1
|
Ashraf MA, Shahid I, Brown JK, Yu N. An Integrative Computational Approach for Identifying Cotton Host Plant MicroRNAs with Potential to Abate CLCuKoV-Bur Infection. Viruses 2025; 17:399. [PMID: 40143327 PMCID: PMC11945813 DOI: 10.3390/v17030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bur) has a circular single-stranded ssDNA genome of 2759 nucleotides in length and belongs to the genus Begomovirus (family, Geminiviridae). CLCuKoV-Bur causes cotton leaf curl disease (CLCuD) and is transmitted by the whitefly Bemisis tabaci cryptic species. Monopartite begomoviruses encode five open reading frames (ORFs). CLCuKoV-Bur replicates through a dsDNA intermediate. Five open reading frames (ORFs) are organized in the small circular, single-stranded (ss)-DNA genome of CLCuKoV-Bur (2759 bases). RNA interference (RNAi) is a naturally occurring process that has revolutionized the targeting of gene regulation in eukaryotic organisms to combat virus infection. The aim of this study was to elucidate the potential binding attractions of cotton-genome-encoded microRNAs (Gossypium hirsutum-microRNAs, ghr-miRNAs) on CLCuKoV-Bur ssDNA-encoded mRNAs using online bioinformatics target prediction tools, RNA22, psRNATarget, RNAhybrid, and TAPIR. Using this suite of robust algorithms, the predicted repertoire of the cotton microRNA-binding landscape was determined for a CLCuKoV-Bur consensus genome sequence. Previously experimentally validated cotton (Gossypium hirsutum L.) miRNAs (n = 80) were selected from a public repository miRNA registry miRBase (v22) and hybridized in silico into the CLCuKoV-Bur genome (AM421522) coding and non-coding sequences. Of the 80 ghr-miRNAs interrogated, 18 ghr-miRNAs were identified by two to four algorithms evaluated. Among them, the ghr-miR399d (accession no. MIMAT0014350), located at coordinate 1747 in the CLCuKoV-Bur genome, was predicted by a consensus or "union" of all four algorithms and represents an optimal target for designing an artificial microRNA (amiRNA) silencing construct for in planta expression. Based on all robust predictions, an in silico ghr-miRNA-regulatory network was developed for CLCuKoV-Bur ORFs using Circos software version 0.6. These results represent the first predictions of ghr-miRNAs with the therapeutic potential for developing CLCuD resistance in upland cotton plants.
Collapse
Affiliation(s)
- Muhammad Aleem Ashraf
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Department of Biosciences and Technology, Emerson University, Multan 60000, Pakistan
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA;
| | - Naitong Yu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
2
|
Biswas KK, Balram N, Elangovan M, Palchoudhury S, Bhattacharyya UK, Khatoon H, Aggarwal S, Godara S, Kumar P, Sain SK, Arora R, Datta S. Divergent Cotton leaf curl Multan betasatellite and three different alphasatellite species associated with cotton leaf curl disease outbreak in Northwest India. PLoS One 2025; 20:e0313844. [PMID: 39787193 PMCID: PMC11717315 DOI: 10.1371/journal.pone.0313844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/01/2024] [Indexed: 01/12/2025] Open
Abstract
Cotton leaf curl disease (CLCuD) is a major constraint for production of cotton (Gossypium sp.) in Northwest India. CLCuD is caused by a monopartite, circular ssDNA virus belonging to the genus Begomovirus in association with betasatellites and alphasatellites, and ttransmitted by a whitefly vector (Bemisia tabaci). To explore the genetic variability in betasatellites and alphasatellite associated with the CLCuD-begomovirus complex in Northwest India. A survey was conducted for successive three years of 2014 to 2016 and twig samples from symptomatic and healthy cotton plants randomly were collected. Total plant DNAs were isolated, subjected to rolling circle amplification (RCA), cloning and sequencing. Full-length genome of 12 betasatellites and 13 alphasatellites, those were obtained in the present study, were analyzed. Sequence analysis showed that all the present betasatellites shared 85-99 percent nucleotide identity (PNI) among themselves and 84-95 PNI with other members of Cotton leaf curl Multan betasatellite (CLCuMB) and fell into one genogroup along with CLCuMB. But in close observation the present betasatellites clustered into two phylogenetic subgroups under single CLCuMB. The present alphasatellites showed 72-100 PNI among themselves and fell under three alphasatellite species, Gossypium Darwinii symptomless alphasatellite (GDarSLA), Cotton leaf curl Multan alphasatellite (CLCuMA) and Cotton leaf curl Burewala alphasatellite (CLCuBuA). In the recombination analysis, all the present betasatellites and alphasatellites were found to be recombinants involving intra species recombination in betasatellite, and interspecies recombination in alphasatellite species. The present study indicated that the betasatellite and alphasatellite molecules associated with CLCuD-begomovirus complex in Northwest India are genetically diverse.
Collapse
Affiliation(s)
- Kajal Kumar Biswas
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Nenavath Balram
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Regional Agricultural Research Station, PJTSAU, Jagtial, Telangana, India
| | - Marimuthu Elangovan
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Supratik Palchoudhury
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Utpal Kumar Bhattacharyya
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Krishi Vigyan Kendra, Longding Kanubari, Arunachal Pradesh, India
| | - Halima Khatoon
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shilpi Aggarwal
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shruti Godara
- Forest Research Institute, Dehradun, Uttarakhand, India
| | - Pradeep Kumar
- Agricultural Research Station, Swami Keshwanand Rajasthan Agriculture University, Sri Ganganagar, Rajasthan, India
| | - Satish Kumar Sain
- ICAR-Central Institute for Cotton Research, Regional Station, Sirsa, Haryana, India
| | - Rupesh Arora
- Regional Research Station, Punjab Agricultural University, Bhatinda, Punjab, India
| | - Sibnarayan Datta
- Entomology & Biothreat Management Division, Defense Research Laboratory (DRL-DRDO), Tezpur, Assam, India
| |
Collapse
|
3
|
Mahmood MA, Ahmed N, Hussain A, Naqvi RZ, Amin I, Mansoor S. Dominance of Cotton leaf curl Multan virus-Rajasthan strain associated with third epidemic of cotton leaf curl disease in Pakistan. Sci Rep 2024; 14:13532. [PMID: 38866855 PMCID: PMC11169534 DOI: 10.1038/s41598-024-63211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Cotton (Gossypium hirsutum) is an economically potent crop in many countries including Pakistan, India, and China. For the last three decades, cotton production is under the constant stress of cotton leaf curl disease (CLCuD) caused by begomoviruses/satellites complex that is transmitted through the insect pest, whitefly (Bemisia tabaci). In 2018, we identified a highly recombinant strain; Cotton leaf curl Multan virus-Rajasthan (CLCuMuV-Raj), associated with the Cotton leaf curl Multan betasatellite-Vehari (CLCuMuBVeh). This strain is dominant in cotton-growing hub areas of central Punjab, Pakistan, causing the third epidemic of CLCuD. In the present study, we have explored the CLCuD diversity from central to southern districts of Punjab (Faisalabad, Lodhran, Bahawalpur, Rahimyar Khan) and the major cotton-growing region of Sindh (Tandojam), Pakistan for 2 years (2020-2021). Interestingly, we found same virus (CLCuMuV-Raj) and associated betasatellite (CLCuMuBVeh) strain that was previously reported with the third epidemic in the central Punjab region. Furthermore, we found minor mutations in two genes of CLCuMuV-Raj C4 and C1 in 2020 and 2021 respectively as compared to its isolates in 2018, which exhibited virus evolution. Surprisingly, we did not find these mutations in CLCuMuV-Raj isolates identified from Sindh province. The findings of the current study represent the stability of CLCuMuV-Raj and its spread toward the Sindh province where previously Cotton leaf curl Kokhran virus (CLCuKoV) and Cotton leaf curl Shahdadpur virus (CLCuShV) have been reported. The findings of the current study demand future research on CLCuD complex to explore the possible reasons for prevalence in the field and how the virus-host-vector compatible interaction can be broken to develop resistant cultivars.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Department of Biological Sciences, University of Sialkot, Sialkot, 51310, Pakistan
| | - Nasim Ahmed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
- Biotechnology and Microbiology Group, Department of Zoology, University of Poonch Rawalakot, Rawalakot, Azad Jammu and Kashmir, Pakistan
- Department of Biotechnology, Mohi-ud-Din Islamic University, Nerian Sharif, Azad Jammu and Kashmir, Pakistan
| | - Athar Hussain
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
- School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan.
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
4
|
Jain H, Singh I, Chahal S, Kaur R, Siwach P. Phylogenetic and recombination analysis of Begomoviruses associated with Cotton leaf curl disease and in silico analysis of viral-host protein interactions. Microb Pathog 2024; 186:106504. [PMID: 38122873 DOI: 10.1016/j.micpath.2023.106504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cotton leaf curl disease (CLCuD), caused by numerous begomoviruses (BGVs), is a highly disastrous disease in cotton crops worldwide. To date, several efforts have shown limited success in controlling this disease. CLCuD-associated BGVs (CABs) are known for their high rate of intra and interspecific recombinations, which raises an urgent need to find an efficient and conserved target region to combat disease. In the present study, phylogenetic analysis of selected 11 CABs, along with associated alphasatellites, and betasatellites revealed a close evolutionary relationship among them. Recombination analysis of 1374 isolates of CABs revealed 54 recombination events for the major players of CLCuD in cotton and the Cotton leaf curl Multan virus (CLCuMuV) as the most recombinant CAB. Recombination breakpoints were frequent in all regions except C2 and C3. C3-encoded protein, known as viral replication enhancer (REn), promotes viral replication by enhancing the activity of replicase (Rep) protein. Both proteins were found to contain significantly conserved domains and motifs. The identified motifs were found crucial for their interaction with host protein PCNA (Proliferating cell nuclear antigen), facilitating viral replication. Interruption at the REn-PCNA and Rep-PCNA interactions by targeting the identified conserved motifs is proposed as a prospect to halt viral replication, after suitable experimental validation.
