1
|
Lane JM, Liu SH, Midya V, Alcala CS, Eggers S, Svensson K, Martinez-Medina S, Horton MK, White RF, Téllez-Rojo MM, Wright RO. Childhood Pb-induced cognitive dysfunction: structural equation modeling of hot and cold executive functions. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00761-7. [PMID: 40033031 DOI: 10.1038/s41370-025-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Childhood lead [Pb] exposure has been consistently linked to neurotoxic effects related to the prefrontal cortex, a critical mediating structure involved in decision-making, planning, problem-solving, and specific aspects of short-term memory, i.e., the components of executive functions [EFs]. Limited studies have taken a deeper phenotyping approach that assess Pb's effects across multiple EF dimensions simultaneously, which can be organized into hot [e.g., reward, motivation] and cold [e.g., primary cognitive processing] dimensions. OBJECTIVE We investigated whether childhood Pb exposure affects hot and cold EF dimensions and assessed any sexually dimorphic effects. METHODS Leveraging a longitudinal birth cohort based in Mexico City, children's (n = 602) whole blood Pb levels (mean 23.66 μg/L) were measured at ages 4-6 and they were administered several EF tasks at ages 6-9. Confirmatory factor analysis confirmed that six EF tests estimated two latent variables representing hot and cold EF dimensions. Structural equation modeling [SEM] estimated the neurotoxic effect of childhood Pb exposure on latent variables of hot [higher scores indicate improved performance] and cold [higher scores indicate poorer performance] EFs. Subsequently, a multi-group SEM explored potential effect modifications by child sex. RESULTS Pb exposure was significantly associated with negative impacts on hot EF performance [b = -0.129, p = 0.004]. In both males (b = -0.128, p = 0.032) and females (b = -0.132, p = 0.027), childhood Pb exposure was significantly associated with a reduction in hot EF performance, with no evidence of an interaction with sex. Additionally, we found no association between Pb exposure and cold EF performance [b = 0.063, p = 0.392] and no notable sex differences. IMPACT The present study leverages a sophisticated SEM framework as an exploratory tool and a neurotoxic framework to analyze multidimensional cognitive data, aiming to delineate hot and cold EFs. Our findings are consistent with neurotoxicity secondary to childhood Pb exposure impacting hot EF performance more than cold EF, though comparable trends were noted in cold EF performance for both sexes. Our approach uniquely captures hot EF, the more emotional and self-regulatory aspect of EF, adding a novel dimension to the literature on Pb exposure and cognitive development.
Collapse
Affiliation(s)
- Jamil M Lane
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Shelley H Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vishal Midya
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cecilia S Alcala
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shoshannah Eggers
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Katherine Svensson
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Martinez-Medina
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
| | - Megan K Horton
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberta F White
- Departments of Environmental Health and Neurology, Boston University Schools of Public Health and Medicine, Boston, MA, USA
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Lewoń-Mrozek D, Kurzynoga J, Jędrzejewski P, Kędzierska K, Partyka A, Kuriata-Kordek M, Ściskalska M. Molecular Structure of Paraoxonase-1 and Its Modifications in Relation to Enzyme Activity and Biological Functions-A Comprehensive Review. Int J Mol Sci 2024; 25:13129. [PMID: 39684839 DOI: 10.3390/ijms252313129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
PON1 is a Ca2+-dependent enzyme that indicates a hydrolytic activity towards a broad spectrum of substrates. The mechanism of hydrolysis catalyzed by this enzyme is poorly understood. It was shown that the active site of PON1 is highly dynamic. The catalytic center of this enzyme consists of side chains of amino acids binding two calcium ions, from which the first one performs a structural function and the other one is responsible for the catalytic properties of PON1. This review summarizes available information on the structure of PONs, the role of amino acids located in the active site in specificity, and multiple substrate affinity of enzymes for understanding and explaining the basis of the physiological function of PONs. Moreover, in this paper, we described the changes in the structure of PONs induced by environmental and genetic factors and their association with diseases. The detoxification efficiency depends on the polymorphism of the PON1 gene, especially Q192R. However, data on the association between single-nucleotide polymorphisms (SNPs) in the PON1 gene and cardiovascular or neurodegenerative diseases are insufficient. The reviewed papers may confirm that PON1 is a very promising tool for diagnostics, but further studies are required.
Collapse
Affiliation(s)
- Dominika Lewoń-Mrozek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Rudolfa Weigla 12 St., 53-114 Wroclaw, Poland
| | - Julia Kurzynoga
- Student Society of Laboratory Diagnosticians, Wroclaw Medical University, Borowska 211A St., 50-556 Wroclaw, Poland
| | - Piotr Jędrzejewski
- Student Society of Laboratory Diagnosticians, Wroclaw Medical University, Borowska 211A St., 50-556 Wroclaw, Poland
| | - Karolina Kędzierska
- Student Society of Laboratory Diagnosticians, Wroclaw Medical University, Borowska 211A St., 50-556 Wroclaw, Poland
| | - Alicja Partyka
- Student Society of Laboratory Diagnosticians, Wroclaw Medical University, Borowska 211A St., 50-556 Wroclaw, Poland
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University, 211A Borowska, 50-556 Wroclaw, Poland
| | - Magdalena Kuriata-Kordek
- Department of Nephrology and Transplantation Medicine and Internal Diseases, Wroclaw Medical University, Borowska 213 St., 50-367 Wroclaw, Poland
| | - Milena Ściskalska
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Borowska 211A St., 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
Bozack AK, Trasande L. Prenatal chemical exposures and the methylome: current evidence and opportunities for environmental epigenetics. Epigenomics 2024; 16:1443-1451. [PMID: 39539208 PMCID: PMC11622816 DOI: 10.1080/17501911.2024.2426441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Exposure to pollutants and chemicals during critical developmental periods in early life can impact health and disease risk across the life course. Research in environmental epigenetics has provided increasing evidence that prenatal exposures affect epigenetic markers, particularly DNA methylation. In this article, we discuss the role of DNA methylation in early life programming and review evidence linking the intrauterine environment to epigenetic modifications, with a focus on exposure to tobacco smoke, metals, and endocrine-disrupting chemicals. We also discuss challenges and novel approaches in environmental epigenetic research and explore the potential of epigenetic biomarkers in studies of pediatric populations as indicators of exposure and disease risk. Overall, we aim to highlight how advancements in environmental epigenetics may transform our understanding of early-life exposures and inform new approaches for supporting long-term health.
Collapse
Affiliation(s)
- Anne K. Bozack
- Department of Epidemiology and Population Health, Stanford School of Medicine, Palo Alto, CA, USA
| | - Leonardo Trasande
- Department of Pediatrics and Department of Population Health, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Waldrop SW, Perng W, Konigsberg IR, Borengasser SJ. The potential utility of cord blood DNA methylation in pediatric clinical practice. Epigenomics 2024; 16:1365-1372. [PMID: 39530586 PMCID: PMC11622741 DOI: 10.1080/17501911.2024.2408217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
Our understanding of the origins of noncommunicable diseases has evolved over the years with greater consideration given to the lasting influence exposures and experiences during the preconceptional and prenatal periods can have. Research highlights the associations of parental exposures (e.g., diet, obesity, gestational diabetes, lipid profile, toxic exposures and microbiome) with the infant/fetal methylome and suggest associations with infant, child and/or adolescent chronic health outcomes. Thus, epigenetics and specifically cord blood DNA methylation may have utility as biomarkers for disease risk identification and stratification in pediatrics. However, for cord blood DNA methylation analyses to be leveraged as biomarkers of disease risk in pediatric clinical practice, the results must be replicable, validated and clinically meaningful. Challenges and opportunities to this prospect are herein discussed.
Collapse
Affiliation(s)
- Stephanie W Waldrop
- Section on Nutrition, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO80045, USA
- Division of Clinical Sciences, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA70808, USA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity & Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| | - Iain R Konigsberg
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| | - Sarah J Borengasser
- Department of Pediatrics, TSET Health Promotion Research Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104, USA
| |
Collapse
|
5
|
Dutta S, Ruden DM. Heavy Metals in Umbilical Cord Blood: Effects on Epigenetics and Child Development. Cells 2024; 13:1775. [PMID: 39513881 PMCID: PMC11544782 DOI: 10.3390/cells13211775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Heavy metals like arsenic, mercury, cadmium, and lead are harmful pollutants that can change how our genes are regulated without altering the DNA sequence, specifically through a process called DNA methylation (DNAm) at 5-methylcytosine, an epigenetic mark that we will focus on in this review. These changes in DNAm are most sensitive during pregnancy, a critical time for development when these modifications can affect how traits are expressed. Historically, most research on these environmental effects has focused on adults, but now there is more emphasis on studying the impacts during early development and childhood. The placenta acts as a protective barrier between the mother and the baby, and by examining it, scientists can identify changes in key genes that might affect long-term health. This review looks at how exposure to heavy metals during pregnancy can cause changes in the gene regulation by DNAm in newborns, as seen in their umbilical cord blood. These changes reflect the baby's genetic state during pregnancy and can be influenced by the mother's environment and genetics, as well as the baby's own genetics.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Douglas M. Ruden
- C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
6
|
Lozano M, McEachan RRC, Wright J, Yang TC, Dow C, Kadawathagedara M, Lepeule J, Bustamante M, Maitre L, Vrijheid M, Brantsæter AL, Meltzer HM, Bempi V, Roumeliotaki T, Thomsen C, Nawrot T, Broberg K, Llop S. Early life exposure to mercury and relationships with telomere length and mitochondrial DNA content in European children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173014. [PMID: 38729362 DOI: 10.1016/j.scitotenv.2024.173014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Telomere length (TL) and mitochondrial function expressed as mitochondrial DNA copy number (mtDNAcn) are biomarkers of aging and oxidative stress and inflammation, respectively. Methylmercury (MeHg), a common pollutant in fish, induces oxidative stress. We hypothesized that elevated oxidative stress from exposure to MeHg decreases mtDNAcn and shortens TL. METHODS Study participants are 6-11-year-old children from the HELIX multi-center birth cohort study, comprising six European countries. Prenatal and postnatal total mercury (THg) concentrations were measured in blood samples, TL and mtDNAcn were determined in child DNA. Covariates and confounders were obtained by questionnaires. Robust regression models were run, considering sociodemographic and lifestyle covariates, as well as fish consumption. Sex, ethnicity, and fish consumption interaction models were also run. RESULTS We found longer TL with higher pre- and postnatal THg blood concentrations, even at low-level THg exposure according to the RfD proposed by the US EPA. The prenatal association showed a significant linear relationship with a 3.46 % increase in TL for each unit increased THg. The postnatal association followed an inverted U-shaped marginal non-linear relationship with 1.38 % an increase in TL for each unit increased THg until reaching a cut-point at 0.96 μg/L blood THg, from which TL attrition was observed. Higher pre- and postnatal blood THg concentrations were consistently related to longer TL among cohorts and no modification effect of fish consumption nor children's sex was observed. No association between THg exposure and mtDNAcn was found. DISCUSSION We found evidence that THg is associated with TL but the associations seem to be time- and concentration-dependent. Further studies are needed to clarify the mechanism behind the telomere changes of THg and related health effects.
Collapse
Affiliation(s)
- Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain.
