1
|
Lao W, Shang X, Yu S, Xiao H, Lou Y, Song C, You J. Evaluation of multilayer co-extrusion film and other three plastic membranes as passive samplers for determination of polyhalogenated carbazoles in water. WATER RESEARCH 2025; 276:123266. [PMID: 39952071 DOI: 10.1016/j.watres.2025.123266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/06/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Passive sampling methods can provide valuable insights for monitoring hydrophobic organic compounds (HOCs) in aquatic environments. As the list of target HOCs expands, there is an increasing demand for passive samplers that can detect a broader range of these compounds. This study aimed to assess the efficacy of a three-layer co-extruded polyethylene/ethylene vinyl acetate (TLC-EVA) film alongside three existing materials (polyethylene (PE), polydimethylsiloxane (PDMS), and poly(methyl methacrylate) (PMMA)) for passive sampling of carbazole and five halogenated carbazoles (PHCZs), a group of dioxin-like chemicals, in water. The films were calibrated through batch experiments to determine the partition coefficients between the polymer and water (KPW). The performance of the samplers and the presence of PHCZs were evaluated through 7- and 14-day exposures in the Xiaoyi River, which flows through Qufu City, China. The logKPW values varied significantly among the compounds and were generally consistent across the four films, ranging from 2.73 to 4.14 for EVA, 2.65 to 4.21 for PE, 2.85 to 3.98 for PMMA, and 2.62 to 4.22 for PDMS. These findings indicate that the films can effectively function as passive samplers for PHCZs. Additionally, a comparison of logKPW results with physicochemical parameters (logKOW and logKOC) highlighted the negative impact of halogen substituents and steric hindrance on sorption, particularly for 1,3,6,8-tetrabromocarbazole. The passive sampling reached equilibrium within the 7-day exposure period, with all PHCZs detected in the river water. Increased concentrations at urban and wastewater treatment plant outlet sampling sites suggested specific sources of PHCZs. Our results advocate for the application of multilayer co-extrusion films as a novel material for passive sampling of HOCs.
Collapse
Affiliation(s)
- Wenjian Lao
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA 92626, USA.
| | - Xiaoyan Shang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Shuiqiang Yu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Huiquan Xiao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Yingying Lou
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Cuihua Song
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China.
| |
Collapse
|
2
|
Feng X, Guo X, Pang S, Guo M, Chen Y. Bioavailability assessment of propiconazole to Limnobium laevigatum and zebrafish (Danio rerio) in aquatic microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126004. [PMID: 40054562 DOI: 10.1016/j.envpol.2025.126004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Residues of the triazole fungicide propiconazole (PCZ) in the environment can easily enter aquatic ecosystems through various pathways and accumulate in sediments, thus threatening ecosystem stability. The method of using passive sampling techniques to measure the freely dissolved concentration (Cfree) of pollutants in aquatic environments for assessing their bioavailability has been widely utilized in environmental risk assessments. This study employs oleic acid-embedded cellulose acetate membrane (OECAM) as a tool to determine the Cfree of PCZ in water. By establishing sediment spiking concentrations of 0.1 and 0.5 mg/kg in an aquatic microcosm, the distribution and bioaccumulation of PCZ in zebrafish (Danio rerio) and the aquatic plant Limnobium laevigatum (L. laevigatum) were examined over a 7-day period. During the experimental period, the concentrations of PCZ in the water for the 0.1 mg/kg and 0.5 mg/kg treatment groups remained approximately 0.9 μg/L and 10.0 μg/L, respectively. After 7 days, the PCZ content in the sediments decreased by 22.74% and 14.94%, respectively. In both zebrafish and L. laevigatum, the concentration of PCZ initially increased and then gradually stabilized, with both species exhibiting moderate accumulation ability for PCZ. The bioconcentration factor (BCF) for zebrafish in the 0.1 mg/kg and 0.5 mg/kg treatment groups ranged from 9.25 to 13.96 and 7.84-16.05, respectively, while those for L. laevigatum ranged from 28.17 to 31.40 and 23.01-36.11, respectively. By the end of the 7-day experiment, the total PCZ content in both treatment groups decreased by an average of 17.51%. Among them, L. laevigatum contributed significantly, highlighting its potential in accelerating the removal of PCZ from aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaojian Feng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Xinyi Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Mingcheng Guo
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China.
| | - Yajie Chen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Cao D, Peng W, Xu H, Fu X, Gong X, Yu S, Wei H, Zhou Q, Huang Y. Bioavailability and phytotoxicity of clomazone to corn depend on soil characteristics and can be estimated by in situ pore water. PEST MANAGEMENT SCIENCE 2025; 81:1316-1323. [PMID: 39511918 DOI: 10.1002/ps.8531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND The injury caused by residual herbicides in soils to subsequent crops has been frequently reported and is largely related to soil physicochemical properties. Elucidating the interactions between herbicide toxicity and soil properties could help assess its phytotoxicity based on local soil characteristics. Here, the influence of soil properties on the accumulation and toxicity of clomazone as a model compound to corn was explored to obtain a universal indicator for estimating the toxicity of herbicides against crops. RESULTS The phytotoxicity of clomazone to corn differed in the five tested soils with the median inhibitory concentration (IC50) values, according to the added concentration, fluctuating between 2.80 and 26.97 mg/kg. The uptake of clomazone by corn was primarily affected by its sorption onto soils and showed a positive correlation with the concentration of clomazone in in situ pore water (CIPW) (R2 ≥ 0.775, P < 0.001). In contrast to results derived from traditional soil clomazone concentrations (Csoil) determined through organic solvent extraction, consistent IC50 values (1.344-1.626 mg/L) were obtained based on CIPW in all five soils with a much lower coefficient of variation. CONCLUSIONS These findings indicate that measuring the concentration of clomazone in in situ pore water provides a reliable and comparable method for evaluating its bioavailability and phytotoxicity on corn. Using CIPW rather than Csoil as a herbicide indicator is more accurate for assessing its actual phytotoxicity. These results are important for the scientific application of clomazone and the safe production of corn. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duantao Cao
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Wenwen Peng
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Hanghang Xu
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoxiang Fu
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Xia Gong
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, China
| | - Sumei Yu
- College of Medicine, Linyi University, Linyi, China
| | - Hongyi Wei
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Qinghong Zhou
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Yingjin Huang
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
4
|
Lu X, Li X, Qi H, Chen C, Jin W. Enhanced pollution control using sediment microbial fuel cells for ecological remediation. BIORESOURCE TECHNOLOGY 2025; 418:131970. [PMID: 39674350 DOI: 10.1016/j.biortech.2024.131970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Sediment Microbial Fuel Cell (SMFC) technology is an innovative approach to facilitate the degradation of sedimentary organic matter by electroactive microorganisms, transforming chemical energy into electrical energy and modulating the redox potential at the sediment-water interface, consequently controlling the release of endogenous pollutants. The synergistic effects of various environmental factors and intrinsic conditions can significantly impact SMFC performance. This review provides a comprehensive overview of SMFC development in research and application for water environment treatment and ecological remediation, a perspective rarely explored in previous reviews. It discusses optimization strategies for SMFC implementation, emphasizing advancements in novel or cost-effective electrode materials, the dynamics of microbial communities, and the control of typical pollutants. The review suggests a virtuous cycle path for SMFC development, highlighting future research needs, including integrating cross-disciplinary approaches like artificial intelligence, genomics, and mathematical modeling, to enhance the deployment of SMFC in real-world environmental remediation.
Collapse
Affiliation(s)
- Xinyu Lu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China
| | - Xiaojing Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China
| | - Hang Qi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China
| | - Wei Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China.
| |
Collapse
|
5
|
Parkerton TF, Redman AD, Letinski DJ, Rakowska MI, Reible DD. Integrating ex situ biomimetic extraction analyses into contaminated sediment assessment and management decisions. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2025; 21:195-207. [PMID: 39879213 PMCID: PMC11804877 DOI: 10.1093/inteam/vjae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 01/31/2025]
Abstract
This study evaluated a novel ex situ passive sampling biomimetic extraction (BE) method to estimate toxic potency in sediments. Gas chromatography with flame ionization detection (GC-FID) analysis of polydimethylsiloxane fibers equilibrated with field sediments was used to quantify bioavailable polyaromatic hydrocarbons (PAHs) and other unresolved, site-specific contaminant mixtures. This method is biomimetic because contaminants partition to the fiber based on hydrophobicity and abundance, and GC-FID quantification accounts for all constituents absorbed to the fiber that may contribute to toxicity. This measurement was compared with conventional approaches that rely on bulk sediment or porewater measurements of a targeted suite of PAHs. The specific objectives of the study were to (1) describe the BE method and explain measurement translation into toxic units (TUs); (2) report sediment BE data collected across 17 diverse field sites; (3) compare TUs predicted from (i) equilibrium partitioning (EqP) calculations based on sediment total organic carbon and bulk PAH chemistry, (ii) PAH porewater concentrations derived using ex situ passive sampling, and (iii) BE concentrations; and (4) discuss implications of this analysis for benthic toxicity assessment. Results showed that TUs obtained from EqP calculations were typically 10× higher than TUs derived from measured porewater PAH concentrations, indicating reduced PAH bioavailability in field sediments. Toxic units derived using the new BE method were more conservative than EqP in one-third of the sediments investigated, which was attributed to unquantified sediment contaminants, possible fiber fouling in the more contaminated sediments, and potential background interferences in less contaminated sediments. Preliminary data are also presented, showing that fluorometric analysis provides a simpler, promising alternative for estimating sediment BE concentrations. Based on this analysis, a decision-support framework is proposed using EqP and BE based TU metrics. Future research priorities are described for supporting framework implementation and extending use of BE analyses to remedial design and monitoring.