Collapse
Affiliation(s)
- Heena Jain
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Inderjeet Singh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Shiwani Chahal
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Ramandeep Kaur
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Priyanka Siwach
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India.
| |
Collapse
|
5
|
Ashraf S, Ahmad A, Khan SH, Jamil A, Sadia B, Brown JK. LbCas12a mediated suppression of Cotton leaf curl Multan virus. FRONTIERS IN PLANT SCIENCE 2023; 14:1233295. [PMID: 37636103 PMCID: PMC10456881 DOI: 10.3389/fpls.2023.1233295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
Begomoviruses are contagious and severely affect commercially important fiber and food crops. Cotton leaf curl Multan virus (CLCuMuV) is one of the most dominant specie of Begomovirus and a major constraint on cotton yield in Pakistan. Currently, the field of plant genome editing is being revolutionized by the CRISPR/Cas system applications such as base editing, prime editing and CRISPR based gene drives. CRISPR/Cas9 system has successfully been used against biotic and abiotic plant stresses with proof-of-concept studies in both model and crop plants. CRISPR/Cas12 and CRISPR/Cas13 have recently been applied in plant sciences for basic and applied research. In this study, we used a novel approach, multiplexed crRNA-based Cas12a toolbox to target the different ORFs of the CLCuMuV genome at multiple sites simultaneously. This method successfully eliminated the symptoms of CLCuMuV in Nicotiana benthamiana and Nicotiana tabacum. Three individual crRNAs were designed from the CLCuMuV genome, targeting the specific sites of four different ORFs (C1, V1 and overlapping region of C2 and C3). The Cas12a-based construct Cas12a-MV was designed through Golden Gate three-way cloning for precise editing of CLCuMuV genome. Cas12a-MV construct was confirmed through whole genome sequencing using the primers Ubi-intron-F1 and M13-R1. Transient assays were performed in 4 weeks old Nicotiana benthamiana plants, through the agroinfiltration method. Sanger sequencing indicated that the Cas12a-MV constructs made a considerable mutations at the target sites of the viral genome. In addition, TIDE analysis of Sanger sequencing results showed the editing efficiency of crRNA1 (21.7%), crRNA2 (24.9%) and crRNA3 (55.6%). Furthermore, the Cas12a-MV construct was stably transformed into Nicotiana tabacum through the leaf disc method to evaluate the potential of transgenic plants against CLCuMuV. For transgene analysis, the DNA of transgenic plants of Nicotiana tabacum was subjected to PCR to amplify Cas12a genes with specific primers. Infectious clones were agro-inoculated in transgenic and non-transgenic plants (control) for the infectivity assay. The transgenic plants containing Cas12a-MV showed rare symptoms and remained healthy compared to control plants with severe symptoms. The transgenic plants containing Cas12a-MV showed a significant reduction in virus accumulation (0.05) as compared to control plants (1.0). The results demonstrated the potential use of the multiplex LbCas12a system to develop virus resistance in model and crop plants against begomoviruses.
Collapse
Affiliation(s)
- Sidra Ashraf
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
- Cotton Biotechnology Lab, Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad, Pakistan
| | - Aftab Ahmad
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
- Cotton Biotechnology Lab, Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Cotton Biotechnology Lab, Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Judith K. Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
6
|
Iqbal MJ, Zia-Ur-Rehman M, Ilyas M, Hameed U, Herrmann HW, Chingandu N, Manzoor MT, Haider MS, Brown JK. Sentinel plot surveillance of cotton leaf curl disease in Pakistan- a case study at the cultivated cotton-wild host plant interface. Virus Res 2023; 333:199144. [PMID: 37271420 PMCID: PMC10352719 DOI: 10.1016/j.virusres.2023.199144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
A sentinel plot case study was carried out to identify and map the distribution of begomovirus-betasatellite complexes in sentinel plots and commercial cotton fields over a four-year period using molecular and high-throughput DNA 'discovery' sequencing approaches. Samples were collected from 15 study sites in the two major cotton-producing areas of Pakistan. Whitefly- and leafhopper-transmitted geminiviruses were detected in previously unreported host plant species and locations. The most prevalent begomovirus was cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bu). Unexpectedly, a recently recognized recombinant, cotton leaf curl Multan virus-Rajasthan (CLCuMuV-Ra) was prevalent in five of 15 sites. cotton leaf curl Alabad virus (CLCuAlV) and cotton leaf curl Kokhran virus-Kokhran, 'core' members of CLCuD-begomoviruses that co-occurred with CLCuMuV in the 'Multan' epidemic were detected in one of 15 sentinel plots. Also identified were chickpea chlorotic dwarf virus and 'non-core' CLCuD-begomoviruses, okra enation leaf curl virus, squash leaf curl virus, and tomato leaf curl New Delhi virus. Cotton leaf curl Multan betasatellite (CLCuMuB) was the most prevalent CLCuD-betasatellite, and less commonly, two 'non-core' betasatellites. Recombination analysis revealed previously uncharacterized recombinants among helper virus-betasatellite complexes consisting of CLCuKoV, CLCuMuV, CLCuAlV and CLCuMuB. Population analyses provided early evidence for CLCuMuV-Ra expansion and displacement of CLCuKoV-Bu in India and Pakistan from 2012-2017. Identification of 'core' and non-core CLCuD-species/strains in cotton and other potential reservoirs, and presence of the now predominant CLCuMuV-Ra strain are indicative of ongoing diversification. Investigating the phylodynamics of geminivirus emergence in cotton-vegetable cropping systems offers an opportunity to understand the driving forces underlying disease outbreaks and reconcile viral evolution with epidemiological relationships that also capture pathogen population shifts.
Collapse
Affiliation(s)
- Muhammad Javed Iqbal
- School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Tucson, AZ 85721 USA; Faculty of Agricultural Sciences, University of the Punjab, New Campus Canal Road Lahore, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Faculty of Agricultural Sciences, University of the Punjab, New Campus Canal Road Lahore, Pakistan
| | - Muhammad Ilyas
- School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Tucson, AZ 85721 USA
| | - Usman Hameed
- Faculty of Agricultural Sciences, University of the Punjab, New Campus Canal Road Lahore, Pakistan
| | - Hans Werner Herrmann
- School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Tucson, AZ 85721 USA
| | - Nomatter Chingandu
- School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Tucson, AZ 85721 USA
| | - Muhammad Tariq Manzoor
- Faculty of Agricultural Sciences, University of the Punjab, New Campus Canal Road Lahore, Pakistan
| | - Muhammad Saleem Haider
- Faculty of Agricultural Sciences, University of the Punjab, New Campus Canal Road Lahore, Pakistan
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Tucson, AZ 85721 USA.
| |
Collapse
|
7
|
Iqbal Z, Shafiq M, Ali S, Mahmood MA, Siddiqui HA, Amin I, Briddon RW. qPCR Assay as a Tool for Examining Cotton Resistance to the Virus Complex Causing CLCuD: Yield Loss Inversely Correlates with Betasatellite, Not Virus, DNA Titer. PLANTS (BASEL, SWITZERLAND) 2023; 12:2645. [PMID: 37514259 PMCID: PMC10385359 DOI: 10.3390/plants12142645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Cotton leaf curl disease (CLCuD) is a significant constraint to the economies of Pakistan and India. The disease is caused by different begomoviruses (genus Begomovirus, family Geminiviridae) in association with a disease-specific betasatellite. However, another satellite-like molecule, alphasatellite, is occasionally found associated with this disease complex. A quantitative real-time PCR assay for the virus/satellite components causing CLCuD was used to investigate the performance of selected cotton varieties in the 2014-2015 National Coordinated Varietal Trials (NCVT) in Pakistan. The DNA levels of virus and satellites in cotton plants were determined for five cotton varieties across three geographic locations and compared with seed cotton yield (SCY) as a measure of the plant performance. The highest virus titer was detected in B-10 (0.972 ng·µg-1) from Vehari and the lowest in B-3 (0.006 ng·µg-1) from Faisalabad. Likewise, the highest alphasatellite titer was found in B-1 (0.055 ng·µg-1) from Vehari and the lowest in B-1 and B-2 (0.001 ng·µg-1) from Faisalabad. The highest betasatellite titer was found in B-23 (1.156 ng·µg-1) from Faisalabad and the lowest in B-12 (0.072 ng·µg-1) from Multan. Virus/satellite DNA levels, symptoms, and SCY were found to be highly variable between the varieties and between the locations. Nevertheless, statistical analysis of the results suggested that betasatellite DNA levels, rather than virus or alphasatellite DNA levels, were the important variable in plant performance, having an inverse relationship with SCY (-0.447). This quantitative assay will be useful in breeding programs for development of virus resistant plants and varietal trials, such as the NCVT, to select suitable varieties of cotton with mild (preferably no) symptoms and low (preferably no) virus/satellite. At present, no such molecular techniques are used in resistance breeding programs or varietal trials in Pakistan.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad Shafiq
- Department of Biotechnology, University of Management and Technology, Sialkot Campus, Sialkot P.O. Box 51340, Pakistan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Sajed Ali
- Department of Biotechnology, University of Management and Technology, Sialkot Campus, Sialkot P.O. Box 51340, Pakistan
| | - Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Hamid Anees Siddiqui
- Department of Biotechnology, University of Sialkot, Sialkot P.O. Box 51340, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| |
Collapse
|
8
|
Multiple begomoviruses infecting soybean; a case study in Faisalabad, Pakistan. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Nebapure SM, Shankarganesh K, Rajna S, Naga KC, Pandey D, Gambhir S, Praveen KV, Subramanian S. Dynamic changes in virus-induced volatiles in cotton modulate the orientation and oviposition behavior of the whitefly Bemisia tabaci. Front Physiol 2022; 13:1017948. [PMID: 36299257 PMCID: PMC9589893 DOI: 10.3389/fphys.2022.1017948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Manipulation of insect vector behavior by virus-induced plant volatiles is well known. But how the viral disease progression alters the plant volatiles and its effect on vector behavior remains less explored. Our studies tracked changes in volatile profile in progressive infection stages of cotton leaf curl virus (CLCuV) infected plants and their effect on B. tabaci behavior. Significant differences in virus titers were noticed between progressive infection stages showing distinct symptoms. Whiteflies initially settled on CLCuV infected plants, but their preference was shifted to healthy plants over time. GC-MS analysis revealed subtle quantitative/qualitative changes in volatile organic compounds (VOCs) between the healthy and selected CLCuV infection stages. VOCs such as hexanal, (E)-2-hexen-1-ol, (+)-α-pinene, (−)-β-pinene, (Z)-3-hexen-1-ol, (+)-sylvestrene, and (1S,2E,6E, 10R)-3,7,11,11-tetramethylbicycloundeca-2,6-diene (Bicyclogermacrene) were associated with the infection stage showing upward curling of leaves; (E)-2-hexen-1-ol, β-myrcene, β-ocimene, and copaene were associated with the infection stage showing downward curling. Validation studies with eight synthetic VOCs indicated that γ-terpinene elicited attraction to B. tabaci (Olfactometric Preference Index (OPI) = 1.65), while β-ocimene exhibited strong repellence (OPI = 0.64) and oviposition reduction (66.01%–92.55%). Our studies have demonstrated that progression of CLCuV disease in cotton was associated with dynamic changes in volatile profile which influences the behavioural responses of whitefly, B.tabaci. Results have shown that VOCs such as (+)-α-pinene, (−)-β-pinene γ-Terpinene, α-guaiene; 4- hydroxy- 4 methyl-2- pentanone and β-ocimene emitted from Begomovirus infected plants could be the driving force for early attraction and later repellence/oviposition deterrence of B. tabaci on virus-infected plants. The findings of this study offer scope for the management of whitefly, B. tabaci through semiochemicals.