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Courtney Dow
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, CRESS, Paris, France
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, CRESS, Paris, France
| | - Johanna Lepeule
- Université Grenoble Alpes, INSERM, CNRS, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Mariona Bustamante
- ISGlobal, Universitat Pompeu Fabra (UPF); Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Lea Maitre
- ISGlobal, Universitat Pompeu Fabra (UPF); Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Universitat Pompeu Fabra (UPF); Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Anne Lise Brantsæter
- Division of Climate and Environmental Health and Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Helle Margrete Meltzer
- Division of Climate and Environmental Health and Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Vasiliki Bempi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Tim Nawrot
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
7
|
Dufault RJ, Adler KM, Carpenter DO, Gilbert SG, Crider RA. Nutritional epigenetics education improves diet and attitude of parents of children with autism or attention deficit/hyperactivity disorder. World J Psychiatry 2024; 14:159-178. [PMID: 38327893 PMCID: PMC10845225 DOI: 10.5498/wjp.v14.i1.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Unhealthy maternal diet leads to heavy metal exposures from the consumption of ultra-processed foods that may impact gene behavior across generations, creating conditions for the neurodevelopmental disorders known as autism and attention deficit/hyperactivity disorder (ADHD). Children with these disorders have difficulty metabolizing and excreting heavy metals from their bloodstream, and the severity of their symptoms correlates with the heavy metal levels measured in their blood. Psychiatrists may play a key role in helping parents reduce their ultra-processed food and dietary heavy metal intake by providing access to effective nutritional epigenetics education. AIM To test the efficacy of nutritional epigenetics instruction in reducing parental ultra-processed food intake. METHODS The study utilized a semi-randomized test and control group pretest-posttest pilot study design with participants recruited from parents having a learning-disabled child with autism or ADHD. Twenty-two parents who met the inclusion criteria were randomly selected to serve in the test (n = 11) or control (n = 11) group. The test group participated in the six-week online nutritional epigenetics tutorial, while the control group did not. The efficacy of the nutritional epigenetics instruction was determined by measuring changes in parent diet and attitude using data derived from an online diet survey administered to the participants during the pre and post intervention periods. Diet intake scores were derived for both ultra-processed and whole/organic foods. Paired sample t-tests were conducted to determine any differences in mean diet scores within each group. RESULTS There was a significant difference in the diet scores of the test group between the pre- and post-intervention periods. The parents in the test group significantly reduced their intake of ultra-processed foods with a pre-intervention diet score of 70 (mean = 5.385, SD = 2.534) and a post-intervention diet score of 113 (mean = 8.692, SD = 1.750) and the paired t-test analysis showing a significance of P < 0.001. The test group also significantly increased their consumption of whole and/or organic foods with a pre-intervention diet score of 100 (mean = 5.882, SD = 2.472) and post-intervention diet score of 121 (mean = 7.118, SD = 2.390) and the paired t-test analysis showing a significance of P < 0.05. CONCLUSION Here we show nutritional epigenetics education can be used to reduce ultra-processed food intake and improve attitude among parents having learning-disabled children with autism or ADHD.
Collapse
Affiliation(s)
- Renee J Dufault
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO 63501, United States
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| | - Katherine M Adler
- Department of Health Sciences, University of New Haven, West Haven, CT 06516, United States
| | - David O Carpenter
- Institute for Health and the Environment, School of Public Health, State University of New York, Albany, NY 12222, United States
| | - Steven G Gilbert
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Research, Institute of Neurotoxicology and Neurological Disorders, Seattle, WA 98105, United States
| | - Raquel A Crider
- Department of Statistics, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| |
Collapse
|
8
|
Goodman CV, Green R, DaCosta A, Flora D, Lanphear B, Till C. Sex difference of pre- and post-natal exposure to six developmental neurotoxicants on intellectual abilities: a systematic review and meta-analysis of human studies. Environ Health 2023; 22:80. [PMID: 37978510 PMCID: PMC10655280 DOI: 10.1186/s12940-023-01029-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Early life exposure to lead, mercury, polychlorinated biphenyls (PCBs), polybromide diphenyl ethers (PBDEs), organophosphate pesticides (OPPs), and phthalates have been associated with lowered IQ in children. In some studies, these neurotoxicants impact males and females differently. We aimed to examine the sex-specific effects of exposure to developmental neurotoxicants on intelligence (IQ) in a systematic review and meta-analysis. METHOD We screened abstracts published in PsychINFO and PubMed before December 31st, 2021, for empirical studies of six neurotoxicants (lead, mercury, PCBs, PBDEs, OPPs, and phthalates) that (1) used an individualized biomarker; (2) measured exposure during the prenatal period or before age six; and (3) provided effect estimates on general, nonverbal, and/or verbal IQ by sex. We assessed each study for risk of bias and evaluated the certainty of the evidence using Navigation Guide. We performed separate random effect meta-analyses by sex and timing of exposure with subgroup analyses by neurotoxicant. RESULTS Fifty-one studies were included in the systematic review and 20 in the meta-analysis. Prenatal exposure to developmental neurotoxicants was associated with decreased general and nonverbal IQ in males, especially for lead. No significant effects were found for verbal IQ, or postnatal lead exposure and general IQ. Due to the limited number of studies, we were unable to analyze postnatal effects of any of the other neurotoxicants. CONCLUSION During fetal development, males may be more vulnerable than females to general and nonverbal intellectual deficits from neurotoxic exposures, especially from lead. More research is needed to examine the nuanced sex-specific effects found for postnatal exposure to toxic chemicals.
Collapse
Affiliation(s)
- Carly V Goodman
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada.
| | - Rivka Green
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada
| | - Allya DaCosta
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada
| | - David Flora
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Christine Till
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada
| |
Collapse
|
9
|
Tahavvori A, Gargari MK, Yazdani Y, Mamalo AS, Beilankouhi EAV, Valilo M. Involvement of antioxidant enzymes in Parkinson's disease. Pathol Res Pract 2023; 249:154757. [PMID: 37598566 DOI: 10.1016/j.prp.2023.154757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Similar to many other diseases, the etiology of Parkinson's disease (PD) is multifactorial and includes both genetic and environmental factors. Exposure to pesticides and the production of reactive oxygen species (ROS) in the body, mainly in electron transporter complexes 1 and 2 in the inner mitochondrial membrane, are two primary environmental risk factors for this disease. Increased accumulation of ROS and oxidative stress (OS) trigger a series of reactions that can lead to the aggregation of misfolded proteins, DNA damage, autophagy, and apoptosis, which may adversely affect cell function. These processes cause diseases such as coronary artery disease (CAD), Alzheimer's disease (AD), and PD. As indicated in previous studies, ROS is considered a critical regulator in the progression of PD. The human body contains several antioxidant molecules, such as vitamin A, vitamin C, bilirubin, and uric acid, as well as antioxidant enzymes including paraoxonase (PON), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD). Therefore, based on the canonical function of the antioxidant enzymes in PD, In the present review, we attempted to examine the function of antioxidant enzymes in PD.
Collapse
Affiliation(s)
- Amir Tahavvori
- M, D, Internal Department, Urmia University of Medical Sciences, Urmia, Iran
| | - Morad Kohandel Gargari
- Imamreza Hospital, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Soleimani Mamalo
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mohammad Valilo
- Department of Biochemistry, Urmia University of Medical Sciences Faculty of Medicine, Urmia, Iran.
| |
Collapse
|
10
|
Nakamura A, Broséus L, Tost J, Vaiman D, Martins S, Keyes K, Bonello K, Fekom M, Strandberg-Larsen K, Sutter-Dallay AL, Heude B, Melchior M, Lepeule J. Epigenome-Wide Associations of Placental DNA Methylation and Behavioral and Emotional Difficulties in Children at 3 Years of Age. Int J Mol Sci 2023; 24:11772. [PMID: 37511531 PMCID: PMC10380531 DOI: 10.3390/ijms241411772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The placenta is a key organ for fetal and brain development. Its epigenome can be regarded as a biochemical record of the prenatal environment and a potential mechanism of its association with the future health of the fetus. We investigated associations between placental DNA methylation levels and child behavioral and emotional difficulties, assessed at 3 years of age using the Strengths and Difficulties Questionnaire (SDQ) in 441 mother-child dyads from the EDEN cohort. Hypothesis-driven and exploratory analyses (on differentially methylated probes (EWAS) and regions (DMR)) were adjusted for confounders, technical factors, and cell composition estimates, corrected for multiple comparisons, and stratified by child sex. Hypothesis-driven analyses showed an association of cg26703534 (AHRR) with emotional symptoms, and exploratory analyses identified two probes, cg09126090 (intergenic region) and cg10305789 (PPP1R16B), as negatively associated with peer relationship problems, as well as 33 DMRs, mostly positively associated with at least one of the SDQ subscales. Among girls, most associations were seen with emotional difficulties, whereas in boys, DMRs were as much associated with emotional than behavioral difficulties. This study provides the first evidence of associations between placental DNA methylation and child behavioral and emotional difficulties. Our results suggest sex-specific associations and might provide new insights into the mechanisms of neurodevelopment.
Collapse
Affiliation(s)
- Aurélie Nakamura
- Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences (IAB), University Grenoble Alpes, INSERM, 38700 La Tronche, France;
| | - Lucile Broséus
- Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences (IAB), University Grenoble Alpes, INSERM, 38700 La Tronche, France;
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA—Institut de Biologie François Jacob, University Paris Saclay, 91057 Evry, France;
| | - Daniel Vaiman
- From Gametes to Birth, Institut Cochin, U1016 INSERM, UMR 8104 CNRS, Paris Cité University, 75014 Paris, France;
| | - Silvia Martins
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA; (S.M.); (K.K.)
| | - Katherine Keyes
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA; (S.M.); (K.K.)
| | - Kim Bonello
- Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Equipe de Recherche en Epidémiologie Sociale (ERES), Sorbonne Université, INSERM, 75571 Paris, France; (K.B.); (M.F.); (M.M.)
- Department of General Practice, School of Medicine, Sorbonne University, 75013 Paris, France
| | - Mathilde Fekom
- Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Equipe de Recherche en Epidémiologie Sociale (ERES), Sorbonne Université, INSERM, 75571 Paris, France; (K.B.); (M.F.); (M.M.)
| | - Katrine Strandberg-Larsen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Anne-Laure Sutter-Dallay
- Bordeaux Population Health, Bordeaux University, INSERM, UMR 1219, 33076 Bordeaux, France;
- University Department of Child and Adolescent Psychiatry, Charles Perrens Hospital, 33000 Bordeaux, France
| | - Barbara Heude
- Center for Research in Epidemiology and Statistics (CRESS), Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, 75004 Paris, France;
| | - Maria Melchior
- Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Equipe de Recherche en Epidémiologie Sociale (ERES), Sorbonne Université, INSERM, 75571 Paris, France; (K.B.); (M.F.); (M.M.)
| | - Johanna Lepeule
- Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences (IAB), University Grenoble Alpes, INSERM, 38700 La Tronche, France;
| |
Collapse
|
11
|
Cediel-Ulloa A, Lindner S, Rüegg J, Broberg K. Epigenetics of methylmercury. Neurotoxicology 2023; 97:34-46. [PMID: 37164037 DOI: 10.1016/j.neuro.2023.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE OF REVIEW Methylmercury (MeHg) is neurotoxic at high levels and particularly affects the developing brain. One proposed mechanism of MeHg neurotoxicity is alteration of the epigenetic programming. In this review, we summarise the experimental and epidemiological literature on MeHg-associated epigenetic changes. RECENT FINDINGS Experimental and epidemiological studies have identified changes in DNA methylation following in utero exposure to MeHg, and some of the changes appear to be persistent. A few studies have evaluated associations between MeHg-related changes in DNA methylation and neurodevelopmental outcomes. Experimental studies reveal changes in histone modifications after MeHg exposure, but we lack epidemiological studies supporting such changes in humans. Experimental and epidemiological studies have identified microRNA-related changes associated with MeHg; however, more research is needed to conclude if these changes lead to persistent and toxic effects. SUMMARY MeHg appears to interfere with epigenetic processes, potentially leading to persistent changes. However, observed associations of mercury with epigenetic changes are as of yet of unknown relevance to neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Andrea Cediel-Ulloa
- Department of Organism Biology, Uppsala University, Kåbovägen 4, 752 36 Uppsala, Sweden
| | - Sabrina Lindner
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Joëlle Rüegg
- Department of Organism Biology, Uppsala University, Kåbovägen 4, 752 36 Uppsala, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Paz-Sabillón M, Torres-Sánchez L, Piña-Pozas M, Del Razo LM, Quintanilla-Vega B. Prenatal Exposure to Potentially Toxic Metals and Their Effects on Genetic Material in Offspring: a Systematic Review. Biol Trace Elem Res 2023; 201:2125-2150. [PMID: 35713810 DOI: 10.1007/s12011-022-03323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
In recent years, the background level of environmental pollutants, including metals, has increased. Pollutant exposure during the earliest stages of life may determine chronic disease susceptibility in adulthood because of genetic or epigenetic changes. The objective of this review was to identify the association between prenatal and early postnatal exposure to potentially toxic metals (PTMs) and their adverse effects on the genetic material of offspring. A systematic review was carried out following the Cochrane methodology in four databases: PubMed, Scopus, Web of Science, and the Cochrane Library. Eligible papers were those conducted in humans and published in English between 2010/01/01 and 2021/04/30. A total of 57 articles were included, most of which evaluated prenatal exposure. Most commonly evaluated PTMs were As, Cd, and Pb. Main adverse effects on the genetic material of newborns associated with PTM prenatal exposure were alterations in telomere length, gene or protein expression, mitochondrial DNA content, metabolomics, DNA damage, and epigenetic modifications. Many of these effects were sex-specific, being predominant in boys. One article reported a synergistic interaction between As and Hg, and two articles observed antagonistic interactions between PTMs and essential metals, such as Cu, Se, and Zn. The findings in this review highlight that the problem of PTM exposure persists, affecting the most susceptible populations, such as newborns. Some of these associations were observed at low concentrations of PTMs. Most of the studies have focused on single exposures; however, three interactions between essential and nonessential metals were observed, highlighting that metal mixtures need more attention.