Collapse
Affiliation(s)
| | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, NJ, United States
| | | | | | - Danny D Reible
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
6
|
Xu XY, Hu N, Wang Q, Li XD, Yu ZT, Song X, Fan LW. Insights into the Relationship between Temperature Variation and NAPL Removal during In Situ Thermal Remediation of Soil in the Presence of NAPL-Water Co-boiling: A Two-Dimensional Visualized Sandbox Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22594-22602. [PMID: 39653587 DOI: 10.1021/acs.est.4c09388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Thermal remediation effectively treats sites contaminated with nonaqueous phase liquids (NAPL) by heating soil. A key process is the co-boiling at the water-NAPL interface, which lowers the boiling point due to combined vapor pressures, potentially reducing energy needs. However, determining the optimal end time for heating is challenging due to the invisible nature of underground NAPL, often resulting in excessive energy use. The initial NAPL pool size and distance from the heat source influence the spatiotemporal evolution of the NAPL-water interface, defining three zones: the co-boiling equilibrium zone, a nonequilibrium zone, and an unaffected zone. The temperature data collected by fixed temperature sensors can reflect the spatiotemporal evolution of these zones, offering valuable insights into NAPL removal. This study tackles these challenges using a two-dimensional visualized sandbox integrated with real-time image processing and an array of temperature sensors to monitor the NAPL removal and temperature variation. The results reveal semiquantitatively the impact of different initial NAPL amounts and spatial distributions on temperature variations. An optimized strategy is proposed for temperature sensor positioning, and a qualitative relationship is established between the temperature increase and NAPL removal. These findings can enhance our understanding of subsurface temperature dynamics, supporting more efficient, decarbonized remediation practices.
Collapse
Affiliation(s)
- Xin-Yu Xu
- Institute of Thermal Science and Power Systems, School of Energy Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Nan Hu
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Qing Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiao-Dong Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Zi-Tao Yu
- Institute of Thermal Science and Power Systems, School of Energy Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xin Song
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Li-Wu Fan
- Institute of Thermal Science and Power Systems, School of Energy Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Hu Z, He Q, Zhao H, Wang L, Cheng Y, Ji X, Guo Y, Hu W, Li M. Organic carbon compounds removal and phosphate immobilization for internal pollution control: Sediment microbial fuel cells, a prospect technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125110. [PMID: 39395732 DOI: 10.1016/j.envpol.2024.125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
As a current technology that can effectively remove organic carbon compounds and immobilize phosphorus in sediment, sediment microbial fuel cells (SMFCs) can combine sediment remediation with power generation. This review discusses the removal efficiency of SMFCs on organic carbon compounds, including sediment organic matter, antibiotics, oil-contaminated sediments, methane, persistent organic pollutants, and other organic pollutants in sediment, with more comprehensive and targeted summaries, and it also emphasizes the mitigation of phosphorus pollution in water from the perspective of controlling endogenous phosphorus. In this review, the microbial community is used as a starting point to explore more about its roles on phosphorus and organic carbon compounds under SMFCs. Electrode modification, addition of exogenous substances and combinations with other technologies to improve the performance of SMFCs are also reviewed. It is further demonstrated that SMFCs have the prospect of long-term sustainability, but more attention needs to be paid to the study of the mechanism of SMFCs and the continuous improvement of devices for further application in practice.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Qinqin He
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongjun Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Lingjun Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yuxin Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Lao W, Kim GB. Principles of passive sampling for ex situ measurement of hydrophobic organic compounds in sediment: Key considerations on dilution, depletion, and equilibrium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176277. [PMID: 39278480 DOI: 10.1016/j.scitotenv.2024.176277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Passive sampling techniques have undoubtedly proven effective for determining freely dissolved concentrations (Cfree) in sediment. However, the absence of a rationale-based, hands-on protocol for guiding practitioners in conducting ex situ exposure of passive samplers in sediment underscores the need for research and development in this area. The goal of this study was to address three critical issues for passive sampling in sediment ex situ: sediment dilution, depletion, and nonequilibrium. Polyethylene (PE) and polymethyl methacrylate (PMMA) film samplers were utilized in experiments involving hydrophobic organic compounds (HOCs, including PAHs, PCBs, PBDEs, and pesticides) spiked sediments. The results indicated that the influence of sediment dilution could be safely disregarded for HOCs with a larger Kd value (i.e., > 140) when moisture content of 80 % was selected for the exposure. Given some data deviations stemming from sample analysis, the depletion extent could significantly vary within a wide range (up to 36.4 %) rather than being fixed at a specific level (e.g., 5 %). Most HOCs reached equilibrium in a 10-d exposure for the PE sampler, and compounds with a log Kow value <7.12 did not need correction for nonequilibrium. An equation for estimating the nonequilibrium correction factor and an approach for correcting nonequilibrium exposure were introduced. The passive sampling method with PE was applied to a set of field-contaminated sediments under the depletion extents ranged from 7.1 % to 77 %. Based on the relatively comprehensive understanding of the passive sampling in sediment ex situ, a practical and standardized protocol was provided for Cfree measurement of HOCs.
Collapse
Affiliation(s)
- Wenjian Lao
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA 92626, USA.
| | - Gi Beum Kim
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA 92626, USA; Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| |
Collapse
|
9
|
Ola I, Drebenstedt C, Burgess RM, Tidwell L, Anderson K, Hoth N, Külls C. Combined temperature and salinity effects on the passive sampling of PAHs with an assessment of impacts to petroleum toxicity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2076-2089. [PMID: 39371037 DOI: 10.1039/d4em00133h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In equilibrium-based passive sampling applications, the accuracy of estimating freely dissolved concentration (Cfree) of hydrophobic organic compounds (HOCs) relies on the passive sampler-water partition coefficient (KPS-W) values applied. The vast majority of KPS-W are generated under standard conditions: 20 °C in deionized or freshwater. Few empirically derived values are available for non-standard conditions. In this study, polyethylene (PE)-water partitioning coefficients (KPE-W) were experimentally determined for 15 polycyclic aromatic hydrocarbons (PAHs, comprising 9 parent and 6 alkylated compounds) under three different temperature (10, 20, 30 °C) and salinity (0, 18 and 36‰) regimes, the KPE-W values were found to correlate strongly with a variety of molecular parameters (e.g., octanol-water partition coefficients (KOW), molecular weight (MW) and molecular volume (MVOL)). The effects of temperature and salinity on the magnitude of KPE-W were found to be substantial. For temperature, the values range between -0.005 and -0.023 log units per °C; these values indicate that every 10 °C rise in temperature would potentially decrease the KPE-W by a factor of between 0.4 to 1.6. For salinity, the values range from 0.0028 to 0.0057 log units per unit ‰, indicating that an 18‰ increase in salinity would likely increase the KPE-W by a factor of between 0.28 and 0.82. Moreover, temperature and salinity were shown to be independent of each other and non-interacting. Temperature effects were chemical-specific and moderately dependent on hydrophobicity (expressed as the KOW), whereas salinity effects were independent of hydrophobicity. We also assessed the combined impact of temperature and salinity, which showed increasing effects with the hydrophobicity of the PAHs studied. Based on the results, KPE-W values adjusted for site-specific temperature and salinity can be calculated. The impact of applying such site-specific values was demonstrated using a PE-based field monitoring dataset for PAHs from coastal waters of Grand Isle (LA, USA) collected during the 2010 Deepwater Horizon oil spill. When KPE-W values were adjusted to 10 °C and 30 °C, the final freely dissolved concentrations (Cfree) decreased or increased depending on the adjustment. Use of the results of this investigation allow for adjusting existing PE-based datasets to site-specific conditions resulting in more accurate Cfree values for estimating exposure and adverse ecological effects.
Collapse
Affiliation(s)
- Ibukun Ola
- Institute of Mining and Special Civil Engineering, Technical University Mining Academy, Gustav-Zeuner Street 1A, Freiberg, 09599, Germany.
| | - Carsten Drebenstedt
- Institute of Mining and Special Civil Engineering, Technical University Mining Academy, Gustav-Zeuner Street 1A, Freiberg, 09599, Germany.
| | - Robert M Burgess
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, Rhode Island 02882, USA
| | - Lane Tidwell
- Food Safety & Environmental Stewardship Lab, Environmental & Molecular Toxicology, Oregon State University, USA
| | - Kim Anderson
- Food Safety & Environmental Stewardship Lab, Environmental & Molecular Toxicology, Oregon State University, USA
| | - Nils Hoth
- Institute of Mining and Special Civil Engineering, Technical University Mining Academy, Gustav-Zeuner Street 1A, Freiberg, 09599, Germany.
| | - Christoph Külls
- Labor für Hydrologie und Internationale Wasserwirtschaft, Technische Hochschule Lübeck, Lübeck, 23562, Schleswig-Holstein, Germany
| |
Collapse
|
10
|
Ding J, Li X, Jin Z, Hachem MA, Bai Y. Efficient glycosylation of polyphenols via dynamic complexation of cyclodextrin and synchronous coupling reaction with cyclodextrin glycosyltransferase in water. Int J Biol Macromol 2024; 280:136065. [PMID: 39353521 DOI: 10.1016/j.ijbiomac.2024.136065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Glycosylation is an effective way to promote the total intake of polyphenols in humans by increasing the solubility of polyphenols. In this study, an efficient glycosylation system was built via the dynamic complexation of CD with polyphenols and synchronous coupling reaction with cyclodextrin glycosyltransferase (CGTase) in water. The glycosylation efficiencies of quercetin, naringenin, rutin, resveratrol and caffeic acid were 20.9, 3.6, 2.7, 3.4 and 1.5 times higher than the non-complexed system. To quantify conversion rate and determine the rate-limiting step, the mixed product was treated with amyloglucosidase to obtain α-glucosyl rutin, which was identified as rutin 4"-O-α-D-glucopyranoside with purity of 93.6 % and yield of 34.8 % from NMR, MS and HPLC analysis. The results of half-reaction kinetics showed that the catalytic efficiencies of ring-opening of γ-CD (k1) and glycosylation reaction of rutin (k2) were 621.92 and 9.43 mM-1·s-1. The rate-limiting step was clarified for the first time, showing that the ring-opening ability of CGTase to CD was much higher than its glycosylation ability to polyphenols. It is speculated that the rapid ring-opening reaction of CD affected its dynamic complexation, releasing many polyphenols which were not utilized by CGTase in time. Therefore, adjusting the ratio and concentration of CD resulted in an optimal glycosylation molar yield of 84.1 % for rutin, which was the highest yield reported so far in water. This study established a universal system and clarified the rate-limiting step in the enzymatic glycosylation, providing theoretical guidance for efficient production of polyphenol glycosylation.
