1
|
Piskobulu V, Athanasouli M, Witte H, Feldhaus C, Streit A, Sommer RJ. High Nutritional Conditions Influence Feeding Plasticity in Pristionchus pacificus and Render Worms Non-Predatory. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:94-111. [PMID: 39822045 PMCID: PMC11788882 DOI: 10.1002/jez.b.23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Developmental plasticity, the ability of a genotype to produce different phenotypes in response to environmental conditions, has been subject to intense studies in the last four decades. The self-fertilising nematode Pristionchus pacificus has been developed as a genetic model system for studying developmental plasticity due to its mouth-form polyphenism that results in alternative feeding strategies with a facultative predatory and non-predatory mouth form. Many studies linked molecular aspects of the regulation of mouth-form polyphenism with investigations of its evolutionary and ecological significance. Also, several environmental factors influencing P. pacificus feeding structure expression were identified including temperature, culture condition and population density. However, the nutritional plasticity of the mouth form has never been properly investigated although polyphenisms are known to be influenced by changes in nutritional conditions. For instance, studies in eusocial insects and scarab beetles have provided significant mechanistic insights into the nutritional regulation of polyphenisms but also other forms of plasticity. Here, we study the influence of nutrition on mouth-form polyphenism in P. pacificus through experiments with monosaccharide and fatty acid supplementation. We show that in particular glucose supplementation renders worms non-predatory. Subsequent transcriptomic and mutant analyses indicate that de novo fatty acid synthesis and peroxisomal beta-oxidation pathways play an important role in the mediation of this plastic response. Finally, the analysis of fitness consequences through fecundity counts suggests that non-predatory animals have an advantage over predatory animals grown in the glucose-supplemented condition.
Collapse
Affiliation(s)
- Veysi Piskobulu
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Marina Athanasouli
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Hanh Witte
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Christian Feldhaus
- Max‐Planck Institute for Biology Tübingen, BioOptics FacilityTübingenGermany
| | - Adrian Streit
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| |
Collapse
|
2
|
Marcotegui P, Islas-Ortega A, Cantatore D, Reshaid Y, Montes M, Barneche J, Martorelli S. Two methods for geometric morphometric analysis of trichodinids from killifishes. Parasitol Res 2024; 123:332. [PMID: 39320537 DOI: 10.1007/s00436-024-08354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
In this study, we compared the efficacy of geometric morphometric techniques, including outlines and landmark-based approaches, to support the differentiation of Trichodina bellottii from three co-occurring killifish species. Both methods were able to differentiate trichodinids from different host species. However, discriminat analyses and MANOVA results based on landmarks had greater accuracy possibly because these analyses only provide information on certain points defined by the researcher, while the analyses based on outlines take into account points with less taxonomic information.
Collapse
Affiliation(s)
- Paula Marcotegui
- Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600, Mar del Plata, Argentina.
| | - Alma Islas-Ortega
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, 04510, Ciudad Universitaria, Mexico City, Mexico
| | - Delfina Cantatore
- Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600, Mar del Plata, Argentina
| | - Yamila Reshaid
- Centro de Estudios Parasitológicos y Vectores (CEPAVE), Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata-CONICET, Boulevard 120, S/N, 1900, La Plata, Argentina
| | - Martin Montes
- Centro de Estudios Parasitológicos y Vectores (CEPAVE), Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata-CONICET, Boulevard 120, S/N, 1900, La Plata, Argentina
| | - Jorge Barneche
- Centro de Estudios Parasitológicos y Vectores (CEPAVE), Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata-CONICET, Boulevard 120, S/N, 1900, La Plata, Argentina
| | - Sergio Martorelli
- Centro de Estudios Parasitológicos y Vectores (CEPAVE), Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata-CONICET, Boulevard 120, S/N, 1900, La Plata, Argentina
| |
Collapse
|
3
|
Lafond J, Leung C, Angers B. Asexuality shapes traits in a hybrid fish. Nat Commun 2024; 15:7642. [PMID: 39223116 PMCID: PMC11368912 DOI: 10.1038/s41467-024-52041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Animal morphology is influenced by several factors, including gonadal development and gametogenesis. Although their effects are well documented in male/female differentiation, much less is known about same-sex effects, such as those caused by their mode of reproduction. Here, using geometric morphometric analyses, we compare two groups of all-female triploid hybrid fish Chrosomus eos × eos-neogaeus, that differ only by their sexual and asexual reproductive strategies. We demonstrate that morphological differences arise from factors inherently associated with their mode of reproduction, with results replicated in two distinct lineages and in natural and common garden environments. Such differences provide additional insight about the costs and benefits of both reproductive strategies, which have mostly been of a demographic, population genetic, or genetic nature. In particular, these findings have important implications for the ecology of asexual organisms and contribute to the study of sex evolution by adding complexity to the paradox of sex theory.