Collapse
Affiliation(s)
- Marvin Paz-Sabillón
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Luisa Torres-Sánchez
- National Institute of Public Health, Ave. Universidad 655, Santa María Ahuacatitlán, 62100, Cuernavaca, Morelos, Mexico
| | - Maricela Piña-Pozas
- National Institute of Public Health, Ave. Universidad 655, Santa María Ahuacatitlán, 62100, Cuernavaca, Morelos, Mexico
| | - Luz M Del Razo
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Betzabet Quintanilla-Vega
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|
13
|
Dufault RJ, Crider RA, Deth RC, Schnoll R, Gilbert SG, Lukiw WJ, Hitt AL. Higher rates of autism and attention deficit/hyperactivity disorder in American children: Are food quality issues impacting epigenetic inheritance? World J Clin Pediatr 2023; 12:25-37. [PMID: 37034430 PMCID: PMC10075020 DOI: 10.5409/wjcp.v12.i2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
In the United States, schools offer special education services to children who are diagnosed with a learning or neurodevelopmental disorder and have difficulty meeting their learning goals. Pediatricians may play a key role in helping children access special education services. The number of children ages 6-21 in the United States receiving special education services increased 10.4% from 2006 to 2021. Children receiving special education services under the autism category increased 242% during the same period. The demand for special education services for children under the developmental delay and other health impaired categories increased by 184% and 83% respectively. Although student enrollment in American schools has remained stable since 2006, the percentage distribution of children receiving special education services nearly tripled for the autism category and quadrupled for the developmental delay category by 2021. Allowable heavy metal residues remain persistent in the American food supply due to food ingredient manufacturing processes. Numerous clinical trial data indicate heavy metal exposures and poor diet are the primary epigenetic factors responsible for the autism and attention deficit hyperactivity disorder epidemics. Dietary heavy metal exposures, especially inorganic mercury and lead may impact gene behavior across generations. In 2021, the United States Congress found heavy metal residues problematic in the American food supply but took no legislative action. Mandatory health warning labels on select foods may be the only way to reduce dietary heavy metal exposures and improve child learning across generations.
Collapse
Affiliation(s)
- Renee J Dufault
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO 63501, United States
| | - Raquel A Crider
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| | - Richard C Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Roseanne Schnoll
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Health and Nutrition Sciences, Brooklyn College of CUNY, Brooklyn, NY 11210, United States
| | - Steven G Gilbert
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Research, Institute of Neurotoxicology and Neurological Disorders, Seattle, WA 98105, United States
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Amanda L Hitt
- Food Integrity Campaign, Government Accountability Project, Columbia, WA 20006, United States
- Department of Legal, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| |
Collapse
|
14
|
Mechanisms of DNA methylation and histone modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:51-92. [PMID: 37019597 DOI: 10.1016/bs.pmbts.2023.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The field of genetics has expanded a lot in the past few decades due to the accessibility of human genome sequences, but still, the regulation of transcription cannot be explicated exclusively by the sequence of DNA of an individual. The coordination and crosstalk between chromatin factors which are conserved is indispensable for all living creatures. The regulation of gene expression has been dependent on the methylation of DNA, post-translational modifications of histones, effector proteins, chromatin remodeler enzymes that affect the chromatin structure and function, and other cellular activities such as DNA replication, DNA repair, proliferation and growth. The mutation and deletion of these factors can lead to human diseases. Various studies are being performed to identify and understand the gene regulatory mechanisms in the diseased state. The information from these high throughput screening studies is able to aid the treatment developments based on the epigenetics regulatory mechanisms. This book chapter will discourse on various modifications and their mechanisms that take place on histones and DNA that regulate the transcription of genes.
Collapse
|
15
|
Schrott R, Song A, Ladd-Acosta C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr Environ Health Rep 2022; 9:604-624. [PMID: 35907133 DOI: 10.1007/s40572-022-00373-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW There is interest in evaluating the developmental origins of health and disease (DOHaD) which emphasizes the role of prenatal and early-life environments on non-communicable health outcomes throughout the life course. The ability to rigorously assess and identify early-life risk factors for later health outcomes, including those with childhood onset, in large population samples is often limited due to measurement challenges such as impractical costs associated with prospective studies with a long follow-up duration, short half-lives for some environmental toxicants, and lack of biomarkers that capture inter-individual differences in biologic response to external environments. RECENT FINDINGS Epigenomic patterns, and DNA methylation in particular, have emerged as a potential objective biomarker to address some of these study design and exposure measurement challenges. In this article, we summarize the literature to date on epigenetic changes associated with specific prenatal and early-life exposure domains as well as exposure mixtures in human observational studies and their biomarker potential. Additionally, we highlight evidence for other types of epigenetic patterns to serve as exposure biomarkers. Evidence strongly supports epigenomic biomarkers of exposure that are detectable across the lifespan and across a range of exposure domains. Current and future areas of research in this field seek to expand these lines of evidence to other environmental exposures, to determine their specificity, and to develop predictive algorithms and methylation scores that can be used to evaluate early-life risk factors for health outcomes across the life span.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Callet T, Li H, Heraud C, Larroquet L, Lanuque A, Sandres F, Terrier F, Surget A, Corraze G, Panserat S, Marandel L. Molecular programming of the hepatic lipid metabolism via a parental high carbohydrate and low protein diet in rainbow trout. Animal 2022; 16:100670. [PMID: 36402111 DOI: 10.1016/j.animal.2022.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022] Open
Abstract
It is now recognised that parental diets could alter their offspring metabolism, concept known as nutritional programming. For agronomic purposes, it has been previously proposed that programming could be employed as a strategy to prepare individual for future nutritional challenges. Concerning cultured fish that belong to high trophic level, plant-derived carbohydrates are a possible substitute for the traditional protein-rich fishmeal in broodstock diet, lowering thus the dietary protein-to-carbohydrate ratio (HC/LP nutrition). However, in mammals, numerous studies have previously demonstrated that parental HC/LP nutrition negatively affects their offspring in the long term. Therefore, the question of possible adaptation to plant-based diets, via parental nutrition, should be explored. First, the maternal HC/LP nutrition induced a global DNA hypomethylation in the liver of their offspring. Interestingly at the gene expression level, the effects brought by the maternal and paternal HC/LP nutrition cumulated in the liver, as indicated by the altered transcriptome. The paternal HC/LP nutrition significantly enhanced cholesterol synthesis at the transcriptomic level. Furthermore, hepatic genes involved in long-chain polyunsaturated fatty acids were significantly increased by the parental HC/LP nutrition, affecting thus both hepatic and muscle fatty acid profiles. Overall, the present study demonstrated that lipid metabolism could be modulated via a parental nutrition in rainbow trout, and that such modulations have consequences on their progeny phenotypes.
Collapse
Affiliation(s)
- Thérèse Callet
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Hongyan Li
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Cécile Heraud
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Laurence Larroquet
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Franck Sandres
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Frédéric Terrier
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Anne Surget
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Geneviève Corraze
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France.
| |
Collapse
|
17
|
Cai G, Yu X, Hutchins D, McDermott S. A pilot study that provides evidence of epigenetic changes among mother-child pairs living proximal to mining in the US. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4735-4746. [PMID: 35137284 PMCID: PMC9468238 DOI: 10.1007/s10653-022-01217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Environmental exposures to chemicals can disrupt gene expression, and the effects could be mediated by methylation. This investigation focused on methylation of genes associated with exposure to metals. Mother-child pairs from three locations in Montana were recruited, and buccal cells were collected for genome-wide methylation assay. Four pairs were from Butte, where there is mining and a Superfund site, four pairs were from Anaconda with a Superfund site, and four pairs were from Missoula with neither a mine nor a Superfund site. Principal component analysis, linear mixed models, hierarchical clustering and heatmap, and gene set enrichment analysis were used to visualize the profiles, identify the top associated methylation loci, and investigate the involved pathways. Distinctly higher or lower methylation in samples from Butte were found at the top differentially methylated loci. The 200 genes harboring the most hypermethylated loci were significantly enriched in genes involved in actin cytoskeleton regulation, ABC transporters, leukocyte transendothelial migration, focal adhesion, and adherens junction, which plays a role in pathogenesis of disease, including autism spectrum disorders. This study lays a foundation for inquiry about genetic changes associated with environmental exposure to metals for people living in proximity to Superfund and open pit mining.
Collapse
Affiliation(s)
- Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Xuanxuan Yu
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - David Hutchins
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Montana Technological University, Butte, MT, USA
| | - Suzanne McDermott
- Department of Environmental, Occupational, and Geospatial Health Sciences, CUNY Graduate School of Public Health & Health Policy, New York, NY, USA.
| |
Collapse
|
18
|
Starling AP, Wood C, Liu C, Kechris K, Yang IV, Friedman C, Thomas DSK, Peel JL, Adgate JL, Magzamen S, Martenies SE, Allshouse WB, Dabelea D. Ambient air pollution during pregnancy and DNA methylation in umbilical cord blood, with potential mediation of associations with infant adiposity: The Healthy Start study. ENVIRONMENTAL RESEARCH 2022; 214:113881. [PMID: 35835166 PMCID: PMC10402394 DOI: 10.1016/j.envres.2022.113881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Prenatal exposure to ambient air pollution has been associated with adverse offspring health outcomes. Childhood health effects of prenatal exposures may be mediated through changes to DNA methylation detectable at birth. METHODS Among 429 non-smoking women in a cohort study of mother-infant pairs in Colorado, USA, we estimated associations between prenatal exposure to ambient fine particulate matter (PM2.5) and ozone (O3), and epigenome-wide DNA methylation of umbilical cord blood cells at delivery (2010-2014). We calculated average PM2.5 and O3 in each trimester of pregnancy and the full pregnancy using inverse-distance-weighted interpolation. We fit linear regression models adjusted for potential confounders and cell proportions to estimate associations between air pollutants and methylation at each of 432,943 CpGs. Differentially methylated regions (DMRs) were identified using comb-p. Previously in this cohort, we reported positive associations between 3rd trimester O3 exposure and infant adiposity at 5 months of age. Here, we quantified the potential for mediation of that association by changes in DNA methylation in cord blood. RESULTS We identified several DMRs for each pollutant and period of pregnancy. The greatest number of significant DMRs were associated with third trimester PM2.5 (21 DMRs). No single CpGs were associated with air pollutants at a false discovery rate <0.05. We found that up to 8% of the effect of 3rd trimester O3 on 5-month adiposity may be mediated by locus-specific methylation changes, but mediation estimates were not statistically significant. CONCLUSIONS Differentially methylated regions in cord blood were identified in association with maternal exposure to PM2.5 and O3. Genes annotated to the significant sites played roles in cardiometabolic disease, immune function and inflammation, and neurologic disorders. We found limited evidence of mediation by DNA methylation of associations between third trimester O3 exposure and 5-month infant adiposity.