Collapse
Affiliation(s)
| | - Karuppan Shankarganesh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, India
| | - Salim Rajna
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Shubham Gambhir
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Sabtharishi Subramanian
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Sabtharishi Subramanian,
| |
Collapse
|
10
|
Tarazi R, Vaslin MFS. The Viral Threat in Cotton: How New and Emerging Technologies Accelerate Virus Identification and Virus Resistance Breeding. FRONTIERS IN PLANT SCIENCE 2022; 13:851939. [PMID: 35449884 PMCID: PMC9016188 DOI: 10.3389/fpls.2022.851939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 05/12/2023]
Abstract
Cotton (Gossypium spp. L., Malvaceae) is the world's largest source of natural fibers. Virus outbreaks are fast and economically devasting regarding cotton. Identifying new viruses is challenging as virus symptoms usually mimic nutrient deficiency, insect damage, and auxin herbicide injury. Traditional viral identification methods are costly and time-consuming. Developing new resistant cotton lines to face viral threats has been slow until the recent use of molecular virology, genomics, new breeding techniques (NBT), remote sensing, and artificial intelligence (AI). This perspective article demonstrates rapid, sensitive, and cheap technologies to identify viral diseases and propose their use for virus resistance breeding.
Collapse
Affiliation(s)
- Roberto Tarazi
- Plant Molecular Virology Laboratory, Department of Virology, Microbiology Institute, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-graduação em Biotecnologia e Bioprocessos da UFRJ, Rio de Janeiro, Brazil
| | - Maite F. S. Vaslin
- Plant Molecular Virology Laboratory, Department of Virology, Microbiology Institute, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-graduação em Biotecnologia e Bioprocessos da UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Evolution of Overall Cotton Production and Its Determinants: Implications for Developing Countries Using Pakistan Case. SUSTAINABILITY 2022. [DOI: 10.3390/su14020840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Managing the declining yield of non-food crops has opened new strategic challenges amidst global uncertainties. The COVID-19 scenario has increased awareness of natural lifestyle and eco-friendly products, largely dependent on non-food crop material. This strategic shift requires moving beyond traditional farm practices to improve agricultural production efficiency, and developing countries in particular have shown a consistent loss in their self-sufficiency of industrial crops despite being major exporters of non-food crop materials. However, existing studies analyze production efficiencies of non-food crops from general or theoretical aspects often by virtual estimates from breaking down the multiple factors of crop productivity. This study examined multiple factors of crop production to identify “which crop inputs have been inefficiently used overtime” by tracking efficiency changes and various input issues in overall cotton production from practical aspects, i.e., scaling non-constant returns of those multiple factors would allow for the violation of various situations. Accordingly, a stochastic frontier approach was employed to measure the production frontier and efficiency relationship using time-series data of Pakistan’s cotton production from 1971–2018—a specific non-food crop perspective from a top-ranked cotton-producing country that has recently been shifted towards being a non-exporter of cotton due to low yield. The coefficient of area, seed, and labor indicates the positive relationship with cotton production, while fertilizer, irrigation, electricity, and machinery are statistically negative. This implies that policymakers need priority-based strategies for the judicial use of synthetic fertilizers, irrigation, a subsidy policy, and technology adoption, which could significantly improve the efficiencies of cotton productivity from the same land resources. Being adaptable to other developing economies, the analysis would strategically facilitate designing and developing affordable technology-driven solutions and their customized extensions towards sustainable non-food crop production practices and Agri-Resources efficiencies.
Collapse
|
12
|
Kumar M, Zarreen F, Chakraborty S. Roles of two distinct alphasatellites modulating geminivirus pathogenesis. Virol J 2021; 18:249. [PMID: 34903259 PMCID: PMC8670188 DOI: 10.1186/s12985-021-01718-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alphasatellites are small coding DNA satellites frequently associated with a begomovirus/betasatellite complex, where they are known to modulate virulence and symptom development. Two distinct alphasatellites, namely, Cotton leaf curl Multan alphasatellite (CLCuMuA), and Gossypium darwinii symptomless alphasatellite (GDarSLA) associated with Cotton leaf curl Multan virus-India (CLCuMuV-IN) and Ludwigia leaf distortion betasatellite (LuLDB) were found to be associated with yellow mosaic disease of hollyhock (Alcea rosea) plants. In this study, we show that alphasatellites CLCuMuA and GDarSLA attenuate and delay symptom development in Nicotiana benthamiana. The presence of either alphasatellites reduce the accumulation of the helper virus CLCuMuV-IN. However, the levels of the associated betasatellite, LuLDB, remains unchanged. These results suggest that the alphasatellites could contribute to the host defence and understanding their role in disease development is important for developing resistance strategies. METHODS Tandem repeat constructs of two distinct alphasatellites, namely, CLCuMuA and GDarSLA associated with CLCuMuV-IN and LuLDB were generated. N. benthamiana plants were co-agroinoculated with CLCuMuV and its associated alphasatellites and betasatellite molecules and samples were collected at 7, 14 and 21 days post inoculation (dpi). The viral DNA molecules were quantified in N. benthamiana plants by qPCR. The sequences were analysed using the MEGA-X tool, and a phylogenetic tree was generated. Genetic diversity among the CLCuMuA and GDarSLA was analysed using the DnaSP tool. RESULTS We observed a reduction in symptom severity and accumulation of helper virus in the presence of two alphasatellites isolated from naturally infected hollyhock plants. However, no reduction in the accumulation of betasatellite was observed. The phylogenetic and genetic variability study revealed the evolutionary dynamics of these distinct alphasatellites , which could explain the role of hollyhock-associated alphasatellites in plants. CONCLUSIONS This study provides evidence that alphasatellites have a role in symptom modulation and suppress helper virus replication without any discernible effect on the replication of the associated betasatellite.
Collapse
Affiliation(s)
- Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| | - Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| |
Collapse
|
13
|
Palchoudhury S, Khare VK, Balram N, Bhattacharyya UK, Das S, Shukla P, Chakraborty P, Biswas KK. A multiplex polymerase chain reaction for the simultaneous detection of the virus and satellite components associated with cotton leaf curl begomovirus disease complex. J Virol Methods 2021; 300:114369. [PMID: 34813823 DOI: 10.1016/j.jviromet.2021.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022]
Abstract
Cotton leaf curl disease (CLCuD) is caused by a complex of several whiteflies (Bemisia tabaci Genn.)-transmitted begomovirus species, Cotton leaf curl Multan virus (CLCuMuV), Cotton leaf curl Kokhran virus (CLCuKoV) and Cotton leaf curl Alabad virus (CLCuAlV) by individual of mixed infection, associated with Cotton leaf curl Multan betasatellite (CLCuMB) and several alphasatellites. The disease causes major economic losses in cotton in the Indian subcontinent. For monitoring of epidemiology and development of management strategies of CLCuD, a quick, sensitive and effective method capable of detecting all the begomovirus, betasatellite and alphasatellite components associated with CLCuD is required. With this objective, a multiplex polymerase chain reaction (mPCR) assay was developed for the simultaneous detection of these three viral components associated with CLCuD of cotton. Primers for each component were designed based on the retrieved reference sequences from the GenBank. Each pair of primers, designed for each of the respective component, was evaluated for its sensitivity and specificity in both the component-specific simplex polymerase chain reaction (sPCR) and mPCR assay. This report identified three viral component-specific pairs of primers which, in all combinations, amplified simultaneously the CP gene (780 nts) of the begomovirus, the βC1gene (375 nts) of the betasatellite and the Rep gene (452 nts) of the alphasatellite associated with CLCuD in the mPCR assays. The amplified products specific to each component produced by these assays were identified based on their amplicon sizes, and the identities of the viral components amplified were confirmed by cloning and sequencing the amplicons obtained in the mPCR. The mPCR assay was validated using naturally CLCuD-affected cotton plants of the fields. This assay will be useful for rapid detection of CLCuD-associated begomovirus, betasatellite and alphasatellite DNA in field samples, extensive resistance screening in resistance breeding programme, and also monitoring epidemiology for detection of virus and its components when symptoms are mild or absent in the plant.