Collapse
Affiliation(s)
- Jiaqi Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Jonker MTO, Diepens NJ. Improving Sediment Toxicity Testing for Very Hydrophobic Chemicals: Part 2-Exposure Duration, Upper Limit Test Concentrations, and Distinguishing Actual Toxicity from Physical Effects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1728-1739. [PMID: 38329278 DOI: 10.1002/etc.5801] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 02/09/2024]
Abstract
Sediment toxicity testing with very hydrophobic organic chemicals (VHOCs) is challenging because of the chemicals' low aqueous solubilities and slow kinetics. The present study presents the results of experiments investigating whether the standard exposure duration of 28 days with benthic invertebrates is sufficient for VHOCs; above which concentrations in sediment VHOCs are present as "free phase," that is, crystals or non-aqueous-phase liquids (NAPLs); and whether it is possible to discriminate between actual VHOC toxicity and physical effects caused by NAPLs through fouling of the test organisms. The results suggest that the standard sediment toxicity test duration is sufficient for obtaining steady-state VHOC concentrations in Hyalella azteca and Lumbriculus variegatus, provided that spiking and equilibration are performed properly (i.e., no free phase present). Under these conditions, transient (days 3-20) peak-shaped toxicokinetics were observed, with steady-state concentrations reached at approximately 28 days. The concentration above which NAPLs are present, the so-called critical separate phase concentration (CSPC), was determined for several VHOCs by modeling and two experimental methods. Modeling resulted in unrealistic and variable data and therefore should be applied with caution. Experimentally determining CSPCs was successful and yielded values of approximately 1000 (400-2000) mg/kg dry weight, depending on the chemical. Finally, it was demonstrated that distinguishing actual toxicity from physical effects is possible by applying a well-considered test setup, combining toxicity tests with multiple invertebrates (including Lumbriculus, which serves as a negative control for fouling); a broad test concentration range, preferably up to at least 30 000 mg/kg; and passive sampling to localize the CSPC. Applying this setup, false-positive effects due to fouling, as well as false-negative results due to testing at too low concentrations (trying to stay below the CSPC), can be avoided. Environ Toxicol Chem 2024;43:1728-1739. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Michiel T O Jonker
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Noël J Diepens
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Jonker MTO, Diepens NJ. Improving Sediment Toxicity Testing for Very Hydrophobic Chemicals: Part 1-Spiking, Equilibrating, and Exposure Quantification. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1717-1727. [PMID: 38345366 DOI: 10.1002/etc.5820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 07/27/2024]
Abstract
Sediment toxicity tests have applications in ecological risk and chemical safety assessments. Despite the many years of experience in testing and the availability of standard protocols, sediment toxicity testing remains challenging with very hydrophobic organic chemicals (VHOCs; i.e., chemicals with a log octanol/water partition coefficient of more than 6). The challenges primarily relate to the chemicals' low aqueous solubilities and slow kinetics, due to which several experimental artifacts may occur. To investigate the potential artifacts, experiments were performed, focusing on spiking and equilibrating (aging) sediments, as well as exposure quantification with passive sampling. The results demonstrated that generally applied, Organisation for Economic Co-operation and Development-recommended spiking (coating) methods may lead to significant chemical losses and the formation of nondissolved, nonbioavailable VHOCs. Direct spiking appeared to be the most optimal, provided that intensive mixing was applied simultaneously. Passive dosing was tested as a novel way of spiking liquid VHOCs, but the approach proved unsuccessful. Intensive postspiking mixing during sediment equilibration for 1 to 2 weeks was shown to be essential for producing a homogeneous system, minimizing the presence of nondissolved chemical (crystals or nonaqueous phase liquids; NAPLs), and creating a stable toxicological response in subsequent toxicity tests. Finally, exposure quantification of VHOCs in sediments through passive sampling was found to be feasible with different polymers, although prolonged equilibration times may be required, and determining sampler/water partition coefficients can be extremely challenging. The results of additional experiments, focusing on toxicity test exposure duration, concentrations above which NAPLs will occur, and ways to distinguish actual toxicity from false-positive results, are presented in Part 2 of this publication series. Environ Toxicol Chem 2024;43:1717-1727. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Michiel T O Jonker
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Noël J Diepens
- Aquatic Ecology and Water Quality Management Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Leppanen MT, Sourisseau S, Burgess RM, Simpson SL, Sibley P, Jonker MTO. Sediment Toxicity Tests: A Critical Review of Their use in Environmental Regulations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1697-1716. [PMID: 38597781 PMCID: PMC11326746 DOI: 10.1002/etc.5861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Sediments are an integral component of aquatic systems, linking multiple water uses, functions, and services. Contamination of sediments by chemicals is a worldwide problem, with many jurisdictions trying to prevent future pollution (prospective) and manage existing contamination (retrospective). The present review assesses the implementation of sediment toxicity testing in environmental regulations globally. Currently, the incorporation of sediment toxicity testing in regulations is most common in the European Union (EU), North America, and Australasian regions, with some expansion in Asia and non-EU Europe. Employing sediment toxicity testing in prospective assessments (i.e., before chemicals are allowed on the market) is most advanced and harmonized with pesticides. In the retrospective assessment of environmental risks (i.e., chemicals already contaminating sediments), regulatory sediment toxicity testing practices are applied inconsistently on the global scale. International harmonization of sediment toxicity tests is considered an asset and has been successful through the widespread adoption and deployment of Organisation for Economic Co-operation and Development guidelines. On the other hand, retrospective sediment assessments benefit from incorporating regional species and protocols. Currently used toxicity testing species are diverse, with temperate species being applied most often, whereas test protocols are insufficiently flexible to appropriately address the range of environmental contaminants, including nanomaterials, highly hydrophobic contaminants, and ionized chemicals. The ever-increasing and -changing pressures placed on aquatic resources are a challenge for protection and management efforts, calling for continuous sediment toxicity test method improvement to insure effective use in regulatory frameworks. Future developments should focus on including more subtle and specific toxicity endpoints (e.g., incorporating bioavailability-based in vitro tests) and genomic techniques, extending sediment toxicity testing from single to multispecies approaches, and providing a better link with ecological protection goals. Environ Toxicol Chem 2024;43:1697-1716. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Robert M Burgess
- Atlantic Coastal Environmental Science Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island
| | | | - Paul Sibley
- School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Michiel T O Jonker
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
Liu Z, Xu Y. Polyparameter Linear Free Energy Relationships for Partitioning of Neutral Organic Compounds to Storage Lipids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10786-10795. [PMID: 38838217 DOI: 10.1021/acs.est.4c01994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Storage lipids are an important compartment in the bioaccumulation of neutral organic compounds. Reliable models for predicting storage lipid-water and storage lipid-air partition coefficients (Kislip/w and Kislip/a), as well as their temperature dependence, are considered useful. Polyparameter linear free energy relationships (PP-LFERs) are accurate, general, and mechanistically clear models for predicting partitioning-related physicochemical quantities. About a decade ago, PP-LFERs were calibrated for Kislip/w at the physiological temperature of 37 °C. However, to date, a comprehensive collection and sufficiently reliable PP-LFERs for Kislip/w and Kislip/a at the most common standard temperature of 25 °C are still lacking. In this study, experimentally based Kislip/w and/or Kislip/a values at 25 °C for 278 compounds were extensively collected or converted from the literature. Subsequently, PP-LFERs were calibrated for Kislip/w and Kislip/a at 25 °C, performing well over 10 orders of magnitude with root-mean-square errors of 0.17-0.21 log units for compounds with reliable descriptors. Furthermore, standard internal energy changes of transfer from water or air to storage lipids for 158 compounds were derived and used to calibrate PP-LFERs for estimating the temperature dependence of Kislip/w or Kislip/a. Additionally, using PP-LFERs, low-density polyethylene was confirmed to be a better storage lipid analogue than silicone and polyoxymethylene in the equilibrium passive sampling of nonpolar and H-bond acceptor polar compounds.