Collapse
Affiliation(s)
- Joëlle Lafond
- Department of biological sciences, Université de Montréal, Montreal, Quebec, Canada.
| | - Christelle Leung
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Quebec, Canada
| | - Bernard Angers
- Department of biological sciences, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Pillay AB, Pathmanathan D, Dabo-Niang S, Abu A, Omar H. Functional data geometric morphometrics with machine learning for craniodental shape classification in shrews. Sci Rep 2024; 14:15579. [PMID: 38971911 PMCID: PMC11227550 DOI: 10.1038/s41598-024-66246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/29/2024] [Indexed: 07/08/2024] Open
Abstract
This work proposes a functional data analysis approach for morphometrics in classifying three shrew species (S. murinus, C. monticola, and C. malayana) from Peninsular Malaysia. Functional data geometric morphometrics (FDGM) for 2D landmark data is introduced and its performance is compared with classical geometric morphometrics (GM). The FDGM approach converts 2D landmark data into continuous curves, which are then represented as linear combinations of basis functions. The landmark data was obtained from 89 crania of shrew specimens based on three craniodental views (dorsal, jaw, and lateral). Principal component analysis and linear discriminant analysis were applied to both GM and FDGM methods to classify the three shrew species. This study also compared four machine learning approaches (naïve Bayes, support vector machine, random forest, and generalised linear model) using predicted PC scores obtained from both methods (a combination of all three craniodental views and individual views). The analyses favoured FDGM and the dorsal view was the best view for distinguishing the three species.
Collapse
Affiliation(s)
- Aneesha Balachandran Pillay
- Faculty of Science, Institute of Mathematical Sciences, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Dharini Pathmanathan
- Faculty of Science, Institute of Mathematical Sciences, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Sophie Dabo-Niang
- Laboratoire Paul Painlevé CNRS 8524, INRIA-MODAL, Université de Lille, Villeneuve d'Ascq, France
| | - Arpah Abu
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Hasmahzaiti Omar
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Sinaiko G, Cao Y, Dietrich CH. Phylogenomics of the leafhopper genus Neoaliturus Distant, 1918 (Hemiptera: Cicadellidae: Deltocephalinae) reveals genetically divergent lineages in the invasive beet leafhopper. Mol Phylogenet Evol 2024; 195:108071. [PMID: 38579933 DOI: 10.1016/j.ympev.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Phylogenomic analysis based on nucleotide sequences of 398 nuclear gene loci for 67 representatives of the leafhopper genus Neoaliturus yielded well-resolved estimates of relationships among species of the genus. Subgenus Neoaliturus (Neoaliturus) is consistently paraphyletic with respect to Neoaliturus (Circulifer). The analysis revealed the presence of at least ten genetically divergent clades among specimens consistent with the previous morphology-based definition of the leafhopper genus "Circulifer" which includes three previously recognized "species complexes." Specimens of the American beet leafhopper, N. tenellus (Baker), collected from the southwestern USA consistently group with one of these clades, comprising specimens from the eastern Mediterranean. Some of the remaining lineages are consistent with ecological differences previously observed among eastern Mediterranean populations and suggest that N. tenellus, as previously defined, comprises multiple monophyletic species, distinguishable by slight morphological differences.
Collapse
Affiliation(s)
- Guy Sinaiko
- School of Zoology, Tel-Aviv University, Tel-Aviv 6997801, Israel.
| | - Yanghui Cao
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| |
Collapse
|
6
|
Nicholson RM, Levis NA, Ragsdale EJ. Genetic regulators of a resource polyphenism interact to couple predatory morphology and behaviour. Proc Biol Sci 2024; 291:20240153. [PMID: 38835272 DOI: 10.1098/rspb.2024.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Phenotypic plasticity often requires the coordinated response of multiple traits observed individually as morphological, physiological or behavioural. The integration, and hence functionality, of this response may be influenced by whether and how these component traits share a genetic basis. In the case of polyphenism, or discrete plasticity, at least part of the environmental response is categorical, offering a simple readout for determining whether and to what degree individual components of a plastic response can be decoupled. Here, we use the nematode Pristionchus pacificus, which has a resource polyphenism allowing it to be a facultative predator of other nematodes, to understand the genetic integration of polyphenism. The behavioural and morphological consequences of perturbations to the polyphenism's genetic regulatory network show that both predatory activity and ability are strongly influenced by morphology, different axes of morphological variation are associated with different aspects of predatory behaviour, and rearing environment can decouple predatory morphology from behaviour. Further, we found that interactions between some polyphenism-modifying genes synergistically affect predatory behaviour. Our results show that the component traits of an integrated polyphenic response can be decoupled and, in principle, selected upon individually, and they suggest that multiple routes to functionally comparable phenotypes are possible.
Collapse
Affiliation(s)
- Rose M Nicholson
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Nicholas A Levis
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Erik J Ragsdale
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Wighard S, Witte H, Sommer RJ. Conserved switch genes that arose via whole-genome duplication regulate a cannibalistic nematode morph. SCIENCE ADVANCES 2024; 10:eadk6062. [PMID: 38598624 PMCID: PMC11006230 DOI: 10.1126/sciadv.adk6062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Experimental genetics in a nematode reveals a key role for developmental plasticity in the evolution of nutritional diversity.