Collapse
Affiliation(s)
- S Palchoudhury
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - V K Khare
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - N Balram
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - U K Bhattacharyya
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - S Das
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - P Shukla
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - P Chakraborty
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - K K Biswas
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
14
|
Rafiq A, Ali WR, Asif M, Ahmed N, Khan WS, Mansoor S, Bajwa SZ, Amin I. Development of a LAMP assay using a portable device for the real-time detection of cotton leaf curl disease in field conditions. Biol Methods Protoc 2021; 6:bpab010. [PMID: 34084942 PMCID: PMC8164779 DOI: 10.1093/biomethods/bpab010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Cotton production is seriously affected by the prevalent cotton leaf curl disease (CLCuD) that originated from Nigeria (Africa) to various parts of Asia including Pakistan, India, China and Philippines. Due to CLCuD, Pakistan suffers heavy losses approximately 2 billion USD per annum. Numerous reports showed that CLCuD is associated with multiple species of begomoviruses, alphasatellites and a single species of betasatellite, that is ‘Cotton leaf curl Multan betasatellite’ (CLCuMuB). The most prevalent form of CLCuD is the combination of ‘Cotton leaf curl Kokhran virus’-Burewala strain (CLCuKoV-Bur) and CLCuMuB. Thus, the availability of an in-field assay for the timely detection of CLCuD is important for the control and management of the disease. In this study, a robust method using the loop-mediated isothermal amplification (LAMP) assay was developed for the detection of CLCuD. Multiple sets of six primers were designed based on the conserved regions of CLCuKoV-Bur and CLCuMuB-βC1 genes. The results showed that the primer set targeting the CLCuMuB-βC1 gene performed best when the LAMP assay was performed at 58°C using 100 ng of total plant tissue DNA as a template in a 25 µl reaction volume. The limit of detection for the assay was as low as 22 copies of total purified DNA template per reaction. This assay was further adapted to perform as a colorimetric and real-time LAMP assay which proved to be advantageously applied for the rapid and early point-of-care detection of CLCuD in the field. Application of the assay could help to prevent the huge economic losses caused by the disease and contribute to the socio-economic development of underdeveloped countries.
Collapse
Affiliation(s)
- Amna Rafiq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 44000, Pakistan
| | - Waqas Rafique Ali
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan
| | - Nasim Ahmed
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 44000, Pakistan
| | - Waheed S Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan
| | - Sadia Zafar Bajwa
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan
| |
Collapse
|
15
|
Farooq T, Umar M, She X, Tang Y, He Z. Molecular phylogenetics and evolutionary analysis of a highly recombinant begomovirus, Cotton leaf curl Multan virus, and associated satellites. Virus Evol 2021; 7:veab054. [PMID: 34532058 PMCID: PMC8438885 DOI: 10.1093/ve/veab054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 11/12/2022] Open
Abstract
Cotton leaf curl Multan virus (CLCuMuV) and its associated satellites are a major part of the cotton leaf curl disease (CLCuD) caused by the begomovirus species complex. Despite the implementation of potential disease management strategies, the incessant resurgence of resistance-breaking variants of CLCuMuV imposes a continuous threat to cotton production. Here, we present a focused effort to map the geographical prevalence, genomic diversity, and molecular evolutionary endpoints that enhance disease complexity by facilitating the successful adaptation of CLCuMuV populations to the diversified ecosystems. Our results demonstrate that CLCuMuV populations are predominantly distributed in China, while the majority of alphasatellites and betasatellites exist in Pakistan. We demonstrate that together with frequent recombination, an uneven genetic variation mainly drives CLCuMuV and its satellite's virulence and evolvability. However, the pattern and distribution of recombination breakpoints greatly vary among viral and satellite sequences. The CLCuMuV, Cotton leaf curl Multan alphasatellite, and Cotton leaf curl Multan betasatellite populations arising from distinct regions exhibit high mutation rates. Although evolutionarily linked, these populations are independently evolving under strong purifying selection. These findings will facilitate to comprehensively understand the standing genetic variability and evolutionary patterns existing among CLCuMuV populations across major cotton-producing regions of the world.
Collapse
Affiliation(s)
- Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Muhammad Umar
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia
| | - Xiaoman She
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| |
Collapse
|
16
|
Ahmed N, Amin I, Zaidi SSEA, Rahman SU, Farooq M, Fauquet CM, Mansoor S. Circular DNA enrichment sequencing reveals the viral/satellites genetic diversity associated with the third epidemic of cotton leaf curl disease. Biol Methods Protoc 2021; 6:bpab005. [PMID: 33884305 PMCID: PMC8046901 DOI: 10.1093/biomethods/bpab005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Cotton leaf curl disease (CLCuD) is the most important limiting factor for cotton production in Pakistan. The CLCuD passed through two major epidemics in this region with distinct begomoviruses/satellites complexes. Since 2015 the disease has again started to appear in epidemic form, causing heavy losses to cotton crop, which we termed as the “third epidemic”. We applied CIDER-seq (Circular DNA Enrichment Sequencing), a recently developed sequencing method for PCR-free virus enrichment to produce a full length read of a single circular viral genome coupled with Sanger sequencing to explore the genetic diversity of the disease complex. We identified a highly recombinant strain of Cotton leaf curl Multan virus and a recently evolved strain of Cotton leaf curl Multan betasatellite that are dominant in all major cotton growing regions in the country. Moreover, we also identified multiple species of alphasatellites with one distinct species, Mesta yellow vein mosaic alphasatellite (MeYVMA) for the first time in cotton. Relative abundance of virus and associated satellites was also determined by real-time quantitative PCR. To the best of our knowledge, this is the first study that determined the CLCuD complex associated with its third epidemic.
Collapse
Affiliation(s)
- Nasim Ahmed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan
| | - Syed Shan-E-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan
| | - Saleem Ur Rahman
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan
| | - Muhammad Farooq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan
| | | | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan
| |
Collapse
|
17
|
Shakir S, Jander G, Nahid N, Mubin M, Younus A, Nawaz-Ul-Rehman MS. Interaction of eukaryotic proliferating cell nuclear antigen (PCNA) with the replication-associated protein (Rep) of cotton leaf curl Multan virus and pedilanthus leaf curl virus. 3 Biotech 2021; 11:14. [PMID: 33442513 DOI: 10.1007/s13205-020-02499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/19/2020] [Indexed: 11/28/2022] Open
Abstract
The replication-associated (Rep) proteins of pathogenic begomoviruses, including cotton leaf curl Multan virus (CLCuMuV) and pedilanthus leaf curl virus (PeLCV), interact with the DNA replication machinery of their eukaryotic hosts. The analysis of Rep protein sequences showed that there is 13-28% sequence variation among CLCuMuV and PeLCV isolates, with phylogenetic clusters that can separated at least in part based on the country of origin of the respective viruses. To identify specific host factors involved in the virus replication cycle, we conducted yeast two-hybrid assays to detect possible interactions between the CLCuMuV and PeLCV Rep proteins and 30 protein components of the Saccharomyces cerevisiae DNA replication machinery. This showed that the proliferating cell nuclear antigen (PCNA) protein of S. cerevisiae interacts with Rep proteins from both CLCuMuV and PeLCV. We used the yeast PCNA sequence in BLAST comparisons to identify two PCNA orthologs each in Gossypium hirsutum (cotton), Arabidopsis thaliana (Arabidopsis), and Nicotiana benthamiana (tobacco). Sequence comparisons showed 38-40% identity between the yeast and plant PCNA proteins, and > 91% identity among the plant PCNA proteins, which clustered together in one phylogenetic group. The expression of the six plant PCNA proteins in the yeast two-hybrid system confirmed interactions with the CLCuMuV and PeLCV Rep proteins. Our results demonstrate that the interaction of begomovirus Rep proteins with eukaryotic PCNA proteins is strongly conserved, despite significant evolutionary variation in the protein sequences of both of the interacting partners.