Collapse
Affiliation(s)
- Zheming Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
15
|
Gidley PT, Lotufo GR, Schmidt SN, Mayer P, Burgess RM. Quantitative thermodynamic exposure assessment of PCBs available to sandworms ( Alitta virens) in activated carbon remediated sediment during ongoing sediment deposition. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:814-823. [PMID: 38345076 PMCID: PMC11179148 DOI: 10.1039/d3em00405h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Marine mesoscale studies with sandworms (Alitta virens) were conducted to isolate important processes governing the exposure and bioaccumulation of polychlorinated biphenyls (PCBs) at contaminated sediment sites. Ex situ equilibrium sampling with silicone-coated jars, and in situ passive sampling with low-density polyethylene (LDPE) were used to determine the performance of an activated carbon (AC) amendment remedy applied to the bed sediment. A quantitative thermodynamic exposure assessment ('QTEA') was performed, showing that PCB concentrations in polymers at equilibrium with the surficial sediment were suited to measure and assess the remedy effectiveness with regard to PCB bioaccumulation in worms. In practice, monitoring the performance of sediment remedies should utilize a consistent and predictive form of polymeric sampling of the sediment. The present study found that ex situ equilibrium sampling of the surficial sediment was the most useful for understanding changes in bioaccumulation potential as a result of the applied remedy, during bioturbation and ongoing sediment and contaminant influx processes. The ultrathin silicone coatings of the ex situ sampling provided fast equilibration of PCBs between the sediment interstitial water and the polymer, and the multiple coating thicknesses were applied to confirm equilibrium and the absence of surface sorption artifacts. Overall, ex situ equilibrium sampling of surficial sediment could fit into existing frameworks as a robust and cost-effective tool for contaminated sediment site assessment.
Collapse
Affiliation(s)
- Philip T Gidley
- US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, MS, USA.
| | - Guilherme R Lotufo
- US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, MS, USA.
| | - Stine N Schmidt
- Technical University of Denmark, Department of Environmental & Resource Engineering, Kgs. Lyngby, Denmark
| | - Philipp Mayer
- Technical University of Denmark, Department of Environmental & Resource Engineering, Kgs. Lyngby, Denmark
| | - Robert M Burgess
- US Environmental Protection Agency, ORD/NHEERL/Atlantic Ecology Division, Narragansett, RI, USA
| |
Collapse
|
16
|
Xu XY, Hu N, Qian ZK, Wang Q, Fan LW, Song X. Understanding of Co-boiling between Organic Contaminants and Water during Thermal Remediation: Effects of Nonequilibrium Heat and Mass Transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16043-16052. [PMID: 37819732 DOI: 10.1021/acs.est.3c04259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In situ thermal desorption (ISTD) provides an efficient solution to remediation of soil and groundwater contaminated with nonaqueous phase liquids (NAPLs). Establishing a relationship between the subsurface temperature rise and NAPL removal is significant to reduce energy consumption of ISTD. However, the co-boiling phenomenon between NAPL and water poses a great challenge in developing this relationship due to the nonequilibrium heat and mass transport effects. We performed a systematic experimental investigation into the local temperature rise patterns at different distances from a NAPL pool and under different degrees of superheat by selecting four representative NAPLs (i.e., trichloroethylene, tetrachlorethylene, n-hexane, and n-octane) according to their density and boiling point relative to water. The patterns of temperature rise indicated that the underground temperature field can be divided into three zones: the zone of local thermal equilibrium, the nonequilibrium zone affected by co-boiling, and the zone unaffected by co-boiling. We developed a pattern-recognition-based approach, which considers the effects of local heat and mass transport to establish a qualitative correlation between the temperature rise and NAPL removal. Our results give deeper insights into the understanding of subsurface temperatures in ISTD practice, which can serve as the guideline for more accurate and sustainable remediation.
Collapse
Affiliation(s)
- Xin-Yu Xu
- Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Institute of Thermal Science and Power Systems, School of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Nan Hu
- Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Institute of Thermal Science and Power Systems, School of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhu-Kang Qian
- Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Qing Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Li-Wu Fan
- Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Institute of Thermal Science and Power Systems, School of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Song
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
17
|
Snook J, Becanova J, Vojta S, Lohmann R. Avoiding artifacts in the determination of per- and polyfluoroalkyl substance sorbent-water distribution. ACS ES&T WATER 2023; 3:2355-2362. [PMID: 38370143 PMCID: PMC10868547 DOI: 10.1021/acsestwater.3c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Characterizing sorbent affinity for a target compound (described by sorbent-water distribution coefficient, Ksw) is a necessary step in the sorbent selection and performance-testing process in the process of capturing aquatic contaminants. However, no standardized procedure exists to measure Ksw, and studies display significant variations in set-up and performance. For per- and polyfluoroalkyl substances (PFAS), most Ksw determinations employ batch experiments with small-scale water-sorbent mixtures, methanol-based spike of target compound(s), and analysis after assumed equilibrium, but methodological details of the above procedure differ and might cause artifacts in the determination of Ksw. We conducted several batch experiments systematically varying a general procedure to characterize effects of sub-optimal experimental design. Using a selection of PFAS (6-carbon fluorinated chain length with differing functional groups) and two sorbents, we tested variations of solution:sorbent ratio, methanol content, and PFAS initial concentration, and compared derived Ksw values. Each methodological component affected log(Ksw), usually by suppressing the value (by 0-48%) when compared with a "best design" procedure. Thus, we suggest (1) a reference procedure for PFAS and sorbents used here, and (2) general guidelines for batch experiment design with different compounds and sorbents. Additionally, we report well-constrained Ksw values for 23 PFAS and two sorbents.
Collapse
Affiliation(s)
- Jarod Snook
- University of Rhode Island Graduate School of Oceanography. Narragansett, RI 02882
| | - Jitka Becanova
- University of Rhode Island Graduate School of Oceanography. Narragansett, RI 02882
| | - Simon Vojta
- University of Rhode Island Graduate School of Oceanography. Narragansett, RI 02882
| | - Rainer Lohmann
- University of Rhode Island Graduate School of Oceanography. Narragansett, RI 02882
| |
Collapse
|
18
|
Grundy JS, Lambert MK, Burgess RM. Passive Sampling-Based versus Conventional-Based Metrics for Evaluating Remediation Efficacy at Contaminated Sediment Sites: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10151-10172. [PMID: 37364241 PMCID: PMC10404352 DOI: 10.1021/acs.est.3c00232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Passive sampling devices (PSDs) are increasingly used at contaminated sites to improve the characterization of contaminant transport and assessment of ecological and human health risk at sediment sites and to evaluate the effectiveness of remedial actions. The use of PSDs after full-scale remediation remains limited, however, in favor of evaluation based on conventional metrics, such as bulk sediment concentrations or bioaccumulation. This review has three overall aims: (1) identify sites where PSDs have been used to support cleanup efforts, (2) assess how PSD-derived remedial end points compare to conventional metrics, and (3) perform broad semiquantitative and selective quantitative concurrence analyses to evaluate the magnitude of agreement between metrics. Contaminated sediment remedies evaluated included capping, in situ amendment, dredging and monitored natural recovery (MNR). We identify and discuss 102 sites globally where PSDs were used to determine remedial efficacy resulting in over 130 peer-reviewed scientific publications and numerous technical reports and conference proceedings. The most common conventional metrics assessed alongside PSDs in the peer-reviewed literature were bioaccumulation (39%), bulk sediments (40%), toxicity (14%), porewater grab samples (16%), and water column grab samples (16%), while about 25% of studies used PSDs as the sole metric. In a semiquantitative concurrence analysis, the PSD-based metrics agreed with conventional metrics in about 68% of remedy assessments. A more quantitative analysis of reductions in bioaccumulation after remediation (i.e., remediation was successful) showed that decreases in uptake into PSDs agreed with decreases in bioaccumulation (within a factor of 2) 61% of the time. Given the relatively good agreement between conventional and PSD-based metrics, we propose several practices and areas for further study to enhance the utilization of PSDs throughout the remediation of contaminated sediment sites.
Collapse
Affiliation(s)
- James S Grundy
- Oak Ridge Institute for Science and Education c/o U.S. Environmental Protection Agency, ORD/CEMM, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island 02882, United States
- U.S. Environmental Protection Agency, OLEM, Office of Superfund Remediation and Technology Innovation, Edison, New Jersey 08837, United States
| | - Matthew K Lambert
- U.S. Environmental Protection Agency, OLEM, Office of Superfund Remediation and Technology Innovation, Washington, District of Columbia 20460, United States
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD/CEMM, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island 02882, United States
| |
Collapse
|
19
|
Liu Z, Sun X, Xu Y. Recalibrating polyparameter linear free energy relationships and reanalyzing mechanisms for partition of nonionic organic compounds to low-density polyethylene passive sampler. J Chromatogr A 2023; 1700:464039. [PMID: 37182512 DOI: 10.1016/j.chroma.2023.464039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Equilibrium passive sampling techniques based on the low-density polyethylene (LDPE) film are increasingly used for determining the concentration of contaminants in water and air. Reliable models capable of predicting LDPE-water and LDPE-air partition coefficients (KiLDPEw and KiLDPEa) would be very useful. In previous studies, polyparameter linear free energy relationships (PP-LFERs) based on Abraham's solute descriptors were calibrated for LDPE-water and LDPE-air systems. Unfortunately, a portion of unreliable partition coefficients and solute descriptors were included in the calibration sets of these previous studies, leading to unexpected system parameters and predictive performance in the regression results. In this study, more reliable PP-LFERs were recalibrated for LDPE-water and LDPE-air systems (20‒25 °C) using carefully collected reliable partition coefficients and solute descriptors of various polar and nonpolar compounds (over one hundred and with low redundancy) from the literature, as well as the robust regression method. The PP-LFERs performed well with root-mean-square errors of 0.15-0.25 log units and successfully predicted KiLDPEw and KiLDPEa values spanning over 10 orders of magnitude for compounds with reliable descriptors. The partitioning mechanisms of compounds to LDPE were also reanalyzed and compared in detail with n-alkanes (C6-C16). Generally, LDPE is more prone to form dispersion interactions with solutes than n-alkanes, while it is more difficult to form cavities in LDPE. In addition, the crystallinity of LDPE is not the sole reason for the distinct constant terms presenting in PP-LFERs for LDPE-water and n-hexadecane-water systems.