Collapse
Affiliation(s)
- Sara Wighard
- Max Planck institute for Biology, Tübingen, 72076, Germany
| | - Hanh Witte
- Max Planck institute for Biology, Tübingen, 72076, Germany
| | - Ralf J. Sommer
- Max Planck institute for Biology, Tübingen, 72076, Germany
| |
Collapse
|
8
|
Theska T, Renahan T, Sommer RJ. Starvation resistance in the nematode Pristionchus pacificus requires a conserved supplementary nuclear receptor. ZOOLOGICAL LETTERS 2024; 10:7. [PMID: 38481284 PMCID: PMC10938818 DOI: 10.1186/s40851-024-00227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
Nuclear hormone receptors (NHRs) are a deeply-conserved superfamily of metazoan transcription factors, which fine-tune the expression of their regulatory target genes in response to a plethora of sensory inputs. In nematodes, NHRs underwent an explosive expansion and many species have hundreds of nhr genes, most of which remain functionally uncharacterized. However, recent studies have reported that two sister receptors, Ppa-NHR-1 and Ppa-NHR-40, are crucial regulators of feeding-structure morphogenesis in the diplogastrid model nematode Pristionchus pacificus. In the present study, we functionally characterize Ppa-NHR-10, the sister paralog of Ppa-NHR-1 and Ppa-NHR-40, aiming to reveal whether it too regulates aspects of feeding-structure development. We used CRISPR/CAS9-mediated mutagenesis to create small frameshift mutations of this nuclear receptor gene and applied a combination of geometric morphometrics and unsupervised clustering to characterize potential mutant phenotypes. However, we found that Ppa-nhr-10 mutants do not show aberrant feeding-structure morphologies. Instead, multiple RNA-seq experiments revealed that many of the target genes of this receptor are involved in lipid catabolic processes. We hypothesized that their mis-regulation could affect the survival of mutant worms during starvation, where lipid catabolism is often essential. Indeed, using novel survival assays, we found that mutant worms show drastically decreased starvation resistance, both as young adults and as dauer larvae. We also characterized genome-wide changes to the transcriptional landscape in P. pacificus when exposed to 24 h of acute starvation, and found that Ppa-NHR-10 partially regulates some of these responses. Taken together, these results demonstrate that Ppa-NHR-10 is broadly required for starvation resistance and regulates different biological processes than its closest paralogs Ppa-NHR-1 and Ppa-NHR-40.
Collapse
Affiliation(s)
- Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Tess Renahan
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Max-Planck-Ring 9, 72076, Tübingen, Germany.
| |
Collapse
|
9
|
Theska T, Sommer RJ. Feeding-structure morphogenesis in "rhabditid" and diplogastrid nematodes is not controlled by a conserved genetic module. Evol Dev 2024; 26:e12471. [PMID: 38356318 DOI: 10.1111/ede.12471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Disentangling the evolution of the molecular processes and genetic networks that facilitate the emergence of morphological novelties is one of the main objectives in evolutionary developmental biology. Here, we investigated the evolutionary history of a gene regulatory network controlling the development of novel tooth-like feeding structures in diplogastrid nematodes. Focusing on NHR-1 and NHR-40, the two transcription factors that regulate the morphogenesis of these feeding structures in Pristionchus pacificus, we sought to determine whether they have a similar function in Caenorhabditis elegans, an outgroup species to the Diplogastridae which has typical "rhabditid" flaps instead of teeth. Contrary to our initial expectations, we found that they do not have a similar function. While both receptors are co-expressed in the tissues that produce the feeding structures in the two nematodes, genetic inactivation of either receptor had no impact on feeding-structure morphogenesis in C. elegans. Transcriptomic experiments revealed that NHR-1 and NHR-40 have highly species-specific regulatory targets. These results suggest two possible evolutionary scenarios: either the genetic module responsible for feeding-structure morphogenesis in Diplogastridae already existed in the last common ancestor of C. elegans and P. pacificus, and subsequently disintegrated in the former as NHR-1 and NHR-40 acquired new targets, or it evolved in conjunction with teeth in Diplogastridae. These findings indicate that feeding-structure morphogenesis is regulated by different genetic programs in P. pacificus and C. elegans, hinting at developmental systems drift during the flap-to-tooth transformation. Further research in other "rhabditid" species is needed to fully reconstruct the developmental genetic changes which facilitated the evolution of novel feeding structures in Diplogastridae.
Collapse
Affiliation(s)
- Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen (MPI-B), Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen (MPI-B), Tübingen, Germany
| |
Collapse
|
10
|
Winn-Nuñez ET, Witt H, Bhaskar D, Huang RY, Reichner JS, Wong IY, Crawford L. Generative modeling of biological shapes and images using a probabilistic α-shape sampler. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574919. [PMID: 38260340 PMCID: PMC10802457 DOI: 10.1101/2024.01.09.574919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Understanding morphological variation is an important task in many areas of computational biology. Recent studies have focused on developing computational tools for the task of sub-image selection which aims at identifying structural features that best describe the variation between classes of shapes. A major part in assessing the utility of these approaches is to demonstrate their performance on both simulated and real datasets. However, when creating a model for shape statistics, real data can be difficult to access and the sample sizes for these data are often small due to them being expensive to collect. Meanwhile, the current landscape of generative models for shapes has been mostly limited to approaches that use black-box inference-making it difficult to systematically assess the power and calibration of sub-image models. In this paper, we introduce the α -shape sampler: a probabilistic framework for generating realistic 2D and 3D shapes based on probability distributions which can be learned from real data. We demonstrate our framework using proof-of-concept examples and in two real applications in biology where we generate (i) 2D images of healthy and septic neutrophils and (ii) 3D computed tomography (CT) scans of primate mandibular molars. The α -shape sampler R package is open-source and can be downloaded at https://github.com/lcrawlab/ashapesampler.
