1
|
Gomez Martinez AE, Lam T, Herr AE. Paired Analyses of Nuclear Protein Targets and Genomic DNA by Single-Cell Western Blot and Single-Cell PCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.29.646125. [PMID: 40236107 PMCID: PMC11996381 DOI: 10.1101/2025.03.29.646125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Single-cell multimodal assays measure multiple layers of molecular information. Existing single-cell tools have limited capability to analyze nuclear proteins and genomic DNA from the same originating single cell. To address this gap, we designed and developed a microfluidic single-cell assay (SplitBlot), that pairs measurements of genomic DNA (PCR-based) and nucleo-cytoplasmic proteins (nuclear histone H3 and cytoplasmic beta-actin). To accomplish this paired multiomic measurement, we utilize microfluidic precision to fractionate protein molecules (both nuclear and cytoplasmic) from genomic DNA (nuclear). We create a fractionation axis that prepends a comet-like encapsulation of genomic DNA in an agarose molded microwell to a downstream single-cell western blot in polyacrylamide gel (PAG). For single-cell genomic DNA analysis, the agarose-encapsulated DNA is physically extracted from the microfluidic device for in-tube PCR, after release of genomic DNA from a molten agarose pallet (86% of pallets resulted in amplification of TurboGFP). For protein analysis, nucleo-cytoplasmic proteins are photocaptured to the PAG (via benzophenone) and probed in-situ (15 kDa histone H3 resolved from 42 kDa beta-actin with a separation resolution R s = 0.77, CV = 76%). The SplitBlot reported the amplification of TurboGFP DNA and the separation of nuclear histone H3 and cytoplasmic beta-actin from the same single U251 cells engineered to express TurboGFP. Demonstrated here, Split-Blot offers the capacity for precision genomic DNA vs. protein fractionation for subsequent split workflow consisting of in-tube PCR and on-chip single-cell western blotting, thus providing a tool for pairing genotype to nuclear and cytoplasmic protein expression at the single-cell level. TOC Graphic
Collapse
|
2
|
Khartchenko AF, Lam T, Herr AE. Single-cell differential detergent fractionation for detection of cytokeratin 8 proteoforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634008. [PMID: 39896550 PMCID: PMC11785136 DOI: 10.1101/2025.01.21.634008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Simultaneous profiling of proteoforms and nucleic acids at the single-cell level, i.e., multi omics, directly links the central dogma. However, current single-cell approaches are limited in their ability to identify proteoforms while preserving the nucleus for further analysis. This limitation is especially pronounced in proteins where their proteoforms present diverse biological functions such as cytokeratin 8 (CK8), which, while commonly known for its structural role, is also involved in several diseases. Here, we present a single-cell western blot (scWB) integrated with differential detergent fractionation (DDF) to selectively solubilize and separate CK8 proteoforms while preserving nuclear integrity for subsequent nucleus-based assays. We report on assay development, including screening a panel of lysis buffers based on nonionic detergents and electrophoresis conditions to achieve a separation resolution between two proteoforms of up to 0.94 with an electric field of 30 V/cm, while preserving an intact nucleus. The cytoplasm-specific lysis approach (DDF buffer) demonstrated comparable solubilization efficiency to whole-cell solubilization (RIPA buffer), achieving proteoform solubilization in 14.3% and 10.3% of solubilized cells using DDF and RIPA buffers, respectively, while keeping the nucleus intact. To understand the broad applicability of the assay conditions, we scrutinized electrophoresis performance for resolving CK8 proteoforms across a panel of widely used breast cancer cell lines (MCF7, SKBR3, and MDA-MB-231), showing presence of proteoforms only in MCF7. Our approach allows for tailored solubilization, achieving reliable proteoform detection and nuclear retention across different cell types. Proteoform profiling at the single-cell level forms a basis for the exploration of the role of specific CK8 molecular forms in cellular processes.
Collapse
Affiliation(s)
| | - Trinh Lam
- University of California, Berkeley, USA
| | - Amy E. Herr
- University of California, Berkeley, USA
- Chan Zuckerberg Biohub, USA
| |
Collapse
|
3
|
Lam T, Su A, Gomez Martinez AE, Fomitcheva-Khartchenko A, Herr AE. Single-cell Organelle Extraction with Cellular Indexing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630180. [PMID: 39763945 PMCID: PMC11703196 DOI: 10.1101/2024.12.23.630180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Bulk methods to fractionate organelles lack the resolution to capture single-cell heterogeneity. While microfluidic approaches attempt to fractionate organelles at the cellular level, they fail to map each organelle back to its cell of origin-crucial for multiomics applications. To address this, we developed VacTrap, a high-throughput microfluidic device for isolating and spatially indexing single nuclei from mammalian cells. VacTrap consists of three aligned layers: (1) a Bis-gel microwells layer with a 'trapdoors' (BAC-gel) base, fabricated atop a through-hole glass slide; (2) a PDMS microwell layer to receive transferred nuclei; and (3) a vacuum manifold. VacTrap operation begins with cell lysis using DDF to release intact nuclei into the Bis-gel microwells, while cytoplasmic proteins are electrophoresed into the Bis-gel. Upon exposure to DTT and vacuum force, the trapdoors open, allowing nuclei to transfer to the PDMS microwells. VacTrap dissolves the trapdoors within 3-5 minutes and achieve synchronized nuclei transfer with 98% efficiency across 80% of trapdoors in a 256-microwell array, surpassing the <1% efficiency of passive transfer without vacuum. Morphology analysis confirmed preservation of organelle integrity throughout VacTrap operation. By enabling spatial indexing of nuclei back to their original cell, VacTrap provides a robust, high-throughput tool for single-cell multiomics applications.
