3 months old) and middle adulthood (12 months old) in 81 Sprague-Dawley male rats exposed to three different peripubertal (postnatal Days 37-60) environments: an enriched environment (EE), a chronic unpredictable mild stress (CUMS) condition, and a control condition. Anxiety-like behavior served as a positive control in our study. Results revealed significant variations in competitive behavior among the groups during emerging adulthood. The EE group displayed the least anxiety and outperformed their peers in food-reward-oriented competition, whereas the CUMS group excelled in status-driven, agonistic competition. However, these behavioral differentiations gradually attenuated by middle adulthood, at which point the control group began to show an advantage. Our findings suggest that although peripubertal experiences significantly shape competitive behavior in the emerging adulthood stage, this effect diminishes over time and is nearly non-detectable during mid-adulthood, underscoring the fluidity of behavioral development and demonstrating that the effects of peripubertal experiences can be modulated by subsequent life experiences.
Collapse
Affiliation(s)
- Jinkun Huang
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| | - Wenjia Yang
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| | - Lili Bao
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| | - Bin Yin
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
26
|
Lin B, Jin Z, Park G, Ge Q, Singh K, Ryan V WG, Imami AS, Naghavi F, Miller OA, Khan S, Lu H, McCullumsmith RE, Du J. Mice lacking acid-sensing ion channel 2 in the medial prefrontal cortex exhibit social dominance. SCIENCE ADVANCES 2024; 10:eadn7573. [PMID: 39453995 PMCID: PMC11506137 DOI: 10.1126/sciadv.adn7573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
Social dominance is essential for maintaining a stable society and has both positive and negative impacts on social animals, including humans. However, the regulatory mechanisms governing social dominance, as well as the crucial regulators and biomarkers involved, remain poorly understood. We discover that mice lacking acid-sensing ion channel 2 (ASIC2) exhibit persistently higher social dominance than their wild-type cagemates. Conversely, overexpression of ASIC2 in the medial prefrontal cortex reverses the dominance hierarchy observed in ASIC2 knockout (Asic2-/-) mice. Asic2-/- neurons exhibit increased synaptic transmission and plasticity, potentially mediated by protein kinase A signaling pathway. Furthermore, ASIC2 plays distinct functional roles in excitatory and inhibitory neurons, thereby modulating the balance of neuronal activities underlying social dominance behaviors-a phenomenon suggestive of a cell subtype-specific mechanism. This research lays the groundwork for understanding the mechanisms of social dominance, offering potential insights for managing social disorders, such as depression and anxiety.
Collapse
Affiliation(s)
- Boren Lin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Zhen Jin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qian Ge
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kritika Singh
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - William G. Ryan V
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Ali Sajid Imami
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Farzaneh Naghavi
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Olivia Ann Miller
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Saira Khan
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Hui Lu
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Robert E. McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43614, USA
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
27
|
McCarthy DM, Vied C, Trupiano MX, Canekeratne AJ, Wang Y, Schatschneider C, Bhide PG. Behavioral, neurotransmitter and transcriptomic analyses in male and female Fmr1 KO mice. Front Behav Neurosci 2024; 18:1458502. [PMID: 39308631 PMCID: PMC11412825 DOI: 10.3389/fnbeh.2024.1458502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Fragile X syndrome is an inherited X-linked disorder associated with intellectual disabilities that begin in childhood and last a lifetime. The symptoms overlap with autism spectrum disorder, and the syndrome predominantly affects males. Consequently, FXS research tends to favor analysis of social behaviors in males, leaving a gap in our understanding of other behavioral traits, especially in females. Methods We used a mouse model of FXS to analyze developmental, behavioral, neurochemical, and transcriptomic profiles in males and females. Results Our behavioral assays demonstrated locomotor hyperactivity, motor impulsivity, increased "approach" behavior in an approach-avoidance assay, and deficits in nest building behavior. Analysis of brain neurotransmitter content revealed deficits in striatal GABA, glutamate, and serotonin content. RNA sequencing of the ventral striatum unveiled expression changes associated with neurotransmission as well as motivation and substance use pathways. Sex differences were identified in nest building behavior, striatal neurotransmitter content, and ventral striatal gene expression. Discussion In summary, our study identified sex differences in specific behavioral, neurotransmitter, and gene expression phenotypes and gene set enrichment analysis identified significant enrichment of pathways associated with motivation and drug reward.
Collapse
Affiliation(s)
- Deirdre M. McCarthy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Cynthia Vied
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Translational Science Laboratory, Florida State University College of Medicine Tallahassee, FL, United States
| | - Mia X. Trupiano
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Angeli J. Canekeratne
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Christopher Schatschneider
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
- Department of Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, United States
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
28
|
Mușat MI, Cătălin B, Hadjiargyrou M, Popa-Wagner A, Greșiță A. Advancing Post-Stroke Depression Research: Insights from Murine Models and Behavioral Analyses. Life (Basel) 2024; 14:1110. [PMID: 39337894 PMCID: PMC11433193 DOI: 10.3390/life14091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Post-stroke depression (PSD) represents a significant neuropsychiatric complication that affects between 39% and 52% of stroke survivors, leading to impaired recovery, decreased quality of life, and increased mortality. This comprehensive review synthesizes our current knowledge of PSD, encompassing its epidemiology, risk factors, underlying neurochemical mechanisms, and the existing tools for preclinical investigation, including animal models and behavioral analyses. Despite the high prevalence and severe impact of PSD, challenges persist in accurately modeling its complex symptomatology in preclinical settings, underscoring the need for robust and valid animal models to better understand and treat PSD. This review also highlights the multidimensional nature of PSD, where both biological and psychosocial factors interplay to influence its onset and course. Further, we examine the efficacy and limitations of the current animal models in mimicking the human PSD condition, along with behavioral tests used to evaluate depressive-like behaviors in rodents. This review also sets a new precedent by integrating the latest findings across multidisciplinary studies, thereby offering a unique and comprehensive perspective of existing knowledge. Finally, the development of more sophisticated models that closely replicate the clinical features of PSD is crucial in order to advance translational research and facilitate the discovery of future effective therapies.