Collapse
Affiliation(s)
| | - Hadley Witt
- Graduate Program in Pathobiology, Brown University, Providence, RI, USA
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, USA
| | | | - Ryan Y. Huang
- Department of Computer Science, Brown University, Providence, RI USA
| | - Jonathan S. Reichner
- Graduate Program in Pathobiology, Brown University, Providence, RI, USA
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, USA
| | - Ian Y. Wong
- Graduate Program in Pathobiology, Brown University, Providence, RI, USA
- School of Engineering, Legoretta Cancer Center, Brown University, Providence, RI USA
| | - Lorin Crawford
- Microsoft Research, Cambridge, MA, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| |
Collapse
|
11
|
Levis NA, Ragsdale EJ. A histone demethylase links the loss of plasticity to nongenetic inheritance and morphological change. Nat Commun 2023; 14:8439. [PMID: 38114491 PMCID: PMC10730525 DOI: 10.1038/s41467-023-44306-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Plasticity is a widespread feature of development, enabling phenotypic change based on the environment. Although the evolutionary loss of plasticity has been linked both theoretically and empirically to increased rates of phenotypic diversification, molecular insights into how this process might unfold are generally lacking. Here, we show that a regulator of nongenetic inheritance links evolutionary loss of plasticity in nature to changes in plasticity and morphology as selected in the laboratory. Across nematodes of Diplogastridae, which ancestrally had a polyphenism, or discrete plasticity, in their feeding morphology, we use molecular evolutionary analyses to screen for change associated with independent losses of plasticity. Having inferred a set of ancestrally polyphenism-biased genes from phylogenetically informed gene-knockouts and gene-expression comparisons, selection signatures associated with plasticity's loss identify the histone H3K4 di/monodemethylase gene spr-5/LSD1/KDM1A. Manipulations of this gene affect both sensitivity and variation in plastic morphologies, and artificial selection of manipulated lines drive multigenerational shifts in these phenotypes. Our findings thus give mechanistic insight into how traits are modified as they traverse the continuum of greater to lesser environmental sensitivity.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
12
|
Ishita Y, Onodera A, Ekino T, Chihara T, Okumura M. Co-option of an Astacin Metalloprotease Is Associated with an Evolutionarily Novel Feeding Morphology in a Predatory Nematode. Mol Biol Evol 2023; 40:msad266. [PMID: 38105444 PMCID: PMC10753534 DOI: 10.1093/molbev/msad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Animals consume a wide variety of food sources to adapt to different environments. However, the genetic mechanisms underlying the acquisition of evolutionarily novel feeding morphology remain largely unknown. While the nematode Caenorhabditis elegans feeds on bacteria, the satellite species Pristionchus pacificus exhibits predatory feeding behavior toward other nematodes, which is an evolutionarily novel feeding habit. Here, we found that the astacin metalloprotease Ppa-NAS-6 is required for the predatory killing by P. pacificus. Ppa-nas-6 mutants were defective in predation-associated characteristics, specifically the tooth morphogenesis and tooth movement during predation. Comparison of expression patterns and rescue experiments of nas-6 in P. pacificus and C. elegans suggested that alteration of the spatial expression patterns of NAS-6 may be vital for acquiring predation-related traits. Reporter analysis of the Ppa-nas-6 promoter in C. elegans revealed that the alteration in expression patterns was caused by evolutionary changes in cis- and trans-regulatory elements. This study suggests that the co-option of a metalloprotease is involved in an evolutionarily novel feeding morphology.
Collapse
Affiliation(s)
- Yuuki Ishita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ageha Onodera
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Taisuke Ekino
- School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
13
|
Werner MS, Loschko T, King T, Reich S, Theska T, Franz-Wachtel M, Macek B, Sommer RJ. Histone 4 lysine 5/12 acetylation enables developmental plasticity of Pristionchus mouth form. Nat Commun 2023; 14:2095. [PMID: 37055396 PMCID: PMC10102330 DOI: 10.1038/s41467-023-37734-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
Development can be altered to match phenotypes with the environment, and the genetic mechanisms that direct such alternative phenotypes are beginning to be elucidated. Yet, the rules that govern environmental sensitivity vs. invariant development, and potential epigenetic memory, remain unknown. Here, we show that plasticity of nematode mouth forms is determined by histone 4 lysine 5 and 12 acetylation (H4K5/12ac). Acetylation in early larval stages provides a permissive chromatin state, which is susceptible to induction during the critical window of environmental sensitivity. As development proceeds deacetylation shuts off switch gene expression to end the critical period. Inhibiting deacetylase enzymes leads to fixation of prior developmental trajectories, demonstrating that histone modifications in juveniles can carry environmental information to adults. Finally, we provide evidence that this regulation was derived from an ancient mechanism of licensing developmental speed. Altogether, our results show that H4K5/12ac enables epigenetic regulation of developmental plasticity that can be stored and erased by acetylation and deacetylation, respectively.