Collapse
Affiliation(s)
- Zheming Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Xiangfei Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China.
| |
Collapse
|
20
|
Garza-Rubalcava U, Smith AV, Thomas C, Mills MA, Jackson WA, Reible DD. Long-term monitoring and modeling of PAHs in capped sediments at the Grand Calumet River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121633. [PMID: 37075922 DOI: 10.1016/j.envpol.2023.121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The assessment of a cap for remediation of sediments requires long-term monitoring because of the slow migration of contaminants in porous media. In this study, coring and passive sampling tools were used to assess the transport and degradation of polycyclic aromatic hydrocarbons (PAHs) in an amended cap (sand + Organoclay® PM-199) in the Grand Calumet River (Indiana, USA) during four sampling events from 2012 to 2019. Measurements of three PAHs (phenanthrene (Phe), pyrene (Pyr) and benzo[a]pyrene (BaP), representing low, medium, and high molecular weight compounds, respectively) showed a difference of at least two orders of magnitude between bulk concentrations in the native sediments and the remediation cap. Averages of pore water measurements also showed lower levels in the cap respective to the native sediments by a factor of at least 7 for Phe and 3 for Pyr. In addition, between the baseline (BL), which corresponds to observations from 2012 to 2014, and the measurements in 2019, there was a decrease in depth-averaged pore water concentrations of Phe (C2019/CBL=0.20-0.07+0.12 in sediments and 0.27-0.10+0.15 in cap) and Pyr (C2019/CBL=0.47-0.12+0.16 in sediments and 0.71-0.20+0.28 in the cap). In the case of BaP in pore water, no change was observed in native sediments (C2019/CBL=1.0-0.24+0.32) and there was an increase in the cap (C2019/CBL=2.0-0.54+0.72). Inorganic anions and estimates of pore water velocity along with measurements of PAHs were used to model the fate and transport of contaminants. The modeling suggested that degradation of Phe (t1/2=1.12-0.11+0.16 years) and Pyr (t1/2=5.34-1.8+5.3 years) in the cap is faster than migration, thus the cap is expected to be protective of the sediment-water interface indefinitely for these constituents. No degradation was noted in BaP and the contaminant is expected to reach equilibrium in the capping layer over approximately 100 years if there exists sufficient mass of BaP in the sediments and there is no deposition of clean sediment at the surface.
Collapse
Affiliation(s)
| | - Alex V Smith
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, USA
| | | | | | - W Andrew Jackson
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, USA
| | - Danny D Reible
- Department of Chemical Engineering, Texas Tech University, USA; Department of Civil, Environmental and Construction Engineering, Texas Tech University, USA.
| |
Collapse
|
21
|
Burgess RM, Cantwell MG, Dong Z, Grundy JS, Joyce AS. Comparing Equilibrium Concentrations of Polychlorinated Biphenyls Based on Passive Sampling and Bioaccumulation in Water Column Deployments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:317-332. [PMID: 36484760 PMCID: PMC10789481 DOI: 10.1002/etc.5536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biomonitoring at contaminated sites undergoing cleanup, including Superfund sites, often uses bioaccumulation of anthropogenic contaminants by field-deployed organisms as a metric of remedial effectiveness. Bioaccumulation studies are unable to assess the equilibrium status of the organisms relative to the contaminants to which they are exposed. Establishing equilibrium provides a reproducible benchmark on which scientific and management decisions can be based (e.g., comparison with human dietary consumption criteria). Unlike bioaccumulating organisms, passive samplers can be assessed for their equilibrium status. In our study, over a 3-year period, we compared the bioaccumulation of selected polychlorinated biphenyls (PCBs) by mussels in water column deployments at the New Bedford Harbor Superfund site (New Bedford, MA, USA) to codeployed passive samplers. Based on comparisons to the calculated passive sampler equilibrium concentrations, the mussels were not at equilibrium, and the subsequent analysis focused on evaluating approaches for estimating equilibrium bioaccumulation. In addition, a limited evaluation of metal bioaccumulation by the exposed mussels and a metal passive sampler was performed. In general, mussel and passive sampler accumulation of PCBs was significantly correlated; however, surprisingly, agreement on the magnitude of accumulation was optimal when bioaccumulation and passive sampler uptake were not corrected for nonequilibrium conditions. A subsequent comparison of four approaches for estimating equilibrium mussel bioaccumulation using octanol-water partition coefficients (KOW ), triolein-water partition coefficients (KTW ), and two types of polymer-lipid partition coefficients demonstrated that field-deployed mussels were not at equilibrium with many PCBs. A range of estimated equilibrium mussel bioaccumulation concentrations were calculated, with the magnitude of the KOW -based values being the smallest and the polymer-lipid partition coefficient-based values being the largest. These analyses are intended to assist environmental scientists and managers to interpret field deployment data when transitioning from biomonitoring to passive sampling. Environ Toxicol Chem 2023;42:317-332. Published 2022. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Robert M. Burgess
- ORD/CEMM Atlantic Coastal Environmental Sciences Division, US Environmental Protection Agency, Narragansett, Rhode Island
| | - Mark G. Cantwell
- ORD/CEMM Atlantic Coastal Environmental Sciences Division, US Environmental Protection Agency, Narragansett, Rhode Island
| | - Zhao Dong
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - James S. Grundy
- ORD/CEMM Atlantic Coastal Environmental Sciences Division, Oak Ridge Institute for Science and Education, US Environmental Protection Agency, Narragansett, Rhode Island
| | - Abigail S. Joyce
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
22
|
Davenport R, Curtis‐Jackson P, Dalkmann P, Davies J, Fenner K, Hand L, McDonough K, Ott A, Ortega‐Calvo JJ, Parsons JR, Schäffer A, Sweetlove C, Trapp S, Wang N, Redman A. Scientific concepts and methods for moving persistence assessments into the 21st century. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1454-1487. [PMID: 34989108 PMCID: PMC9790601 DOI: 10.1002/ieam.4575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 05/19/2023]
Abstract
The evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;18:1454-1487. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | - Philipp Dalkmann
- Bayer AG, Crop Science Division, Environmental SafetyMonheimGermany
| | | | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of ChemistryUniversity of ZürichZürichSwitzerland
| | - Laurence Hand
- Syngenta, Product Safety, Jealott's Hill International Research CentreBracknellUK
| | | | - Amelie Ott
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)BrusselsBelgium
| | - Jose Julio Ortega‐Calvo
- Instituto de Recursos Naturales y Agrobiología de SevillaConsejo Superior de Investigaciones CientíficasSevillaSpain
| | - John R. Parsons
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Andreas Schäffer
- RWTH Aachen University, Institute for Environmental ResearchAachenGermany
| | - Cyril Sweetlove
- L'Oréal Research & InnovationEnvironmental Research DepartmentAulnay‐sous‐BoisFrance
| | - Stefan Trapp
- Department of Environmental EngineeringTechnical University of DenmarkBygningstorvetLyngbyDenmark
| | - Neil Wang
- Total Marketing & ServicesParis la DéfenseFrance
| | - Aaron Redman
- ExxonMobil Petroleum and ChemicalMachelenBelgium
| |
Collapse
|
23
|
Maletić S, Isakovski MK, Sigmund G, Hofmann T, Hüffer T, Beljin J, Rončević S. Comparing biochar and hydrochar for reducing the risk of organic contaminants in polluted river sediments used for growing energy crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157122. [PMID: 35787901 DOI: 10.1016/j.scitotenv.2022.157122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
In Europe alone, >200 million m3 of river sediments are dredged each year, part of which are contaminated to such an extent that they have to be landfilled. This study compares the use of biochar and hydrochar for the remediation of sediment contaminated with pentachlorobenzene, hexachlorobenzene, lindane, trifluralin, alachlor, simazine, and atrazine with the motivation to make sediments contaminated by such priority substances usable as arable land for growing energy crops. Biochar and hydrochar originating from Miscanthus giganteus and Beta vulgaris shreds were compared for their potential to reduce contaminant associated risk in sediments. Specifically, by investigating the effects of sorbent amendment rate (1, 5, and 10 %) and incubation time (14, 30, and 180 d) on contaminant bioaccessibility, toxicity to the bacteria Vibrio fischeri, as well as toxicity and plant uptake in Zea mays. Biochar reduced contaminant bioaccessibility up to five times more than hydrochar. The bioaccessibility of contaminants decreased up to sevenfold with increasing incubation time, indicating that the performance of carbonaceous sorbents may be underestimated in short-term lab experiments. Biochar reduced contaminants toxicity to Vibrio fischeri, whereas hydrochar was itself toxic to the bacteria. Toxicity to Zea mays was determined by contaminant bioaccessibility but also sorbent feedstock with cellulose rich Beta vulgaris based sorbents exhibiting toxic effects. The plant uptake of all contaminants decreased after sorbent amendment.