Collapse
Affiliation(s)
- Mădălina Iuliana Mușat
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Aurel Popa-Wagner
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Neurology, Vascular Neurology and Dementia, University of Medicine Essen, 45122 Essen, Germany
| | - Andrei Greșiță
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
29
|
Pavlova IV, Broshevitskaya ND, Potekhina AA, Shvadchenko AM. The Effect of Chronic Overcrowding on Social Behavior and Expression of Neuroinflammation-Associated Genes in Rats. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1582-1594. [PMID: 39418517 DOI: 10.1134/s0006297924090050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 10/19/2024]
Abstract
The effect of chronic overcrowding on the social behavior of adult male Wistar rats was studied. From postnatal day 30 (P30) to P180, the rats lived under standard (STND) or overcrowded (CRWD) conditions. Starting from P100, rat behavior was studied in the social preference and tube dominance tests, and aggressive behavior was investigated in the resident-intruder test. After decapitation of rats on P180, amygdala, dorsal hippocampus, ventromedial hypothalamus, and medial prefrontal cortex were collected and analyzed for expression of the IL-1β, TNF, TGF-β1, and IL-6 mRNAs by quantitative polymerase chain reaction. Compared to the STND group, rats from the CRWD group demonstrated shorter interaction time with a social object in the social preference test. They also had more wins in the tube test and initiated more attacks in the resident-intruder test. Expression of the IL1β gene in the hippocampus and medial prefrontal cortex and of the TGFβ1 gene in the hippocampus, amygdala, and prefrontal cortex was increased in the CRWD group. The stress induced by overcrowding increased social dominance and aggressiveness and decreased social motivation in rats. The changes in the social behavior of CRWD rats were accompanied by upregulation of expression of genes for the proinflammatory cytokine IL-1β and the anti-inflammatory cytokine TGF-β1 in a number of brain structures, which can be considered as manifestations of neuroinflammation and compensatory processes, respectively.
Collapse
Affiliation(s)
- Irina V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | - Nadezhda D Broshevitskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Anastasiya A Potekhina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Anastasiya M Shvadchenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| |
Collapse
|
30
|
Machado NJ, Ardais AP, Nunes A, Szabó EC, Silveirinha V, Silva HB, Kaster MP, Cunha RA. Impact of Coffee Intake on Measures of Wellbeing in Mice. Nutrients 2024; 16:2920. [PMID: 39275237 PMCID: PMC11396897 DOI: 10.3390/nu16172920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
Coffee intake is increasingly recognized as a life-style factor associated with the preservation of health, but there is still a debate on the relative effects of caffeinated and decaffeinated coffee. We now tested how the regular drinking of caffeinated and decaffeinated coffee for 3 weeks impacted on the behavior of male and female adult mice. Males drinking caffeinated coffee displayed statistically significant lower weight gain, increased sensorimotor coordination, greater motivation in the splash test, more struggling in the forced swimming test, faster onset of nest building, more marble burying and greater sociability. Females drinking caffeinated coffee displayed statistically significant increased hierarchy fighting, greater self-care and motivation in the splash test and faster onset of nest building. A post-hoc two-way ANOVA revealed sex-differences in the effects of caffeinated coffee (p values for interaction between the effect of caffeinated coffee and sex) on the hierarchy in the tube test (p = 0.044; dominance), in the time socializing (p = 0.044) and in the latency to grooming (p = 0.048; selfcare), but not in the marble burying test (p = 0.089). Intake of decaffeinated coffee was devoid of effects in males and females. Since caffeine targets adenosine receptors, we verified that caffeinated but not decaffeinated coffee intake increased the density of adenosine A1 receptors (A1R) and increased A1R-mediated tonic inhibition of synaptic transmission in the dorsolateral striatum and ventral but not dorsal hippocampus, the effects being more evident in the ventral hippocampus of females and striatum of males. In contrast, caffeinated and decaffeinated coffee both ameliorated the antioxidant status in the frontal cortex. It is concluded that caffeinated coffee increases A1R-mediated inhibition in mood-related areas bolstering wellbeing of both males and females, with increased sociability in males and hierarchy struggling and self-care in females.