Collapse
Affiliation(s)
- Michael S Werner
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, USA
| | - Tobias Loschko
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
| | - Thomas King
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, USA
| | - Shelley Reich
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, USA
| | - Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
| | | | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, 72076, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|
14
|
Chitin contributes to the formation of a feeding structure in a predatory nematode. Curr Biol 2023; 33:15-27.e6. [PMID: 36460010 DOI: 10.1016/j.cub.2022.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
Some nematode predators and parasites form teeth-like denticles that are histologically different from vertebrate teeth, but their biochemical composition remains elusive. Here, we show a role of chitin in the formation of teeth-like denticles in Pristionchus pacificus, a model system for studying predation and feeding structure plasticity. Pristionchus forms two alternative mouth morphs with one tooth or two teeth, respectively. The P. pacificus genome encodes two chitin synthases, with the highly conserved chs-2 gene being composed of 60 exons forming at least four isoforms. Generating CRISPR-Cas9-based gene knockouts, we found that Ppa-chs-2 mutations that eliminate the chitin-synthase domain are lethal. However, mutations in the C terminus result in viable but teethless worms, with severe malformation of the mouth. Similarly, treatment with the chitin-synthase inhibitor Nikkomycin Z also results in teethless animals. Teethless worms can feed on various bacterial food sources but are incapable of predation. High-resolution transcriptomics revealed that Ppa-chs-2 expression is controlled by the sulfatase-encoding developmental switch Ppa-eud-1. This study indicates a key role of chitin in the formation of teeth-like denticles and the complex feeding apparatus in nematodes.
Collapse
|
15
|
Griffin CT, Botelho JF, Hanson M, Fabbri M, Smith-Paredes D, Carney RM, Norell MA, Egawa S, Gatesy SM, Rowe TB, Elsey RM, Nesbitt SJ, Bhullar BAS. The developing bird pelvis passes through ancestral dinosaurian conditions. Nature 2022; 608:346-352. [PMID: 35896745 DOI: 10.1038/s41586-022-04982-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/15/2022] [Indexed: 11/08/2022]
Abstract
Living birds (Aves) have bodies substantially modified from the ancestral reptilian condition. The avian pelvis in particular experienced major changes during the transition from early archosaurs to living birds1,2. This stepwise transformation is well documented by an excellent fossil record2-4; however, the ontogenetic alterations that underly it are less well understood. We used embryological imaging techniques to examine the morphogenesis of avian pelvic tissues in three dimensions, allowing direct comparison with the fossil record. Many ancestral dinosaurian features2 (for example, a forward-facing pubis, short ilium and pubic 'boot') are transiently present in the early morphogenesis of birds and arrive at their typical 'avian' form after transitioning through a prenatal developmental sequence that mirrors the phylogenetic sequence of character acquisition. We demonstrate quantitatively that avian pelvic ontogeny parallels the non-avian dinosaur-to-bird transition and provide evidence for phenotypic covariance within the pelvis that is conserved across Archosauria. The presence of ancestral states in avian embryos may stem from this conserved covariant relationship. In sum, our data provide evidence that the avian pelvis, whose early development has been little studied5-7, evolved through terminal addition-a mechanism8-10 whereby new apomorphic states are added to the end of a developmental sequence, resulting in expression8,11 of ancestral character states earlier in that sequence. The phenotypic integration we detected suggests a previously unrecognized mechanism for terminal addition and hints that retention of ancestral states in development is common during evolutionary transitions.
Collapse
Affiliation(s)
- Christopher T Griffin
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - João F Botelho
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Departamento Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael Hanson
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Matteo Fabbri
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Nagaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Daniel Smith-Paredes
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Ryan M Carney
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Mark A Norell
- Division of Vertebrate Paleontology, American Museum of Natural History, New York, NY, USA
| | - Shiro Egawa
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Stephen M Gatesy
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Timothy B Rowe
- Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ruth M Elsey
- Rockefeller Wildlife Refuge, Louisiana Department of Wildlife and Fisheries, Grand Chenier, LA, USA
| | | | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA.