Collapse
Affiliation(s)
- Trinh Lam
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alison Su
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ana E Gomez Martinez
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Liu Y, Herr AE. DropBlot: single-cell western blotting of chemically fixed cancer cells. Nat Commun 2024; 15:5888. [PMID: 39003254 PMCID: PMC11246512 DOI: 10.1038/s41467-024-50046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
Archived patient-derived tissue specimens play a central role in understanding disease and developing therapies. To address specificity and sensitivity shortcomings of existing single-cell resolution proteoform analysis tools, we introduce a hybrid microfluidic platform (DropBlot) designed for proteoform analyses in chemically fixed single cells. DropBlot serially integrates droplet-based encapsulation and lysis of single fixed cells, with on-chip microwell-based antigen retrieval, with single-cell western blotting of target antigens. A water-in-oil droplet formulation withstands the harsh chemical (SDS, 6 M urea) and thermal conditions (98 °C, 1-2 hr) required for effective antigen retrieval, and supports analysis of retrieved protein targets by single-cell electrophoresis. We demonstrate protein-target retrieval from unfixed, paraformaldehyde-fixed (PFA), and methanol-fixed cells. Key protein targets (HER2, GAPDH, EpCAM, Vimentin) retrieved from PFA-fixed cells were resolved and immunoreactive. Relevant to biorepositories, DropBlot profiled targets retrieved from human-derived breast tumor specimens archived for six years, offering a workflow for single-cell protein-biomarker analysis of sparing biospecimens.
Collapse
Affiliation(s)
- Yang Liu
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, 30602, USA.
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
5
|
Liu Y, Herr AE. DropBlot: single-cell western blotting of chemically fixed cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556277. [PMID: 37732260 PMCID: PMC10508777 DOI: 10.1101/2023.09.04.556277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
To further realize proteomics of archived tissues for translational research, we introduce a hybrid microfluidic platform for high-specificity, high-sensitivity protein detection from individual chemically fixed cells. To streamline processing-to-analysis workflows and minimize signal loss, DropBlot serially integrates sample preparation using droplet-based antigen retrieval from single fixed cells with unified analysis-on-a-chip comprising microwell-based antigen extraction followed by chip-based single-cell western blotting. A water-in-oil droplet formulation proves robust to the harsh chemical (SDS, 6M urea) and thermal conditions (98°C, 1-2 hr.) required for sufficient antigen retrieval, and the electromechanical conditions required for electrotransfer of retrieved antigen from microwell-encapsulated droplets to single-cell electrophoresis. Protein-target retrieval was demonstrated for unfixed, paraformaldehyde-(PFA), and methanol-fixed cells. We observed higher protein electrophoresis separation resolution from PFA-fixed cells with sufficient immunoreactivity confirmed for key targets (HER2, GAPDH, EpCAM, Vimentin) from both fixation chemistries. Multiple forms of EpCAM and Vimentin were detected, a hallmark strength of western-blot analysis. DropBlot of PFA-fixed human-derived breast tumor specimens (n = 5) showed antigen retrieval from cells archived frozen for 6 yrs. DropBlot could provide a precision integrated workflow for single-cell resolution protein-biomarker mining of precious biospecimen repositories.