Collapse
Affiliation(s)
- Nuno J Machado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Paula Ardais
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Nunes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eszter C Szabó
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Vasco Silveirinha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Manuella P Kaster
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- MIA-Portugal, Multidisciplinary Institute of Aging, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
31
|
Choi TY, Jeong S, Koo JW. Mesocorticolimbic circuit mechanisms of social dominance behavior. Exp Mol Med 2024; 56:1889-1899. [PMID: 39218974 PMCID: PMC11447232 DOI: 10.1038/s12276-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024] Open
Abstract
Social animals, including rodents, primates, and humans, partake in competition for finite resources, thereby establishing social hierarchies wherein an individual's social standing influences diverse behaviors. Understanding the neurobiological underpinnings of social dominance is imperative, given its ramifications for health, survival, and reproduction. Social dominance behavior comprises several facets, including social recognition, social decision-making, and actions, indicating the concerted involvement of multiple brain regions in orchestrating this behavior. While extensive research has been dedicated to elucidating the neurobiology of social interaction, recent studies have increasingly delved into adverse social behaviors such as social competition and hierarchy. This review focuses on the latest advancements in comprehending the mechanisms of the mesocorticolimbic circuit governing social dominance, with a specific focus on rodent studies, elucidating the intricate dynamics of social hierarchies and their implications for individual well-being and adaptation.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
32
|
Mack NR, Bouras NN, Gao WJ. Prefrontal Regulation of Social Behavior and Related Deficits: Insights From Rodent Studies. Biol Psychiatry 2024; 96:85-94. [PMID: 38490368 PMCID: PMC12064213 DOI: 10.1016/j.biopsych.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
The prefrontal cortex (PFC) is well known as the executive center of the brain, combining internal states and goals to execute purposeful behavior, including social actions. With the advancement of tools for monitoring and manipulating neural activity in rodents, substantial progress has been made in understanding the specific cell types and neural circuits within the PFC that are essential for processing social cues and influencing social behaviors. Furthermore, combining these tools with translationally relevant behavioral paradigms has also provided novel insights into the PFC neural mechanisms that may contribute to social deficits in various psychiatric disorders. This review highlights findings from the past decade that have shed light on the PFC cell types and neural circuits that support social information processing and distinct aspects of social behavior, including social interactions, social memory, and social dominance. We also explore how the PFC contributes to social deficits in rodents induced by social isolation, social fear conditioning, and social status loss. These studies provide evidence that the PFC uses both overlapping and unique neural mechanisms to support distinct components of social cognition. Furthermore, specific PFC neural mechanisms drive social deficits induced by different contexts.
Collapse
Affiliation(s)
- Nancy R Mack
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| | - Nadia N Bouras
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
33
|
Ham JR, Pellis SM. Play partner preferences among groups of unfamiliar juvenile male rats. Sci Rep 2024; 14:16056. [PMID: 38992171 PMCID: PMC11239858 DOI: 10.1038/s41598-024-66988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Like many mammals, as juveniles, rats engage in play fighting, which in the laboratory is typically studied in dyads, and consequently, it is the researcher who determines a rat's play partner. In real-life conditions, a rat would have many partners with whom to play. In a previous study, we found that rats do prefer to play with some individuals more than others, and surprisingly, when given the choice, unfamiliar partners are preferred to familiar ones. In this study, we assessed partner choice when all the available partners are strangers. Eight groups of six unfamiliar juvenile male rats were observed for 10 min play trials. One of the six in each group was selected as the 'focal' rat and his play towards, and received by, the others were scored. Social networks revealed that five of the eight groups formed preferences, with preferred partners also engaging in more play with the focal rat. The mechanism by which these preferences were formed remains to be determined, but it seems that there are individual differences, potentially in the amount and style of play, that allow an individual to select the most suitable partner from a group of strangers.
Collapse
Affiliation(s)
- Jackson R Ham
- Department of Neuroscience, University of Lethbridge, Alberta, Canada.
| | - Sergio M Pellis
- Department of Neuroscience, University of Lethbridge, Alberta, Canada
| |
Collapse
|
34
|
Parvin Z, Jaafari Suha A, Afarinesh MR, Hosseinmardi N, Janahmadi M, Behzadi G. Social hierarchy differentially influences the anxiety-like behaviors and dendritic spine density in prefrontal cortex and limbic areas in male rats. Behav Brain Res 2024; 469:115043. [PMID: 38729219 DOI: 10.1016/j.bbr.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Social hierarchy is a fundamental feature of social organization that can influence brain and emotional processing regarding social ranks. Several areas, including the medial prefrontal cortex (mPFC), the hippocampus, and the basolateral nucleus of the amygdala (BLA), are recognized to be involved in the regulation of emotional processing. However, its delicate structural correlates in brain regions are poorly understood. To address this issue, social hierarchy in home-caged sibling Wistar rats (three male rats/cage) was determined by employing a social confrontation tube test (postnatal weeks 9-12). Then, locomotor activity and anxiety-like behaviors were evaluated using an open-field test (OFT) and elevated plus-maze (EPM) at 13 weeks of age. The rapid Golgi impregnation method was conducted to quantify the spine density of the first secondary branch of the primary dendrite in 20 µm length. The results indicated that dominant rats had significantly higher anxiety-like behaviors compared to subordinates, as was evident by lower open-arm entries and time spent in the EPM and lower entries and time spent in the center of OFT. The spine density analysis revealed a significantly higher number of spines in subordinates compared to the dominant rats in dmPFC pyramidal neurons and the apical and basal dendrites of hippocampal CA1 pyramidal neurons. However, the spine density of pyramidal-like neurons in the BLA was higher in dominant rats. Our findings suggest that dominant social rank is associated with higher anxiety and differential density of the dendritic spine in the prefrontal cortex and limbic regions of the brain in male rats.