| |
Collapse
|
16
|
Wiese R, Harrington K, Hartmann K, Hethke M, von Rintelen T, Zhang H, Zhang L, Riedel F. Can fractal dimensions objectivize gastropod shell morphometrics? A case study from Lake Lugu (SW China). Ecol Evol 2022; 12:e8622. [PMID: 35261738 PMCID: PMC8888252 DOI: 10.1002/ece3.8622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Morphometrics are fundamental for the analysis of size and shape in fossils, particularly because soft parts or DNA are rarely preserved and hard parts such as shells are commonly the only source of information. Geometric morphometrics, that is, landmark analysis, is well established for the description of shape but it exhibits a couple of shortcomings resulting from subjective choices during landmarking (number and position of landmarks) and from difficulties in resolving shape at the level of micro-sculpture.With the aid of high-resolution 3D scanning technology and analyses of fractal dimensions, we test whether such shortcomings of linear and landmark morphometrics can be overcome. As a model group, we selected a clade of modern viviparid gastropods from Lake Lugu, with shells that show a high degree of sculptural variation. Linear and landmark analyses were applied to the same shells in order to establish the fractal dimensions. The genetic diversity of the gastropod clade was assessed.The genetic results suggest that the gastropod clade represents a single species. The results of all morphometric methods applied are in line with the genetic results, which is that no specific morphotype could be delimited. Apart from this overall agreement, landmark and fractal dimension analyses do not correspond to each other but represent data sets with different information. Generally, the fractal dimension values quantify the roughness of the shell surface, the resolution of the 3D scans determining the level. In our approach, we captured the micro-sculpture but not the first-order sculptural elements, which explains that fractal dimension and landmark data are not in phase.We can show that analyzing fractal dimensions of gastropod shells opens a window to more detailed information that can be considered in evolutionary and ecological contexts. We propose that using low-resolution 3D scans may successfully substitute landmark analyses because it overcomes the subjective landmarking. Analyses of 3D scans with higher resolution than used in this study will provide surface roughness information at the mineralogical level. We suggest that fractal dimension analyses of a combination of differently resolved 3D models will significantly improve the quality of shell morphometrics.
Collapse
Affiliation(s)
- Robert Wiese
- Institute of Geological SciencesFreie Universität BerlinBerlinGermany
| | - Kyle Harrington
- Virtual Technology & DesignUniversity of IdahoMoscowIdahoUSA
- Image Data AnalysisMax Delbrück Center for Molecular MedicineBerlinGermany
- Computational Sciences and EngineeringOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Kai Hartmann
- Institute of Geological SciencesFreie Universität BerlinBerlinGermany
- Institute of Geographical SciencesFreie Universität BerlinBerlinGermany
| | - Manja Hethke
- Institute of Geological SciencesFreie Universität BerlinBerlinGermany
| | - Thomas von Rintelen
- Museum für NaturkundeLeibniz‐Institut für Evolutions‐ und BiodiversitätsforschungBerlinGermany
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau LakesSchool of Ecology and Environmental ScienceYunnan UniversityKunmingChina
| | - Le‐Jia Zhang
- Museum für NaturkundeLeibniz‐Institut für Evolutions‐ und BiodiversitätsforschungBerlinGermany
| | - Frank Riedel
- Institute of Geological SciencesFreie Universität BerlinBerlinGermany
| |
Collapse
|
17
|
Craniofacial Dysmorphology in Infants With Non-Syndromic Unilateral Coronal Craniosynostosis. J Craniofac Surg 2022; 33:1903-1908. [PMID: 35013073 DOI: 10.1097/scs.0000000000008464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/21/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Unilateral coronal craniosynostosis (UCS) is a congenital disorder resulting from the premature suture fusion, leading to complex primary and compensatory morphologic changes in the shape of not only the calvarium and but also into the skull base. This deformity typically requires surgery to correct the shape of the skull and prevent neurologic sequelae, including increased intracranial pressure, sensory deficits, and cognitive impairment. METHODS The present multicenter study sought to reverse-engineer the bone dysmorphogenesis seen in non-syndromic UCS using a geometric morphometric approach. Computed tomography scans for 26 non-syndromic UCS patients were converted to three-dimensional mesh models. Two hundred thirty-six unique anatomical landmarks and semi-landmarked curves were then plotted on each model, creating wireframe representations of the patients' skulls. RESULTS Generalized Procrustes superimposition, Principal Component Analysis, and heatmaps identified significant superior displacement of the ipsilateral orbit ("harlequin" eye deformity), anterior displacement of the ear ipsilateral to the fused coronal suture, acute deviation of midline skull base structures ipsilateral to the fused coronal suture and flattening of the parietal bone and associated failure to expand superiorly. CONCLUSIONS The described technique illustrates the impact of premature coronal suture fusion on the development of the entire skull and proposes how bone dysmorphology contributes to the patients' neurologic sequelae. By bridging novel basic science methodologies with clinical research, the present study quantitatively describes craniofacial development and bone dysmorphogenesis.