Collapse
Affiliation(s)
- Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah S K Thomas
- Department of Geography and Earth Sciences, University of North Carolina Charlotte, NC, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Sheena E Martenies
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
19
|
Bock SL, Smaga CR, McCoy JA, Parrott BB. Genome-wide DNA methylation patterns harbour signatures of hatchling sex and past incubation temperature in a species with environmental sex determination. Mol Ecol 2022; 31:5487-5505. [PMID: 35997618 PMCID: PMC9826120 DOI: 10.1111/mec.16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
Conservation of thermally sensitive species depends on monitoring organismal and population-level responses to environmental change in real time. Epigenetic processes are increasingly recognized as key integrators of environmental conditions into developmentally plastic responses, and attendant epigenomic data sets hold potential for revealing cryptic phenotypes relevant to conservation efforts. Here, we demonstrate the utility of genome-wide DNA methylation (DNAm) patterns in the face of climate change for a group of especially vulnerable species, those with temperature-dependent sex determination (TSD). Due to their reliance on thermal cues during development to determine sexual fate, contemporary shifts in temperature are predicted to skew offspring sex ratios and ultimately destabilize sensitive populations. Using reduced-representation bisulphite sequencing, we profiled the DNA methylome in blood cells of hatchling American alligators (Alligator mississippiensis), a TSD species lacking reliable markers of sexual dimorphism in early life stages. We identified 120 sex-associated differentially methylated cytosines (DMCs; FDR < 0.1) in hatchlings incubated under a range of temperatures, as well as 707 unique temperature-associated DMCs. We further developed DNAm-based models capable of predicting hatchling sex with 100% accuracy (in 20 training samples and four test samples) and past incubation temperature with a mean absolute error of 1.2°C (in four test samples) based on the methylation status of 20 and 24 loci, respectively. Though largely independent of epigenomic patterning occurring in the embryonic gonad during TSD, DNAm patterns in blood cells may serve as nonlethal markers of hatchling sex and past incubation conditions in conservation applications. These findings also raise intriguing questions regarding tissue-specific epigenomic patterning in the context of developmental plasticity.
Collapse
Affiliation(s)
- Samantha L. Bock
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| | - Christopher R. Smaga
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| | - Jessica A. McCoy
- Department of BiologyCollege of CharlestonCharlestonSouth CarolinaUSA
| | - Benjamin B. Parrott
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| |
Collapse
|
20
|
Sheng Z, Liu Q, Cheng C, Li M, Barash J, Kofke WA, Shen Y, Xie Z. Fentanyl induces autism-like behaviours in mice by hypermethylation of the glutamate receptor gene Grin2b. Br J Anaesth 2022; 129:544-554. [PMID: 35697546 DOI: 10.1016/j.bja.2022.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Environmental factors contribute to autism spectrum disorder. Fentanyl, one of the most widely used opioid analgesics in anaesthesia, can induce neurotoxicity, but its role in autism remains unknown. We determined whether fentanyl induced autism-like behaviours in young mice and the underlying mechanisms. METHODS Young male and female mice received fentanyl at postnatal days 6, 8, and 10, and performed behavioural tests, including three-chamber social preference, elevated plus maze, grooming behaviour, and open-field test, from postnatal days 30-32. Expression of Grin2b, the gene encoding the GluN2B subunit of the N-methyl-d-aspartate receptor, was assessed in the anterior cingulate cortex of male mice using fluorescence in situ hybridisation histochemistry. We used bisulfite target sequencing to determine Grin2b hypermethylation sites after fentanyl treatment. In the specific activation and rescue experiments, we injected the mu opioid receptor agonist [D-Ala,2 N-MePhe,4 Gly-ol]-enkephalin (DAMGO) or Grin2b overexpression lentivirus into the anterior cingulate cortex of male mice. RESULTS Fentanyl induced autism-like behaviours in both young male and female mice, and downregulated Grin2b expression (0.49-fold [0.08] vs 1.00-fold [0.09]; P<0.01) and GluN2B protein amounts (0.38-fold [0.07] vs 1.00-fold [0.12]; P<0.01) in the anterior cingulate cortex through hypermethylation of Grin2b. The mu-opioid receptor antagonist naloxone and overexpression of Grin2b in anterior cingulate cortex attenuated the fentanyl-induced effects, whereas DAMGO injection into the anterior cingulate cortex induced autism-like behaviours. CONCLUSIONS These data suggest that fentanyl induces autism-like behaviours in young mice via an epigenetic mechanism. Further research is required to determine possible clinical relevance to autism risk.
Collapse
Affiliation(s)
- Zhihao Sheng
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qidong Liu
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chun Cheng
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengzhu Li
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jed Barash
- Department of Medicine, Soldiers' Home, Chelsea, MA, USA
| | - W Andrew Kofke
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuan Shen
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
21
|
Lodge EK, Dhingra R, Martin CL, Fry RC, White AJ, Ward-Caviness CK, Wani AH, Uddin M, Wildman DE, Galea S, Aiello AE. Serum lead, mercury, manganese, and copper and DNA methylation age among adults in Detroit, Michigan. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac018. [PMID: 36330039 PMCID: PMC9620967 DOI: 10.1093/eep/dvac018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Although the effects of lead, mercury, manganese, and copper on individual disease processes are well understood, estimating the health effects of long-term exposure to these metals at the low concentrations often observed in the general population is difficult. In addition, the health effects of joint exposure to multiple metals are difficult to estimate. Biological aging refers to the integrative progression of multiple physiologic and molecular changes that make individuals more at risk of disease. Biomarkers of biological aging may be useful to estimate the population-level effects of metal exposure prior to the development of disease in the population. We used data from 290 participants in the Detroit Neighborhood Health Study to estimate the effect of serum lead, mercury, manganese, and copper on three DNA methylation-based biomarkers of biological aging (Horvath Age, PhenoAge, and GrimAge). We used mixed models and Bayesian kernel machine regression and controlled for participant sex, race, ethnicity, cigarette use, income, educational attainment, and block group poverty. We observed consistently positive estimates of the effects between lead and GrimAge acceleration and mercury and PhenoAge acceleration. In contrast, we observed consistently negative associations between manganese and PhenoAge acceleration and mercury and Horvath Age acceleration. We also observed curvilinear relationships between copper and both PhenoAge and GrimAge acceleration. Increasing total exposure to the observed mixture of metals was associated with increased PhenoAge and GrimAge acceleration and decreased Horvath Age acceleration. These findings indicate that an increase in serum lead or mercury from the 25th to 75th percentile is associated with a ∼0.25-year increase in two epigenetic markers of all-cause mortality in a population of adults in Detroit, Michigan. While few of the findings were statistically significant, their consistency and novelty warrant interest.
Collapse
Affiliation(s)
- Evans K Lodge
- *Correspondence address. Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, USA. Tel: +574-339-0253; Fax: +919-966-2089; E-mail:
| | - Radhika Dhingra
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA
- Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA
| | - Chantel L Martin
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, 123 W Franklin St, Chapel Hill, NC 27516, USA
- Center for Environmental Health & Susceptibility, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA
- Center for Environmental Health & Susceptibility, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, A323 David P Rall Building, Research Triangle Park, NC 27709, USA
| | - Cavin K Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC 27514, USA
| | - Agaz H Wani
- Genomics Program, College of Public Health, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Derek E Wildman
- Genomics Program, College of Public Health, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Sandro Galea
- School of Public Health, Boston University, 715 Albany St, Boston, MA 02118, USA
| | - Allison E Aiello
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, 123 W Franklin St, Chapel Hill, NC 27516, USA
| |
Collapse
|
22
|
Cediel-Ulloa A, Yu X, Hinojosa M, Johansson Y, Forsby A, Broberg K, Rüegg J. Methylmercury-induced DNA methylation—From epidemiological observations to experimental evidence. Front Genet 2022; 13:993387. [PMID: 36176303 PMCID: PMC9513252 DOI: 10.3389/fgene.2022.993387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Methylmercury (MeHg) is a developmental neurotoxicant, and one potential mechanism of MeHg toxicity is epigenetic dysregulation. In a recent meta-analysis of epigenome-wide association studies (EWAS), associations between prenatal MeHg exposure and DNA methylation at several genomic sites were identified in blood from newborns and children. While EWASs reveal human-relevant associations, experimental studies are required to validate the relationship between exposure and DNA methylation changes, and to assess if such changes have implications for gene expression. Herein, we studied DNA methylation and gene expression of five of the top genes identified in the EWAS meta-analysis, MED31, MRPL19, GGH, GRK1, and LYSMD3, upon MeHg exposure in human SH-SY5Y cells exposed to 8 or 40 nM of MeHg during differentiation, using bisulfite-pyrosequencing and qPCR, respectively. The concentrations were selected to cover the range of MeHg concentrations in cord blood (2–8.5 μg/L) observed in the cohorts included in the EWAS. Exposure to MeHg increased DNA methylation at MED31, a transcriptional regulator essential for fetal development. The results were in concordance with the epidemiological findings where more MED31 methylation was associated with higher concentrations of MeHg. Additionally, we found a non-significant decrease in DNA methylation at GGH, which corresponds to the direction of change observed in the EWAS, and a significant correlation of GGH methylation with its expression. In conclusion, this study corroborates some of the EWAS findings and puts forward candidate genes involved in MeHg’s effects on the developing brain, thus highlighting the value of experimental validation of epidemiological association studies.
Collapse
Affiliation(s)
| | - Ximiao Yu
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Maria Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- *Correspondence: Joëlle Rüegg,
| |
Collapse
|
23
|
Bjørklund G, Antonyak H, Polishchuk A, Semenova Y, Lesiv M, Lysiuk R, Peana M. Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals. Arch Toxicol 2022; 96:3175-3199. [PMID: 36063174 DOI: 10.1007/s00204-022-03366-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Methylmercury (MeHg) is a global environmental pollutant with neurotoxic effects. Exposure to MeHg via consumption of seafood and fish can severely impact fetal neurobehavioral development even when MeHg levels in maternal blood are as low as about 5 μg/L, which the mother tolerates well. Persistent motor dysfunctions and cognitive deficits may result from trans-placental exposure. The present review summarizes current knowledge on the mechanisms of MeHg toxicity during the period of nervous system development. Although cerebellar Purkinje cells are MeHg targets, the actions of MeHg on thiol components in the neuronal cytoskeleton as well as on mitochondrial enzymes and induction of disturbances of glutamate signaling can impair extra-cerebellar functions, also at levels well tolerated by adult individuals. Numerous herbal substances possess neuroprotective effects, predominantly represented by natural polyphenolic molecules that might be utilized to develop natural drugs to alleviate neurotoxicity symptoms caused by MeHg or other Hg compounds.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | | | | | | | - Marta Lesiv
- Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
24
|
Govender P, Ghai M, Okpeku M. Sex-specific DNA methylation: impact on human health and development. Mol Genet Genomics 2022; 297:1451-1466. [PMID: 35969270 DOI: 10.1007/s00438-022-01935-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022]
Abstract
Human evolution has shaped gender differences between males and females. Over the years, scientific studies have proposed that epigenetic modifications significantly influence sex-specific differences. The evolution of sex chromosomes with epigenetics as the driving force may have led to one sex being more adaptable than the other when exposed to various factors over time. Identifying and understanding sex-specific differences, particularly in DNA methylation, will help determine how each gender responds to factors, such as disease susceptibility, environmental exposure, brain development and neurodegeneration. From a medicine and health standpoint, sex-specific methylation studies have shed light on human disease severity, progression, and response to therapeutic intervention. Interesting findings in gender incongruent individuals highlight the role of genetic makeup in influencing DNA methylation differences. Sex-specific DNA methylation studies will empower the biotechnology and pharmaceutical industry with more knowledge to identify biomarkers, design and develop sex bias drugs leading to better treatment in men and women based on their response to different diseases.
Collapse
Affiliation(s)
- Priyanka Govender
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa.
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| |
Collapse
|
25
|
Madrid E, Gonzalez-Miranda I, Muñoz S, Rejas C, Cardemil F, Martinez F, Cortes JP, Berasaluce M, Párraga M. Arsenic concentration in topsoil of central Chile is associated with aberrant methylation of P53 gene in human blood cells: a cross-sectional study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48250-48259. [PMID: 35188613 DOI: 10.1007/s11356-022-19085-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Gene expression can be modified in people who are chronically exposed to high concentrations of heavy metals. The soil surrounding the Ventanas Industrial Complex, located on the coastal zone of Puchuncaví and Quintero townships (Chile), contain heavy metal concentrations (As, Cu, Pb, Zn, among others) that far exceed international standards. The aim of this study was to determine the potential association of the heavy metals in soils, especially arsenic, with the status of methylation of four tumor suppressor genes in permanent residents in those townships. To study the methylation status in genes p53, p16, APC, and RASSF1A, we took blood samples from adults living in areas near the industrial complex for at least 5 years and compared it to blood samples from adults living in areas with normal heavy metal concentrations of soils. Results indicated that inhabitants of an area with high levels of heavy metals in soil have a significantly higher proportion of methylation in the promoter region of the p53 tumor suppressor gene compared with control areas (p-value: 0.0035). This is the first study to consider associations between heavy metal exposure in humans and aberrant DNA methylation in Chile. Our results suggest more research to support consistent decision-making on processes of environmental remediation or prevention of exposure.