Collapse
Affiliation(s)
- Snežana Maletić
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia
| | | | - Gabriel Sigmund
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Thilo Hofmann
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Thorsten Hüffer
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jelena Beljin
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia
| | - Srđan Rončević
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia
| |
Collapse
|
24
|
Lu Q, Shen Z, Zheng K, Chang Q, Xue J, Wu X. Estimating the bioavailability of acetochlor to wheat using in situ pore water and passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155239. [PMID: 35421494 DOI: 10.1016/j.scitotenv.2022.155239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The intensive use of acetochlor in China leads to its extensive existence in soil which may result in contamination of crops and commodities. Therefore, it is vital to assess the bioavailability and phytotoxicity of acetochlor to crops. In this study, four measurements involved in in situ pore water extraction (CIPW), passive sampling extraction (Cfree), ex situ pore water extraction (CEPW), and organic solvent extraction (Csoil) were conducted to assess the bioavailability and phytotoxicity of acetochlor to wheat plant plants in five soils. The results showed that the acetochlor concentrations accumulated in wheat foliage and roots were in the range of 0.11-0.87 mg/kg and 0.09-2.02 mg/kg in the five tested soils, respectively, and had a significant correlation with the acetochlor values analyzed by CIPW (R2 = 0.83-0.90, p < 0.0001) or the Cfree method (R2 = 0.86-0.92, p < 0.0001). The acetochlor concentrations in the five soils measured by these two methods were also correlated with the IC50 values of acetochlor in wheat foliage and roots (R2 > 0.69, p ≤ 0.05). The results indicated that the CIPW and Cfree methods were effective in evaluating acetochlor toxicity to wheat and the acetochlor concentrations in wheat. The effects of soil physical and chemical properties including pH, organic matter content (OMC), clay content, and cation exchange capacity (CEC) on the acetochlor toxicity to wheat were analyzed, and soil OMC was found to be the dominant factor affecting the toxicity of acetochlor in the soil-wheat system.
Collapse
Affiliation(s)
- Qingxiang Lu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Zhen Shen
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Kaiyuan Zheng
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Qing Chang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Jiaying Xue
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China.
| |
Collapse
|
25
|
Lotufo GR, Michalsen MM, Reible DD, Gschwend PM, Ghosh U, Kennedy AJ, Kerns KM, Rakowska MI, Odetayo A, MacFarlane JK, Yan S, Bokare M. Interlaboratory Study of Polyethylene and Polydimethylsiloxane Polymeric Samplers for Ex Situ Measurement of Freely Dissolved Hydrophobic Organic Compounds in Sediment Porewater. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1885-1902. [PMID: 35512673 PMCID: PMC9545451 DOI: 10.1002/etc.5356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/19/2021] [Accepted: 05/02/2022] [Indexed: 05/04/2023]
Abstract
We evaluated the precision and accuracy of multilaboratory measurements for determining freely dissolved concentrations (Cfree ) of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediment porewater using polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) polymeric samplers. Four laboratories exposed performance reference compound (PRC) preloaded polymers to actively mixed and static ex situ sediment for approximately 1 month; two laboratories had longer exposures (2 and 3 months). For Cfree results, intralaboratory precision was high for single compounds (coefficient of variation 50% or less), and for most PAHs and PCBs interlaboratory variability was low (magnitude of difference was a factor of 2 or less) across polymers and exposure methods. Variability was higher for the most hydrophobic PAHs and PCBs, which were present at low concentrations and required larger PRC-based corrections, and also for naphthalene, likely due to differential volatilization losses between laboratories. Overall, intra- and interlaboratory variability between methods (PDMS vs. LDPE, actively mixed vs. static exposures) was low. The results that showed Cfree polymer equilibrium was achieved in approximately 1 month during active exposures, suggesting that the use of PRCs may be avoided for ex situ analysis using comparable active exposure; however, such ex situ testing may not reflect field conditions. Polymer-derived Cfree concentrations for most PCBs and PAHs were on average within a factor of 2 compared with concentrations in isolated porewater, which were directly measured by one laboratory; difference factors of up to 6 were observed for naphthalene and the most hydrophobic PAHs and PCBs. The Cfree results were similar for academic and private sector laboratories. The accuracy and precision that we demonstrate for determination of Cfree using polymer sampling are anticipated to increase regulatory acceptance and confidence in use of the method. Environ Toxicol Chem 2022;41:1885-1902. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Guilherme R. Lotufo
- Environmental Laboratory, US Army Engineer Research and Development CenterVicksburgMississippiUSA
| | - Mandy M. Michalsen
- Environmental Laboratory, US Army Engineer Research and Development CenterVicksburgMississippiUSA
| | - Danny D. Reible
- Department of Civil, Environmental, and Construction EngineeringTexas Tech UniversityLubbockTexasUSA
| | - Philip M. Gschwend
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental EngineeringUniversity of Maryland Baltimore CountyBaltimoreMarylandUSA
| | - Alan J. Kennedy
- Environmental Laboratory, US Army Engineer Research and Development CenterVicksburgMississippiUSA
| | | | - Magdalena I. Rakowska
- Department of Civil, Environmental, and Construction EngineeringTexas Tech UniversityLubbockTexasUSA
| | - Adesewa Odetayo
- Department of Civil, Environmental, and Construction EngineeringTexas Tech UniversityLubbockTexasUSA
| | - John K. MacFarlane
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Songjing Yan
- Department of Chemical, Biochemical, and Environmental EngineeringUniversity of Maryland Baltimore CountyBaltimoreMarylandUSA
| | - Mandar Bokare
- Department of Chemical, Biochemical, and Environmental EngineeringUniversity of Maryland Baltimore CountyBaltimoreMarylandUSA
| |
Collapse
|
26
|
Jonker MTO. Polyethylene-Water and Polydimethylsiloxane-Water Partition Coefficients for Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls: Influence of Polymer Source and Proposed Best Available Values. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1370-1380. [PMID: 35322897 PMCID: PMC9325362 DOI: 10.1002/etc.5333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/31/2021] [Accepted: 03/19/2022] [Indexed: 05/28/2023]
Abstract
For most passive sampling applications, the availability of accurate passive sampler-water partition coefficients (Kp-w ) is of key importance. Unfortunately, a huge variability exists in literature Kp-w values, in particular for hydrophobic chemicals such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). This variability is a major source of concern in the passive sampling community, which would benefit from high-quality Kp-w data. Hence, in the present study "best available" PAH and PCB Kp-w values are proposed for the two most often applied passive sampling materials, that is, low-density polyethylene and polydimethylsiloxane (PDMS), based on (1) a critical assessment of existing literature data, and (2) new Kp-w determinations for polyethylene and PDMS, with both polymers coming in six different versions (suppliers, thicknesses). The experimental results indicated that Kp-w values for PDMS are independent of the source, thus allowing straightforward standardization. In contrast, Kp-w values for polyethylene from different sources differed by up to 30%. Defining best available Kp-w values for this polymer therefore may require standardization of the polymer source. Application of the proposed best available Kp-w values will substantially improve the accuracy of freely dissolved concentration results by users and the potential for comparisons across laboratories. Environ Toxicol Chem 2022;41:1370-1380. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
27
|
Niu L, Henneberger L, Huchthausen J, Krauss M, Ogefere A, Escher BI. pH-Dependent Partitioning of Ionizable Organic Chemicals between the Silicone Polymer Polydimethylsiloxane (PDMS) and Water. ACS ENVIRONMENTAL AU 2022; 2:253-262. [PMID: 37102138 PMCID: PMC10114720 DOI: 10.1021/acsenvironau.1c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The silicone polymer polydimethysiloxane (PDMS) is a popular passive sampler for in situ and ex situ sampling of hydrophobic organic chemicals. Despite its limited sorptive capacity for polar and ionizable organic chemicals (IOC), IOCs have been found in PDMS when extracting sediment and suspended particulate matter. The pH-dependent partitioning of 190 organics and IOCs covering a range of octanol-water partition constants log K ow from -0.3 to 7.7 was evaluated with a 10-day shaking method using mixtures composed of all chemicals at varying ratios of mass of PDMS to volume of water. This method reproduced the PDMS-water partition constant K PDMS/w of neutral chemicals from the literature and extended the dataset by 93 neutral chemicals. The existing quantitative structure-activity relationship between the log K ow and K PDMS/w could be extended with the measured K PDMS/w linearly to a log K ow of -0.3. Fully charged organics were not taken up into PDMS. Thirty-eight monoprotic organic acids and 42 bases showed negligible uptake of the charged species, and the pH dependence of the apparent D PDMS/w(pH) could be explained by the fraction of neutral species multiplied by the K PDMS/w of the neutral species of these IOCs. Seventeen multiprotic chemicals with up to three acidity constants pK a also showed a pH dependence of D PDMS/w(pH) with the tendency that the neutral and zwitterionic forms showed the highest D PDMS/w(pH). D PDMS/w(pH) of charged species of more hydrophobic multiprotic chemicals such as tetrabromobisphenol A and telmisartan was smaller but not negligible. Since these chemicals show high bioactivity, their contribution to mixture effects has to be considered when testing passive sampling extracts with in vitro bioassays. This work has further implications for understanding the role of microplastic as a vector for organic micropollutants.
Collapse
Affiliation(s)
- Lili Niu
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Key
Laboratory of Pollution Exposure and Health Intervention of Zhejiang
Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Luise Henneberger
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Julia Huchthausen
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Martin Krauss
- Department
of Effect Directed Analysis, Helmholtz Centre
for Environmental Research, 04318 Leipzig, Germany
| | - Audrey Ogefere
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Center
for Applied Geoscience, Eberhard Karls University
of Tübingen, Schnarrenbergstr.