Collapse
Affiliation(s)
- Zeinab Parvin
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Jaafari Suha
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Mehra S, Ahsan AU, Sharma M, Budhwar M, Chopra M. Gestational Fisetin Exerts Neuroprotection by Regulating Mitochondria-Directed Canonical Wnt Signaling, BBB Integrity, and Apoptosis in Prenatal VPA-Induced Rodent Model of Autism. Mol Neurobiol 2024; 61:4001-4020. [PMID: 38048031 DOI: 10.1007/s12035-023-03826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Embryonic valproic acid (VPA) has been considered a potential risk factor for autism. Majority of studies indicated that targeting autism-associated alterations in VPA-induced autistic model could be promising in defining and designing therapeutics for autism. Numerous investigations in this field investigated the role of canonical Wnt signaling cascade in regulating the pathophysiology of autism. The impaired blood-brain barrier (BBB) permeability and mitochondrial dysfunction are some key implied features of the autistic brain. So, the current study was conducted to target canonical Wnt signaling pathway with a natural polyphenolic modulator cum antioxidant namely fisetin. A single dose of intraperitoneal VPA sodium salt (400 mg/kg) at gestational day 12.5 induced developmental delays, social behaviour impairments (tube dominance test), and anxiety-like behaviour (sucrose preference test) similar to autism. VPA induced mitochondrial damage and over-activated the canonical Wnt signaling which further increased the blood-brain barrier (BBB) disruption, apoptosis, and neuronal damage. Our findings revealed that oral administration of 10 mg/kg gestational fisetin (GD 13-till parturition) improved social and anxiety-like behaviour by modulating the ROS-regulated mitochondrial-canonical Wnt signaling. Moreover, fisetin controls BBB permeability, apoptosis, and neuronal damage in autism model proving its neuroprotective efficacy. Collectively, our findings revealed that fisetin-evoked modulation of the Wnt signaling cascade successfully relieved the associated symptoms of autism along with developmental delays in the model and indicates its potential as a bioceutical against autism.
Collapse
Affiliation(s)
- Sweety Mehra
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Aitizaz Ul Ahsan
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Madhu Sharma
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Muskan Budhwar
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Mani Chopra
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
36
|
Shemesh Y, Benjamin A, Shoshani-Haye K, Yizhar O, Chen A. Studying dominance and aggression requires ethologically relevant paradigms. Curr Opin Neurobiol 2024; 86:102879. [PMID: 38692167 DOI: 10.1016/j.conb.2024.102879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Although aggression is associated with several psychiatric disorders, there is no effective treatment nor a rigorous definition for "pathological aggression". Mice make a valuable model for studying aggression. They have a dynamic social structure that depends on the habitat and includes reciprocal interactions between the mice's aggression levels, social dominance hierarchy (SDH), and resource allocation. Nevertheless, the classical behavioral tests for territorial aggression and SDH in mice are reductive and have limited ethological and translational relevance. Recent work has explored the use of semi-natural environments to simultaneously study dominance-related behaviors, resource allocation, and aggressive behavior. Semi-natural setups allow experimental control of the environment combined with manipulations of neural activity. We argue that these setups can help bridge the translational gap in aggression research toward discovering neuronal mechanisms underlying maladaptive aggression.
Collapse
Affiliation(s)
- Yair Shemesh
- Department of Brain Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaf Benjamin
- Department of Brain Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel. https://twitter.com/AsafBenj
| | - Keren Shoshani-Haye
- Department of Brain Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ofer Yizhar
- Department of Brain Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel. https://twitter.com/OferYizhar
| | - Alon Chen
- Department of Brain Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
37
|
Zheng J, Baimoukhametova D, Lebel C, Bains JS, Kurrasch DM. Hypothalamic vasopressin sex differentiation is observed by embryonic day 15 in mice and is disrupted by the xenoestrogen bisphenol A. Proc Natl Acad Sci U S A 2024; 121:e2313207121. [PMID: 38753512 PMCID: PMC11126957 DOI: 10.1073/pnas.2313207121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/19/2024] [Indexed: 05/18/2024] Open
Abstract
Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, CalgaryT2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
| | - Dinara Baimoukhametova
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Department of Physiology and Pharmacology, University of Calgary, CalgaryT2N 1N4, Canada
| | - Catherine Lebel
- Alberta Children’s Hospital Research Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, CalgaryT2N 1N4, Canada
| | - Jaideep S. Bains
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Department of Physiology and Pharmacology, University of Calgary, CalgaryT2N 1N4, Canada
| | - Deborah M. Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, CalgaryT2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
| |
Collapse
|
38
|
Chen WJ, Chen H, Li ZM, Huang WY, Wu JL. Acetylcholine muscarinic M1 receptors in the rodent prefrontal cortex modulate cognitive abilities to establish social hierarchy. Neuropsychopharmacology 2024; 49:974-982. [PMID: 38135842 PMCID: PMC11039707 DOI: 10.1038/s41386-023-01785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
In most social species, the attainment of social dominance is strongly affected by personality traits. Dominant individuals show better cognitive abilities, however, whether an individual's cognition can determine its social status has remained inconclusive. We found that mice show better cognitive abilities tend to possess a higher social rank after cohousing. The dynamic release of acetylcholine (ACh) in the prelimbic cortex (PL) is correlated with mouse dominance behavior. ACh enhanced the excitability of the PL neurons via acetylcholine muscarinic M1 receptors (M1). Inhibition of M1 impaired mice cognitive performance and induced losing in social competition. Mice with M1 deficiency in the PL performed worse on cognitive behavioral tests, and exhibited lower status when re-grouped with others. Elevating ACh level in the PL of subordinate mice induced winning. These results provide direct evidence for the involvement of M1 in social hierarchy and suggest that social rank can be tuned by altering cognition through cholinergic system.
