1
|
Wu X, Ye Y, Sun M, Mei Y, Ji B, Wang M, Song E. Recent Progress of Soft and Bioactive Materials in Flexible Bioelectronics. CYBORG AND BIONIC SYSTEMS 2025; 6:0192. [PMID: 40302943 PMCID: PMC12038164 DOI: 10.34133/cbsystems.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 05/02/2025] Open
Abstract
Materials that establish functional, stable interfaces to targeted tissues for long-term monitoring/stimulation equipped with diagnostic/therapeutic capabilities represent breakthroughs in biomedical research and clinical medicine. A fundamental challenge is the mechanical and chemical mismatch between tissues and implants that ultimately results in device failure for corrosion by biofluids and associated foreign body response. Of particular interest is in the development of bioactive materials at the level of chemistry and mechanics for high-performance, minimally invasive function, simultaneously with tissue-like compliance and in vivo biocompatibility. This review summarizes the most recent progress for these purposes, with an emphasis on material properties such as foreign body response, on integration schemes with biological tissues, and on their use as bioelectronic platforms. The article begins with an overview of emerging classes of material platforms for bio-integration with proven utility in live animal models, as high performance and stable interfaces with different form factors. Subsequent sections review various classes of flexible, soft tissue-like materials, ranging from self-healing hydrogel/elastomer to bio-adhesive composites and to bioactive materials. Additional discussions highlight examples of active bioelectronic systems that support electrophysiological mapping, stimulation, and drug delivery as treatments of related diseases, at spatiotemporal resolutions that span from the cellular level to organ-scale dimension. Envisioned applications involve advanced implants for brain, cardiac, and other organ systems, with capabilities of bioactive materials that offer stability for human subjects and live animal models. Results will inspire continuing advancements in functions and benign interfaces to biological systems, thus yielding therapy and diagnostics for human healthcare.
Collapse
Affiliation(s)
- Xiaojun Wu
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
| | - Yuanming Ye
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mubai Sun
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Yongfeng Mei
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Bowen Ji
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ming Wang
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Frontier Institute of Chip and System,
Fudan University, Shanghai 200433, China
| | - Enming Song
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Sheng T, Li J, Zheng L, Du N, Xie M, Wang X, Gao X, Huang M, Wen S, Liu W, Guo Y, Yao Y, Shao X, Liu L, Xu J, Wang Y, Zhang M. An Expandable Brain-Machine Interface Enabled by Origami Materials and Structures for Tracking Epileptic Traveling Waves. Adv Healthc Mater 2025; 14:e2404947. [PMID: 40109135 DOI: 10.1002/adhm.202404947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/27/2025] [Indexed: 03/22/2025]
Abstract
Tracking neural activities across multiple brain regions remains a daunting challenge due to the non-negligible skull injuries during implantations of large-area electrocorticography (ECoG) grids and the limited spatial accessibility of conventional rectilinear depth probes. Here, a multiregion Brain-machine Interface (BMI) is proposed comprising an expandable bio-inspired origami ECoG electrode covering cortical areas larger than the cranial window, and an expandable origami depth probe capable of reaching multiple deep brain regions beyond a single implantation axis. Using the proposed BMI, it is observed that, in rat models of focal seizures, cortical multiband epileptiform activities mainly manifest as expanding traveling waves outward from a cortical source.