Collapse
|
6
|
Zhu Z, Jiang L, Ding X. Advancing Breast Cancer Heterogeneity Analysis: Insights from Genomics, Transcriptomics and Proteomics at Bulk and Single-Cell Levels. Cancers (Basel) 2023; 15:4164. [PMID: 37627192 PMCID: PMC10452610 DOI: 10.3390/cancers15164164] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer continues to pose a significant healthcare challenge worldwide for its inherent molecular heterogeneity. This review offers an in-depth assessment of the molecular profiling undertaken to understand this heterogeneity, focusing on multi-omics strategies applied both in traditional bulk and single-cell levels. Genomic investigations have profoundly informed our comprehension of breast cancer, enabling its categorization into six intrinsic molecular subtypes. Beyond genomics, transcriptomics has rendered deeper insights into the gene expression landscape of breast cancer cells. It has also facilitated the formulation of more precise predictive and prognostic models, thereby enriching the field of personalized medicine in breast cancer. The comparison between traditional and single-cell transcriptomics has identified unique gene expression patterns and facilitated the understanding of cell-to-cell variability. Proteomics provides further insights into breast cancer subtypes by illuminating intricate protein expression patterns and their post-translational modifications. The adoption of single-cell proteomics has been instrumental in this regard, revealing the complex dynamics of protein regulation and interaction. Despite these advancements, this review underscores the need for a holistic integration of multiple 'omics' strategies to fully decipher breast cancer heterogeneity. Such integration not only ensures a comprehensive understanding of breast cancer's molecular complexities, but also promotes the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Zijian Zhu
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, China;
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200025, China;
| |
Collapse
|
7
|
Desire CT, Arrua RD, Strudwick XL, Kopecki Z, Cowin AJ, Hilder EF. The development of microfluidic-based western blotting: Technical advances and future perspectives. J Chromatogr A 2023; 1691:463813. [PMID: 36709548 DOI: 10.1016/j.chroma.2023.463813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Over the past two decades significant technical advancement in the field of western blotting has been made possible through the utilization of microfluidic technologies. In this review we provide a critical overview of these advancements, highlighting the advantages and disadvantages of each approach. Particular attention is paid to the development of now commercially available systems, including those for single cell analysis. This review also discusses more recent developments, including algorithms for automation and/or improved quantitation, the utilization of different materials/chemistries, use of projection electrophoresis, and the development of triBlots. Finally, the review includes commentary on future advances in the field based on current developments, and the potential of these systems for use as point-of-care devices in healthcare.
Collapse
Affiliation(s)
- Christopher T Desire
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - R Dario Arrua
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
8
|
Burnum-Johnson KE, Conrads TP, Drake RR, Herr AE, Iyengar R, Kelly RT, Lundberg E, MacCoss MJ, Naba A, Nolan GP, Pevzner PA, Rodland KD, Sechi S, Slavov N, Spraggins JM, Van Eyk JE, Vidal M, Vogel C, Walt DR, Kelleher NL. New Views of Old Proteins: Clarifying the Enigmatic Proteome. Mol Cell Proteomics 2022; 21:100254. [PMID: 35654359 PMCID: PMC9256833 DOI: 10.1016/j.mcpro.2022.100254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.
Collapse
Affiliation(s)
- Kristin E Burnum-Johnson
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - Thomas P Conrads
- Inova Women's Service Line, Inova Health System, Falls Church, Virginia, USA
| | - Richard R Drake
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Ravi Iyengar
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Emma Lundberg
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, California, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Salvatore Sechi
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Jeffrey M Spraggins
- Department of Cell and Developmental Biology, Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Institute in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Marc Vidal
- Department of Genetics, Harvard University, Cambridge, Massachusetts, USA
| | - Christine Vogel
- New York University Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - David R Walt
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Wyss Institute at Harvard University, Boston, Massachusetts, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
9
|
Rosàs-Canyelles E, Modzelewski AJ, Gomez Martinez AE, Geldert A, Gopal A, He L, Herr AE. Multimodal detection of protein isoforms and nucleic acids from low starting cell numbers. LAB ON A CHIP 2021; 21:2427-2436. [PMID: 33978041 PMCID: PMC8206029 DOI: 10.1039/d1lc00073j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein isoforms play a key role in disease progression and arise from mechanisms involving multiple molecular subtypes, including DNA, mRNA and protein. Recently introduced multimodal assays successfully link genomes and transcriptomes to protein expression landscapes. However, the specificity of the protein measurement relies on antibodies alone, leading to major challenges when measuring different isoforms of the same protein. Here we utilize microfluidic design to perform same-cell profiling of DNA, mRNA and protein isoforms (triBlot) on low starting cell numbers (1-100 s of cells). After fractionation lysis, cytoplasmic proteins are resolved by molecular mass during polyacrylamide gel electrophoresis (PAGE), adding a degree of specificity to the protein measurement, while nuclei are excised from the device in sections termed "gel pallets" for subsequent off-chip nucleic acid analysis. By assaying TurboGFP-transduced glioblastoma cells, we observe a strong correlation between protein expression prior to lysis and immunoprobed protein. We measure both mRNA and DNA from retrieved nuclei, and find that mRNA levels correlate with protein abundance in TurboGFP-expressing cells. Furthermore, we detect the presence of TurboGFP isoforms differing by an estimated <1 kDa in molecular mass, demonstrating the ability to discern different proteoforms with the same antibody probe. By directly relating nucleic acid modifications to protein isoform expression in 1-100 s of cells, the triBlot assay holds potential as a screening tool for novel biomarkers in diseases driven by protein isoform expression.
Collapse
Affiliation(s)
- Elisabet Rosàs-Canyelles
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA. and The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Andrew J Modzelewski
- Division of Cellular and Developmental Biology, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ana E Gomez Martinez
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA. and The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Alisha Geldert
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA. and The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Anjali Gopal
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA. and The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Lin He
- Division of Cellular and Developmental Biology, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA. and The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94720, USA and Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
| |
Collapse
|