Collapse
Affiliation(s)
- Wen-Jun Chen
- Medical Research and Experimental Center, Meizhou People's Hospital, Meizhou, 514031, China
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, China
| | - Hao Chen
- Department of Neurobiology, Southern Medical University, Guangzhou, 510515, China
| | - Zi-Ming Li
- Department of Neurobiology, Southern Medical University, Guangzhou, 510515, China
| | - Wei-Yuan Huang
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Jian-Lin Wu
- Medical Research and Experimental Center, Meizhou People's Hospital, Meizhou, 514031, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, China.
| |
Collapse
|
39
|
González-Madrid E, Rangel-Ramírez MA, Opazo MC, Méndez L, Bohmwald K, Bueno SM, González PA, Kalergis AM, Riedel CA. Gestational hypothyroxinemia induces ASD-like phenotypes in behavior, proinflammatory markers, and glutamatergic protein expression in mouse offspring of both sexes. Front Endocrinol (Lausanne) 2024; 15:1381180. [PMID: 38752179 PMCID: PMC11094302 DOI: 10.3389/fendo.2024.1381180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background The prevalence of autism spectrum disorder (ASD) has significantly risen in the past three decades, prompting researchers to explore the potential contributions of environmental factors during pregnancy to ASD development. One such factor of interest is gestational hypothyroxinemia (HTX), a frequent condition in pregnancy associated with cognitive impairments in the offspring. While retrospective human studies have linked gestational HTX to autistic traits, the cellular and molecular mechanisms underlying the development of ASD-like phenotypes remain poorly understood. This study used a mouse model of gestational HTX to evaluate ASD-like phenotypes in the offspring. Methods To induce gestational HTX, pregnant mice were treated with 2-mercapto-1-methylimidazole (MMI), a thyroid hormones synthesis inhibitor, in the tap-drinking water from embryonic days (E) 10 to E14. A separate group received MMI along with a daily subcutaneous injection of T4, while the control group received regular tap water during the entire pregnancy. Female and male offspring underwent assessments for repetitive, anxious, and social behaviors from postnatal day (P) 55 to P64. On P65, mice were euthanized for the evaluation of ASD-related inflammatory markers in blood, spleen, and specific brain regions. Additionally, the expression of glutamatergic proteins (NLGN3 and HOMER1) was analyzed in the prefrontal cortex and hippocampus. Results The HTX-offspring exhibited anxious-like behavior, a subordinate state, and impaired social interactions. Subsequently, both female and male HTX-offspring displayed elevated proinflammatory cytokines in blood, including IL-1β, IL-6, IL-17A, and TNF-α, while only males showed reduced levels of IL-10. The spleen of HTX-offspring of both sexes showed increased Th17/Treg ratio and M1-like macrophages. In the prefrontal cortex and hippocampus of male HTX-offspring, elevated levels of IL-17A and reduced IL-10 were observed, accompanied by increased expression of hippocampal NLGN3 and HOMER1. All these observations were compared to those observed in the Control-offspring. Notably, the supplementation with T4 during the MMI treatment prevents the development of the observed phenotypes. Correlation analysis revealed an association between maternal T4 levels and specific ASD-like outcomes. Discussion This study validates human observations, demonstrating for the first time that gestational HTX induces ASD-like phenotypes in the offspring, highlighting the need of monitoring thyroid function during pregnancy.
Collapse
Affiliation(s)
- Enrique González-Madrid
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ma. Andreina Rangel-Ramírez
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María C. Opazo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Luis Méndez
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
40
|
Deloulme JC, Leclercq M, Deschaux O, Flore G, Capellano L, Tocco C, Braz BY, Studer M, Lahrech H. Structural interhemispheric connectivity defects in mouse models of BBSOAS: Insights from high spatial resolution 3D white matter tractography. Neurobiol Dis 2024; 193:106455. [PMID: 38408685 DOI: 10.1016/j.nbd.2024.106455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
White matter (WM) tract formation and axonal pathfinding are major processes in brain development allowing to establish precise connections between targeted structures. Disruptions in axon pathfinding and connectivity impairments will lead to neural circuitry abnormalities, often associated with various neurodevelopmental disorders (NDDs). Among several neuroimaging methodologies, Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) technique that has the advantage of visualizing in 3D the WM tractography of the whole brain non-invasively. DTI is particularly valuable in unpinning structural tract connectivity defects of neural networks in NDDs. In this study, we used 3D DTI to unveil brain-specific tract defects in two mouse models lacking the Nr2f1 gene, which mutations in patients have been proven to cause an emerging NDD, called Bosch-Boonstra-Schaaf Optic Atrophy (BBSOAS). We aimed to investigate the impact of the lack of cortical Nr2f1 function on WM morphometry and tract microstructure quantifications. We found in both mutant mice partial loss of fibers and severe misrouting of the two major cortical commissural tracts, the corpus callosum, and the anterior commissure, as well as the two major hippocampal efferent tracts, the post-commissural fornix, and the ventral hippocampal commissure. DTI tract malformations were supported by 2D histology, 3D fluorescent imaging, and behavioral analyses. We propose that these interhemispheric connectivity impairments are consistent in explaining some cognitive defects described in BBSOAS patients, particularly altered information processing between the two brain hemispheres. Finally, our results highlight 3DDTI as a relevant neuroimaging modality that can provide appropriate morphometric biomarkers for further diagnosis of BBSOAS patients.