Collapse
Affiliation(s)
- Eva Madrid
- Interdisciplinary Centre for Health Studies (CIESAL) - Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Valparaíso, Chile.
| | - Isabel Gonzalez-Miranda
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales (Ceres), Quillota, Valparaíso, Chile
- Pontificia Universidad Católica de Valparaíso, Vicerrectoría de Investigación y Estudios Avanzados, Valparaíso, Chile
| | - Sergio Muñoz
- Department of Public Health-CIGES, Universidad de La Frontera, Temuco, Chile
| | - Carolina Rejas
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Felipe Cardemil
- Department of Basic and Clinical Oncology, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Felipe Martinez
- Facultad de Medicina, Escuela de Medicina, Universidad Andrés Bello, Viña del Mar, Chile
| | | | - Maite Berasaluce
- Interdisciplinary Centre for Health Studies (CIESAL) - Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Valparaíso, Chile
| | - Mario Párraga
- Laboratorio de Biología Molecular, Centro de Investigaciones Biomédicas, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
26
|
Kim S, Hollinger H, Radke EG. 'Omics in environmental epidemiological studies of chemical exposures: A systematic evidence map. ENVIRONMENT INTERNATIONAL 2022; 164:107243. [PMID: 35551006 PMCID: PMC11515950 DOI: 10.1016/j.envint.2022.107243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Systematic evidence maps are increasingly used to develop chemical risk assessments. These maps can provide an overview of available studies and relevant study information to be used for various research objectives and applications. Environmental epidemiological studies that examine the impact of chemical exposures on various 'omic profiles in human populations provide relevant mechanistic information and can be used for benchmark dose modeling to derive potential human health reference values. OBJECTIVES To create a systematic evidence map of environmental epidemiological studies examining environmental contaminant exposures with 'omics in order to characterize the extent of available studies for future research needs. METHODS Systematic review methods were used to search and screen the literature and included the use of machine learning methods to facilitate screening studies. The Populations, Exposures, Comparators and Outcomes (PECO) criteria were developed to identify and screen relevant studies. Studies that met the PECO criteria after full-text review were summarized with information such as study population, study design, sample size, exposure measurement, and 'omics analysis. RESULTS Over 10,000 studies were identified from scientific databases. Screening processes were used to identify 84 studies considered PECO-relevant after full-text review. Various contaminants (e.g. phthalate, benzene, arsenic, etc.) were investigated in epidemiological studies that used one or more of the four 'omics of interest: epigenomics, transcriptomics, proteomics, and metabolomics . The epidemiological study designs that were used to explore single or integrated 'omic research questions with contaminant exposures were cohort studies, controlled trials, cross-sectional, and case-control studies. An interactive web-based systematic evidence map was created to display more study-related information. CONCLUSIONS This systematic evidence map is a novel tool to visually characterize the available environmental epidemiological studies investigating contaminants and biological effects using 'omics technology and serves as a resource for investigators and allows for a range of applications in chemical research and risk assessment needs.
Collapse
Affiliation(s)
- Stephanie Kim
- Superfund and Emergency Management Division, Region 2, U.S. Environmental Protection Agency, NY, USA.
| | - Hillary Hollinger
- Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, NC, USA.
| | - Elizabeth G Radke
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, D.C, USA.
| |
Collapse
|
27
|
Fujii R, Sato S, Tsuboi Y, Cardenas A, Suzuki K. DNA methylation as a mediator of associations between the environment and chronic diseases: A scoping review on application of mediation analysis. Epigenetics 2022; 17:759-785. [PMID: 34384035 PMCID: PMC9336467 DOI: 10.1080/15592294.2021.1959736] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/03/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
DNA methylation (DNAm) is one of the most studied epigenetic modifications. DNAm has emerged as a key biological mechanism and biomarkers to test associations between environmental exposure and outcomes in epidemiological studies. Although previous studies have focused on associations between DNAm and either exposure/outcomes, it is useful to test for mediation of the association between exposure and outcome by DNAm. The purpose of this scoping review is to introduce the methodological essence of statistical mediation analysis and to examine emerging epidemiological research applying mediation analyses. We conducted this scoping review for published peer-reviewed journals on this topic using online databases (PubMed, Scopus, Cochrane, and CINAHL) ending in December 2020. We extracted a total of 219 articles by initial screening. After reviewing titles, abstracts, and full texts, a total of 69 articles were eligible for this review. The breakdown of studies assigned to each category was 13 for smoking (18.8%), 8 for dietary intake and famine (11.6%), 6 for other lifestyle factors (8.7%), 8 for clinical endpoints (11.6%), 22 for environmental chemical exposures (31.9%), 2 for socioeconomic status (SES) (2.9%), and 10 for genetic factors and race (14.5%). In this review, we provide an exposure-wide summary for the mediation analysis using DNAm levels. However, we found heterogenous methods and interpretations in mediation analysis with typical issues such as different cell compositions and tissue-specificity. Further accumulation of evidence with diverse exposures, populations and with rigorous methodology will be expected to provide further insight in the role of DNAm in disease susceptibility.
Collapse
Affiliation(s)
- Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, California, US
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
28
|
Famurewa AC, Renu K, Eladl MA, Chakraborty R, Myakala H, El-Sherbiny M, Elsherbini DMA, Vellingiri B, Madhyastha H, Ramesh Wanjari U, Goutam Mukherjee A, Valsala Gopalakrishnan A. Hesperidin and hesperetin against heavy metal toxicity: Insight on the molecular mechanism of mitigation. Biomed Pharmacother 2022; 149:112914. [DOI: 10.1016/j.biopha.2022.112914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
|
29
|
Mercury and cancer: Where are we now after two decades of research? Food Chem Toxicol 2022; 164:113001. [DOI: 10.1016/j.fct.2022.113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022]
|
30
|
Heng YY, Asad I, Coleman B, Menard L, Benki-Nugent S, Hussein Were F, Karr CJ, McHenry MS. Heavy metals and neurodevelopment of children in low and middle-income countries: A systematic review. PLoS One 2022; 17:e0265536. [PMID: 35358213 PMCID: PMC8970501 DOI: 10.1371/journal.pone.0265536] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The presence of harmful environmental exposures, which disproportionately affects low-and-middle income countries (LMICs), contributes to >25% of deaths and diseases worldwide and detrimentally affects child neurodevelopment. Few resources succinctly summarize the existing literature on this topic. Our objective is to systematically review and characterize the evidence regarding the relationship between heavy metals and neurodevelopment of children in LMICs. METHODS We conducted a medical librarian-curated search on multiple online databases to identify articles that included individuals <18 years living in a LMIC, quantitatively measured exposure to a heavy metal (either prenatal or postnatal), and used a standardized measurement of neurodevelopment (i.e. cognitive, language, motor, and behavior). Reviews, editorials, or case studies were excluded. Results were analyzed qualitatively, and quality was assessed. RESULTS Of the 18,043 screened articles, 298 full-text articles were reviewed, and 100 articles met inclusion criteria. The included studies represented data from 19 LMICs, only one of which was classified as a low-income country. Ninety-four percent of postnatal lead and all postnatal manganese studies showed a negative association with metal exposure and neurodevelopment, which were the strongest relationships among the metals studied. Postnatal exposure of mercury was associated with poor neurodevelopment in only half of studies. Limited data on postnatal arsenic and cadmium suggests an association with worse neurodevelopment. Findings were mixed for prenatal arsenic and lead, although some evidence supports that the neurotoxicity of lead was amplified in the presence of manganese. CONCLUSIONS AND POTENTIAL IMPACT We found that lead and manganese appear to consistently have a detrimental effect on the neurodevelopment of children, and more evidence is needed for mercury, arsenic, and cadmium. Better characterization of these effects can motivate and inform prioritization of much needed international policies and programs to reduce heavy metal exposures for young children within LMICs.
Collapse
Affiliation(s)
- Yi Yan Heng
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Iqra Asad
- School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Bailey Coleman
- School of Health and Human Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Laura Menard
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarah Benki-Nugent
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Faridah Hussein Were
- Department of Chemistry, College of Biological and Physical Sciences of the University of Nairobi, Nairobi, Kenya
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Megan S McHenry
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
31
|
Medina-Díaz IM, Ponce-Ruíz N, Rojas-García AE, Zambrano-Zargoza JF, Bernal-Hernández YY, González-Arias CA, Barrón-Vivanco BS, Herrera-Moreno JF. The Relationship between Cancer and Paraoxonase 1. Antioxidants (Basel) 2022; 11:antiox11040697. [PMID: 35453382 PMCID: PMC9028432 DOI: 10.3390/antiox11040697] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Extensive research has been carried out to understand and elucidate the mechanisms of paraoxonase 1 (PON1) in the development of diseases including cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. This review focuses on the relationship between PON1 and cancer. The data suggest that PON1, oxidative stress, chronic inflammation, and cancer are closely linked. Certainly, the gene expression of PON1 will remain challenging to study. Therefore, targeting PON1, redox-sensitive pathways, and transcription factors promise prevention and therapy in the development of several diseases, including cancer.
Collapse
Affiliation(s)
- Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
- Correspondence:
| | - Néstor Ponce-Ruíz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | | | - Yael Y. Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Briscia S. Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| |
Collapse
|
32
|
Lozano M, Yousefi P, Broberg K, Soler-Blasco R, Miyashita C, Pesce G, Kim WJ, Rahman M, Bakulski KM, Haug LS, Ikeda-Araki A, Huel G, Park J, Relton C, Vrijheid M, Rifas-Shiman S, Oken E, Dou JF, Kishi R, Gutzkow KB, Annesi-Maesano I, Won S, Hivert MF, Fallin MD, Vafeiadi M, Ballester F, Bustamante M, Llop S. DNA methylation changes associated with prenatal mercury exposure: A meta-analysis of prospective cohort studies from PACE consortium. ENVIRONMENTAL RESEARCH 2022; 204:112093. [PMID: 34562483 PMCID: PMC10879652 DOI: 10.1016/j.envres.2021.112093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a ubiquitous heavy metal that originates from both natural and anthropogenic sources and is transformed in the environment to its most toxicant form, methylmercury (MeHg). Recent studies suggest that MeHg exposure can alter epigenetic modifications during embryogenesis. In this study, we examined associations between prenatal MeHg exposure and levels of cord blood DNA methylation (DNAm) by meta-analysis in up to seven independent studies (n = 1462) as well as persistence of those relationships in blood from 7 to 8 year-old children (n = 794). In cord blood, we found limited evidence of differential DNAm at cg24184221 in MED31 (β = 2.28 × 10-4, p-value = 5.87 × 10-5) in relation to prenatal MeHg exposure. In child blood, we identified differential DNAm at cg15288800 (β = 0.004, p-value = 4.97 × 10-5), also located in MED31. This repeated link to MED31, a gene involved in lipid metabolism and RNA Polymerase II transcription function, may suggest a DNAm perturbation related to MeHg exposure that persists into early childhood. Further, we found evidence for association between prenatal MeHg exposure and child blood DNAm levels at two additional CpGs: cg12204245 (β = 0.002, p-value = 4.81 × 10-7) in GRK1 and cg02212000 (β = -0.001, p-value = 8.13 × 10-7) in GGH. Prenatal MeHg exposure was associated with DNAm modifications that may influence health outcomes, such as cognitive or anthropometric development, in different populations.