Collapse
Affiliation(s)
- Tiancheng Sheng
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jingwei Li
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lingyi Zheng
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Nianzhen Du
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mingxiao Xie
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaolong Wang
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xize Gao
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mengsha Huang
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shenghan Wen
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Wenqian Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Disease, Beijing, 100070, China
| | - Yong Guo
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yi Yao
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, 361000, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Disease, Beijing, 100070, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110169, China
| | - Jing Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Disease, Beijing, 100070, China
| | - Mingjun Zhang
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Yuan M, Li F, Xue F, Wang Y, Li B, Tang R, Wang Y, Bi GQ, Pei W. Transparent, flexible graphene-ITO-based neural microelectrodes for simultaneous electrophysiology recording and calcium imaging of intracortical neural activity in freely moving mice. MICROSYSTEMS & NANOENGINEERING 2025; 11:32. [PMID: 39994180 PMCID: PMC11850855 DOI: 10.1038/s41378-025-00873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/24/2024] [Accepted: 01/11/2025] [Indexed: 02/26/2025]
Abstract
To understand the complex dynamics of neural activity in the brain across various temporal and spatial scales, it is crucial to record intracortical multimodal neural activity by combining electrophysiological recording and calcium imaging techniques. This poses significant constraints on the geometrical, mechanical, and optical properties of the electrodes. Here, transparent flexible graphene-ITO-based neural microelectrodes with small feature sizes are developed and validated for simultaneous electrophysiology recording and calcium imaging in the hippocampus of freely moving mice. A micro-etching technique and an oxygen plasma pre-treating method are introduced to facilitate large-area graphene transfer and establish stable low-impedance contacts between graphene and metals, leading to the batch production of high-quality microelectrodes with interconnect widths of 10 μm and recording sites diameters of 20 μm. These electrodes exhibit appropriate impedance and sufficient transparency in the field of view, enabling simultaneous recording of intracortical local field potentials and even action potentials along with calcium imaging in freely moving mice. Both types of electrophysiological signals are found to correlate with calcium activity. This proof-of-concept work demonstrates that transparent flexible graphene-ITO-based neural microelectrodes are promising tools for multimodal neuroscience research.
Collapse
Affiliation(s)
- Miao Yuan
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Fei Li
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
| | - Feng Xue
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Wang
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Baoqiang Li
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rongyu Tang
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yijun Wang
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Qiang Bi
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China.
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Weihua Pei
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Ren X, Sirois CL, Doudlah R, Mendez-Albelo NM, Hai A, Rosenberg A, Zhao X. A Semi-Automated MEA Spike sorting (SAMS) method for high throughput assessment of cultured neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.08.637245. [PMID: 39975344 PMCID: PMC11839033 DOI: 10.1101/2025.02.08.637245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neurons derived from human pluripotent stem cells (hPSCs) are valuable models for studying brain development and developing therapies for brain disorders. Evaluating human-derived neurons requires assessing their electrical activity, which can be achieved using multi-electrode arrays (MEAs) for extracellular recordings. Because each electrode channel generally detects activity from multiple neurons, resolving the activity of single neurons requires a process called spike sorting. However, currently available spike sorting methods are not optimized for the analysis of hPSC-derived neurons, and require complex workflows and time-consuming manual intervention. Here, we introduce a S emi- A utomated M EA S pike sorting software (SAMS) designed specifically for low-density MEA recordings of cultured neurons. SAMS outperforms commercially available automated spike sorting algorithms in terms of accuracy and greatly reduces computational and human processing time. By providing an accessible, efficient, and integrated platform for spike sorting, SAMS enhances the resolution and utility of MEA in disease modeling and drug development using human-derived neurons. Highlights SAMS is designed and optimized for high throughput analysis of hPSC-derived neurons.SAMS is more efficient and accurate compared to recommended spike-sorting software.SAMS resolves phenotypic differences previously not observed without spike sorting.SAMS is an open-source software.
Collapse
|
5
|
Li Q, Wang W, Yin H, Zou K, Jiao Y, Zhang Y. One-Dimensional Implantable Sensors for Accurately Monitoring Physiological and Biochemical Signals. RESEARCH (WASHINGTON, D.C.) 2024; 7:0507. [PMID: 39417041 PMCID: PMC11480832 DOI: 10.34133/research.0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
In recent years, one-dimensional (1D) implantable sensors have received considerable attention and rapid development in the biomedical field due to their unique structural characteristics and high integration capability. These sensors can be implanted into the human body with minimal invasiveness, facilitating real-time and accurate monitoring of various physiological and pathological parameters. This review examines the latest advancements in 1D implantable sensors, focusing on the material design of sensors, device integration, implantation methods, and the construction of the stable sensor-tissue interface. Furthermore, a comprehensive overview is provided regarding the applications and future research directions for 1D implantable sensors with an ultimate aim to promote their utilization in personalized healthcare and precision medicine.