Collapse
Affiliation(s)
| | | | - Olivier Deschaux
- University Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Gemma Flore
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Napoli, Italy
| | - Laetitia Capellano
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France
| | - Chiara Tocco
- University Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Barbara Yael Braz
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France
| | - Michèle Studer
- University Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France.
| | | |
Collapse
|
41
|
Wang L, Huang N, Cai Q, Guo S, Ai H. Differences in physiology and behavior between male winner and loser mice in the tube test. Behav Processes 2024; 216:105013. [PMID: 38460912 DOI: 10.1016/j.beproc.2024.105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Social hierarchy is a crucial element for survival, reproduction, fitness, and the maintenance of a stable social group in social animals. This study aimed to investigate the physiological indicators, nociception, unfamiliar female mice preference, spatial learning memory, and contextual fear memory of male mice with different social status in the same cage. Our findings revealed significant differences in the trunk temperature and contextual fear memory between winner and loser mice. However, there were no major discrepancies in body weight, random and fasting blood glucose levels, whisker number, frontal and perianal temperature, spleen size, mechanical and thermal pain thresholds, preference for unfamiliar female mice, and spatial memory. In conclusion, social status can affect mice in multiple ways, and, therefore, its influence should be considered when conducting studies using these animals.
Collapse
Affiliation(s)
- Li Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qian Cai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Siyuan Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Heng Ai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
42
|
Tang Y, Yin HY, Illes P. Prefrontocortical Astrocytes Regulate Dominance Hierarchy in Male Mice. Neurosci Bull 2024; 40:415-417. [PMID: 37926791 PMCID: PMC10912057 DOI: 10.1007/s12264-023-01148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- International Joint Research Center on Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Hai-Yan Yin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
43
|
Choi TY, Jeon H, Jeong S, Kim EJ, Kim J, Jeong YH, Kang B, Choi M, Koo JW. Distinct prefrontal projection activity and transcriptional state conversely orchestrate social competition and hierarchy. Neuron 2024; 112:611-627.e8. [PMID: 38086372 DOI: 10.1016/j.neuron.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 02/24/2024]
Abstract
Social animals compete for limited resources, resulting in a social hierarchy. Although different neuronal subpopulations in the medial prefrontal cortex (mPFC), which has been mechanistically implicated in social dominance behavior, encode distinct social competition behaviors, their identities and associated molecular underpinnings have not yet been identified. In this study, we found that mPFC neurons projecting to the nucleus accumbens (mPFC-NAc) encode social winning behavior, whereas mPFC neurons projecting to the ventral tegmental area (mPFC-VTA) encode social losing behavior. High-throughput single-cell transcriptomic analysis and projection-specific genetic manipulation revealed that the expression level of POU domain, class 3, transcription factor 1 (Pou3f1) in mPFC-VTA neurons controls social hierarchy. Optogenetic activation of mPFC-VTA neurons increases Pou3f1 expression and lowers social rank. Together, these data demonstrate that discrete activity and gene expression in separate mPFC projections oppositely orchestrate social competition and hierarchy.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hyoungseok Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eum Ji Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jeongseop Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 41988, Republic of Korea
| | - Yun Ha Jeong
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Byungsoo Kang
- Sysoft R&D Center, Daegu 41065, Republic of Korea; Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 41988, Republic of Korea.
| |
Collapse
|
44
|
Zhuang Y, Li C, Zhao F, Yan Y, Pan H, Zhan J, Behnisch T. E3 Ubiquitin Ligase Uhrf2 Knockout Reveals a Critical Role in Social Behavior and Synaptic Plasticity in the Hippocampus. Int J Mol Sci 2024; 25:1543. [PMID: 38338822 PMCID: PMC10855348 DOI: 10.3390/ijms25031543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The hippocampal formation, particularly the CA2 subregion, is critical for social memory formation and memory processing, relying on synaptic plasticity-a fundamental mechanism by which synapses strengthen. Given the role of the ubiquitin-proteasome system (UPS) in various nervous system processes, including learning and memory, we were particularly interested in exploring the involvement of RING-type ubiquitin E3 ligases, such as UHRF2 (NIRF), in social behavior and synaptic plasticity. Our results revealed altered social behavior in mice with systemic Uhrf2 knockout, including changes in nest building, tube dominance, and the three-chamber social novelty test. In Uhrf2 knockout mice, the entorhinal cortex-CA2 circuit showed significant reductions in synaptic plasticity during paired-pulse facilitation and long-term potentiation, while the inability to evoke synaptic plasticity in the Schaffer-collateral CA2 synapses remained unaffected. These changes in synaptic plasticity correlated with significant changes in gene expression including genes related to vesicle trafficking and transcriptional regulation. The effects of Uhrf2 knockout on synaptic plasticity and the observed gene expression changes highlight UHRF2 as a regulator of learning and memory processes at both the cellular and systemic levels. Targeting E3 ubiquitin ligases, such as UHRF2, may hold therapeutic potential for memory-related disorders, warranting further investigation.