Collapse
|
18
|
Mian M, Tan J, Yong R, Williams R, Labrinidis A, Anderson PJ, Ranjitkar S. Craniofacial Phenomics: Three-Dimensional Assessment of the Size and Shape of Cranial and Dentofacial Structures. Methods Mol Biol 2022; 2403:107-127. [PMID: 34913120 DOI: 10.1007/978-1-0716-1847-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Craniofacial phenomics has opened up numerous opportunities to correlate genetic and epigenetic factors to craniofacial phenotypes in order to improve our understanding of growth and development in health and disease. Three-dimensional (3D) imaging has played a key role in advancing craniofacial phenomics by facilitating highly sensitive and specific characterizations of craniofacial and dental morphology. Here we describe the use of micro-computed tomography (micro-CT) to image the murine craniofacial complex, followed by surface reconstruction for traditional morphometric analyses. We also describe the application of geometric morphometrics, based on Generalized Procrustes Analysis, for use in human premolars. These principles are interchangeable between various vertebrate species, and between various surface imaging techniques (including micro-CT and 3D surface scanners), offering a high level of versatility and precision for extensive phenotyping of the entire craniofacial complex.
Collapse
Affiliation(s)
- Mustafa Mian
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| | - Jenny Tan
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| | - Robin Yong
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| | - Ruth Williams
- Adelaide Microscopy, The University of Adelaide, Adelaide, SA, Australia
| | - Agatha Labrinidis
- Adelaide Microscopy, The University of Adelaide, Adelaide, SA, Australia
| | - Peter J Anderson
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
- Australian Craniofacial Unit, Women's and Children's Hospital, North Adelaide, SA, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Sarbin Ranjitkar
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia.
- Department of Dentistry and Oral Health, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia.
| |
Collapse
|
19
|
Sun S, Theska T, Witte H, Ragsdale EJ, Sommer RJ. The oscillating Mucin-type protein DPY-6 has a conserved role in nematode mouth and cuticle formation. Genetics 2021; 220:6481560. [PMID: 35088845 PMCID: PMC9208649 DOI: 10.1093/genetics/iyab233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/13/2021] [Indexed: 01/09/2023] Open
Abstract
Nematodes show an extraordinary diversity of mouth structures and strikingly different feeding strategies, which has enabled an invasion of all ecosystems. However, nearly nothing is known about the structural and molecular architecture of the nematode mouth (stoma). Pristionchus pacificus is an intensively studied nematode that exhibits unique life history traits, including predation, teeth-like denticle formation, and mouth-form plasticity. Here, we used a large-scale genetic screen to identify genes involved in mouth formation. We identified Ppa-dpy-6 to encode a Mucin-type hydrogel-forming protein that is macroscopically involved in the specification of the cheilostom, the anterior part of the mouth. We used a recently developed protocol for geometric morphometrics of miniature animals to characterize these defects further and found additional defects that affect mouth form, shape, and size resulting in an overall malformation of the mouth. Additionally, Ppa-dpy-6 is shorter than wild-type with a typical Dumpy phenotype, indicating a role in the formation of the external cuticle. This concomitant phenotype of the cheilostom and cuticle provides the first molecular support for the continuity of these structures and for the separation of the cheilostom from the rest of the stoma. In Caenorhabditis elegans, dpy-6 was an early mapping mutant but its molecular identity was only determined during genome-wide RNAi screens and not further investigated. Strikingly, geometric morphometric analysis revealed previously unrecognized cheilostom and gymnostom defects in Cel-dpy-6 mutants. Thus, the Mucin-type protein DPY-6 represents to the best of our knowledge, the first protein involved in nematode mouth formation with a conserved role in cuticle deposition. This study opens new research avenues to characterize the molecular composition of the nematode mouth, which is associated with extreme ecological diversification.
Collapse
Affiliation(s)
- Shuai Sun
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany,Corresponding author: Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen 72076, Germany.
| |
Collapse
|
20
|
Old Brains in Alcohol: The Usability of Legacy Collection Material to Study the Spider Neuroarchitecture. DIVERSITY 2021. [DOI: 10.3390/d13110601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natural history collections include rare and significant taxa that might otherwise be unavailable for comparative studies. However, curators must balance the needs of current and long-term research. Methods of data extraction that minimize the impact on specimens are therefore favored. Micro-CT has the potential to expose new character systems based on internal anatomy to taxonomic and phylogenetic analysis without dissection or thin sectioning for histology. However, commonly applied micro-CT protocols involve critical point drying, which permanently changes the specimen. Here, we apply a minimally destructive method of specimen preparation for micro-CT investigation of spider neuroanatomy suitable for application to legacy specimens in natural history collections. We used two groups of female spiders of the common species Araneus diadematus—freshly captured (n = 11) vs. legacy material between 70 and 90 years old (n = 10)—to qualitatively and quantitatively assess the viability of micro-CT scanning and the impact of aging on their neuroarchitecture. We statistically compared the volumes of the supraesophageal ganglion (syncerebrum) and used 2D geometric morphometrics to analyze variations in the gross shape of the brain. We found no significant differences in the brain shape or the brain volume relative to the cephalothorax size. Nonetheless, a significant difference was observed in the spider size. We considered such differences to be explained by environmental factors rather than preservation artifacts. Comparison between legacy and freshly collected specimens indicates that museum specimens do not degrade over time in a way that might bias the study results, as long as the basic preservation conditions are consistently maintained, and where lapses in preservation have occurred, these can be identified. This, together with the relatively low-impact nature of the micro-CT protocol applied here, could facilitate the use of old, rare, and valuable material from collections in studies of internal morphology.