Collapse
Affiliation(s)
| | | | | | - Kuangyi Zou
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences,
Nanjing University, Nanjing 210023, China
| | - Yiding Jiao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences,
Nanjing University, Nanjing 210023, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences,
Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Han X, Lin X, Sun Y, Huang L, Huo F, Xie R. Advancements in Flexible Electronics Fabrication: Film Formation, Patterning, and Interface Optimization for Cutting-Edge Healthcare Monitoring Devices. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356954 DOI: 10.1021/acsami.4c11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Flexible electronics can seamlessly adhere to human skin or internal tissues, enabling the collection of physiological data and real-time vital sign monitoring in home settings, which give it the potential to revolutionize chronic disease management and mitigate mortality rates associated with sudden illnesses, thereby transforming current medical practices. However, the development of flexible electronic devices still faces several challenges, including issues pertaining to material selection, limited functionality, and performance instability. Among these challenges, the choice of appropriate materials, as well as their methods for film formation and patterning, lays the groundwork for versatile device development. Establishing stable interfaces, both internally within the device and in human-machine interactions, is essential for ensuring efficient, accurate, and long-term monitoring in health electronics. This review aims to provide an overview of critical fabrication steps and interface optimization strategies in the realm of flexible health electronics. Specifically, we discuss common thin film processing methods, patterning techniques for functional layers, interface challenges, and potential adjustment strategies. The objective is to synthesize recent advancements and serve as a reference for the development of innovative flexible health monitoring devices.
Collapse
Affiliation(s)
- Xu Han
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Xinjing Lin
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Yifei Sun
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Lingling Huang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, 10 Zhenhai Road, Xiamen 361102, Fujian, P. R. China
| | - Fengwei Huo
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruijie Xie
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| |
Collapse
|
7
|
Cao B, Huang Y, Chen L, Jia W, Li D, Jiang Y. Soft bioelectronics for diagnostic and therapeutic applications in neurological diseases. Biosens Bioelectron 2024; 259:116378. [PMID: 38759308 DOI: 10.1016/j.bios.2024.116378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/13/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Physical and chemical signals in the central nervous system yield crucial information that is clinically relevant under both physiological and pathological conditions. The emerging field of bioelectronics focuses on the monitoring and manipulation of neurophysiological signals with high spatiotemporal resolution and minimal invasiveness. Significant advances have been realized through innovations in materials and structural design, which have markedly enhanced mechanical and electrical properties, biocompatibility, and overall device performance. The diagnostic and therapeutic potential of soft bioelectronics has been corroborated across a diverse array of pre-clinical settings. This review summarizes recent studies that underscore the developments and applications of soft bioelectronics in neurological disorders, including neuromonitoring, neuromodulation, tumor treatment, and biosensing. Limitations and outlooks of soft devices are also discussed in terms of power supply, wireless control, biocompatibility, and the integration of artificial intelligence. This review highlights the potential of soft bioelectronics as a future platform to promote deciphering brain functions and clinical outcomes of neurological diseases.