Collapse
Affiliation(s)
- Yinghan Zhuang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Chuhan Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Fang Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yan Yan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hongjie Pan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Jianmin Zhan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Thomas Behnisch
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
45
|
Lopez K, Baker MR, Toth M. Single cell transcriptomic representation of social dominance in prefrontal cortex and the influence of preweaning maternal and postweaning social environment. Sci Rep 2024; 14:2206. [PMID: 38272981 PMCID: PMC10810822 DOI: 10.1038/s41598-024-52200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Social dominance encompasses winning dyadic contests and gaining priority access to resources and reproduction. Dominance is influenced by environmental factors, particularly during early postnatal life and adolescence. A disinhibitory medial prefrontal cortex (mPFC) microcircuit has been implicated in the expression of dominance in the "tube test" social competition paradigm in mice, but the neuroplasticity underlying dominance is not known. We previously reported that male pups raised by physically active (wheel-running, as opposed to sedentary) dams exhibit tube test dominance and increased reproductive fitness, and here we show that social isolation from weaning also increases dominance. By using single cell transcriptomics, we tested if increased dominance in these models is associated with a specific transcriptional profile in one or more cell-types in the mPFC. The preweaning maternal effect, but not postweaning social isolation, caused gene expression changes in pyramidal neurons. However, both the effect of maternal exercise and social isolation induced the coordinated downregulation of synaptic channel, receptor, and adhesion genes in parvalbumin positive (PV) interneurons, suggesting that development of dominance is accompanied by impaired PV interneuron-mediated inhibition of pyramidal cells. This study may help understand environmentally induced transcriptional plasticity in the PFC and its relationship to tube test dominance.
Collapse
Affiliation(s)
- Katherine Lopez
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY, 10065, USA
| | - Madelyn R Baker
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY, 10065, USA
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
46
|
Fulenwider HD, Zhang Y, Ryabinin AE. Characterization of social hierarchy formation and maintenance in same-sex, group-housed male and female C57BL/6 J mice. Horm Behav 2024; 157:105452. [PMID: 37977023 PMCID: PMC10841988 DOI: 10.1016/j.yhbeh.2023.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Social hierarchies are a prevalent feature of all animal groups, and an individual's rank within the group can significantly affect their overall health, typically at the greatest expense of the lowest-ranked individuals, or omegas. These subjects have been shown to exhibit various stress-related phenotypes, such as increased hypothalamic-pituitary axis activity and increased amygdalar corticotropin-releasing factor levels compared to higher-ranked subjects. However, these findings have been primarily characterized in males and in models requiring exhibition of severe aggression. The goals of the current study, therefore, were to characterize the formation and maintenance of social hierarchies using the tube test and palatable liquid competition in same-sex groups of male and female C57BL/6 J mice. We also aimed to examine the effects of tube test-determined social rank on plasma and hypothalamic oxytocin and vasopressin levels, peptides with established roles in social behaviors and the stress response. Lastly, we assessed the effects of environmental enrichment and length of testing on the measures outlined above. Overall, we demonstrated that males and females develop social hierarchies and that these hierarchies can be determined using the tube test. While we were unable to establish a consistent connection between peptide levels and social rank, we observed transient changes in these peptides reflecting complex interactions between social rank, sex, environment, and length of testing. We also found that many male and female omegas began to exhibit passive coping behavior after repeated tube test losses, demonstrating the potential of this assay to serve as a model of chronic, mild psychosocial stress.
Collapse
Affiliation(s)
- Hannah D Fulenwider
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Yangmiao Zhang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
47
|
Zhai X, Ai L, Chen D, Zhou D, Han Y, Ji R, Hu M, Wang Q, Zhang M, Wang Y, Zhang C, Yang JX, Hu A, Liu H, Cao JL, Zhang H. Multiple integrated social stress induces depressive-like behavioral and neural adaptations in female C57BL/6J mice. Neurobiol Dis 2024; 190:106374. [PMID: 38097092 DOI: 10.1016/j.nbd.2023.106374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Despite women representing most of those affected by major depression, preclinical studies have focused almost exclusively on male subjects, partially due to a lack of ideal animal paradigms. As the persistent need regarding the sex balance of neuroscience research and female-specific pathology of mental disorders surges, the establishment of natural etiology-based and systematically validated animal paradigms for depression with female subjects becomes an urgent scientific problem. This study aims to establish, characterize, and validate a "Multiple Integrated Social Stress (MISS)" model of depression in female C57BL/6J mice by manipulating and integrating daily social stressors that females are experiencing. Female C57BL/6J mice randomly experienced social competition failure in tube test, modified vicarious social defeat stress, unescapable overcrowding stress followed by social isolation on each day, for ten consecutive days. Compared with their controls, female MISS mice exhibited a relatively decreased preference for social interaction and sucrose, along with increased immobility in the tail suspension test, which could last for at least one month. These MISS mice also exhibited increased levels of blood serum corticosterone, interleukin-6 L and 1β. In the pharmacological experiment, MISS-induced dysfunctions in social interaction, sucrose preference, and tail suspension tests were amended by systematically administrating a single dose of sub-anesthetic ketamine, a rapid-onset antidepressant. Compared with controls, MISS females exhibited decreased c-Fos activation in their anterior cingulate cortex, prefrontal cortex, nucleus accumbens and some other depression-related brain regions. Furthermore, 24 h after the last exposure to the paradigm, MISS mice demonstrated a decreased center zone time in the open field test and decreased open arm time in the elevated plus-maze test, indicating anxiety-like behavioral phenotypes. Interestingly, MISS mice developed an excessive nesting ability, suggesting a likely behavioral phenotype of obsessive-compulsive disorder. These data showed that the MISS paradigm was sufficient to generate pathological profiles in female mice to mimic core symptoms, serum biochemistry and neural adaptations of depression in clinical patients. The present study offers a multiple integrated natural etiology-based animal model tool for studying female stress susceptibility.