Collapse
Affiliation(s)
- Sara Shakir
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
- Boyce Thompson Institutute, Ithaca, NY 14853 USA
- Present Address: Plant Genetics, Lab, Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Georg Jander
- Boyce Thompson Institutute, Ithaca, NY 14853 USA
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
| | - Muhammad Mubin
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Ayesha Younus
- Laser Matter Interaction and Nano-Sciences Lab, Department of Physics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shah Nawaz-Ul-Rehman
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
| |
Collapse
|
18
|
Sanchez-Chavez S, Regla-Marquez CF, Cardenas-Conejo ZE, Garcia-Rodriguez DA, Centeno-Leija S, Serrano-Posada H, Liñan-Rico A, Partida-Palacios BL, Cardenas-Conejo Y. First report of begomoviruses infecting Cucumis sativus L. in North America and identification of a proposed new begomovirus species. PeerJ 2020; 8:e9245. [PMID: 32728488 PMCID: PMC7357562 DOI: 10.7717/peerj.9245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 12/02/2022] Open
Abstract
Background Members of the Begomovirus genus are phytopathogens that infect dicotyledonous plants, producing economic losses in tropical and subtropical regions. To date, only seven species of begomoviruses (BGVs) infecting cucumber have been described. Most cucumber infections were reported in South Asia. In the Americas, begomoviral infections affecting cucumber are scarce; just one report of begomovirus has been described in South America. The presence of whitefly and typical symptoms of viral infections observed in a cucumber field in Colima, Mexico, suggested that plants in this field were affected by BGVs. Methods To identify the BGVs infecting cucumber, we performed a high-throughput sequencing and compared the assembled contigs against the GenBank nucleic acid sequence database. To confirm the presence of viruses in cucumber samples, we performed a PCR detection using specific oligonucleotides. We cloned and sequenced by Sanger method the complete genome of a potential new begomovirus. Begomovirus species demarcation was performed according to the International Committee on Taxonomy of Viruses. The evolutionary relationship of the new virus was inferred using phylogenetic and recombination analyses. Results We identified five species of begomovirus infecting plants in a field. None of these have been previously reported infecting cucumber. One of the five species of viruses here reported is a new begomovirus species. Cucumber chlorotic leaf virus, the new species, is a bipartite begomovirus that has distinctive features of viruses belonging to the squash leaf curl virus clade. Conclusions The findings here described represent the first report of begomoviral infection affecting cucumber plants in North America. Previous to this report, only seven begomovirus species have been reported in the world, here we found five species infecting cucumber plants in a small sample suggesting that cucumber is vulnerable to BGVs. One of these viruses is a new species of begomovirus which is the first begomovirus originally isolated from the cucumber. The findings of this report could help to develop strategies to fight the begomoviral infections that affect cucumber crops.
Collapse
Affiliation(s)
| | | | | | | | - Sara Centeno-Leija
- Laboratorio de Agrobiotecnologia, Consejo Nacional de Ciencia y Tecnologia-Universidad de Colima, Colima, Mexico
| | - Hugo Serrano-Posada
- Laboratorio de Agrobiotecnologia, Consejo Nacional de Ciencia y Tecnologia-Universidad de Colima, Colima, Mexico
| | - Andromeda Liñan-Rico
- Centro Universitario de Investigaciones Biomedicas, Consejo Nacional de Ciencia y Tecnologia-Universidad de Colima, Colima, Mexico
| | | | - Yair Cardenas-Conejo
- Laboratorio de Agrobiotecnologia, Consejo Nacional de Ciencia y Tecnologia-Universidad de Colima, Colima, Mexico
| |
Collapse
|
19
|
Biswas KK, Bhattacharyya UK, Palchoudhury S, Balram N, Kumar A, Arora R, Sain SK, Kumar P, Khetarpal RK, Sanyal A, Mandal PK. Dominance of recombinant cotton leaf curl Multan-Rajasthan virus associated with cotton leaf curl disease outbreak in northwest India. PLoS One 2020; 15:e0231886. [PMID: 32320461 PMCID: PMC7176085 DOI: 10.1371/journal.pone.0231886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/02/2020] [Indexed: 11/19/2022] Open
Abstract
Cotton leaf curl disease (CLCuD), caused by whitefly (Bemisiatabaci) transmitted single-stranded DNA viruses belonging to the Genus, Begomovirus (family, Geminiviridae) in association with satellite molecules; is responsible for major economic losses in cotton in three northwest (NW) Indian states Haryana, Punjab, and Rajasthan. Annual CLCuD incidences during 2012 to 2014 were estimated to be 37.5%, 63.6%, and 38.8% respectively. Cotton leaves were collected from symptomatic plants annually for three years and subjected to DNA isolation, followed by rolling circle amplification (RCA), cloning, and DNA sequencing of apparently full-length begomoviral genomes and associated betasatellites and alphasatellites. Among the thirteen CLCuD-begomoviral genomes recovered, eight were identified as Cotton leaf curl Multan virus-Rajasthan (CLCuMuV-Ra), one as -Pakistan (PK) and another as -Faisalabad (Fai), whereas, three were as Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bu), indicating that CLCuMuV-Ra was the most prevalent begomovirus species. Five of the eight CLCuMuV-Ra sequences were found to be recombinants. The CLCuMuV-Ra- associated satellites consisted of Cotton leaf curl Multan betasatellite (CLCuMB), and Gossypium darwinii symptomless alphasatellite (GDarSLA), and Croton yellow vein mosaic alphasatellite (CrYVMoA). The second most abundant helper virus species, CLCuKoV-Bu, was associated with CLCuMB and GDarSLA.
Collapse
Affiliation(s)
- Kajal Kumar Biswas
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- * E-mail:
| | - Utpal Kumar Bhattacharyya
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Supratik Palchoudhury
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Nenavath Balram
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar
- Chaudhary Charan Singh Haryana Agricultural University, Haryana, India
| | - Rupesh Arora
- Regional Research Station, Punjab Agricultural University, Punjab, India
| | - Satish Kumar Sain
- ICAR-Central Institute for Cotton Research, Regional Station, Haryana, India
| | - Pradeep Kumar
- Agricultural Research Station, Swami Keshwanand Rajasthan Agriculture University, Rajasthan, India
| | - Ravi K. Khetarpal
- Asia-Pacific Association of Agricultural Research Institutions, Bangkok, Thailand
| | | | | |
Collapse
|
20
|
Paredes‐Montero JR, Zia‐Ur‐Rehman M, Hameed U, Haider MS, Herrmann H, Brown JK. Genetic variability, community structure, and horizontal transfer of endosymbionts among three Asia II- Bemisia tabaci mitotypes in Pakistan. Ecol Evol 2020; 10:2928-2943. [PMID: 32211166 PMCID: PMC7083670 DOI: 10.1002/ece3.6107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/24/2022] Open
Abstract
Endosymbionts associated with the whitefly Bemisia tabaci cryptic species are known to contribute to host fitness and environmental adaptation. The genetic diversity and population complexity were investigated for endosymbiont communities of B. tabaci occupying different micro-environments in Pakistan. Mitotypes of B. tabaci were identified by comparative sequence analysis of the mitochondria cytochrome oxidase I (mtCOI) gene sequence. Whitefly mitotypes belonged to the Asia II-1, -5, and -7 mitotypes of the Asia II major clade. The whitefly-endosymbiont communities were characterized based on 16S ribosomal RNA operational taxonomic unit (OTU) assignments, resulting in 43 OTUs. Most of the OTUs occurred in the Asia II-1 and II-7 mitotypes (r 2 = .9, p < .005), while the Asia II-5 microbiome was less complex. The microbiome OTU groups were mitotype-specific, clustering with a basis in phylogeographical distribution and the corresponding ecological niche of their whitefly host, suggesting mitotype-microbiome co-adaptation. The primary endosymbiont Portiera was represented by a single, highly homologous OTU (0%-0.67% divergence). Two of six Arsenophonus OTUs were uniquely associated with Asia II-5 and -7, and one occurred exclusively in Asia II-1, two only in Asia II-5, and one in both Asia II-1 and -7. Four other secondary endosymbionts, Cardinium, Hemipteriphilus, Rickettsia, and Wolbachia OTUs, were found at ≤29% frequencies. The most prevalent Arsenophonus OTU was found in all three Asia II mitotypes (55% frequency), whereas the same strain of Cardinium and Wolbachia was found in both Asia II-1 and -5, and a single Hemipteriphilus OTU occurred in Asia II-1 and -7. This pattern is indicative of horizontal transfer, suggestive of a proximity between mitotypes sufficient for gene flow at overlapping mitotype ecological niches.
Collapse
Affiliation(s)
- Jorge R. Paredes‐Montero
- School of Plant SciencesUniversity of ArizonaTucsonAZUSA
- Facultad de Ciencias de la VidaEscuela Superior Politécnica del Litoral (ESPOL)GuayaquilEcuador
| | | | - Usman Hameed
- Institute of Agricultural SciencesUniversity of the PunjabLahorePakistan
| | | | | | | |
Collapse
|
21
|
Zaidi SS, Naqvi RZ, Asif M, Strickler S, Shakir S, Shafiq M, Khan AM, Amin I, Mishra B, Mukhtar MS, Scheffler BE, Scheffler JA, Mueller LA, Mansoor S. Molecular insight into cotton leaf curl geminivirus disease resistance in cultivated cotton (Gossypium hirsutum). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:691-706. [PMID: 31448544 PMCID: PMC7004920 DOI: 10.1111/pbi.13236] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
Cultivated cotton (Gossypium hirsutum) is the most important fibre crop in the world. Cotton leaf curl disease (CLCuD) is the major limiting factor and a threat to textile industry in India and Pakistan. All the local cotton cultivars exhibit moderate to no resistance against CLCuD. In this study, we evaluated an exotic cotton accession Mac7 as a resistance source to CLCuD by challenging it with viruliferous whiteflies and performing qPCR to evaluate the presence/absence and relative titre of CLCuD-associated geminiviruses/betasatellites. The results indicated that replication of pathogenicity determinant betasatellite is significantly attenuated in Mac7 and probably responsible for resistance phenotype. Afterwards, to decipher the genetic basis of CLCuD resistance in Mac7, we performed RNA sequencing on CLCuD-infested Mac7 and validated RNA-Seq data with qPCR on 24 independent genes. We performed co-expression network and pathway analysis for regulation of geminivirus/betasatellite-interacting genes. We identified nine novel modules with 52 hubs of highly connected genes in network topology within the co-expression network. Analysis of these hubs indicated the differential regulation of auxin stimulus and cellular localization pathways in response to CLCuD. We also analysed the differential regulation of geminivirus/betasatellite-interacting genes in Mac7. We further performed the functional validation of selected candidate genes via virus-induced gene silencing (VIGS). Finally, we evaluated the genomic context of resistance responsive genes and found that these genes are not specific to A or D sub-genomes of G. hirsutum. These results have important implications in understanding CLCuD resistance mechanism and developing a durable resistance in cultivated cotton.