Collapse
Affiliation(s)
- Manuel Lozano
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain.
| | - Paul Yousefi
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Karin Broberg
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Giancarlo Pesce
- INSERM UMR1018, Université Paris-Saclay, UVSQ, Centre for Epidemiology and Public Health (CESP), Villejuif, France
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, South Korea
| | - Mohammad Rahman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| | - Kelly M Bakulski
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Line S Haug
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan; Faculty of Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Guy Huel
- INSERM UMR1018, Université Paris-Saclay, UVSQ, Centre for Epidemiology and Public Health (CESP), Villejuif, France
| | - Jaehyun Park
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Sheryl Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| | - John F Dou
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Kristine B Gutzkow
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Isabella Annesi-Maesano
- INSERM UMR1302, Montpellier University, Insitut Desbrest d'Épidémiologie et de Santé Publique (IDESP), Montpellier, France
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea; Department of Public Health Sciences, Seoul National University, Seoul, South Korea
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States; Diabetes Unit, Massachusetts General Hospital, Boston, MA, United States
| | - M Daniele Fallin
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; School of Nursing, Universitat de València, Valencia, Spain
| | - Mariona Bustamante
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
33
|
Malecki KMC, Andersen JK, Geller AM, Harry GJ, Jackson CL, James KA, Miller GW, Ottinger MA. Integrating Environment and Aging Research: Opportunities for Synergy and Acceleration. Front Aging Neurosci 2022; 14:824921. [PMID: 35264945 PMCID: PMC8901047 DOI: 10.3389/fnagi.2022.824921] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
Despite significant overlaps in mission, the fields of environmental health sciences and aging biology are just beginning to intersect. It is increasingly clear that genetics alone does not predict an individual’s neurological aging and sensitivity to disease. Accordingly, aging neuroscience is a growing area of mutual interest within environmental health sciences. The impetus for this review came from a workshop hosted by the National Academies of Sciences, Engineering, and Medicine in June of 2020, which focused on integrating the science of aging and environmental health research. It is critical to bridge disciplines with multidisciplinary collaborations across toxicology, comparative biology, epidemiology to understand the impacts of environmental toxicant exposures and age-related outcomes. This scoping review aims to highlight overlaps and gaps in existing knowledge and identify essential research initiatives. It begins with an overview of aging biology and biomarkers, followed by examples of synergy with environmental health sciences. New areas for synergistic research and policy development are also discussed. Technological advances including next-generation sequencing and other-omics tools now offer new opportunities, including exposomic research, to integrate aging biomarkers into environmental health assessments and bridge disciplinary gaps. This is necessary to advance a more complete mechanistic understanding of how life-time exposures to toxicants and other physical and social stressors alter biological aging. New cumulative risk frameworks in environmental health sciences acknowledge that exposures and other external stressors can accumulate across the life course and the advancement of new biomarkers of exposure and response grounded in aging biology can support increased understanding of population vulnerability. Identifying the role of environmental stressors, broadly defined, on aging biology and neuroscience can similarly advance opportunities for intervention and translational research. Several areas of growing research interest include expanding exposomics and use of multi-omics, the microbiome as a mediator of environmental stressors, toxicant mixtures and neurobiology, and the role of structural and historical marginalization and racism in shaping persistent disparities in population aging and outcomes. Integrated foundational and translational aging biology research in environmental health sciences is needed to improve policy, reduce disparities, and enhance the quality of life for older individuals.
Collapse
Affiliation(s)
- Kristen M. C. Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Kristen M. C. Malecki,
| | | | - Andrew M. Geller
- United States Environmental Protection Agency, Office of Research and Development, Durham, NC, United States
| | - G. Jean Harry
- Division of National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Chandra L. Jackson
- Division of Intramural Research, Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
- Department of Health and Human Services, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, United States
| | - Katherine A. James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, CO, United States
| | - Gary W. Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
34
|
Methylmercury and Polycyclic Aromatic Hydrocarbons in Mediterranean Seafood: A Molecular Anthropological Perspective. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eating seafood has numerous health benefits; however, it constitutes one of the main sources of exposure to several harmful environmental pollutants, both of anthropogenic and natural origin. Among these, methylmercury and polycyclic aromatic hydrocarbons give rise to concerns related to their possible effects on human biology. In the present review, we summarize the results of epidemiological investigations on the genetic component of individual susceptibility to methylmercury and polycyclic aromatic hydrocarbons exposure in humans, and on the effects that these two pollutants have on human epigenetic profiles (DNA methylation). Then, we provide evidence that Mediterranean coastal communities represent an informative case study to investigate the potential impact of methylmercury and polycyclic aromatic hydrocarbons on the human genome and epigenome, since they are characterized by a traditionally high local seafood consumption, and given the characteristics that render the Mediterranean Sea particularly polluted. Finally, we discuss the challenges of a molecular anthropological approach to this topic.
Collapse
|
35
|
Ke T, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Santamaria A, Aschner M. Developmental exposure to methylmercury and ADHD, a literature review of epigenetic studies. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab014. [PMID: 34881051 PMCID: PMC8648069 DOI: 10.1093/eep/dvab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects the competence of academic performance and social wellness in children and adults. The causes of ADHD are unclear. Both genetic and environmental factors contribute to the development of ADHD. The behavioral impairments in ADHD are associated with epigenetic changes in genes that are important for neurodevelopment. Among environmental causes of ADHD, the neurotoxin methylmercury (MeHg) is associated with an increased risk for ADHD. Developing children are susceptible to neurotoxic effects of prenatal MeHg exposure. Human epidemiology studies have shown that prenatal MeHg exposure could invoke epigenetic changes in genes that are involved in ADHD. In addition, the pathogenesis of ADHD involves dopaminergic system, which is a target of developmental MeHg exposure. MeHg-induced alterations in the dopaminergic system have a profound impact on behavioral functions in adults. As a trace level of MeHg (around nM) can induce long-lasting behavioral alterations, potential mechanisms of MeHg-induced functional changes in the dopaminergic system may involve epigenetic mechanisms. Here, we review the relevant evidence on developmental MeHg exposures and the risk for ADHD. We also point out research gaps in understanding environmental causes of ADHD.
Collapse
Affiliation(s)
- Tao Ke
- **Correspondence address. Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY 10461, USA. Tel: +1 718 430 4047; Fax: +1 718 430 8922; E-mail:
| | - Alexey A Tinkov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| | - Antoly V Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Laboratory of Medical Elementology, K.G. Razumovsky Moscow State University of Technologies and Management, Moscow 109004, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY 10461, USA
| |
Collapse
|
36
|
Bozack AK, Rifas-Shiman SL, Coull BA, Baccarelli AA, Wright RO, Amarasiriwardena C, Gold DR, Oken E, Hivert MF, Cardenas A. Prenatal metal exposure, cord blood DNA methylation and persistence in childhood: an epigenome-wide association study of 12 metals. Clin Epigenetics 2021; 13:208. [PMID: 34798907 PMCID: PMC8605513 DOI: 10.1186/s13148-021-01198-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Prenatal exposure to essential and non-essential metals impacts birth and child health, including fetal growth and neurodevelopment. DNA methylation (DNAm) may be involved in pathways linking prenatal metal exposure and health. In the Project Viva cohort, we analyzed the extent to which metals (As, Ba, Cd, Cr, Cs, Cu, Hg, Mg, Mn, Pb, Se, and Zn) measured in maternal erythrocytes were associated with differentially methylated positions (DMPs) and regions (DMRs) in cord blood and tested if associations persisted in blood collected in mid-childhood. We measured metal concentrations in first-trimester maternal erythrocytes, and DNAm in cord blood (N = 361) and mid-childhood blood (N = 333, 6-10 years) with the Illumina HumanMethylation450 BeadChip. For each metal individually, we tested for DMPs using linear models (considered significant at FDR < 0.05), and for DMRs using comb-p (Sidak p < 0.05). Covariates included biologically relevant variables and estimated cell-type composition. We also performed sex-stratified analyses. RESULTS Pb was associated with decreased methylation of cg20608990 (CASP8) (FDR = 0.04), and Mn was associated with increased methylation of cg02042823 (A2BP1) in cord blood (FDR = 9.73 × 10-6). Both associations remained significant but attenuated in blood DNAm collected at mid-childhood (p < 0.01). Two and nine Mn-associated DMPs were identified in male and female infants, respectively (FDR < 0.05), with two and six persisting in mid-childhood (p < 0.05). All metals except Ba and Pb were associated with ≥ 1 DMR among all infants (Sidak p < 0.05). Overlapping DMRs annotated to genes in the human leukocyte antigen (HLA) region were identified for Cr, Cs, Cu, Hg, Mg, and Mn. CONCLUSIONS Prenatal metal exposure is associated with DNAm, including DMRs annotated to genes involved in neurodevelopment. Future research is needed to determine if DNAm partially explains the relationship between prenatal metal exposures and health outcomes.
Collapse
Affiliation(s)
- Anne K Bozack
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, 2121 Berkeley Way, Room 5302, Berkeley, CA, 94720, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, NY, New York City, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, NY, New York City, USA
| | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, 2121 Berkeley Way, Room 5302, Berkeley, CA, 94720, USA.
- Center for Computational Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
37
|
Koh EJ, Yu SY, Kim SH, Lee JS, Hwang SY. Prenatal Exposure to Heavy Metals Affects Gestational Age by Altering DNA Methylation Patterns. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2871. [PMID: 34835636 PMCID: PMC8618483 DOI: 10.3390/nano11112871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
Environmental exposure is known to have toxic effects. Maternal environmental exposure not only affects mothers but also their fetuses in utero, which may interrupt their early development. Preterm birth, one of the outcomes of prenatal exposure, is a significant factor in lifelong health risks. To understand the effects of prenatal exposome on preterm birth, we studied the association between maternal and prenatal heavy metal exposure and gestational age, using resources from the MOthers' and Children's Environmental Health (MOCEH) study in South Korea. Additionally, a methylation assay was performed to analyze epigenetic mediation using genomic DNA derived from the cord blood of 384 participants in the MOCEH study. The results suggest that maternal cadmium exposure is associated with a decrease in gestational age through an alteration in DNA methylation at a specific CpG site, cg21010642. The CpG site was annotated to a gene involved in early embryonic development. Therefore, irregular methylation patterns at this site may contribute to premature birth by mediating irregular biological mechanisms.
Collapse
Affiliation(s)
- Eun Jung Koh
- Department of Bio-Nanotechnology, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (E.J.K.); (S.H.K.)
| | - So Yeon Yu
- Department of Molecular & Life Science, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (S.Y.Y.); (J.S.L.)
| | - Seung Hwan Kim
- Department of Bio-Nanotechnology, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (E.J.K.); (S.H.K.)
| | - Ji Su Lee
- Department of Molecular & Life Science, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (S.Y.Y.); (J.S.L.)
| | - Seung Yong Hwang
- Department of Molecular & Life Science, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (S.Y.Y.); (J.S.L.)
- Department of Applied Artificial Intelligence, Hanyang University, Sangnok-gu, Ansan 15588, Korea
| |
Collapse
|
38
|
Bozack AK, Colicino E, Just AC, Wright RO, Baccarelli AA, Wright RJ, Lee AG. Associations between infant sex and DNA methylation across umbilical cord blood, artery, and placenta samples. Epigenetics 2021; 17:1080-1097. [PMID: 34569420 PMCID: PMC9542631 DOI: 10.1080/15592294.2021.1985300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA methylation (DNAm) is vulnerable to dysregulation by environmental exposures during epigenetic reprogramming that occurs in embryogenesis. Sexual dimorphism in environmentally induced DNAm dysregulation has been identified and therefore it is important to understand sex-specific DNAm patterns. DNAm at several autosomal sites has been consistently associated with sex in cord blood and placental foetal tissues. However, there is limited research comparing sex-specific DNAm across tissues, particularly differentially methylated regions (DMRs). This study leverages DNAm data measured using the Illumina HumanMethylation450 BeadChip in cord blood (N = 179), placenta (N = 229), and umbilical artery samples (N = 229) in the PRogramming of Intergenerational Stress Mechanisms (PRISM) cohort to identify autosomal DMRs and differentially methylated positions (DMPs). A replication analyses was conducted in an independent cohort (GEO Accession GSE129841). We identified 183, 257, and 419 DMRs and 2119, 2281, and 3405 DMPs (pBonferroni < 0.05) in cord blood, placenta, and artery samples, respectively. Thirty-nine DMRs overlapped in all three tissues, overlapping with genes involved in spermatogenesis (NKAPL, PIWIL2 and AURKC) and X-inactivation (LRIF1). In replication analysis, 85% of DMRs overlapped with those identified in PRISM. Overall, DMRs and DMPs had higher methylation levels among females in cord blood and artery samples, but higher methylation levels among males in placenta samples. Further research is necessary to understand biological mechanisms that contribute to differences in sex-specific DNAm signatures across tissues, as well as to determine if sexual dimorphism in the epigenome impacts response to environmental stressors.