Collapse
Affiliation(s)
- Bowen Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States
| | - Yewei Huang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States
| | - Liangpeng Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| | - Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| | - Yuanwen Jiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States.
| |
Collapse
|
8
|
Lv S, Mo F, Xu Z, Wang Y, Yang G, Han M, Jing L, Xu W, Duan Y, Liu Y, Li M, Liu J, Luo J, Wang M, Song Y, Wu Y, Cai X. Tentacle Microelectrode Arrays Uncover Soft Boundary Neurons in Hippocampal CA1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401670. [PMID: 38828784 PMCID: PMC11304256 DOI: 10.1002/advs.202401670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/28/2024] [Indexed: 06/05/2024]
Abstract
Hippocampal CA1 neurons show intense firing at specific spatial locations, modulated by isolated landmarks. However, the impact of real-world scene transitions on neuronal activity remains unclear. Moreover, long-term neural recording during movement challenges device stability. Conventional rigid-based electrodes cause inflammatory responses, restricting recording durations. Inspired by the jellyfish tentacles, the multi-conductive layer ultra-flexible microelectrode arrays (MEAs) are developed. The tentacle MEAs ensure stable recordings during movement, thereby enabling the discovery of soft boundary neurons. The soft boundary neurons demonstrate high-frequency firing that aligns with the boundaries of scene transitions. Furthermore, the localization ability of soft boundary neurons improves with more scene transition boundaries, and their activity decreases when these boundaries are removed. The innovation of ultra-flexible, high-biocompatible tentacle MEAs improves the understanding of neural encoding in spatial cognition. They offer the potential for long-term in vivo recording of neural information, facilitating breakthroughs in the understanding and application of brain spatial navigation mehanisms.
Collapse
Affiliation(s)
- Shiya Lv
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Fan Mo
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhaojie Xu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yu Wang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Gucheng Yang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Meiqi Han
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Luyi Jing
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wei Xu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yiming Duan
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yaoyao Liu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ming Li
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Juntao Liu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jinping Luo
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mixia Wang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yilin Song
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yirong Wu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinxia Cai
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
9
|
Xu K, Yang Y, Ding J, Wang J, Fang Y, Tian H. Spatially Precise Genetic Engineering at the Electrode-Tissue Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401327. [PMID: 38692704 DOI: 10.1002/adma.202401327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The interface between electrodes and neural tissues plays a pivotal role in determining the efficacy and fidelity of neural activity recording and modulation. While considerable efforts have been made to improve the electrode-tissue interface, the majority of studies have primarily concentrated on the development of biocompatible neural electrodes through abiotic materials and structural engineering. In this study, an approach is presented that seamlessly integrates abiotic and biotic engineering principles into the electrode-tissue interface. Specifically, ultraflexible neural electrodes with short hairpin RNAs (shRNAs) designed to silence the expression of endogenous genes within neural tissues are combined. The system facilitates shRNA-mediated knockdown of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and polypyrimidine tract-binding protein 1 (PTBP1), two essential genes associated in neural survival/growth and neurogenesis, within specific cell populations located at the electrode-tissue interface. Additionally, it is demonstrated that the downregulation of PTEN in neurons can result in an enlargement of neuronal cell bodies at the electrode-tissue interface. Furthermore, the system enables long-term monitoring of neuronal activities following PTEN knockdown in a mouse model of Parkinson's disease and traumatic brain injury. The system provides a versatile approach for genetically engineering the electrode-tissue interface with unparalleled precision, paving the way for the development of regenerative electronics and next-generation brain-machine interfaces.