Collapse
Affiliation(s)
- Syed Shan‐e‐Ali Zaidi
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Boyce Thompson InstituteIthacaNYUSA
- Plant Genetics LabTERRA Teaching and Research CenterGembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Boyce Thompson InstituteIthacaNYUSA
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | | | - Sara Shakir
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Boyce Thompson InstituteIthacaNYUSA
- Plant Genetics LabTERRA Teaching and Research CenterGembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
| | - Muhammad Shafiq
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Present address:
Department of BiotechnologyUniversity of OkaraOkaraPakistan
| | - Abdul Manan Khan
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | - Bharat Mishra
- Department of BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - M. Shahid Mukhtar
- Department of BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Brian E. Scheffler
- Genomics and Bioinformatics Research UnitUnited States Department of Agriculture‐Agricultural Research Service (USDA‐ARS)StonevilleMSUSA
| | - Jodi A. Scheffler
- Crop Genetics Research UnitUnited States Department of Agriculture‐Agricultural Research Service (USDA‐ARS)StonevilleMSUSA
| | | | - Shahid Mansoor
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| |
Collapse
|
22
|
Reconstruction and Characterization of Full-Length Begomovirus and Alphasatellite Genomes Infecting Pepper through Metagenomics. Viruses 2020; 12:v12020202. [PMID: 32054104 PMCID: PMC7077291 DOI: 10.3390/v12020202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 01/18/2023] Open
Abstract
In northwestern Argentina (NWA), pepper crops are threatened by the emergence of begomoviruses due to the spread of its vector, Bemisia tabaci (Gennadius). The genus Begomovirus includes pathogens that can have a monopartite or bipartite genome and are occasionally associated with sub-viral particles called satellites. This study characterized the diversity of begomovirus and alphasatellite species infecting pepper in NWA using a metagenomic approach. Using RCA-NGS (rolling circle amplification-next generation sequencing), 19 full-length begomovirus genomes (DNA-A and DNA-B) and one alphasatellite were assembled. This ecogenomic approach revealed six begomoviruses in single infections: soybean blistering mosaic virus (SbBMV), tomato yellow spot virus (ToYSV), tomato yellow vein streak virus (ToYVSV), tomato dwarf leaf virus (ToDfLV), sida golden mosaic Brazil virus (SiGMBRV), and a new proposed species, named pepper blistering leaf virus (PepBLV). SbBMV was the most frequently detected species, followed by ToYSV. Moreover, a new alphasatellite associated with ToYSV, named tomato yellow spot alphasatellite 2 (ToYSA-2), was reported for the first time in Argentina. For the Americas, this was the first report of an alphasatellite found in a crop (pepper) and in a weed (Leonurus japonicus). We also detected intra-species and inter-species recombination.
Collapse
|
23
|
Kamal H, Minhas FUAA, Tripathi D, Abbasi WA, Hamza M, Mustafa R, Khan MZ, Mansoor S, Pappu HR, Amin I. βC1, pathogenicity determinant encoded by Cotton leaf curl Multan betasatellite, interacts with calmodulin-like protein 11 (Gh-CML11) in Gossypium hirsutum. PLoS One 2019; 14:e0225876. [PMID: 31794580 PMCID: PMC6890265 DOI: 10.1371/journal.pone.0225876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 11/14/2019] [Indexed: 01/14/2023] Open
Abstract
Begomoviruses interfere with host plant machinery to evade host defense mechanism by interacting with plant proteins. In the old world, this group of viruses are usually associated with betasatellite that induces severe disease symptoms by encoding a protein, βC1, which is a pathogenicity determinant. Here, we show that βC1 encoded by Cotton leaf curl Multan betasatellite (CLCuMB) requires Gossypium hirsutum calmodulin-like protein 11 (Gh-CML11) to infect cotton. First, we used the in silico approach to predict the interaction of CLCuMB-βC1 with Gh-CML11. A number of sequence- and structure-based in-silico interaction prediction techniques suggested a strong putative binding of CLCuMB-βC1 with Gh-CML11 in a Ca+2-dependent manner. In-silico interaction prediction was then confirmed by three different experimental approaches: The Gh-CML11 interaction was confirmed using CLCuMB-βC1 in a yeast two hybrid system and pull down assay. These results were further validated using bimolecular fluorescence complementation system showing the interaction in cytoplasmic veins of Nicotiana benthamiana. Bioinformatics and molecular studies suggested that CLCuMB-βC1 induces the overexpression of Gh-CML11 protein and ultimately provides calcium as a nutrient source for virus movement and transmission. This is the first comprehensive study on the interaction between CLCuMB-βC1 and Gh-CML11 proteins which provided insights into our understating of the role of βC1 in cotton leaf curl disease.
Collapse
Affiliation(s)
- Hira Kamal
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
| | | | - Diwaker Tripathi
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Wajid Arshad Abbasi
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Muhammad Hamza
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Roma Mustafa
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Muhammad Zuhaib Khan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
24
|
Non-cultivated Cotton Species ( Gossypium spp.) Act as a Reservoir for Cotton Leaf Curl Begomoviruses and Associated Satellites. PLANTS 2019; 8:plants8050127. [PMID: 31091727 PMCID: PMC6571856 DOI: 10.3390/plants8050127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/02/2019] [Accepted: 05/10/2019] [Indexed: 11/17/2022]
Abstract
A collection of cultivated and non-cultivated species of cotton (Gossypium spp.) has been maintained for the last four decades in Multan, Pakistan. This geographical location has been observed as a hotspot for the evolution of begomoviruses and satellites associated with cotton leaf curl disease (CLCuD). Recent studies showed that begomoviruses responsible for the CLCuD epidemic in the 1990s, and that almost disappeared from the CLCuD complex in 2000s, have been observed again in CLCuD-infected cotton fields. To identify host species that acted as probable reservoirs for these viruses, we characterized begomoviruses and satellites in non-cultivated cotton species G. raimondii, G. thurberi and G. mustelinum and identified several species of CLCuD associated begomoviruses and satellites. Further, phylogenetic analysis indicated that the identified begomoviruses and beta/alphasatellites are closely related to the ones associated with the most recent CLCuD complex. qPCR indicated that the comparative level of virus significantly decreased in the presence of alphasatellites. Our results indicated that non-cultivated cotton species have been continuously challenged by diverse begomoviruses and associated satellites and act as reservoirs for CLCuD associated begomoviruses. These results provide novel insights into understanding the spread of begomoviruses and associated satellites in New World cotton species introduced into the Old World.
Collapse
|
25
|
Qadir R, Khan ZA, Monga D, Khan JA. Diversity and recombination analysis of Cotton leaf curl Multan virus: a highly emerging begomovirus in northern India. BMC Genomics 2019; 20:274. [PMID: 30954067 PMCID: PMC6451280 DOI: 10.1186/s12864-019-5640-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/24/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Cotton leaf curl disease (CLCuD), caused by begomoviruses in association with satellite molecules, is a major threat to cotton production causing enormous losses to cotton crop in most of the cotton growing countries including Indian subcontinent. In this study, isolates of begomovirus and satellite molecules associated with CLCuD were collected from North India (Haryana, New Delhi). They were amplified employing rolling circle replication mechanism, cloned, sequenced and, their phylogenetic and recombination analysis was performed. RESULTS The five Cotton leaf curl Multan virus (CLCuMuV) isolates investigated in this study showed monopartite organization of the genome typical of Old World begomoviruses. Nucleotide sequence analyses assigned them as the strains of CLCuMuV and were designated as CLCuMuV-SR13, CLCuMuV-SR14, CLCuMuV-ND14, CLCuMuV-ND15 and CLCuMuV-SR15. The genome of CLCuMuV-SR13 shared a highest level of nucleotide sequence identity (98%) with CLCuMuV (JN678804), CLCuMuV-SR14 and CLCuMuV-SR15 exhibited 96% with CLCuMuV (KM096471), while isolates CLCuMuV-ND15 and CLCuMuV-SR15 revealed 96% sequence identity with CLCuMuV (AY765253). The four betasatellite molecules investigated in this study shared 95-99% nucleotide sequence identity with Cotton leaf curl Multan betasatellite (CLCuMB) from India. The betasatellite molecules were designated as CLCuMB-SR13, CLCuMB-SR14, CLCuMB-ND14 and CLCuMB-ND15. Alphasatellite molecules in this study, designated as GLCuA-SR14, GLCuA-ND14 and GLCuA-SR15, revealed 98% identity with Guar leaf curl alphasatellite (GLCuA) reported from Pakistan. CONCLUSION The phylogenetic and recombination studies concluded that the isolates of CLCuMuV genomes undertaken in this study have a potential recombinant origin. Remarkably, significant recombination was detected in almost all the genes with contribution of Cotton leaf curl Kokhran Virus (CLCuKoV) in IR, V1, V2, C1, C4 and C5 regions and of CLCuMuV in C2 region of CLCuMuV-SR14. CLCuKoV also donated in C2, C3 regions of CLCuMuV-ND14; V1, V2, C2 and C3 regions of CLCuMuV-ND15 and C1 of CLCuMuV-SR15. Altogether, these observations signify the uniqueness in Indian CLCuMuV isolates showing contribution of CLCuKoV in all the genes. An interesting observation was frequent identification of GLCuA in CLCuD leaf samples.