Collapse
Affiliation(s)
- Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lin Ai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dandan Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongyu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mengfan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qing Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Moruo Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuxin Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chunyan Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ankang Hu
- Laboratory Animal Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221004, PR China
| | - He Liu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine, Huzhou Central Hospital, Huzhou 313003, China; The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313003, China; The Fifth School of Clinical Medicine, Zhejiang Chinese Medical University, Huzhou 313003, China; The Affiliated Central Hospital, Huzhou University, Huzhou 313003, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
48
|
Spiteri Douglas R, Hartley MR, Yang JR, Franklin TB. Differential expression of Hdac2 in male and female mice of differing social status. Physiol Behav 2024; 273:114406. [PMID: 37949308 DOI: 10.1016/j.physbeh.2023.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Mice naturally form social hierarchies, and their experiences as subordinate or dominant mice inform future behavioural strategies. To better understand the neural bases of social dominance, we investigated hippocampal gene and protein expression of histone deacetylase 2 (HDAC2), an epigenetic regulator that decreases expression of synaptic plasticity genes and reduces excitatory synaptic function. Hdac2 in hippocampus was associated with social status. The gene for a closely related histone deacetylase (Hdac1), and HDAC2 protein expression, were not associated with social rank in hippocampus. These findings suggest that Hdac2 expression in hippocampus is distinctly linked with social status.
Collapse
Affiliation(s)
- Renée Spiteri Douglas
- The Social Lab, Dalhousie University, Department of Psychology and Neuroscience, Halifax, NS, Canada
| | - Mackenzie R Hartley
- The Social Lab, Dalhousie University, Department of Psychology and Neuroscience, Halifax, NS, Canada
| | - J Renee Yang
- The Social Lab, Dalhousie University, Department of Psychology and Neuroscience, Halifax, NS, Canada
| | - Tamara B Franklin
- The Social Lab, Dalhousie University, Department of Psychology and Neuroscience, Halifax, NS, Canada.
| |
Collapse
|
49
|
Song BL, Zhou J, Jiang Y, Li LF, Liu YJ. Dopamine D2 receptor within the intermediate region of the lateral septum modulate social hierarchy in male mice. Neuropharmacology 2023; 241:109735. [PMID: 37788799 DOI: 10.1016/j.neuropharm.2023.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
The dopamine (DA) system has long been involved in social hierarchies; however, the specific mechanisms have not been elucidated. The lateral septum (LS) is a limbic brain structure that regulates various emotional, motivational, and social behaviors. DA receptors are abundantly expressed in the LS, modulating its functions. In this study, we evaluated the functions of DA receptors within different subregions of the LS in social dominance using a confrontation tube test in male mice. The results showed that mice living in social groups formed linear dominance hierarchies after a few days of cohousing, and the subordinates showed increased anxiety. Fos expressions was elevated in the entire LS after a confrontation tube test in the subordinates. However, DA neurons were more activated in the dominates within the ventral tegmental area and the dorsal raphe nucleus. Quantitative real-time polymerase chain reaction results showed that D2 receptor (D2R) within the intermediate region of the LS (LSi) were elevated in the subordinate. In the following pharmacological studies, we found simultaneous D2R activation in the dominants and D2R inhibition in the subordinates switched the original dominant-subordinate relationship. The aforementioned results suggested that D2R within the LSi plays an important role in social dominance in male mice. These findings improve our understanding of the neural mechanisms underlying the social hierarchy, which is closely related to our social life and happiness.
Collapse
Affiliation(s)
- Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Jie Zhou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| | - Ying-Juan Liu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
50
|
Li LF, Li ZL, Song BL, Jiang Y, Wang Y, Zou HW, Yao LG, Liu YJ. Dopamine D2 receptors in the dorsomedial prefrontal cortex modulate social hierarchy in male mice. Curr Zool 2023; 69:682-693. [PMID: 37876636 PMCID: PMC10591156 DOI: 10.1093/cz/zoac087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/01/2022] [Indexed: 10/26/2023] Open
Abstract
Social hierarchy greatly influences behavior and health. Both human and animal studies have signaled the medial prefrontal cortex (mPFC) as specifically related to social hierarchy. Dopamine D1 receptors (D1Rs) and D2 receptors (D2Rs) are abundantly expressed in the mPFC, modulating its functions. However, it is unclear how DR-expressing neurons in the mPFC regulate social hierarchy. Here, using a confrontation tube test, we found that most adult C57BL/6J male mice could establish a linear social rank after 1 week of cohabitation. Lower rank individuals showed social anxiety together with decreased serum testosterone levels. D2R expression was significantly downregulated in the dorsal part of mPFC (dmPFC) in lower rank individuals, whereas D1R expression showed no significant difference among the rank groups in the whole mPFC. Virus knockdown of D2Rs in the dmPFC led to mice being particularly prone to lose the contests in the confrontation tube test. Finally, simultaneous D2R activation in the subordinates and D2R inhibition in the dominants in a pair switched their dominant-subordinate relationship. The above results indicate that D2Rs in the dmPFC play an important role in social dominance. Our findings provide novel insights into the divergent functions of prefrontal D1Rs and D2Rs in social dominance, which may contribute to ameliorating social dysfunctions along with abnormal social hierarchy.
Collapse
Affiliation(s)
- Lai-Fu Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Zi-Lin Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Yan Wang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Hua-Wei Zou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Lun-Guang Yao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Ying-Juan Liu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| |
Collapse
|