94-96, 72076 Tübingen, Germany
| |
Collapse
|
28
|
Lotufo GR, Gidley PT, McQueen AD, Moore DW, Edwards DA, Hardenstine J, Uhler AD. Passive-Sampler-Based Bioavailability Assessment of PCB Congeners Associated with Aroclor-Containing Paint Chips in the Presence of Sediment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:105-118. [PMID: 34919163 PMCID: PMC8732844 DOI: 10.1007/s00244-021-00907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
This is the first investigation of the bioavailability of PCBs associated with paint chips (PC) dispersed in sediment. Bioavailability of PCB-containing PC in sediment was measured using ex situ polyethylene passive samplers (PS) and compared to that of PCBs from field-collected sediments. PC were mixed in freshwater sediment from a relatively uncontaminated site with no known PCB contamination sources and from a contaminated site with non-paint PCB sources. PC < 0.045 mm generated concentrations in the PS over one order of magnitude higher than coarser chips. The bioavailable fraction was represented by the polymer-sediment accumulation factor (PSAF), defined as the ratio of the PCB concentrations in the PS and organic carbon normalized sediment. The PSAF was similar for both field sediments. The PSAFs for the field sediments were ~ 50-60 and ~ 5 times higher than for the relatively uncontaminated sediment amended with PC for the size fractions 0.25-0.3 mm and < 0.045 mm, respectively. These results indicate much lower bioavailability for PCBs associated with PC compared to PCBs associated with field-collected sediment. Such information is essential for risk assessment and remediation decision-making for sites where contamination from non-paint PCBs sources is co-located with PCB PC.
Collapse
Affiliation(s)
| | - Philip T Gidley
- US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Andrew D McQueen
- US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - David W Moore
- US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Deborah A Edwards
- ExxonMobil Environmental and Property Solutions Company, Spring, TX, 77389, USA
| | | | - Allen D Uhler
- NewFields-Environmental Forensics Practice, Rockland, MA, USA
| |
Collapse
|
29
|
Chang Q, Ji W, Lu Q, Xue J, Hua R, Wu X. Bioavailability and toxicity of imazethapyr in maize plant estimated by four chemical extraction techniques in different soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149594. [PMID: 34418631 DOI: 10.1016/j.scitotenv.2021.149594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The bioavailability and toxicity of herbicides on the crop depend on its uptake efficiency from the soil, and thus the assessment of the bioavailable fraction of herbicides in soil is a crucial work. In this study, we investigated the uptake concentration and toxicity of imazethapyr in maize plant using four chemical measurements, including the extraction of in situ pore water (CIPW), ex situ pore water (CEPW), organic solvent (Csoil) and passive sampling (Cfree) in five soils. The results obtained that the CIPW in a specific soil had the most significant correlation with the uptake concentration of imazethapyr in maize plant (R2 = 0.8851-0.9708), followed by CEPW (R2 = 0.8911-0.9565) and Cfree (R2 = 0.7881-0.9673). However, Cfree showed a higher correlation when considering all five soils, and thus Cfree can describe the bioavailability beyond the types of soil. Additionally, the median inhibition concentrations (IC50) of imazethapyr to maize plant ranged from 5.0 to 6.9 mg/kg in five soils, and the CIPW, CEPW and Cfree had better relationships with the IC50 (R2 > 0.8681) than the Csoil (R2 = 0.6782). The effects of soil properties on the phytotoxicity of imazethapyr, including pH, organic matter content, cation exchange capacity and clay content, were studied, and the soil pH was shown to be a main factor. This study demonstrated that the freely dissolved fraction and soil pore water concentration of imazethapyr in soil can be used to evaluate its bioavailability and toxicity to maize.
Collapse
Affiliation(s)
- Qing Chang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Weiping Ji
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Qingxiang Lu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Jiaying Xue
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China.
| |
Collapse
|
30
|
Brennan AA, Mount DR, Johnson NW. Stochastic Framework for Addressing Chemical Partitioning and Bioavailability in Contaminated Sediment Assessment and Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11040-11048. [PMID: 34310120 PMCID: PMC11137493 DOI: 10.1021/acs.est.1c01537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Passive sampling to quantify net partitioning of hydrophobic organic contaminants between the porewater and solid phase has advanced risk management for contaminated sediments. Direct porewater (Cfree) measures represent the best way to predict adverse effects to biota. However, when the need arises to convert between solid-phase concentration (Ctotal) and Cfree, a wide variation in observed sediment-porewater partition coefficients (KTOC) is observed due to intractable complexities in binding phases. We propose a stochastic framework in which a given Ctotal is mapped to an estimated range of Cfree through variability in passive sampling-derived KTOC relationships. This mapping can be used to pair estimated Cfree with biological effects data or inversely to translate a measured or assumed Cfree to an estimated Ctotal. We apply the framework to both an effects threshold for polycyclic aromatic hydrocarbon (PAH) toxicity and an aggregate adverse impact on an assemblage of species. The stochastic framework is based on a "bioavailability ratio" (BR), which reflects the extent to which potency-weighted, aggregate PAH partitioning to the solid-phase is greater than that predicted by default, KOW-based KTOC values. Along a continuum of Ctotal, we use the BR to derive an estimate for the probability that Cfree will exceed a threshold. By explicitly describing the variability of KTOC and BR, estimates of risk posed by sediment-associated contaminants can be more transparent and nuanced.
Collapse
Affiliation(s)
- Amanda A Brennan
- Water Resources Science, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - David R Mount
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Nathan W Johnson
- Water Resources Science, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
- Department of Civil Engineering, University of Minnesota, Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
31
|
Niu L, Ahlheim J, Glaser C, Gunold R, Henneberger L, König M, Krauss M, Schwientek M, Zarfl C, Escher BI. Suspended Particulate Matter-A Source or Sink for Chemical Mixtures of Organic Micropollutants in a Small River under Baseflow Conditions? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5106-5116. [PMID: 33759504 DOI: 10.1021/acs.est.0c07772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Suspended particulate matter (SPM) plays an important role in the fate of organic micropollutants in rivers during rain events, when sediments are remobilized and turbid runoff components enter the rivers. Under baseflow conditions, the SPM concentration is low and the contribution of SPM-bound contaminants to the overall risk of organic contaminants in rivers is assumed to be negligible. To challenge this assumption, we explored if SPM may act as a source or sink for all or specific groups of organic chemicals in a small river. The concentrations of over 600 contaminants and the mixture effects stemming from all chemicals in in vitro bioassays were measured for river water, SPM, and the surface sediment after solid-phase extraction or exhaustive solvent extraction. The bioavailable fractions of chemicals and mixture effects were estimated after passive equilibrium sampling of enriched SPM slurries and sediments in the lab. Dissolved compounds dominated the total chemical burden in the water column (water plus SPM) of the river, whereas SPM-bound chemicals contributed up to 46% of the effect burden even if the SPM concentration in rivers was merely 1 mg/L. The equilibrium between water and SPM was still not reached under low-flow conditions with SPM as a source of water contamination. The ratios of SPM-associated to sediment-associated neutral and hydrophobic chemicals as well as the ratios of the mixture effects expressed as bioanalytical equivalent concentrations were close to 1, suggesting that the surface sediment can be used as a proxy for SPM under baseflow conditions when the sampling of a large amount of water to obtain sufficient SPM cannot be realized.
Collapse
Affiliation(s)
| | | | - Clarissa Glaser
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | | | | | | | | | - Marc Schwientek
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Christiane Zarfl
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Beate I Escher
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
- Department Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| |
Collapse
|
32
|
Conder J, Jalalizadeh M, Luo H, Bess A, Sande S, Healey M, Unger MA. Evaluation of a rapid biosensor tool for measuring PAH availability in petroleum-impacted sediment. ENVIRONMENTAL ADVANCES 2021; 3:100032. [PMID: 34337585 PMCID: PMC8323639 DOI: 10.1016/j.envadv.2021.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Decades of research have shown that the concentration of freely dissolved PAH (Cfree) in sediment correlates with PAH bioavailability and toxicity to aquatic organisms. Passive sampling techniques and models have been used for measuring and predicting Cfree, respectively, but these techniques require weeks for analytical chemical measurements and data evaluation. This study evaluated the performance of a portable, field-deployable antibody-based PAH biosensor method that can provide measurements of PAH Cfree within a matter of minutes using a small volume of mechanically-extracted sediment porewater. Four sediments with a wide range of PAHs (ΣPAH 2.4 to 307 mg/kg) derived from petroleum, creosote, and mixed urban sources, were analyzed via three methods: 1) bulk chemistry analysis; 2) ex situ sediment passive sampling; and 3) biosensor analysis of mechanically-extracted sediment porewater. Mean ΣPAH Cfree determined by the biosensor for the four sediments (3.1 to 55 μg/L) were within a factor of 1.1 (on average) compared to values determined by the passive samplers (2.0 to 52 μg/L). All mean values differed by a factor of 3 or less. The biosensor was also useful in identifying sediments that are likely to be non-toxic to benthic invertebrates. In two of the four sediments, biosensor results of 20 and 55 μg/L exceeded a potential risk-based screening level of 10 μg/L, indicating toxicity could not be ruled out. PAH Toxic Units (ΣTU) measured in these two sediments using the passive sampler Cfree results were also greater than the ΣTU threshold of 1 (6.7 and 5.8, respectively), confirming the conclusions reached with the biosensor. In contrast, the other two sediments were identified as non-toxic by both the biosensor (3.1 and 4.3 μg/L) and the passive sampler (ΣTUs of 0.34 and 0.039). These results indicate that the biosensor is a promising tool for rapid screening of sediments potentially-impacted with PAHs.