Collapse
Affiliation(s)
- Anne K Bozack
- Division of Pulmonary Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Departments of Environmental Health Sciences and Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison G Lee
- Division of Pulmonary Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
39
|
Vaiserman A, Lushchak O. DNA methylation changes induced by prenatal toxic metal exposure: An overview of epidemiological evidence. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab007. [PMID: 34631153 PMCID: PMC8493661 DOI: 10.1093/eep/dvab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Accumulating evidence suggests that exposure to unfavorable conditions early in life can substantially contribute to the risk of chronic disorders later in life ('developmental programming' phenomenon). The mechanistic basis for this phenomenon remains poorly understood so far, although epigenetic mechanisms such as DNA methylation, histone modifications and microRNA-mediated gene regulation apparently play a crucial role. The key role of epigenetic modifications triggered by unfavorable environmental cues during sensitive developmental periods in linking adverse early-life events to later-life health outcomes is evident from a large body of studies, including methylome-wide association studies and research of candidate genes. Toxic metals (TMs), such as heavy metals, including lead, chromium, cadmium, arsenic, mercury, etc., are among environmental contaminants currently most significantly impacting human health status. Since TMs can cross the placental barrier and accumulate in fetal tissues, exposure to high doses of these xenobiotics early in development is considered to be among important factors contributing to the developmental programming of adult-life diseases in modern societies. In this mini-review, we summarize epidemiological findings indicating that prenatal TM exposure can induce epigenetic dysregulation, thereby potentially affecting adult health outcomes.
Collapse
Affiliation(s)
- Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv 04114, Ukraine
| | - Oleh Lushchak
- *Correspondence address. Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk 76018, Ukraine. Tel/Fax: +38 0342 71 46 83; E-mail:
| |
Collapse
|
40
|
Weyde KVF, Olsen AK, Duale N, Kamstra JH, Skogheim TS, Caspersen IH, Engel SM, Biele G, Xia Y, Meltzer HM, Aase H, Villanger GD. Gestational blood levels of toxic metal and essential element mixtures and associations with global DNA methylation in pregnant women and their infants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147621. [PMID: 34000534 DOI: 10.1016/j.scitotenv.2021.147621] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/24/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pregnant women and their fetuses are exposed to multiple toxic metals that together with variations in essential element levels may alter epigenetic regulation, such as DNA methylation. OBJECTIVES The aim of the study was to investigate the associations between gestational levels of toxic metals and essential elements and mixtures thereof, with global DNA methylation levels in pregnant women and their newborn children. METHODS Using 631 mother-child pairs from a prospective birth cohort (The Norwegian Mother, Father and Child Cohort Study), we measured maternal blood concentration (gestation week ~18) of five toxic metals and seven essential elements. We investigated associations as individual exposures and two-way interactions, using elastic net regression, and total mixture, using quantile g-computation, with blood levels of 5-methylcytocine (5mC) and 5-hydroxymethylcytosine (5hmC) in mothers during pregnancy and their newborn children (cord blood). Multiple testing was adjusted for using the Benjamini and Hochberg false discovery rate (FDR) approach. RESULTS The most sensitive marker of DNA methylation appeared to be 5mC levels. In pregnant mothers, elastic net regression indicated associations between 5mC and selenium and lead (non-linear), while in newborns results indicated relationships between maternal selenium, cobalt (non-linear) and mercury and 5mC, as well as copper (non-linear) and 5hmC levels. Several possible two-way interactions were identified (e.g. arsenic and mercury, and selenium and maternal smoking in newborns). None of these findings met the FDR threshold for multiple testing. No net effect was observed in the joint (mixture) exposure-approach using quantile g-computation. CONCLUSION We identified few associations between gestational levels of several toxic metals and essential elements and global DNA methylation in pregnant mothers and their newborn children. As DNA methylation dysregulation might be a key mechanism in disease development and thus of high importance for public health, our results should be considered as important candidates to investigate in future studies.
Collapse
Affiliation(s)
| | | | - Nur Duale
- Norwegian Institute of Public Health, Oslo, Norway
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | | | | | - Stephanie M Engel
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Guido Biele
- Norwegian Institute of Public Health, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Heidi Aase
- Norwegian Institute of Public Health, Oslo, Norway
| | | |
Collapse
|
41
|
Cardenas A, Fadadu RP, Van Der Laan L, Ward-Caviness C, Granger L, Diaz-Sanchez D, Devlin RB, Bind MA. Controlled human exposures to diesel exhaust: a human epigenome-wide experiment of target bronchial epithelial cells. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab003. [PMID: 33859829 PMCID: PMC8035831 DOI: 10.1093/eep/dvab003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 05/28/2023]
Abstract
Diesel exhaust (DE) is a major contributor to ambient air pollution around the world. It is a known human carcinogen that targets the respiratory system and increases risk for many diseases, but there is limited research on the effects of DE exposure on the epigenome of human bronchial epithelial cells. Understanding the epigenetic impact of this environmental pollutant can elucidate biological mechanisms involved in the pathogenesis of harmful DE-related health effects. To estimate the causal effect of short-term DE exposure on the bronchial epithelial epigenome, we conducted a controlled single-blinded randomized crossover human experiment of exposure to DE and used bronchoscopy and Illumina 450K arrays for data collection and analysis, respectively. Of the 13 participants, 11 (85%) were male and 2 (15%) were female, and 12 (92%) were White and one (8%) was Hispanic; the mean age was 26 years (SD = 3.8 years). Eighty CpGs were differentially methylated, achieving the minimum possible exact P-value of P = 2.44 × 10-4 (i.e. 2/213). In regional analyses, we found two differentially methylated regions (DMRs) annotated to the chromosome 5 open reading frame 63 genes (C5orf63; 7-CpGs) and unc-45 myosin chaperone A gene (UNC45A; 5-CpGs). Both DMRs showed increased DNA methylation after DE exposure. The average causal effects for the DMRs ranged from 1.5% to 6.0% increases in DNA methylation at individual CpGs. In conclusion, we found that short-term DE alters DNA methylation of genes in target bronchial epithelial cells, demonstrating epigenetic level effects of exposure that could be implicated in pulmonary pathologies.
Collapse
Affiliation(s)
- Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley; Berkeley, CA 94704, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94704, USA
| | - Raj P Fadadu
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley; Berkeley, CA 94704, USA
- School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lars Van Der Laan
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley; Berkeley, CA 94704, USA
| | - Cavin Ward-Caviness
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC 27709, USA
| | - Louis Granger
- Department of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC 27709, USA
| | - Robert B Devlin
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC 27709, USA
| | - Marie-Abèle Bind
- Department of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
42
|
Aung MT, M Bakulski K, Feinberg JI, F Dou J, D Meeker J, Mukherjee B, Loch-Caruso R, Ladd-Acosta C, Volk HE, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Fallin MD. Maternal blood metal concentrations and whole blood DNA methylation during pregnancy in the Early Autism Risk Longitudinal Investigation (EARLI). Epigenetics 2021; 17:253-268. [PMID: 33794742 DOI: 10.1080/15592294.2021.1897059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The maternal epigenome may be responsive to prenatal metals exposures. We tested whether metals are associated with concurrent differential maternal whole blood DNA methylation. In the Early Autism Risk Longitudinal Investigation cohort, we measured first or second trimester maternal blood metals concentrations (cadmium, lead, mercury, manganese, and selenium) using inductively coupled plasma mass spectrometry. DNA methylation in maternal whole blood was measured on the Illumina 450 K array. A subset sample of 97 women had both measures available for analysis, all of whom did not report smoking during pregnancy. Linear regression was used to test for site-specific associations between individual metals and DNA methylation, adjusting for cell type composition and confounding variables. Discovery gene ontology analysis was conducted on the top 1,000 sites associated with each metal. We observed hypermethylation at 11 DNA methylation sites associated with lead (FDR False Discovery Rate q-value <0.1), near the genes CYP24A1, ASCL2, FAT1, SNX31, NKX6-2, LRC4C, BMP7, HOXC11, PCDH7, ZSCAN18, and VIPR2. Lead-associated sites were enriched (FDR q-value <0.1) for the pathways cell adhesion, nervous system development, and calcium ion binding. Manganese was associated with hypermethylation at four DNA methylation sites (FDR q-value <0.1), one of which was near the gene ARID2. Manganese-associated sites were enriched for cellular metabolism pathways (FDR q-value<0.1). Effect estimates for DNA methylation sites associated (p < 0.05) with cadmium, lead, and manganese were highly correlated (Pearson ρ > 0.86). DNA methylation sites associated with lead and manganese may be potential biomarkers of exposure or implicate downstream gene pathways.
Collapse
Affiliation(s)
- Max T Aung
- Department of Biostatistics, University of Michigan, Ann Arbor, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, USA.,Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA.,Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - John D Meeker
- Department of Environmental Health, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, USA.,Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Rita Loch-Caruso
- Department of Environmental Health, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, USA.,Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, USA.,Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente, Oakland, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, USA
| | - Craig J Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Penn State University, USA
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, USA.,Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
43
|
Cediel Ulloa A, Gliga A, Love TM, Pineda D, Mruzek DW, Watson GE, Davidson PW, Shamlaye CF, Strain JJ, Myers GJ, van Wijngaarden E, Ruegg J, Broberg K. Prenatal methylmercury exposure and DNA methylation in seven-year-old children in the Seychelles Child Development Study. ENVIRONMENT INTERNATIONAL 2021; 147:106321. [PMID: 33340986 PMCID: PMC11849698 DOI: 10.1016/j.envint.2020.106321] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Methylmercury (MeHg) is present in fish and is a neurotoxicant at sufficiently high levels. One potential mechanism of MeHg toxicity early in life is epigenetic dysregulation that may affect long-term neurodevelopment. Altered DNA methylation of nervous system-related genes has been associated with adult mental health outcomes. OBJECTIVE To assess associations between prenatal MeHg exposure and DNA methylation (at the cytosine of CG dinucleotides, CpGs) in three nervous system-related genes, encoding brain-derived neurotropic factor (BDNF), glutamate receptor subunit NR2B (GRIN2B), and the glucocorticoid receptor (NR3C1), in children who were exposed to MeHg in utero. METHODS We tested 406 seven-year-old Seychellois children participating in the Seychelles Child Development Study (Nutrition Cohort 2), who were prenatally exposed to MeHg from maternal fish consumption. Total mercury in maternal hair (prenatal MeHg exposure measure) collected during pregnancy was measured using atomic absorption spectroscopy. Methylation in DNA from the children's saliva was measured by pyrosequencing. To assess associations between prenatal MeHg exposure and CpG methylation at seven years of age, we used multivariable linear regression models adjusted for covariates. RESULTS We identified associations with prenatal MeHg exposure for DNA methylation of one GRIN2B CpG and two NR3C1 CpGs out of 12 total CpG sites. Higher prenatal MeHg was associated with higher methylation for each CpG site. For example, NR3C1 CpG3 had an expected increase of 0.03-fold for each additional 1 ppm of prenatal MeHg (B = 0.030, 95% CI 0.001, 0.059; p = 0.047). Several CpG sites associated with MeHg are located in transcription factor binding sites and the observed methylation changes are predicted to lead to lower gene expression. CONCLUSIONS In a population of people who consume large amounts of fish, we showed that higher prenatal MeHg exposure was associated with differential DNA methylation at seven years of age at specific CpG sites that may influence neurodevelopment and mental health.