Collapse
|
21
|
Unique foot posture in Neanderthals reflects their body mass and high mechanical stress. J Hum Evol 2021; 161:103093. [PMID: 34749003 DOI: 10.1016/j.jhevol.2021.103093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 11/20/2022]
Abstract
Neanderthal foot bone proportions and morphology are mostly indistinguishable from those of Homo sapiens, with the exception of several distinct Neanderthal features in the talus. The biomechanical implications of these distinct talar features remain contentious, fueling debate around the adaptive meaning of this distinctiveness. With the aim of clarifying this controversy, we test phylogenetic and behavioral factors as possible contributors, comparing tali of 10 Neanderthals and 81 H. sapiens (Upper Paleolithic and Holocene hunter-gatherers, agriculturalists, and postindustrial group) along with the Clark Howell talus (Omo, Ethiopia). Variation in external talar structures was assessed through geometric morphometric methods, while bone volume fraction and degree of anisotropy were quantified in a subsample (n = 45). Finally, covariation between point clouds of site-specific trabecular variables and surface landmark coordinates was assessed. Our results show that although Neanderthal talar external and internal morphologies were distinct from those of H. sapiens groups, shape did not significantly covary with either bone volume fraction or degree of anisotropy, suggesting limited covariation between external and internal talar structures. Neanderthal external talar morphology reflects ancestral retentions, along with various adaptations to high levels of mobility correlated to their presumably unshod hunter-gatherer lifestyle. This pairs with their high site-specific trabecular bone volume fraction and anisotropy, suggesting intense and consistently oriented locomotor loading, respectively. Relative to H.sapiens, Neanderthals exhibit differences in the talocrural joint that are potentially attributable to cultural and locomotor behavior dissimilarity, a talonavicular joint that mixes ancestral and functional traits, and a derived subtalar joint that suggests a predisposition for a pronated foot during stance phase. Overall, Neanderthal talar variation is attributable to mobility strategy and phylogenesis, while H. sapiens talar variation results from the same factors plus footwear. Our results suggest that greater Neanderthal body mass and/or higher mechanical stress uniquely led to their habitually pronated foot posture.
Collapse
|
22
|
Abstract
Abstract
Tadpoles can respond to perceived predation risk by adjusting their life history, morphology, and behavior in an adaptive way. Adaptive phenotypic plasticity can evolve by natural selection only if there is variation in reaction norms and if this variation is, at least in part, heritable. To provide insights into the evolution of adaptive phenotypic plasticity, we analyzed the environmental and parental components of variation in predator-induced life history (age and size at metamorphosis), morphology (tail depth), and behavior of Italian treefrog tadpoles (Hyla intermedia). Using an incomplete factorial design, we raised tadpoles either with or without caged predators (dragonfly larvae, gen. Aeshna) and, successively, we tested them in experimental arenas either with or without caged predators. Results provided strong evidence for an environmental effect on all three sets of characters. Tadpoles raised with caged predators (dragonfly larvae, gen. Aeshna) metamorphosed earlier (but at a similar body size) and developed deeper tails than their fullsib siblings raised without predators. In the experimental arenas, all tadpoles, independent of their experience, flexibly changed their activity and position, depending on whether the cage was empty or contained the predator. Tadpoles of the two experimental groups, however, showed different responses: those raised with predators were always less active than their predator-naive siblings and differences slightly increased in the presence of predators. Besides this strong environmental component of phenotypic variation, results provided evidence also for parental and parental-by-environment effects, which were strong on life-history, but weak on morphology and behavior. Interestingly, additive parental effects were explained mainly by dams. This supports the hypothesis that phenotypic plasticity might mainly depend on maternal effects and that it might be the expression of condition-dependent mechanisms.
Significance statement
Animals, by plastically adjusting their phenotypes to the local environments, can often sensibly improve their chances of survival, suggesting the hypothesis that phenotypic plasticity evolved by natural selection. We test this hypothesis in the Italian treefrog tadpoles, by investigating the heritable variation in the plastic response to predators (dragonfly larvae). Using an incomplete factorial common-garden experiment, we showed that tadpoles raised with predators metamorphosed earlier (but at similar body size), developed deeper tails, and were less active than their siblings raised without predators. The plastic response varied among families, but variation showed a stronger maternal than paternal component. This suggests that plasticity might largely depend on epigenetic factors and be the expression of condition-dependent mechanisms.
Collapse
|
23
|
Galli L, Zinni M, Shrubovych J, Colasanto E. Is Acerentomon italicum Nosek, 1969 (Protura: Acerentomidae) a species complex? REV SUISSE ZOOL 2021. [DOI: 10.35929/rsz.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Loris Galli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita – Università di Genova, Corso Europa 26, I-16132 Genova, Italy
| | - Matteo Zinni
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita – Università di Genova, Corso Europa 26, I-16132 Genova, Italy
| | - Julia Shrubovych
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, Pl 31-016 Krakow, Poland
| | - Elisa Colasanto
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita – Università di Genova, Corso Europa 26, I-16132 Genova, Italy
| |
Collapse
|