Collapse
Affiliation(s)
- Jason Conder
- Geosyntec Consultants, Huntington Beach, CA, United States
- Corresponding author. (J. Conder)
| | | | - Hong Luo
- Chevron Energy Technology Company, Houston, TX, United States
| | - Amanda Bess
- Chevron Energy Technology Company, Houston, TX, United States
| | | | | | - Michael A. Unger
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, United States
| |
Collapse
|
33
|
Allan IJ, Raffard V, Kringstad A, Næs K. Assessment of marine sediment remediation efficiency with SPME-based passive sampling measurement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143854. [PMID: 33279202 DOI: 10.1016/j.scitotenv.2020.143854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/08/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Passive sampling has been shown to be a suitable procedure to assess the risk of contaminated sediments through the measurement of freely dissolved concentrations (CFree) and remedial actions involving amendments such as activated carbon (AC). Here we report results of the application of simple, solvent-free solid phase micro extraction methodology (SPME) to assess the performance of different materials for the remediation of selected Norwegian harbour sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). AC amendments enabled a reduction of the availability of PAHs and/or PCBs by a factor of ten to over one hundred in Aker Brygge sediments (Oslo) and sediments from Elkembukta, impacted by industrial emissions of PAHs with/from coal tar pitch. Another material, anthracite, slightly less effective in this set of experiment than AC, showed nonetheless great promise as capping material. The SPME data are put in perspective with equilibrium measurements of CFree for PAHs and organochlorines with silicone rubber in other Elkembukta sediments collected in the vicinity of those used for the remediation experiments. A reduction of sediment Cfree for pyrene, benzo[a]pyrene and benzo[ghi]perylene in inner Elkembukta sediment from on average 407, 6.3 and 0.82 ng L-1 to values of/or below 1.3, 0.15 and 0.076 ng L-1, respectively can be expected upon remediation with AC. For the outer, less contaminated Elkembukta sediment, Cfree would reduce from 36, 0.81 and 0.13 ng L-1 to value of or below 0.06, 0.03 and 0.005 ng L-1 for these three compounds, respectively. Differences in pattern of PAH and organochlorine contamination of inner and outer Elkembukta sediments are discussed.
Collapse
Affiliation(s)
- Ian J Allan
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Violette Raffard
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Alfhild Kringstad
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Kristoffer Næs
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| |
Collapse
|
34
|
Jonker MTO. Effects of sediment manipulation on freely dissolved concentrations of hydrophobic organic chemicals. CHEMOSPHERE 2021; 265:128694. [PMID: 33129559 DOI: 10.1016/j.chemosphere.2020.128694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
The freely dissolved concentration (Cfree) of hydrophobic organic chemicals (HOCs) in pore water is an important parameter in the risk assessment and management of contaminated sediments and soils. It can be determined most conveniently through ex situ passive sampling, i.e., in the laboratory. For this purpose, samples are taken from the field and transported to the laboratory, where they are stored and possibly manipulated by sieving, freezing, drying and/or grinding. Although the objective of ex situ passive sampling often is to determine a Cfree that reflects the metric under in situ conditions, hardly any information is available on possible effects of sample manipulation. Hence, the present study investigated the impact of freezing, freeze-drying, and grinding on Cfree of HOCs in field sediments, as determined with solid phase microextraction (SPME). Freezing increased the Cfree of 3- and 4-ring polycyclic aromatic hydrocarbons (PAHs) with up to a factor of 4, whereas for 5- and 6-ring PAHs hardly any effects were observed. Generally, additional freeze-drying did not further increase Cfree, but subsequently grinding the samples (further) increased Cfree of all PAHs with up to a factor of 4, leading to an overall maximum observed increase in Cfree of a factor of 16. Probably, these effects are caused by a structural change in the sorption matrix, enhancing PAH availability. The results indicate that freezing, freeze-drying, and grinding prior to ex situ Cfree determinations should be avoided, as these treatments may considerably increase the Cfree of HOCs, leading to an overestimation of risks.
Collapse
Affiliation(s)
- Michiel T O Jonker
- Institute for Risk Assessment Sciences, Utrecht University; P.O. Box 80177, 3508, TD Utrecht, the Netherlands.
| |
Collapse
|
35
|
Reininghaus M, Parkerton TF, Witt G. Comparison of In Situ and Ex Situ Equilibrium Passive Sampling for Measuring Freely Dissolved Concentrations of Parent and Alkylated Polycyclic Aromatic Hydrocarbons in Sediments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2169-2179. [PMID: 32804440 DOI: 10.1002/etc.4849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 08/06/2020] [Indexed: 05/21/2023]
Abstract
Equilibrium passive sampling methods (EPSMs) allow quantification of freely dissolved contaminant concentrations (Cfree ) in sediment porewater. Polydimethylsiloxane (PDMS) is a convenient sampling polymer that can be equilibrated in field (in situ) or laboratory (ex situ) sediments to determine Cfree , providing reliable compound-specific PDMS-water partition coefficients (KPDMS-water ) are available. Polycyclic aromatic hydrocarbons (PAHs) are an important class of sediment contaminants comprised of parent and alkylated homologs. However, application of EPSM to alkylated PAHs is challenged by lack of KPDMS-water measurements. Our first objective was to obtain KPDMS-water for 9 alkylated PAHs and biphenyls using 3 different PDMS-coated fibers. Quantitative relationships were then established to define KPDMS-water for 18 parent and 16 alkyl PAHs included in the US Environmental Protection Agency's sediment quality benchmark method for benthic life protection based on additive toxic units. The second objective was to compare Cfree in porewater obtained using both in situ and ex situ EPSMs at 6 Baltic Sea locations. The results indicated that in situ and ex situ Cfree for alkyl PAHs generally agreed within a factor of 3. Further, all sites exhibited additive toxic units <1, indicating that PAHs pose a low risk to benthos. The results extend practical application of EPSMs for improved risk assessment and derivation of porewater-based remediation goals for PAH-contaminated sediments. Environ Toxicol Chem 2020;39:2169-2179. © 2020 SETAC.
Collapse
Affiliation(s)
- Mathias Reininghaus
- Hamburg University of Applied Sciences, Hamburg, Germany
- RWTH Aachen, Aachen, Germany
| | | | - Gesine Witt
- Hamburg University of Applied Sciences, Hamburg, Germany
| |
Collapse
|
36
|
Niu L, Carmona E, König M, Krauss M, Muz M, Xu C, Zou D, Escher BI. Mixture Risk Drivers in Freshwater Sediments and Their Bioavailability Determined Using Passive Equilibrium Sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13197-13206. [PMID: 32960593 DOI: 10.1021/acs.est.0c05124] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The identification of mixture risk drivers is a great challenge for sediment assessment, especially when taking bioavailability into consideration. The bioavailable portion, which comprises the organic contaminants in pore water and the ones bound to organic carbon, was accessed by equilibrium partitioning to polydimethylsiloxane (PDMS). The exhaustive solvent and PDMS extracts were toxicologically characterized with a battery of in vitro reporter gene assays and chemically analyzed with liquid and gas chromatography coupled to high-resolution mass spectrometry. The bioavailable fractions of mixture effects and individual chemicals were mostly lower than 0.1, indicating that more than 90% of the substances are strongly bound and would not pose an immediate risk but could potentially be remobilized in the long term. Despite 655 organic chemicals analyzed, only 0.1-28% of the observed biological effects was explained by the detected compounds in whole sediments, while 0.009-3.3% was explained by bioavailable chemicals. The mixture effects were not only dominated by legacy pollutants (e.g., polycyclic aromatic hydrocarbons (PAHs) in the bioassay for activation of the aryl-hydrocarbon receptor (AhR) and oxidative stress response (AREc32)) but also by present-use chemicals (e.g., plastic additives for binding to the peroxisome proliferator-activated receptor γ (PPARγ)), with different fingerprints between whole sediments and bioavailable extracts. Our results highlight the necessity to involve different bioassays with diverse effect profiles and broader selection of contaminants along with bioavailability for the risk assessment of chemical mixtures in sediments.
Collapse
Affiliation(s)
- Lili Niu
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Eric Carmona
- Department of Effect Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Maria König
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Martin Krauss
- Department of Effect Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Melis Muz
- Department of Effect Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Deliang Zou
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Beate I Escher
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, Tübingen 72076, Germany
| |
Collapse
|
37
|
Schmidt SN, Burgess RM. Evaluating Polymeric Sampling as a Tool for Predicting the Bioaccumulation of Polychlorinated Biphenyls by Fish and Shellfish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9729-9741. [PMID: 32585088 PMCID: PMC7478847 DOI: 10.1021/acs.est.9b07292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent research has shown that polymeric sampling data generally can predict the bioaccumulation of hydrophobic organic contaminants by benthic and sessile invertebrates. Based on literature data, this review evaluated polymeric sampling as a tool for predicting the bioaccumulation of polychlorinated biphenyls (PCBs) by pelagic and mobile fish and shellfish. Lipid-normalized concentrations (CL) were linked to corresponding equilibrium polymer concentrations (CP) to evaluate the (1) correlation between CL and CP, (2) accuracy when using CP as surrogates for CL, (3) effects of experimental variables on these results, and (4) implications associated with this approach. Generally, strong positive log-log linear correlations existed between CL and CP, meaning that increasing bioaccumulation was well-reflected by increasing polymer accumulation. Further, the majority of the regression lines, as well as individual CL to CP ratios, were within a factor of 10 from the hypothetical 1:1 relationship, suggesting that polymers accumulated concentrations comparable to body residues in fish and shellfish. Interestingly, overall stronger correlations and lower CL to CP ratios resulted when CP were based on sediment compared to water column-deployed samplers. These findings provide a tool for environmental managers when assessing and managing risk associated with PCB-contaminated sediments and waters in protecting vulnerable fish and shellfish species.
Collapse
Affiliation(s)
- Stine N. Schmidt
- National Research Council, US Environmental Protection Agency, Office of Research and Development, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Robert M. Burgess
- US Environmental Protection Agency, Office of Research and Development, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| |
Collapse
|