Collapse
Affiliation(s)
- Ke Xu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinan Yang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfei Ding
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jinfen Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Ying Fang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Huihui Tian
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| |
Collapse
|
10
|
Yan D, Ruiz JRL, Hsieh ML, Jeong D, Vöröslakos M, Lanzio V, Warner EV, Ko E, Tian Y, Patel PR, ElBidweihy H, Smith CS, Lee JH, Cheon J, Buzsáki G, Yoon E. Self-Assembled Origami Neural Probes for Scalable, Multifunctional, Three-Dimensional Neural Interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591141. [PMID: 38712092 PMCID: PMC11071508 DOI: 10.1101/2024.04.25.591141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Flexible intracortical neural probes have drawn attention for their enhanced longevity in high-resolution neural recordings due to reduced tissue reaction. However, the conventional monolithic fabrication approach has met significant challenges in: (i) scaling the number of recording sites for electrophysiology; (ii) integrating of other physiological sensing and modulation; and (iii) configuring into three-dimensional (3D) shapes for multi-sided electrode arrays. We report an innovative self-assembly technology that allows for implementing flexible origami neural probes as an effective alternative to overcome these challenges. By using magnetic-field-assisted hybrid self-assembly, multiple probes with various modalities can be stacked on top of each other with precise alignment. Using this approach, we demonstrated a multifunctional device with scalable high-density recording sites, dopamine sensors and a temperature sensor integrated on a single flexible probe. Simultaneous large-scale, high-spatial-resolution electrophysiology was demonstrated along with local temperature sensing and dopamine concentration monitoring. A high-density 3D origami probe was assembled by wrapping planar probes around a thin fiber in a diameter of 80∼105 μm using optimal foldable design and capillary force. Directional optogenetic modulation could be achieved with illumination from the neuron-sized micro-LEDs (μLEDs) integrated on the surface of 3D origami probes. We could identify angular heterogeneous single-unit signals and neural connectivity 360° surrounding the probe. The probe longevity was validated by chronic recordings of 64-channel stacked probes in behaving mice for up to 140 days. With the modular, customizable assembly technologies presented, we demonstrated a novel and highly flexible solution to accommodate multifunctional integration, channel scaling, and 3D array configuration.
Collapse
|
11
|
Beetz MJ. A perspective on neuroethology: what the past teaches us about the future of neuroethology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:325-346. [PMID: 38411712 PMCID: PMC10995053 DOI: 10.1007/s00359-024-01695-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
For 100 years, the Journal of Comparative Physiology-A has significantly supported research in the field of neuroethology. The celebration of the journal's centennial is a great time point to appreciate the recent progress in neuroethology and to discuss possible avenues of the field. Animal behavior is the main source of inspiration for neuroethologists. This is illustrated by the huge diversity of investigated behaviors and species. To explain behavior at a mechanistic level, neuroethologists combine neuroscientific approaches with sophisticated behavioral analysis. The rapid technological progress in neuroscience makes neuroethology a highly dynamic and exciting field of research. To summarize the recent scientific progress in neuroethology, I went through all abstracts of the last six International Congresses for Neuroethology (ICNs 2010-2022) and categorized them based on the sensory modalities, experimental model species, and research topics. This highlights the diversity of neuroethology and gives us a perspective on the field's scientific future. At the end, I highlight three research topics that may, among others, influence the future of neuroethology. I hope that sharing my roots may inspire other scientists to follow neuroethological approaches.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
12
|
Gao L, Lv S, Shang Y, Guan S, Tian H, Fang Y, Wang J, Li H. Free-Standing Carbon Nanotube Embroidered Graphene Film Electrode Array for Stable Neural Interfacing. NANO LETTERS 2024; 24:829-835. [PMID: 38117186 DOI: 10.1021/acs.nanolett.3c03421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Implantable neural probes that are mechanically flexible yet robust are attractive candidates for achieving stable neural interfacing in the brain. Current flexible neural probes consist mainly of metal thin-film electrodes integrated on micrometer-thick polymer substrates, making it challenging to achieve electrode-tissue interfacing on the cellular scale. Here, we describe implantable neural probes that consist of robust carbon nanotube network embroidered graphene (CeG) films as free-standing recording microelectrodes. Our CeG film microelectrode arrays (CeG_MEAs) are ultraflexible yet mechanically robust, thus enabling cellular-scale electrode-tissue interfacing. Chronically implanted CeG_MEAs can stably track the activities of the same population of neurons over two months. Our results highlight the potential of ultraflexible and free-standing carbon nanofilms for stable neural interfacing in the brain.
Collapse
Affiliation(s)
- Lei Gao
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Suye Lv
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Shang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shouliang Guan
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Huihui Tian
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ying Fang
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Chinese Institute for Brain Research, Beijing 102206, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinfen Wang
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hongbian Li
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|