Collapse
Affiliation(s)
- Razia Qadir
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, 110025, India
| | - Zainul A Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, 110025, India
- Present address: Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Dilip Monga
- Central Institute for Cotton Research (ICAR-CICR), Regional Station, Sirsa, Haryana, 125055, India
| | - Jawaid A Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, 110025, India.
| |
Collapse
|
26
|
Sukal AC, Kidanemariam DB, Dale JL, Harding RM, James AP. Assessment and optimization of rolling circle amplification protocols for the detection and characterization of badnaviruses. Virology 2019; 529:73-80. [PMID: 30665100 DOI: 10.1016/j.virol.2019.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 11/15/2022]
Abstract
The genus Badnavirus is characterized by members that are genetically and serologically heterogeneous which presents challenges for their detection and characterization. The presence of integrated badnavirus-like sequences in some host species further complicates detection using PCR-based protocols. To address these challenges, we have assessed and optimized various RCA protocols including random-primed RCA (RP-RCA), primer-spiked random-primed RCA (primer-spiked RP-RCA), directed RCA (D-RCA) and specific-primed RCA (SP-RCA). Using Dioscorea bacilliform AL virus (DBALV) as an example, we demonstrate that viral DNA amplified using the optimized D-RCA and SP-RCA protocols showed an 85-fold increase in badnavirus NGS reads compared with RP-RCA. The optimized RCA techniques described here were used to detect a range of badnaviruses infecting banana, sugar cane, taro and yam demonstrating the utility of RCA for detection of diverse badnaviruses infecting a variety of host plant species.
Collapse
Affiliation(s)
- Amit C Sukal
- Centre for Tropical Crops and Biocommodities (CTCB), Faculty of Science and Engineering (SEF), Queensland University of Technology (QUT), Brisbane 4001, Australia; Centre for Pacific Crops and Trees (CePaCT), Land Resource Division (LRD), Pacific Community (SPC), Suva, Fiji
| | - Dawit B Kidanemariam
- Centre for Tropical Crops and Biocommodities (CTCB), Faculty of Science and Engineering (SEF), Queensland University of Technology (QUT), Brisbane 4001, Australia
| | - James L Dale
- Centre for Tropical Crops and Biocommodities (CTCB), Faculty of Science and Engineering (SEF), Queensland University of Technology (QUT), Brisbane 4001, Australia
| | - Robert M Harding
- Centre for Tropical Crops and Biocommodities (CTCB), Faculty of Science and Engineering (SEF), Queensland University of Technology (QUT), Brisbane 4001, Australia.
| | - Anthony P James
- Centre for Tropical Crops and Biocommodities (CTCB), Faculty of Science and Engineering (SEF), Queensland University of Technology (QUT), Brisbane 4001, Australia
| |
Collapse
|
27
|
Díaz-Pendón JA, Sánchez-Campos S, Fortes IM, Moriones E. Tomato Yellow Leaf Curl Sardinia Virus, a Begomovirus Species Evolving by Mutation and Recombination: A Challenge for Virus Control. Viruses 2019; 11:E45. [PMID: 30634476 PMCID: PMC6356960 DOI: 10.3390/v11010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
The tomato leaf curl disease (TYLCD) is associated with infections of several species of begomoviruses (genus Begomovirus, family Geminiviridae) and causes severe damage to tomatoes throughout tropical and sub-tropical regions of the world. Among others, the Tomato yellow leaf curl Sardinia virus (TYLCSV) species causes damage in the Mediterranean Basin since early outbreaks occurred. Nevertheless, scarce information is available about the diversity of TYLCSV. Here, we study this aspect based on the sequence information accessible in databases. Isolates of two taxonomically differentiated TYLCSV strains can be found in natural epidemics. Their evolution is mostly associated with mutation combined with selection and random genetic drift and also with inter-species recombination which is frequent in begomoviruses. Moreover, a novel putative inter-strain recombinant is reported. Although no significantly new biological behaviour was observed for this latter recombinant, its occurrence supports that as shown for other related begomoviruses, recombination continues to play a central role in the evolution of TYLCD-associated viruses and the dynamism of their populations. The confrontation of resistant tomatoes with isolates of different TYLCD-associated viruses including the novel recombinant demonstrates the existence of a variable virus x plant genotype interaction. This has already been observed for other TYLCD-associated viruses and is a challenge for the control of their impact on tomato production.
Collapse
Affiliation(s)
- Juan A Díaz-Pendón
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| | - Sonia Sánchez-Campos
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| | - Isabel María Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| |
Collapse
|
28
|
Ali Z, Zaidi SSEA, Tashkandi M, Mahfouz MM. A Simplified Method to Engineer CRISPR/Cas9-Mediated Geminivirus Resistance in Plants. Methods Mol Biol 2019; 2028:167-183. [PMID: 31228115 DOI: 10.1007/978-1-4939-9635-3_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Throughout the world, geminiviruses cause devastating losses in economically important crops, including tomato, cotton, cassava, potato, chili, and cucumber; however, control mechanisms such as genetic resistance remain expensive and ineffective. CRISPR/Cas9 is an adaptive immunity mechanism used by prokaryotes to defend against invading nucleic acids of phages and plasmids. The CRISPR/Cas9 system has been harnessed for targeted genome editing in a variety of eukaryotic species, and in plants, CRISPR/Cas9 has been used to modify or introduce many traits, including virus resistance. Recently, we demonstrated that the CRISPR/Cas9 system could be used to engineer plant immunity against geminiviruses by directly targeting the viral genome for degradation. In this chapter, we describe a detailed method for engineering CRISPR/Cas9-mediated resistance against geminiviruses. This method may provide broad, durable viral resistance, as it can target conserved regions of the viral genome and can also be customized to emerging viral variants. Moreover, this method can be used in many crop species, as it requires little or no knowledge of the host plant's genome.
Collapse
Affiliation(s)
- Zahir Ali
- Laboratory for Genome Engineering, Division of Environmental and Biological Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Syed Shan-E-Ali Zaidi
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Manal Tashkandi
- Laboratory for Genome Engineering, Division of Environmental and Biological Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, Division of Environmental and Biological Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
29
|
Pan LL, Cui XY, Chen QF, Wang XW, Liu SS. Cotton Leaf Curl Disease: Which Whitefly Is the Vector? PHYTOPATHOLOGY 2018; 108:1172-1183. [PMID: 29714092 DOI: 10.1094/phyto-01-18-0015-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cotton leaf curl disease is one of the most significant constraints to the production of cotton. In the past decades our understanding of the begomoviruses (family Geminiviridae) causing the disease has improved, but little is known regarding transmission of these viruses by the different species of whiteflies in the Bemisia tabaci complex. We compared transmission efficiency of cotton leaf curl Multan virus (CLCuMuV), one of the major begomoviruses associated with cotton leaf curl disease, by four whitefly species, of which two are indigenous to Asia and two are invasive worldwide. Only the indigenous Asia II 1 species was able to transmit this virus with high efficiency. By quantifying the virus and using immunoflorescence assays, we found that the differential transmission was associated with the varying efficiency of CLCuMuV to cross the midgut of various whitefly species. Further, we verified the role of coat protein in the whitefly transmission of CLCuMuV. Based on a phylogenetic analysis of the virus coat proteins, we found that most begomoviruses associated with cotton leaf curl disease might share similar whitefly transmission characteristics. These findings advance our understanding of the nature of cotton leaf curl disease and provide information for the development of control and preventive strategies against this disease.
Collapse
Affiliation(s)
- Li-Long Pan
- First, second, third, fourth, and fifth authors: Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi-Yun Cui
- First, second, third, fourth, and fifth authors: Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qun-Fang Chen
- First, second, third, fourth, and fifth authors: Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Wei Wang
- First, second, third, fourth, and fifth authors: Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- First, second, third, fourth, and fifth authors: Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Datta S, Budhauliya R, Das B, Gopalakrishnan R, Sharma S, Chatterjee S, Vanlalhmuaka, Raju PS, Veer V. Rebound of Cotton leaf curl Multan virus and its exclusive detection in cotton leaf curl disease outbreak, Punjab (India), 2015. Sci Rep 2017; 7:17361. [PMID: 29234082 PMCID: PMC5727119 DOI: 10.1038/s41598-017-17680-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022] Open
Abstract
Cotton leaf curl disease (CLCuD) outbreaks caused by CLCuD associated begomoviruses (CABs) significantly constrain cotton production in India and Pakistan. In comparison to the CABs circulating in Pakistan, molecular epidemiology, evolution and recombination patterns of CABs circulating in India are less studied. In this work, we characterized CAB complex sequences obtained from the most recent outbreak (Punjab, India, 2015), and rigorously analyzed them with reference to GenBank sequences, submitted from India, Pakistan and other neighbouring countries, using contemporary bioinformatics approaches. In this manuscript, we illustrate the detection of a recombinant, phylogenetically distinct clade of Cotton leaf curl Multan virus (CLCuMuV), suggesting rebound of CLCuMuV in this region. Interestingly, we could not detect Cotton leaf curl Kokhran virus-Burewala strain (CLCuKoV-Bu), which was prevalent in this region, until now. Our study thus indicates substitution of the 'virulent resistance breaking' CLCuKoV-Bu by the re-emerging CLCuMuV recombinants. Our findings corroborate with that of a very recent study from Pakistan and we here discuss epidemiological links between the CAB complexes reported in these two studies. Taken together, these observations signify a shifting epidemiology of CABs, and seem to correlate with the recent prediction of the 'third epidemic' of CLCuD in the Indian subcontinent.