Collapse
Affiliation(s)
- Andrea Cediel Ulloa
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden; Department of Organism Biology, Uppsala University, Kåbovägen 4, 752 36 Uppsala, Sweden
| | - Anda Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden
| | - Tanzy M Love
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Daniela Pineda
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Scheelevägen 8, 22185 Lund, Sweden
| | - Daniel W Mruzek
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Gene E Watson
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Philip W Davidson
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland Bt52 1SA, UK
| | - Gary J Myers
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Edwin van Wijngaarden
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Joelle Ruegg
- Department of Organism Biology, Uppsala University, Kåbovägen 4, 752 36 Uppsala, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden; Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Scheelevägen 8, 22185 Lund, Sweden.
| |
Collapse
|
44
|
Nwanaji-Enwerem JC, Colicino E. DNA Methylation-Based Biomarkers of Environmental Exposures for Human Population Studies. Curr Environ Health Rep 2021; 7:121-128. [PMID: 32062850 DOI: 10.1007/s40572-020-00269-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This manuscript orients the reader to the underlying motivations of environmental biomarker development for human population studies and provides the foundation for applying these novel biomarkers in future research. In this review, we focus our attention on the DNA methylation-based biomarkers of (i) smoking, among adults and pregnant women, (ii) lifetime cannabis use, (iii) alcohol consumption, and (iv) cumulative exposure to lead. RECENT FINDINGS Prior environmental exposures and lifestyle modulate DNA methylation levels. Exposure-related DNA methylation changes can either be persistent or reversible once the exposure is no longer present, and this combination of both persistent and reversible changes has essential value for biomarker development. Here, we present available biomarkers representing past and cumulative exposures using individual DNA methylation profiles. In the present work, we describe how the field of environmental epigenetics can leverage machine learning algorithms to develop exposure biomarkers and reduce problems of misreporting exposures or limited access technology. We emphasize the crucial role of the individual DNA methylation profiles in those predictions, providing a summary of each biomarker, and highlighting their advantages, and limitations. Future research can cautiously leverage these DNA methylation-based biomarkers to understand the onset and progression of diseases.
Collapse
Affiliation(s)
- Jamaji C Nwanaji-Enwerem
- Belfer Center for Science and International Affairs, Harvard Kennedy School of Government, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 E 102nd St. West 3rd Floor, New York, NY, 10029, USA.
| |
Collapse
|
45
|
DNA methyltransferase- and histone deacetylase-mediated epigenetic alterations induced by low-level methylmercury exposure disrupt neuronal development. Arch Toxicol 2021; 95:1227-1239. [PMID: 33454822 DOI: 10.1007/s00204-021-02984-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Methylmercury (MeHg) is a chemical substance that causes adverse effects on fetal development. However, the molecular mechanisms by which environmental MeHg affects fetal development have not been clarified. Recently, it has been suggested that the toxic effects of chemicals on fetal development are related alterations in epigenetics, such as DNA methylation and histone modification. In order to analyze the epigenetic effects of low-level MeHg exposure on neuronal development, we evaluated neuronal development both in vivo and in vitro. Pregnant mice (C57BL/6J) were orally administrated 3 mg/kg of MeHg once daily from embryonic day 12-14. Fetuses were removed on embryonic day 19 and brain tissues were collected. LUHMES cells were treated with 1 nM of MeHg for 6 days and collected on the last day of treatment. In both in vivo and in vitro samples, MeHg significantly suppressed neurite outgrowth. Decreased acetylated histone H3 (AcH3) levels and increased histone deacetylase (HDAC) 3 and HDAC6 levels were observed in response to MeHg treatment in both in vivo and in vitro experiments. In addition, increased DNA methylation and DNA methyltransferase 1 (DNMT1) levels were observed in both in vivo and in vitro experiments. The inhibition of neurite outgrowth resulting from MeHg exposure was restored by co-treatment with DNMT inhibitor or HDAC inhibitors. Our results suggest that neurological effects such as reduced neurite outgrowth due to low-level MeHg exposure result from epigenetic changes, including a decrease in AcH3 via increased HDAC levels and an increase in DNA methylation via increased DNMT1 levels.
Collapse
|
46
|
Werder EJ, Engel LS, Curry MD, Sandler DP. Selenium modifies associations between multiple metals and neurologic symptoms in Gulf states residents. Environ Epidemiol 2020; 4:e115. [PMID: 33336134 PMCID: PMC7727467 DOI: 10.1097/ee9.0000000000000115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/23/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Metals have been shown to have a wide range of neurologic effects across the life course, but most studies consider neurodevelopment or neurodegenerative diseases in older adults. We investigated exposure to metals during adulthood in association with subclinical neurologic endpoints, considering the metals individually and as a mixture, and potential interactions among exposures. METHODS We measured blood levels of cadmium, lead, mercury, manganese, and selenium in 1007 Gulf state residents and estimated cross-sectional associations between ranked levels of blood metals and the presence of self-reported neurologic symptoms. Single pollutant models were mutually adjusted for other metals and we used quantile g-computation to evaluate associations with exposure to the combined mixture. In stratified analyses, we assessed heterogeneity by smoking and blood selenium. RESULTS The highest quartile of cadmium was associated with a higher prevalence of central nervous system symptoms (prevalence ratio [PR] = 1.50; 95% confidence interval [CI] = 1.13, 1.99), with stronger associations among nonsmokers (PR = 1.63; 95% CI = 1.11, 2.38) and those with low selenium (PR = 2.29, 95% CI = 1.50, 3.49). Selenium also modified associations between lead and peripheral nervous system symptoms, with increased symptoms in the low selenium group at all quartiles of exposure (P-trend = 0.07). Conversely, those with the highest co-exposure to mercury and selenium had reduced neurologic symptoms (PR = 0.73, 95% CI = 0.55, 0.96). Results of the mixture analysis were consistent with single chemical results. CONCLUSIONS Cadmium exhibited the most consistent relationship with increased neurologic symptoms, though lead was an important exposure in subgroup analyses. Selenium may modify subclinical neurotoxic effects of metals at non-occupational levels in adults.
Collapse
Affiliation(s)
- Emily J. Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina
| | - Lawrence S. Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | | | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina
| |
Collapse
|
47
|
Gomes TM, Dias da Silva D, Carmo H, Carvalho F, Silva JP. Epigenetics and the endocannabinoid system signaling: An intricate interplay modulating neurodevelopment. Pharmacol Res 2020; 162:105237. [PMID: 33053442 DOI: 10.1016/j.phrs.2020.105237] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 01/08/2023]
Abstract
The endocannabinoid (eCB) system is a complex system comprising endogenous cannabinoids (eCBs), their synthesis and degradation enzymes, and cannabinoid receptors. These elements crucially regulate several biological processes during neurodevelopment, such as proliferation, differentiation, and migration. Recently, eCBs were also reported to have an epigenetic action on genes that play key functions in the neurotransmitter signaling, consequently regulating their expression. In turn, epigenetic modifications (e.g. DNA methylation, histone modifications) may also modulate the function of eCB system's elements. For example, the expression of the cnr gene in the central nervous system may be epigenetically regulated (e.g. DNA methylation, histone modifications), thus altering the function of the cannabinoid receptor type-1 (CB1R). Considering the importance of the eCB system during neurodevelopment, it is thus reasonable to expect that alterations in this interaction between the eCB system and epigenetic modifications may give rise to neurodevelopmental disorders. Here, we review key concepts related to the regulation of neuronal function by the eCB system and the different types of epigenetic modifications. In particular, we focus on the mechanisms involved in the intricate interplay between both signaling systems and how they control cell fate during neurodevelopment. Noteworthy, such mechanistic understanding assumes high relevance considering the implications of the dysregulation of key neurogenic processes towards the onset of neurodevelopment-related disorders. Moreover, considering the increasing popularity of cannabis and its synthetic derivatives among young adults, it becomes of utmost importance to understand how exogenous cannabinoids may epigenetically impact neurodevelopment.
Collapse
Affiliation(s)
- Telma Marisa Gomes
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Diana Dias da Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Helena Carmo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - João Pedro Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
48
|
Bjørklund G, Pivina L, Dadar M, Semenova Y, Chirumbolo S, Aaseth J. Mercury Exposure, Epigenetic Alterations and Brain Tumorigenesis: A Possible Relationship? Curr Med Chem 2020; 27:6596-6610. [DOI: 10.2174/0929867326666190930150159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/11/2019] [Accepted: 08/30/2019] [Indexed: 12/09/2022]
Abstract
The risk assessment of mercury (Hg), in both wildlife and humans, represents an increasing
challenge. Increased production of Reactive Oxygen Species (ROS) is a known Hg-induced
toxic effect, which can be accentuated by other environmental pollutants and by complex interactions
between environmental and genetic factors. Some epidemiological and experimental studies
have investigated a possible correlation between brain tumors and heavy metals. Epigenetic modifications
in brain tumors include aberrant activation of genes, hypomethylation of specific genes,
changes in various histones, and CpG hypermethylation. Also, Hg can decrease the bioavailability
of selenium and induce the generation of reactive oxygen that plays important roles in different
pathological processes. Modification of of metals can induce excess ROS and cause lipid peroxidation,
alteration of proteins, and DNA damage. In this review, we highlight the possible relationship
between Hg exposure, epigenetic alterations, and brain tumors.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| |
Collapse
|
49
|
Chehbani F, Gallello G, Brahim T, Ouanes S, Douki W, Gaddour N, Cervera Sanz ML. The status of chemical elements in the blood plasma of children with autism spectrum disorder in Tunisia: a case-control study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35738-35749. [PMID: 32601867 DOI: 10.1007/s11356-020-09819-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders defined by a deficit in social interactions and the presence of restricted and stereotypical behaviors or interests. The etiologies of autism remain mostly unknown. Many genetic and environmental factors have been suspected. Among these environmental factors, exposure to several chemical elements has been previously studied. The purpose of this study was to compare the levels of trace elements in the blood plasma of children with ASD with typically developed children (TDC). The participants in this study consisted of 89 children with ASD (14 girls and 74 boys) and 70 TD children (29 girls and 41 boys). The levels of 33 chemical elements have been analyzed by inductively coupled plasma spectrometry (ICP-MS). We detected significant differences in the levels of eight elements between the two groups, among which there were three rare earth elements (REEs): Eu, Pr, and Sc (p = 0.000, p = 0.023, and p < 0.001 respectively); four heavy metals: Bi, Tl, Ti, and V (p = 0.004, p < 0.001, p = 0.001, and p = 0.001 respectively); and one essential element: Cu (p = 0.043). Children with ASD had higher levels of Er, Pr, Sc, Bi, Tl, Ti, and V, and lower levels of Cu in comparison with the TD group. The children exposed to passive smoking had lower levels of lead (Pb) compared with children without exposure (p = 0.018). Four elements (Cr, Er, Dy, and Pr) were negatively correlated to the severity of ASD. The level of Cu was significantly associated with autistic children's behavior (p = 0.014). These results suggest that children with ASD might have abnormal plasma levels of certain chemical elements (including Er, Pr, Sc, Bi, Tl, Ti, and V, and Cu), and some of these elements might be associated with certain clinical features.
Collapse
Affiliation(s)
- Fethia Chehbani
- Department of Psychiatry, Research Laboratory "Vulnerability to Psychotic Disorders LR 05 ES 10", Monastir University Hospital, Monastir, Tunisia.
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| | - Gianni Gallello
- Department of Analytical Chemistry, University of Valencia, Valencia, Spain
- Department of Prehistory, Archaeology and Ancient History, University of Valencia, Valencia, Spain
| | - Takoua Brahim
- Unite of Child psychiatry, Monastir University Hospital, University of Monastir, Monastir, Tunisia
| | - Sami Ouanes
- Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| | - Wahiba Douki
- Department of Psychiatry, Research Laboratory "Vulnerability to Psychotic Disorders LR 05 ES 10", Monastir University Hospital, Monastir, Tunisia
- Biochemistry-Toxicology Laboratory, University Hospital of Monastir, Monastir, Tunisia
| | - Naoufel Gaddour
- Unite of Child psychiatry, Monastir University Hospital, University of Monastir, Monastir, Tunisia
| | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Studies have shown the three-member paraoxonase (PON) multigene family to be involved in the development of a large variety of diseases with an inflammatory component. Environmental factors such as lifestyle-related factors differ widely between populations and it is important to consider that their impacts may be exerted through the epigenetic mechanisms, which connect genes, the environment and disease development and are a potential therapeutic avenue. RECENT FINDINGS In the review period, very little was published on epigenetics of PON2 or PON3, mostly on their diagnostic value in cancer by measuring methylation levels of these genes. However, the picture is more promising with PON1. Here, several studies have linked the epigenetic regulation of PON1 to various metabolic processes and particularly to the development of several diseases, including stroke, heart disease, aortic valve stenosis and chronic obstructive pulmonary disease. SUMMARY Studies into the epigenetic regulation of the PON family are in their infancy. However, recent studies linking epigenetic regulation of PON1 to disease development will encourage further research and open up the possibility for new potential therapeutic interventions.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Molecular and Cell Biology Research Centre, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|