Collapse
Affiliation(s)
- Sibnarayan Datta
- Molecular Virology Laboratory, Biotechnology Division, Defence Research Laboratory (DRL-DRDO), Tezpur, 784 001, India.
| | - Raghvendra Budhauliya
- Molecular Virology Laboratory, Biotechnology Division, Defence Research Laboratory (DRL-DRDO), Tezpur, 784 001, India
| | - Bidisha Das
- Molecular Virology Laboratory, Biotechnology Division, Defence Research Laboratory (DRL-DRDO), Tezpur, 784 001, India
| | - Reji Gopalakrishnan
- Molecular Virology Laboratory, Biotechnology Division, Defence Research Laboratory (DRL-DRDO), Tezpur, 784 001, India.,Vector Management Division, Defence Research & Development Establishment (DRDE-DRDO), Gwalior, 474 002, India
| | - Sonika Sharma
- Molecular Virology Laboratory, Biotechnology Division, Defence Research Laboratory (DRL-DRDO), Tezpur, 784 001, India
| | - Soumya Chatterjee
- Molecular Virology Laboratory, Biotechnology Division, Defence Research Laboratory (DRL-DRDO), Tezpur, 784 001, India
| | - Vanlalhmuaka
- Molecular Virology Laboratory, Biotechnology Division, Defence Research Laboratory (DRL-DRDO), Tezpur, 784 001, India
| | - P Srinivas Raju
- Molecular Virology Laboratory, Biotechnology Division, Defence Research Laboratory (DRL-DRDO), Tezpur, 784 001, India
| | - Vijay Veer
- Molecular Virology Laboratory, Biotechnology Division, Defence Research Laboratory (DRL-DRDO), Tezpur, 784 001, India
| |
Collapse
|
31
|
Naqvi RZ, Zaidi SSEA, Akhtar KP, Strickler S, Woldemariam M, Mishra B, Mukhtar MS, Scheffler BE, Scheffler JA, Jander G, Mueller LA, Asif M, Mansoor S. Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboreum. Sci Rep 2017; 7:15880. [PMID: 29162860 PMCID: PMC5698292 DOI: 10.1038/s41598-017-15963-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
Cotton leaf curl disease (CLCuD), caused by cotton leaf curl viruses (CLCuVs), is among the most devastating diseases in cotton. While the widely cultivated cotton species Gossypium hirsutum is generally susceptible, the diploid species G. arboreum is a natural source for resistance against CLCuD. However, the influence of CLCuD on the G. arboreum transcriptome and the interaction of CLCuD with G. arboreum remains to be elucidated. Here we have used an RNA-Seq based study to analyze differential gene expression in G. arboreum under CLCuD infestation. G. arboreum plants were infested by graft inoculation using a CLCuD infected scion of G. hirsutum. CLCuD infested asymptomatic and symptomatic plants were analyzed with RNA-seq using an Illumina HiSeq. 2500. Data analysis revealed 1062 differentially expressed genes (DEGs) in G. arboreum. We selected 17 genes for qPCR to validate RNA-Seq data. We identified several genes involved in disease resistance and pathogen defense. Furthermore, a weighted gene co-expression network was constructed from the RNA-Seq dataset that indicated 50 hub genes, most of which are involved in transport processes and might have a role in the defense response of G. arboreum against CLCuD. This fundamental study will improve the understanding of virus-host interaction and identification of important genes involved in G. arboreum tolerance against CLCuD.
Collapse
Affiliation(s)
- Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Syed Shan-E-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
- AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| | - Khalid Pervaiz Akhtar
- Nuclear Institute for Agriculture & Biology (NIAB), Jhang Road, Faisalabad, Punjab, Pakistan
| | - Susan Strickler
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Melkamu Woldemariam
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit (USDA-ARS), Stoneville, MS, USA
| | - Jodi A Scheffler
- Crop Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Stoneville, MS, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Lukas A Mueller
- Boyce Thompson Institute, 533 Tower Road, Cornell University, Ithaca, NY, USA
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Punjab, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Punjab, Pakistan.
| |
Collapse
|
32
|
Akmal M, Baig MS, Khan JA. Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs. J Biotechnol 2017; 263:21-29. [PMID: 29017848 DOI: 10.1016/j.jbiotec.2017.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
Cotton leaf curl disease (CLCuD), a major factor resulting in the enormous yield losses in cotton crop, is caused by a distinct monopartite begomovirus in association with Cotton leaf curl Multan betasatellite (CLCuMB). Micro(mi)RNAs are known to regulate gene expression in eukaryotes, including antiviral defense in plants. In a previous study, we had computationally identified a set of cotton miRNAs, which were shown to have potential targets in the genomes of Cotton leaf curl Multan virus (CLCuMuV) and CLCuMB at multiple loci. In the current study, effect of Gossypium arboreum-encoded miRNAs on the genome of CLCuMuV and CLCuMB was investigated in planta. Two computationally predicted cotton-encoded miRNAs (miR398 and miR2950) that showed potential to bind multiple Open Reading Frames (ORFs; C1, C4, V1, and non- coding intergenic region) of CLCuMuV, and (βC1) of CLCuMB were selected. Functional validation of miR398 and miR2950 was done by overexpression approach in G. hirsutum var. HS6. A total of ten in vitro cotton plants were generated from independent events and subjected to biological and molecular analyses. Presence of the respective Precursor (pre)-miRNA was confirmed through PCR and Southern blotting, and their expression level was assessed by semi quantitative RT-PCR, Real Time quantitative PCR and northern hybridization in the PCR-positive lines. Southern hybridization revealed 2-4 copy integration of T-DNA in the genome of the transformed lines. Remarkably, expression of pre-miRNAs was shown up to 5.8-fold higher in the transgenic (T0) lines as revealed by Real Time PCR. The virus resistance was monitored following inoculation of the transgenic cotton lines with viruliferous whitefly (Bemisia tabaci) insect vector. After inoculation, four of the transgenic lines remained apparently symptom free. While a very low titre of viral DNA could be detected by Rolling circle amplification, betasatellite responsible for symptom induction could not be detected in any of the healthy looking transgenic lines. In this study for the first time, efficacy of the host (G. arboreum)-encoded miRNAs against CLCuD symptoms was experimentally demonstrated through overexpression of miR398 and miR2950 in G. hirsutum var. HS6 plants. Computational prediction of miRNAs targeting virus genome and their subsequent implication in translational inhibition or cleavage based suppression of viral mRNA via overexpression could help in generating virus resistant plants.
Collapse
Affiliation(s)
- Mohd Akmal
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia, (A Central University), New Delhi, 110025, India
| | - Mirza S Baig
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia, (A Central University), New Delhi, 110025, India
| | - Jawaid A Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia, (A Central University), New Delhi, 110025, India.
| |
Collapse
|
33
|
Zubair M, Zaidi SSEA, Shakir S, Amin I, Mansoor S. An Insight into Cotton Leaf Curl Multan Betasatellite, the Most Important Component of Cotton Leaf Curl Disease Complex. Viruses 2017; 9:E280. [PMID: 28961220 PMCID: PMC5691632 DOI: 10.3390/v9100280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
Cotton leaf curl disease (CLCuD) is one of the most economically important diseases and is a constraint to cotton production in major producers, Pakistan and India. CLCuD is caused by monopartite plant viruses belonging to the family Geminiviridae (genus Begomovirus), in association with an essential, disease-specific satellite, Cotton leaf curl Multan betasatellite (CLCuMuB) belonging to a newly-established family Tolecusatellitidae (genus Betasatellite). CLCuMuB has a small genome (ca. 1350 nt) with a satellite conserved region, an adenine-rich region and a single gene that encodes for a multifunctional βC1 protein. CLCuMuB βC1 protein has a major role in pathogenicity and symptom determination, and alters several host cellular functions like autophagy, ubiquitination, and suppression of gene silencing, to assist CLCuD infectivity. Efficient trans-replication ability of CLCuMuB with several monopartite and bipartite begomoviruses, is also associated with the rapid evolution and spread of CLCuMuB. In this article we comprehensively reviewed the role of CLCuMuB in CLCuD, focusing on the βC1 functions and its interactions with host proteins.
Collapse
Affiliation(s)
- Muhammad Zubair
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650 Islamabad, Pakistan.
| | - Syed Shan-E-Ali Zaidi
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650 Islamabad, Pakistan.
- AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Sara Shakir
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA.
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
| |
Collapse
|
34
|
Hassan I, Amin I, Mansoor S, Briddon RW. Further changes in the cotton leaf curl disease complex: an indication of things to come? Virus Genes 2017; 53:759-761. [PMID: 28721488 DOI: 10.1007/s11262-017-1496-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Cotton leaf curl disease (CLCuD) has been a problem for cotton production in Pakistan and India since the early 1990s. The disease is caused by begomoviruses associated with a specific satellite, the cotton leaf curl Multan betasatellite (CLCuMB). In 2001, resistance introduced into cotton was broken by a recombinant begomovirus, Cotton leaf curl Kokhran virus strain Burewala (CLCuKoV-Bur). Unusually, in resistant cotton, this virus lacked an intact transcriptional activator protein (TrAP) gene, with the capacity to encode only 35 of the usual ~134 amino acids. Recently, isolates of CLCuKoV-Bur with a longer, but still truncated, TrAP gene have been identified in cotton breeding lines lacking the earlier resistance. This suggests that more pathogenic viruses with a full TrAP could return to cotton if the earlier resistance is not maintained in ongoing breeding efforts to produce CLCuD-resistant cotton varieties. This conclusion is supported by recent studies showing the reappearance of pre-resistance-breaking begomoviruses, with full-length TrAP genes, in cotton.
Collapse
Affiliation(s)
- Ishtiaq Hassan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad, Pakistan.,Centre for Human Genetics, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad, Pakistan
| | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|